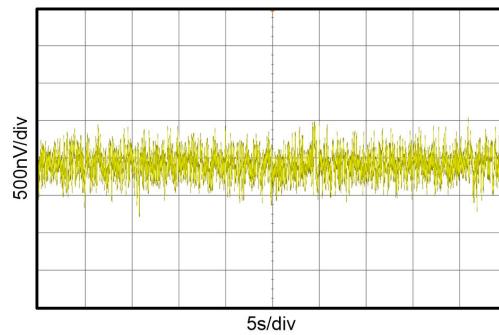


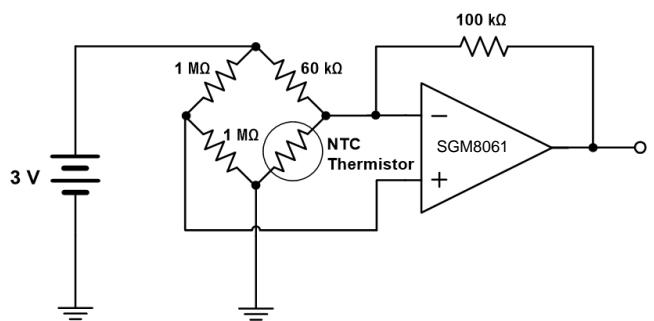
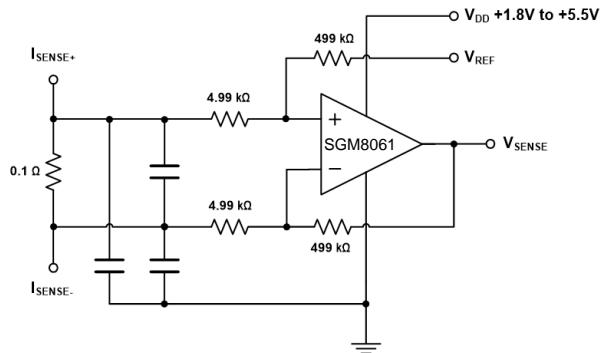
5.5V, 42- μ A, RRIO, Zero-Drift Operational Amplifier

Features


- Low Offset Voltage: 10 μ V (Max)
- Zero Drift: 0.008 μ V/ $^{\circ}$ C
- 0.1-Hz to 10-Hz Noise: 1.1 μ V_{PP}
- Low Supply Current: 42 μ A per Amplifier
- Bandwidth: 350 kHz
- Slew Rate: 0.16 V/ μ s
- High-Gain, 130-dB High CMRR and PSRR
- Rail-to-Rail Input and Output Swing
- Operating Temperature Range: -40 $^{\circ}$ C to 125 $^{\circ}$ C
- Small Packages: SOT353 (SC70-5) and SOT23-5

Applications

- Transducer Amplifier
- Bidirectional Current Sense
- DC Offset Correction
- Temperature Measurement
- Remote Located Sensors
- Battery-Powered Instruments
- Electronic Weigh Scales



Related Zero-Drift Op Amps

V_{os} (Max)	10 μ V	5 μ V
GBWP	350 kHz	3.5 MHz
Supply Current	42 μ A	500 μ A
e_N at 1 kHz	55 nV/ \sqrt Hz	15 nV/ \sqrt Hz
Single	SGM8061	SGM8071
Dual	SGM8062	SGM8072
Quad	SGM8064	SGM8074

