

AUADRUPLE OPERATIONAL AMPLIFIERS

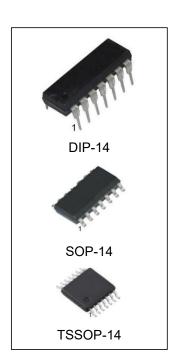
FEATURES

Low Supply Current: 0.53mA/Ampli- Fier

Class AB Output Stage: No Cross Over Distortion

• Pin Compatible With LM124

Low Input Offset Voltage: 1mV


Low Input Offset Current: 2nA

Low Input Bias Current: 30nA

Gain Bandwidth Product: 1.3MHz

High Degree Of Isolation Between Amplifiers: 120dB

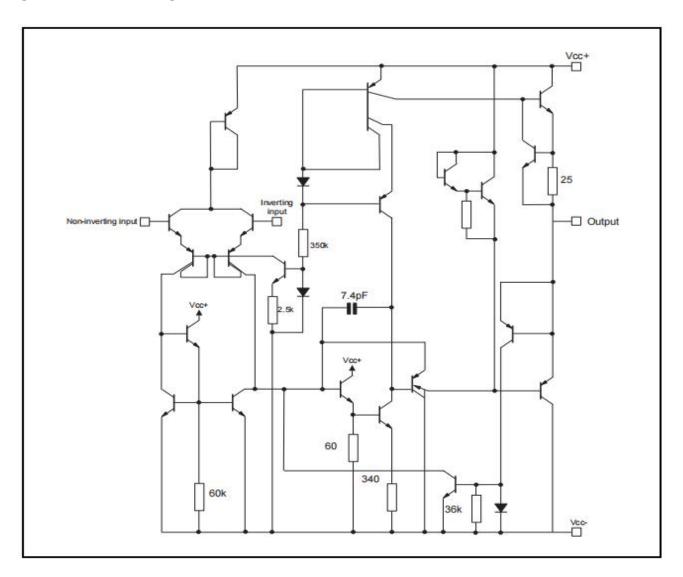
Overload Protection For Inputs And Outputs

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
LM148N		LM148	TUBE	1000/box
LM248N	DIP-14	LM248	TUBE	1000/box
LM348N		LM348	TUBE	1000/box
LM148M/TR		LM148	REEL	2500/reel
LM248M/TR	SOP-14	LM248	REEL	2500/reel
LM348M/TR		LM348	REEL	2500/reel
LM148MT/TR		LM148	REEL	2500/reel
LM248MT/TR	TSSOP-14	LM248	REEL	2500/reel
LM348MT/TR		LM348	REEL	2500/reel

DESCRIPTION

The LM148 consists of four independent, high gain internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar UA741 operational amplifier. In addition the total supply current for all four amplifiers is compatible to the supply current of a single UA741 type op amp. Other features include input offset current and input bias current which are much less than those of a standard UA741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques qhich minimize thermal coupling


(top view)

PIN CONNECTIONS

DIP-14/SOP-14/TSSOP-14 Output 1 1 14 Output 4 Inverting Input 1 2 13 Inverting Input 4 Non-inverting Input 1 3 Non-inverting Input 4 Vcc + 4 11 Vcc -Non-inverting Input 2 5 Non-inverting Input 3 Inverting Input 2 Inverting Input 3 Output 2 7 Output 3

SCHEMATIC DIAGRAM

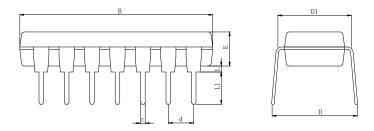
ABSOLUTE MAXIMUM RATINGS

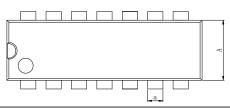
Symbol	Parameter	LM148	LM248	LM348	Unit
VCC	Supply voltage		±22		V
Vi	Input Voltage 1)		±22		V
Vid	Differential Input Voltage		V		
	Output Short-circuit Duration 2)				
Ptot	Power Dissipation		mW		
TL	Lead Temperature (Soldering, 10 seconds)		°C		
Toper	Operating Free-air Temperature Range	-55 to +125	°C		
Tstg	Storage Temperature Range		°C		

