

NACF.XXXJ-S5/SP2VN 型电流传感器 Current Transducer

The NACF.XXXJ-S5/SP2VN Current Transducer is for the electronic measurement of DC, AC or pulsed currents, with galvanic separation between the primary circuit and the secondary circuit.

Features

- Open loop multi-range current transducer
- Voltage output
- Bipolar supply voltage.

Standards

• EN 50178: 1998

IEC 60950-1:2001

Typical application

- Solar inverter
- Frequency inverter

- Motor driver
- Autocontrol

Absolute rating

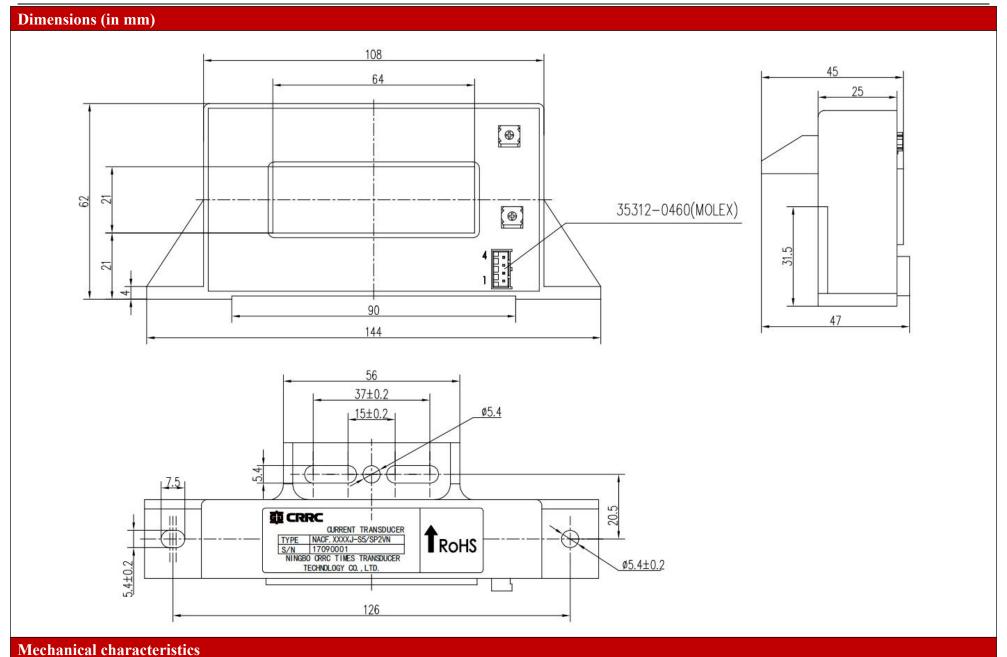
Danamatan	Cryssk ol	TT:4		Specification		Conditions
Parameter	Symbol	Unit	Min	Typical	Max	Conditions
Ambient storage temperature	T_{S}	°C	-40		85	
Ambient operating temperature	T_{A}	°C	-45		90	

Insulation coordination

Danamatan	Cymbal	Unit		Specification	1	Conditions		
Parameter	Symbol	Unit	Min	Min Typical Max	Max	Conditions		
Dielectric withstand voltage	V_{D}	kV			5	RMS voltage for AC test 50Hz, 1min		
Insulation resistance	R _{INS}	ΜΩ	1000			500V		
Clearance distance	d_{CI}	mm	10			Shortest distance through air		
Creepage distance	d_{CP}	mm	10			Shortest path along device body		

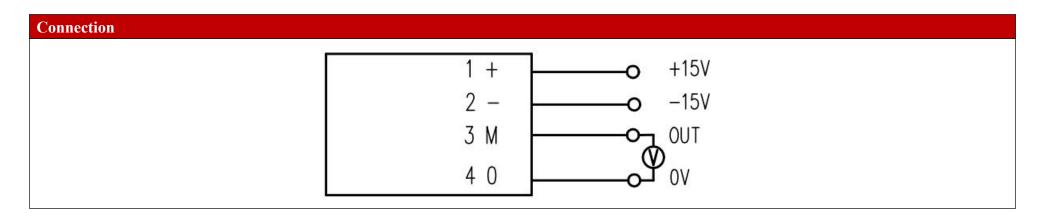
Electrical parameters

At T_A = 25°C, U_C = ± 15 V, R_L = 10 k Ω , unless otherwise noted.


Parameter	Symbol	Unit	Specification							Conditions		
Primary current, nominal range	I_{PN}	A	500	600	850	1000	1200	1500	2000	2500	3000	RMS current
Primary current measuring range	I_{PM}	A	±1500	±1800	±2550	±3000	±3600	±4500	±5500	±5500	±5500	

Parameter	Symbol	Unit		Specification	1	Conditions		
ा वा वाप्तिहार		Min Typical Max				Max	Conditions	
Supply voltage	U _C	V	±14.25	±15	±15.75			
Current consumption	I_{C}	mA			28+V _{out} /R _L			
Output voltage @I _{PN}	V _{out}	V		4				
Accuracy(excluding offset) @I _{PN}	δi	% of I _{PN}	-1		1	$0{\sim}I_{PN}$		
Linearity error	$\delta_{ m L}$	% of I _{PN}	-1		1	$0{\sim}I_{PN}$		
Step response time to 90 % I _{PN}	$t_{\rm r}$	μs			5	90% of I_{PN} , $di/dt \ge 50 \text{ A/}\mu\text{s}$		
Frequency bandwidth ¹⁾	BW	kHz	25			±3 dB		
Electrical offset voltage	δ_{Z}	mV	-20		20	$T_A = 25$ °C		
Hysteresis offset voltage	V_{OH}	mV	-30		30	I_P = 0,after an excursion of 1× I_{PN}		
Temperature coefficient of δ_Z	δ_{Zt}	mV/°C	-1		1	$T_A = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$		
Load resistance	R_{L}	ΚΩ	10					
Output internal resistance	R _{OUT}	Ω		100				

Notes:


- 1) The frequency bandwidth test is for small signal.
- 2) Please contact CRRC if current transducer is applied in some extreme cases, for example: high frequency ripple, high temperature, larger operating frequency......

Page 1 Total 2 Revision: B Date: 2024/06/12

- Mass: 500g
- General tolerance: ±1mm
- Transducer fastening: 1 hole and 2notch ø5.4mm, 3 M5 steel screws
- Transducer fastening: 2 hole ø 5.4mm, 2 M5 steel screws
- Recommended fastening torque: 3.5 N·m
- Primary through-hole: 64×21mm
- Connection of secondary: Molex 35312-0460

Remarks

- It is advised to use a primary conductor (busbar) that fills transducer through-hole.
- Be aware of the influence of the external field if nearby transducers are too close (relay, capacitor, choke...).
- U_{out} is positive when I_P flows in the direction of the arrow.
- Product secondary side connecting line optimization shielding wire, cable shielding layer close to the product end can connect chassis, negative power or power 0V.
- Verticality requirements for sensor mounting screw holes: required to be in the national standard level 8 or above (or below 0.06).
- Sensor mounting flatness requirements:
 - 1) The national standard for flatness of large-plane installation is 11 or above (or the plane fluctuation is less than 0.25mm);
- 2) If there is a small round boss on the installation surface, the flatness of the design is required to reach the national standard level 12 or above (or the plane fluctuation is less than 0.5mm).

Comments:

- Items with "*" in this datasheet are recommended value for reference only. The final value must be determined by customer.
- CRRC reserves the right to carry out modifications on its transducers, in order to improve them.

Page 2 Total 2 Revision: B Date: 2024/06/12