0.1-Hz to 10-Hz Noise

Typical Application Circuit

Pin Configuration and Functions

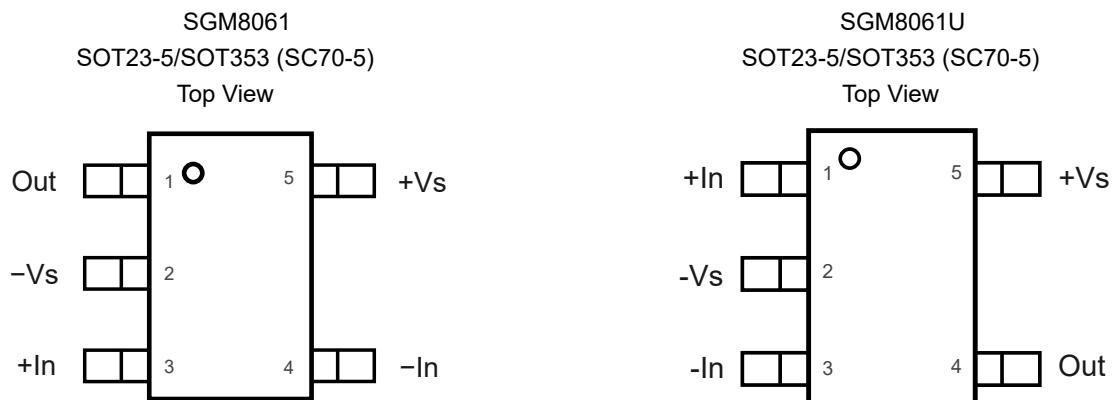
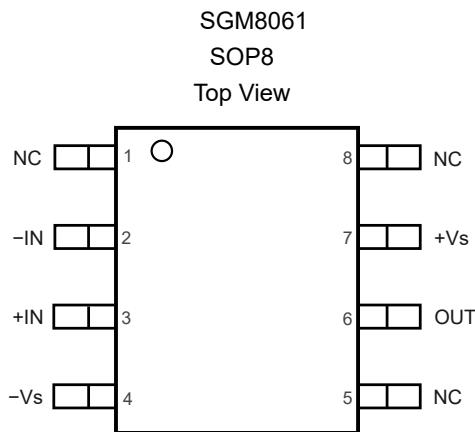



Table 1. Pin Functions: SGM8061, SGM8061U

Pin No.		Name	I/O	Description
SGM8061	SGM8061U			
1	4	Out	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
2	2	-Vs	Power Supply	Negative power supply. It is normally tied to GND. It can also be tied to a voltage other than GND when the voltage between +Vs and -Vs is from 1.8 V to 5.5 V. If it is not connected to GND, bypass it with a capacitor of 0.1 μ F to the part as close as possible.
3	1	+In	I	Non-inverting input of the amplifier.
4	3	-In	I	Inverting input of the amplifier.
5	5	+Vs	Power Supply	Positive power supply. Typically, the voltage is from 1.8 V to 5.5 V. Split supplies are possible when the voltage between +Vs and -Vs is between 1.8 V and 5.5 V. A bypass capacitor of 0.1 μ F to the part as close as possible should be used between the power supply pins or between supply pins and GND.

Table 2. Pin Functions: SGM8061

Pin No.	Name	I/O	Description
1	NC		Not connected.
2	-IN	I	Inverting input of the amplifier.
3	+IN	I	Non-inverting input of the amplifier.
4	-Vs	Power Supply	Negative power supply. It is normally tied to GND. It can also be tied to a voltage other than GND when the voltage between +Vs and -Vs is from 1.8 V to 5.5 V. If it is not connected to GND, bypass it with a capacitor of 0.1 μ F to the part as close as possible.
5	NC		Not connected.
6	Out	O	Amplifier output. The voltage range extends to within mV of each supply rail.
7	+Vs	Power Supply	Positive power supply. Typically, the voltage is from 1.8 V to 5.5 V. Split supplies are possible when the voltage between +Vs and -Vs is between 1.8 V and 5.5 V. A bypass capacitor of 0.1 μ F to the part as close as possible should be used between the power supply pins or between supply pins and ground.
8	NC		Not connected.