^{1.} **Note:**Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

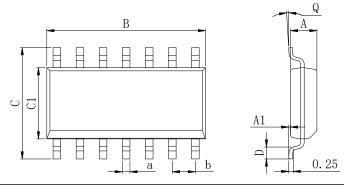
^{2.} Any of the amplifier outputs can be shorted to ground indefinitly; however more than one should not be simultaneously shorted as the maximum junction will be exceeded

ELECTRICAL CHARACTERISTICS


 $V_{CC} = \pm 15V$, $T_{amb} = 25$ °C (unless otherwise specified)

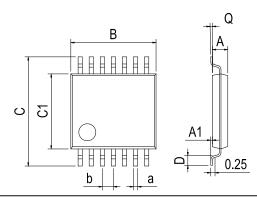

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Input Offset Voltage (Rs ≤ 10kΩ)				
Vio	Tamb = 25°C		1	5	mV
	Tmin ≤ Tamb ≤ Tmax			6	
	Input Offset Current				
lio	Tamb = 25°C		2	25	nA
	Tmin ≤ Tamb ≤ Tmax			75	
	Input Bias Current				
lib	Tamb = 25°C		30	100	nA
	Tmin ≤ Tamb ≤ Tmax			300	
	Large Signal Voltage Gain (Vo = ± 10 V, R _L = 2 k Ω)				
Avd	Tamb = 25°C	50	160		V/mV
	Tmin ≤Tamb≤ Tmax	25			
	Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)				
SVR	Tamb = 25°C	77	100		dB
	Tmin ≤ Tamb ≤ Tmax	77			
	Supply Current, all Amp, no load Tamb = 25°C				
lcc	Tmin ≤ Tamb ≤ Tmax		2.1	3.6	mA
	THIII - TUING - THIAX			4.8	
	Input Common Mode Voltage Range				
Vicm	Tamb = 25°C	±12			
	Tmin ≤ Tamb ≤Tmax	±12			
	Common Mode Rejection Ratio (Rs ≤ 10kΩ)				
CMR	Tamb = 25°C	70	110		dB
	Tmin ≤ Tamb ≤ Tmax	70			
los	Output Short-circuit Current Tamb = 25°C	10	25	35	mA
	Output Voltage Swing				
	Tamb = 25°C RL≤ 10kΩ	12	13		
±Vopp	RL ≤ 2kΩ	10	12		V
	Tmin ≤ Tamb ≤ Tmax RL ≤ 10kΩ	12			
	RL≤ 2kΩ	10			
SR	Slew Rate (VI = ± 10 V, RL = 10 k Ω , CL = 100 pF, unit	y Gain) 0.25	0.5		V/µs
tr	Rsie Time (VI = ± 10 V, RL = 10 k Ω , CL = 100 pF, unit	y Gain)	0.3		μs
Kov	Overshoot (VI = ±10V, RL = 10kΩ, CL = 100pF, unit	y Gain)	5		%
RI	Input Resistance	0.8	2.5		ΜΩ
	Gain Bandwith Product		-		
GBP	$(VI = 10 \text{ mV}, RL = 10k\Omega, CL = 100pF f = 100kHz)$	0.7	1.3		MHz
	Total Harmonic Distortion				
THD	(f = 1kHz, Av = 20dB, RL = 10kΩ CL = 100pF, Vo =	2Vpp)	0.08		%
en	Equivalent Input Noise Voltage (f = 1kHz, Rs = 100	Ω	40		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Vo1/Vo2	Channel Separation		120		dB

PHYSICAL DIMENSIONS


DIP-14

Dimensions In Millimeters(DIP-14)											
Symbol:	Α	В	D	D1	E	L	L1	а	С	d	
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.40	2.54.000	
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.50	2.54 BSC	

SOP-14



Dimensions In Millimeters(SOP-14)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	4 27 DCC
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	1.27 BSC

PHYSICAL DIMENSIONS

TSSOP-14

Dimensions In Millimeters(TSSOP-14)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65.000
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.65 BSC

REVISION HISTORY

DATE	REVISION	PAGE
2014-6-8	New	1-8
2023-9-18	Update encapsulation type、Updated DIP-14 dimension	1、5
2024-11-7	Update Lead Temperature	3

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.