


ESD

TVS

TSS

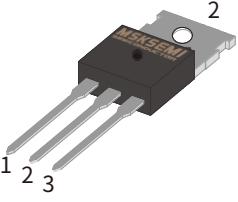
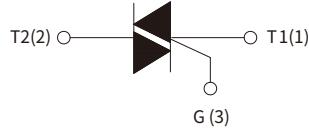
MOV

GDT

PLED

BT138-800x-MS(220)

Product specification



FEATURES

- High current 12 A RMS current Triac
- Low thermal resistance
- High commutation or very high commutation capability

APPLICATIONS

- General purpose motor control circuits
- Phase control operations in light dimmers and motor speed controllers
- Home appliances

Reference News

TO-220	Schematic Symbol	MARKING

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Repetitive peak off-state voltage ($T_j=25^\circ\text{C}$)	V_{DRM}	800	V
Repetitive peak reverse voltage ($T_j=25^\circ\text{C}$)	V_{RRM}	800	V
RMS on-state current ($T_c=105^\circ\text{C}$)	I_{TRMS}	12	A
Non repetitive surge peak on-state current (full cycle, $F=50\text{Hz}$)	I_{TSM}	95	
I_t value for fusing ($t_p=10\text{ms}$)	I_t	45	A^2S
Critical rate of rise of on-state current ($I_G=2*I_{\text{GT}}$)	I - II-III	di/dt	$\text{A}/\mu\text{s}$
	IV		
Peak gate current	I_{GM}	2	A
Average gate power dissipation	$P_{\text{G(AV)}}$	0.5	W
Peak gate power	P_{GM}	5	W
Operating junction temperature range	T_j	-40~+125	$^\circ\text{C}$
Storage junction temperature range	T_{STG}	-40~+150	

ELECTRICAL CHARACTERISTICS ($T_j=25^\circ\text{C}$ unless otherwise specified)

Symbol	Test Condition	Quadrant	Value				Unit
			D	E	F	G	
I_{GT}	$V_D=12\text{V}, R_L=33\Omega$	I - II-III	≤ 5	≤ 10	≤ 25	≤ 50	mA
		IV	≤ 10	≤ 25	≤ 70	≤ 100	
V_{GT}		ALL	≤ 1.5				V
V_{GD}	$V_D=V_{DRM}, R_L=3.3\text{K}\Omega, T_j=125^\circ\text{C}$	ALL	≥ 0.2				V
I_H	$I_T=100\text{mA}$		≤ 10	≤ 25	≤ 30	≤ 60	mA
I_L	$I_G=1.2I_{GT}$	I - III- IV	≤ 15	≤ 30	≤ 40	≤ 60	
		II	≤ 20	≤ 40	≤ 80	≤ 90	
dV_D/dt	$V_D=67\%V_{DRM}, T_j=125^\circ\text{C}$		≥ 20	≥ 50	≥ 50	≥ 200	V/ μs
V_{TM}	$I_{TM}=15\text{A}, tp=380\mu\text{s}$		≤ 1.6				V
I_{DRM}	$V_D=V_{DRM}, V_R=V_{RRM}$	$T_j=25^\circ\text{C}$	≤ 5				uA
I_{RRM}		$T_j=125^\circ\text{C}$	≤ 1				mA

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
$R_{th(j-c)}$	Junction to case(AC)	1.4	°C/W