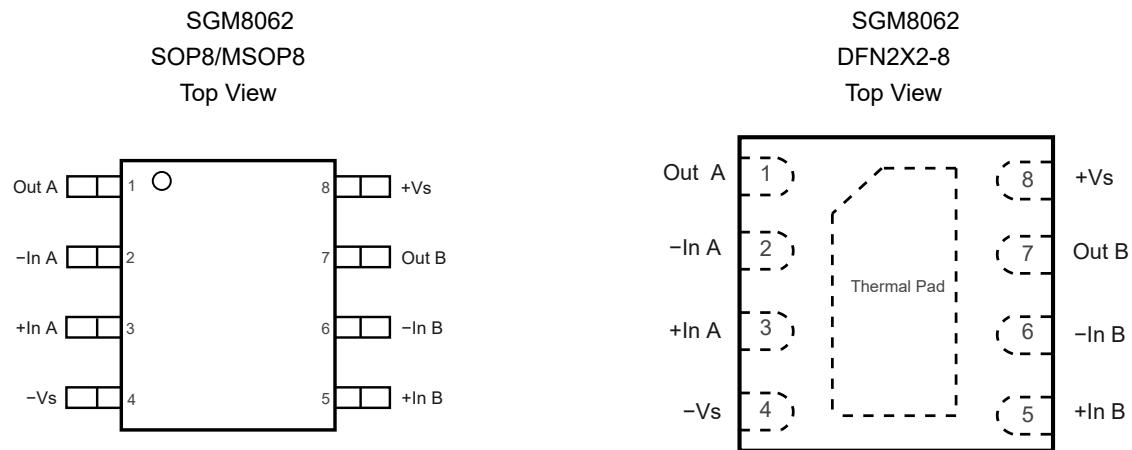
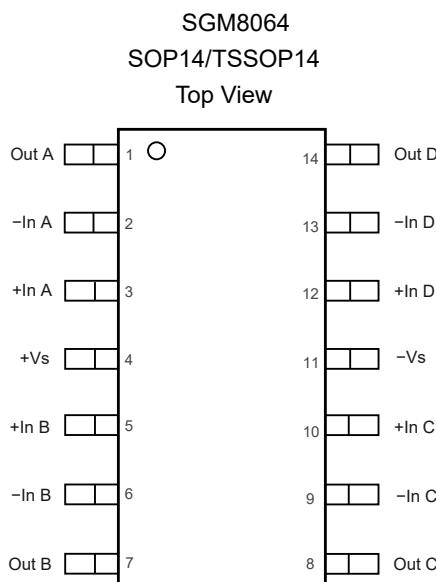



Table 3. Pin Functions: SGM8062

Pin No.	Name	I/O	Description
1	Out A	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
2	-In A	I	Inverting input of the amplifier.
3	+In A	I	Non-inverting input of the amplifier.
4	-Vs	Power Supply	Negative power supply. It is normally tied to GND. It can also be tied to a voltage other than GND when the voltage between +Vs and -Vs is from 1.8 V to 5.5 V. If it is not connected to GND, bypass it with a capacitor of 0.1 μ F to the part as close as possible.
5	+In B	I	Non-inverting input of the amplifier.
6	-In B	I	Inverting input of the amplifier.
7	Out B	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
8	+Vs	Power Supply	Positive power supply. Typically, the voltage is from 1.8 V to 5.5 V. Split supplies are possible when the voltage between +Vs and -Vs is between 1.8 V and 5.5 V. A bypass capacitor of 0.1 μ F to the part as close as possible should be used between the power supply pins or between supply pins and GND.
	Thermal Pad		The thermal pad of the DFN2X2-8 package is recommended to be floating or connected to -Vs.

Table 4. Pin Functions: SGM8064

Pin No.	Name	I/O	Description
1	Out A	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
2	-In A	I	Inverting input of the amplifier.
3	+In A	I	Non-inverting input of the amplifier.
4	+Vs	Power Supply	Positive power supply. Typically, the voltage is from 1.8 V to 5.5 V. Split supplies are possible when the voltage between +Vs and -Vs is between 1.8 V and 5.5 V. A bypass capacitor of 0.1 μ F to the part as close as possible should be used between the power supply pins or between supply pins and GND.
5	+In B	I	Non-inverting input of the amplifier.
6	-In B	I	Inverting input of the amplifier.
7	Out B	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
8	Out C	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.
9	-In C	I	Inverting input of the amplifier.
10	+In C	I	Non-inverting input of the amplifier.
11	-Vs	Power Supply	Negative power supply. It is normally tied to GND. It can also be tied to a voltage other than GND when the voltage between +Vs and -Vs is from 1.8 V to 5.5 V. If it is not connected to GND, bypass it with a capacitor of 0.1 μ F to the part as close as possible.
12	+In D	I	Non-inverting input of the amplifier.
13	-In D	I	Inverting input of the amplifier.
14	Out D	O	Output of the amplifier. The voltage range extends to within millivolts of each supply rail.

Specifications

Absolute Maximum Ratings (1)

Parameter		Min	Max	Unit
	Supply Voltage		6	V
	Input Voltage	(-Vs) - 0.2	(+Vs) + 0.2	V
	Input Current: +IN, -IN (2)	-20	20	mA
	Output Short-Circuit Duration (3)		Indefinite	
	Current at Supply Pins	-50	50	mA
T _J	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-40	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
T _L	Lead Temperature (Soldering, 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500 mV beyond the power supply, the input current should be limited to less than 10 mA.

(3) A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. The thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	7	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	2	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θ _{JA}	θ _{Jc}	Unit
SOT353 (SC70-5)	250		°C/W
SOT23-5	200		°C/W
MSOP8	210		°C/W
SOP8	158		°C/W
SOP14	83		°C/W
TSSOP14	100		°C/W

Electrical Characteristics

All test conditions: $V_S = 5$ V, $T_A = 27^\circ\text{C}$, $R_L = 10$ k Ω , $V_{CM} = V_{DD} / 2$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_S	Supply Voltage Range		1.8		5.5	V
I_Q	Quiescent Current per Amplifier	SGM8061		45	65	μA
		SGM8062/8064		42	60	μA
V_{OS}	Input Offset Voltage	$V_{CM} = 2.5$ V	-10	1	10	μV
		$V_{CM} = 0.05$ V to 4.95 V	-20		20	μV
		$V_S = 1.8$ V, $V_{CM} = 0.9$ V	-20		20	μV
dV_{OS}/dT	V_S Power Supply			0.008	0.05	$\mu\text{V}/^\circ\text{C}$
PSRR	Power Supply Rejection Ratio	$V_S = 3$ V to 5 V	100	120		dB
V_n	Input Voltage Noise	$f = 0.01$ Hz to 1 Hz		0.4		μV_{PP}
		$f = 0.1$ Hz to 10 Hz		1.1		μV_{PP}
e_n	Input Voltage Noise Density	$f = 1$ kHz		55		$\text{nV}/\sqrt{\text{Hz}}$
C_{IN}	Input Capacitor	Differential mode		3		pF
		Common mode		2		pF
I_B	Input Bias Current			± 50		pA
				± 800		pA
I_{OS}	Input Offset Current			± 100		pA
V_{CM}	Common-Mode Voltage Range		$(-V_S) - 0.1$		$(+V_S) + 0.1$	V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = 0.5$ V to 4.5 V	100	120		dB
V_o	Output Voltage Swing from Rail	$R_L = 10$ k Ω		10	25	mV
I_{SC}	Short-Circuit Current			± 60		mA
GBWP	Unity Gain Bandwidth	$C_L = 100$ pF		350		kHz
SR	Slew Rate	$G = +1$, $C_L = 100$ pF		0.16		V/ μ s
t_{OR}	Overload Recovery Time	$G = -10$		60		μ s
t_s	Settling Time, 0.01%	$C_L = 100$ pF, $G = +1$, 5-V step		40		μ s
A_{VOL}	Open-Loop Voltage Gain	$(-V_S) + 100$ mV < V_o < $(+V_S) - 100$ mV, $R_L = 100$ k Ω	100	120		dB