PARAMETER CHARACTERISTIC CURVE

FIG.1 Maximum power dissipation versus RMS on-state current

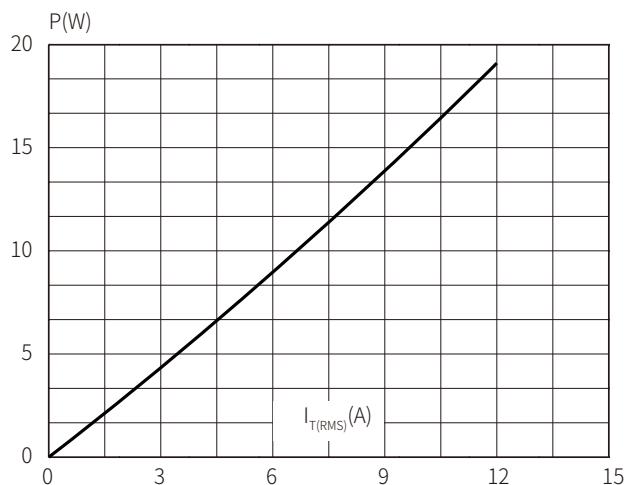


FIG.2: RMS on-state current versus case temperature

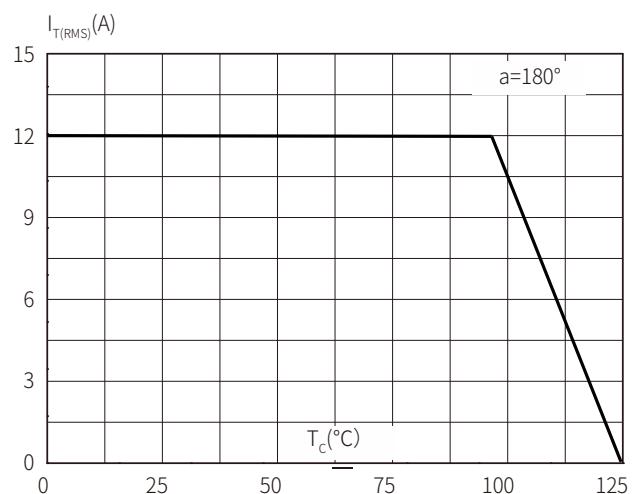
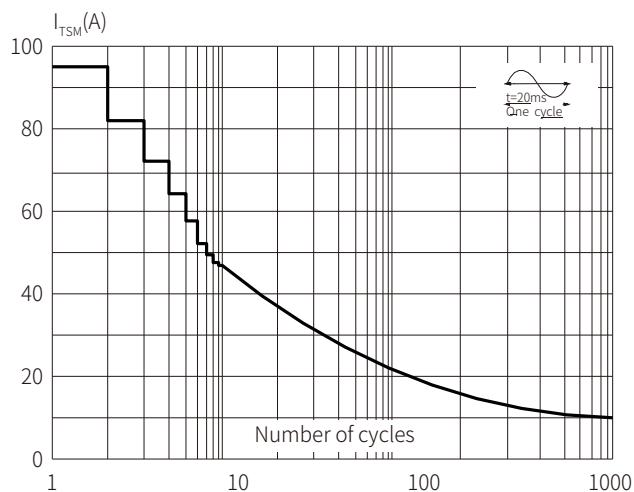
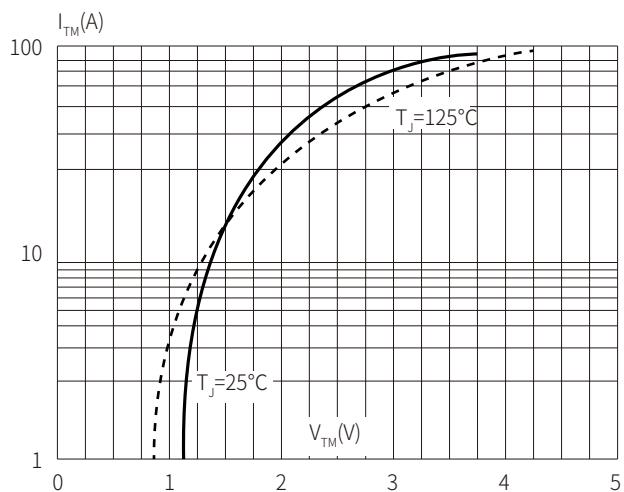
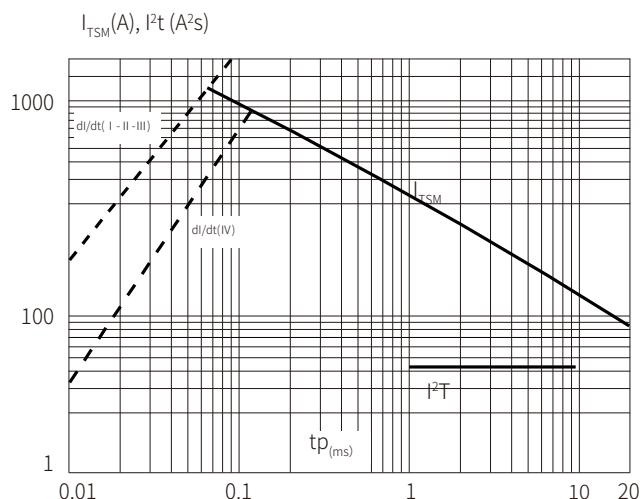