Typical Performance Characteristics

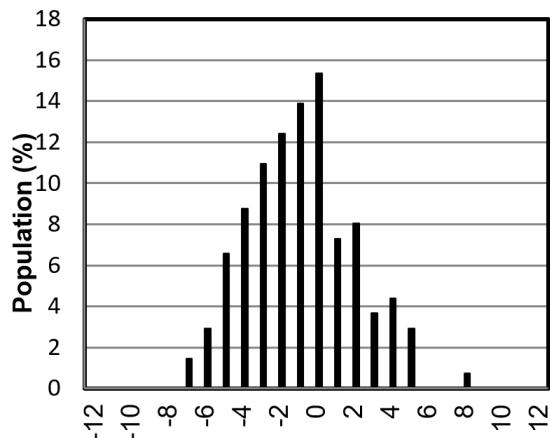


Figure 1. Offset Voltage Distribution

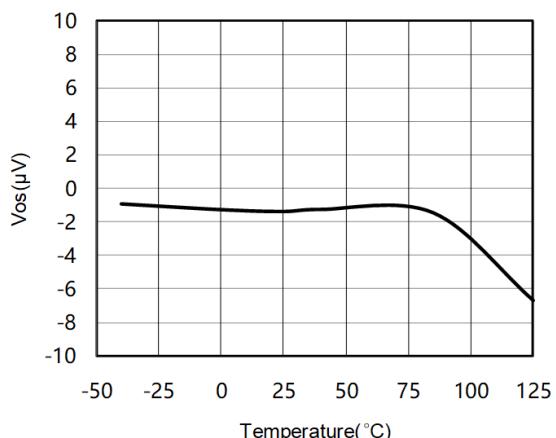


Figure 2. Offset Voltage vs. Temperature

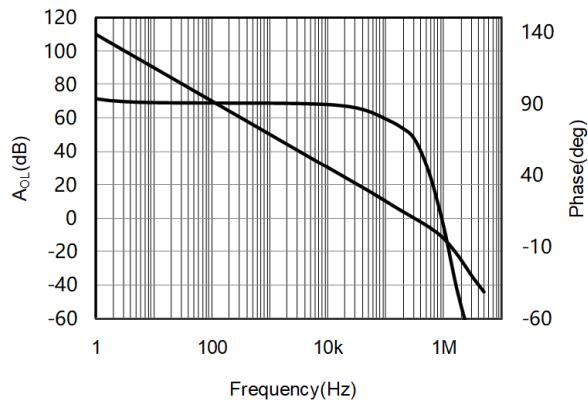


Figure 3. Open-Loop Gain vs. Frequency

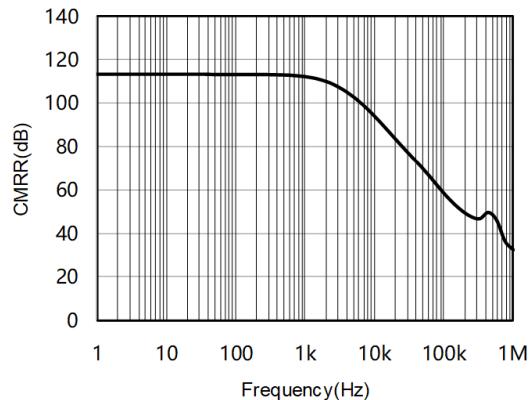


Figure 4. CMRR vs. Frequency

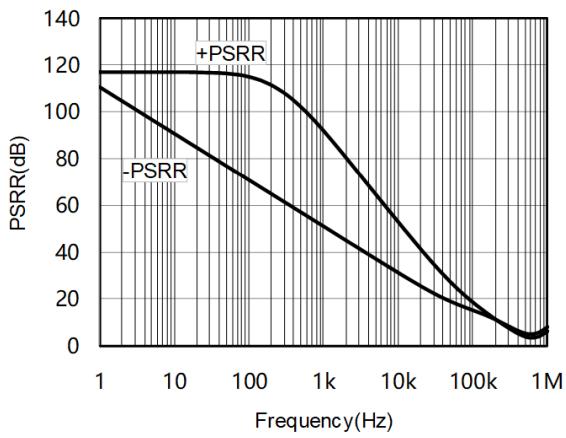


Figure 5. PSRR vs. Frequency



Figure 6. Output Swing vs. Load Current

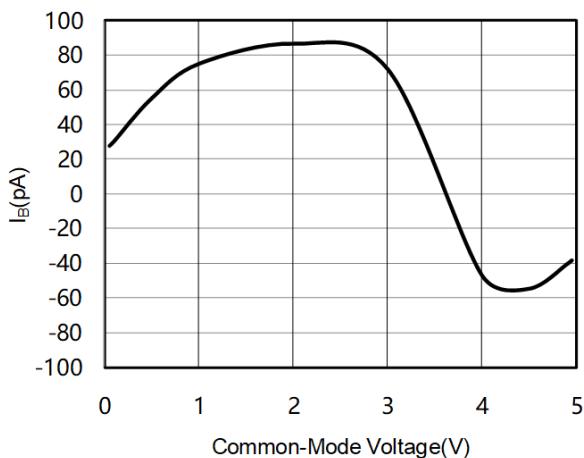


Figure 7. I_B vs. Common-Mode Voltage

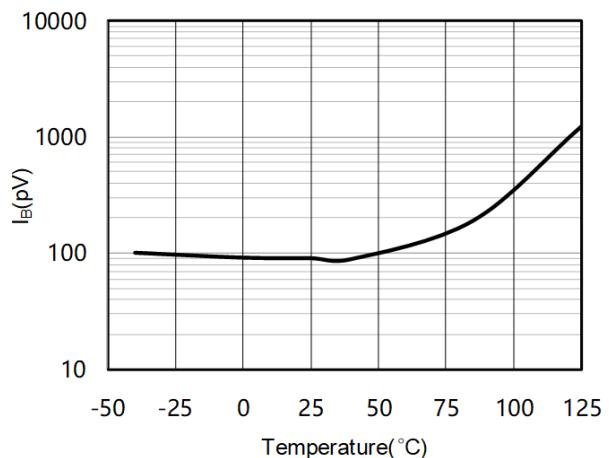


Figure 8. Input Bias vs. Temperature

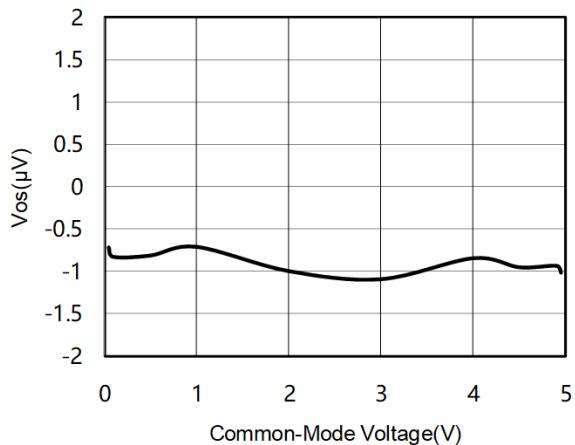


Figure 9. V_{os} vs. Common-Mode Voltage

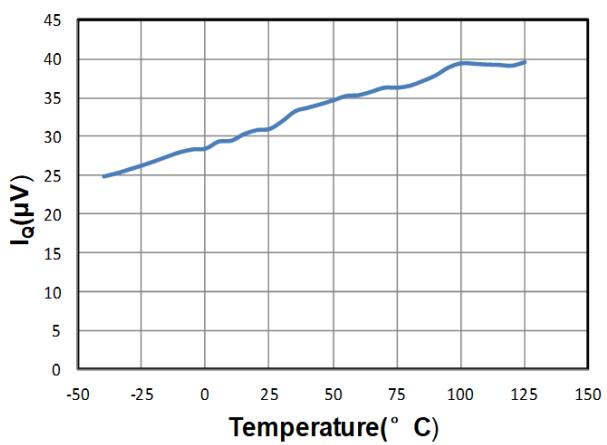


Figure 10. Quiescent Current vs. Temperature

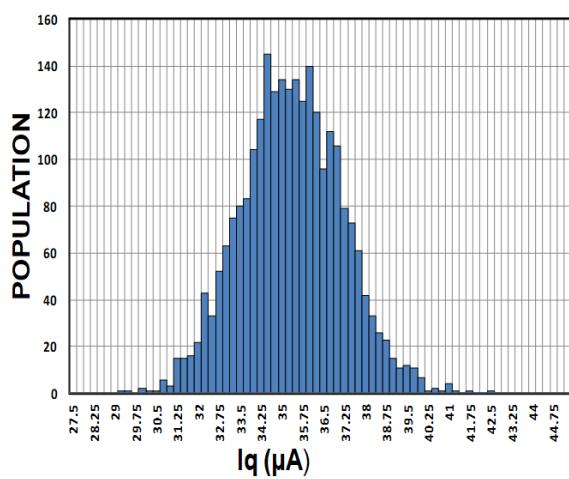


Figure 11. Quiescent Current Distribution

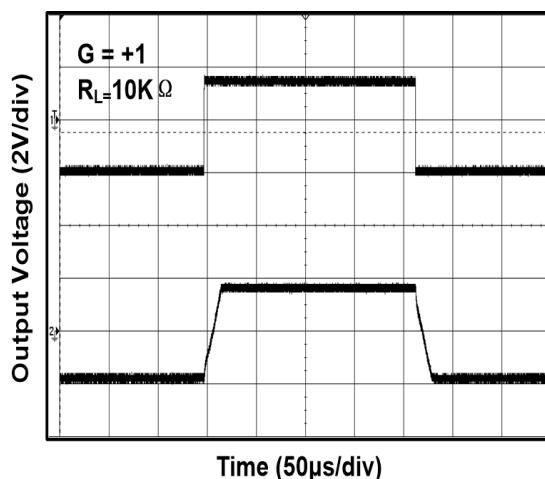


Figure 12. Large-Scale Step Response

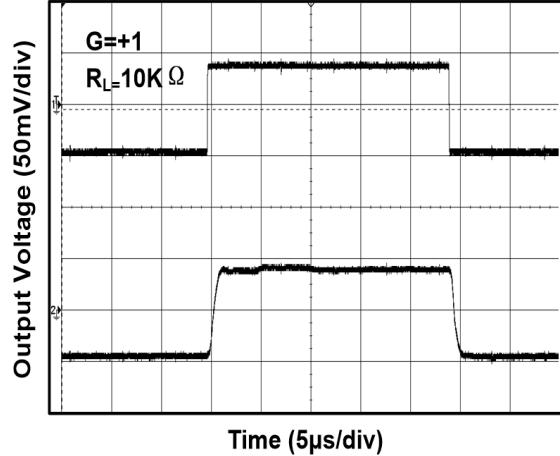


Figure 13. Small-Scale Step Response

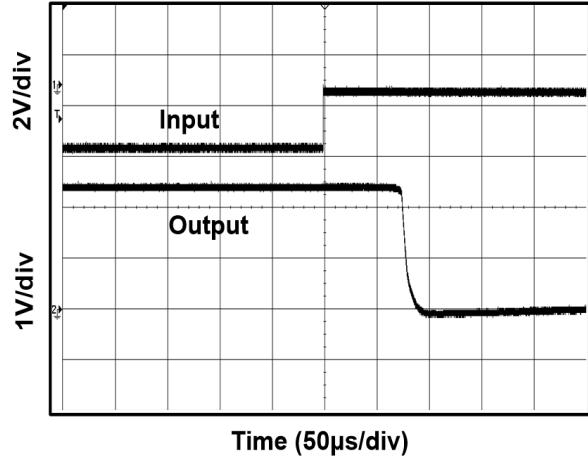


Figure 14. Positive Over-Voltage Recovery

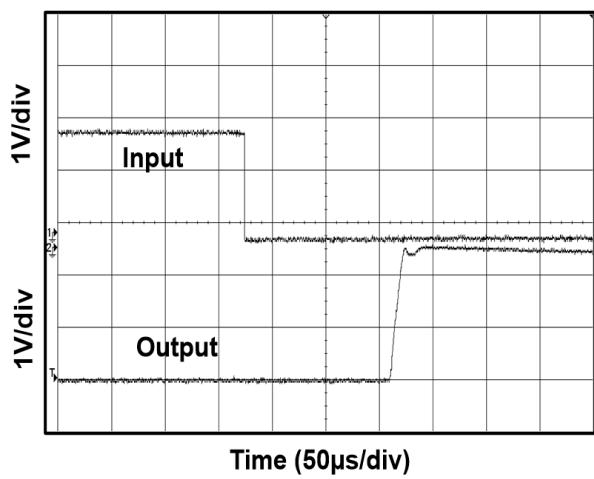


Figure 15. Negative Over-Voltage Recovery

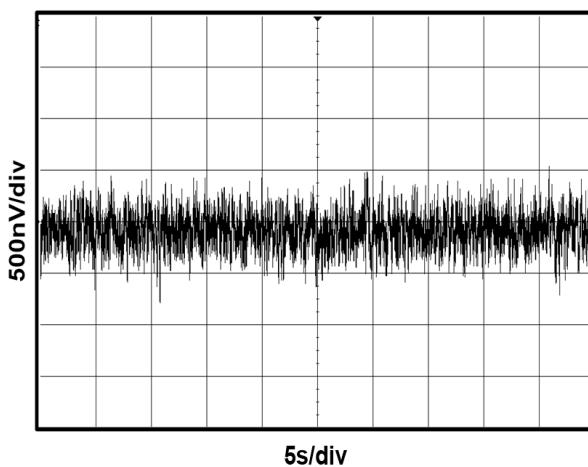


Figure 16. 0.1-Hz to 10-Hz Noise

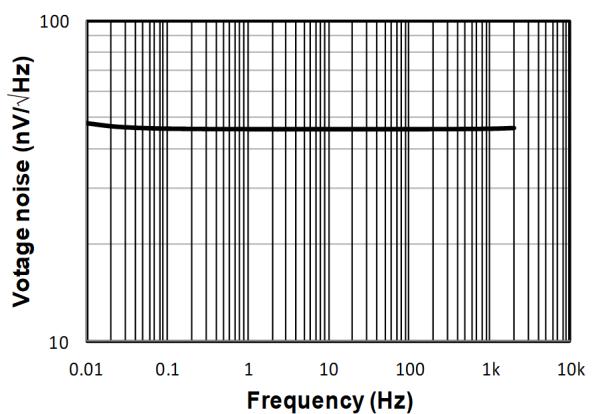
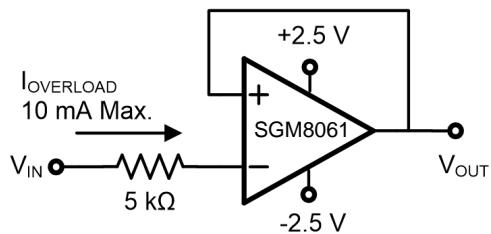


Figure 17. Voltage Noise Spectral Density vs. Frequency