FIG.3: Surge peak on-state current versus number of cycles

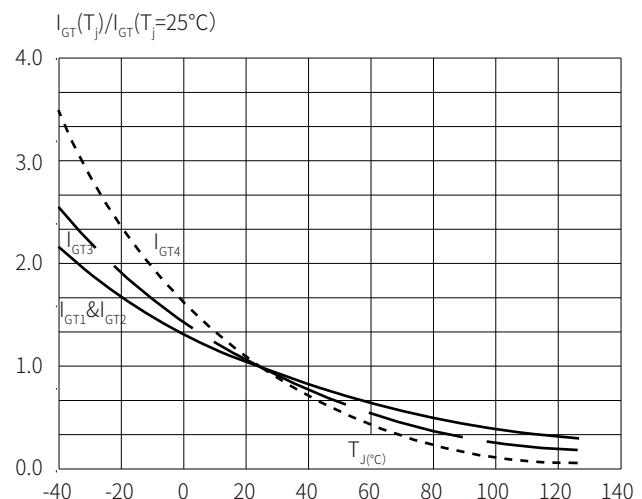
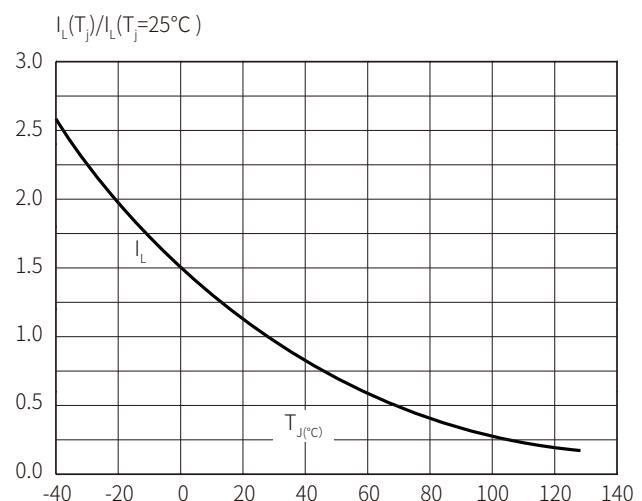

FIG.4 On-state characteristics (maximum values)

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width $t_p < 20\text{ms}$ and corresponding value of I^2t (I - II - III: $di/dt < 50\text{A}/\mu\text{s}$; IV: $di/dt < 10\text{A}/\mu\text{s}$)


FIG.6: Relative variations of gate trigger current versus junction temperature

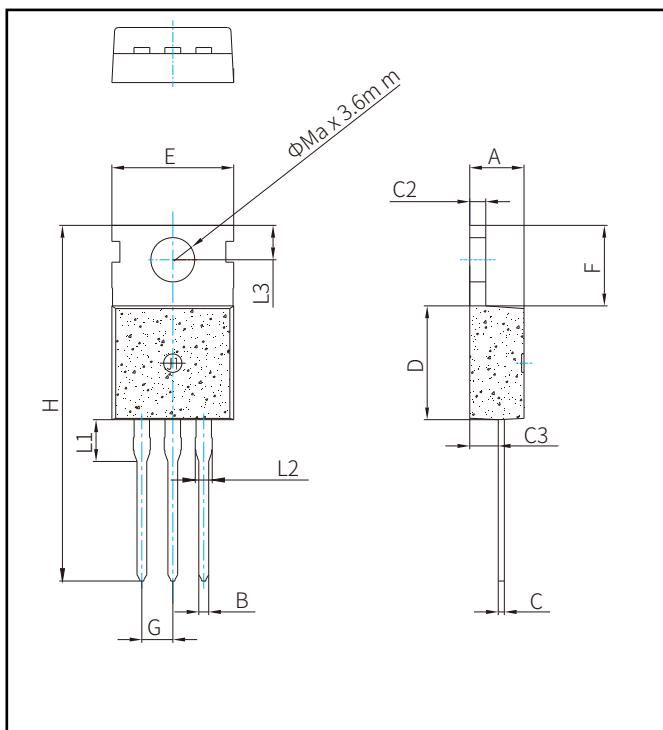


FIG.7 Relative variations of holding current versus junction temperature

FIG.8 Relative variations of atching current versus junction temperature

TO-220 PACKAGE MECHANICAL DATA

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	4.30		4.70	0.169		0.185
B	0.70		0.90	0.028		0.035
C	0.45		0.60	0.018		0.024
C2	1.23		1.32	0.048		0.052
C3	2.20		2.60	0.087		0.102
D	8.80		10.0	0.346		0.394
E	9.90		10.3	0.390		0.406
F	6.30		6.90	0.248		0.272
G		2.54			0.1	
H	28.0		30.0	1.102		1.181
L1		3.65			0.144	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
ϕ		3.6			0.142	

Order information

P/N	PKG	QTY
BT138-800D-MS(220)	TO-220	1000PCS
BT138-800E-MS(220)	TO-220	1000PCS
BT138-800F-MS(220)	TO-220	1000PCS
BT138-800G-MS(220)	TO-220	1000PCS

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.