Application Information

Rail-to-Rail Input and Output

The SGM806x series features rail-to-rail inputs and outputs with a supply voltage from 1.8 V to 5.5 V. This allows the inputs of the amplifier to have a wide common-mode range (50 mV beyond supply rails) while maintaining high CMRR (130 dB) and maximizes the signal-to-noise ratio of the amplifier by having the V_{OH} and V_{OL} levels at the $+V_S$ and $-V_S$ rails, respectively.

Input Protection

The SGM806x series has internal ESD protection diodes that are connected between the inputs and supply rails. When either input exceeds one of the supply rails by more than 300 mV, the ESD diodes become forward-biased, and large amounts of current begin to flow through them. Without current limitation, this excessive fault current causes permanent damage to the device. Thus an external series resistor must be used to ensure that the input currents never exceed 10 mA.

Current-limiting resistor required if input voltage exceeds supply rails by $>0.5V$.

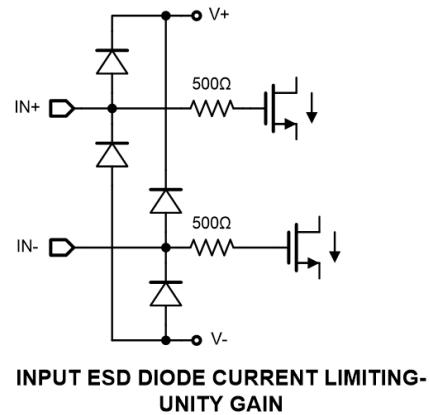
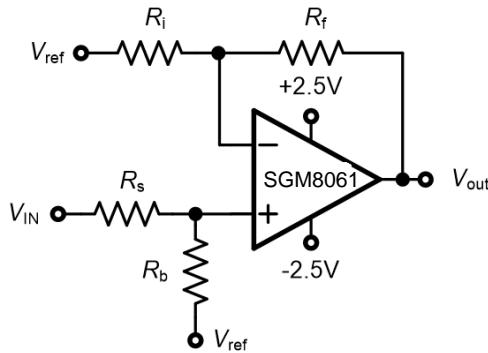
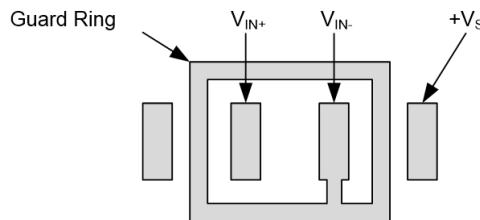



Figure 18. Input Protection

Low Input Referred Noise

The flicker noise, as known as the 1/f noise, is inherent in semiconductor devices, and increases as the frequency decreases. So at lower frequencies, the flicker noise dominates, causing higher degrees of error for sub-Hertz frequencies or DC precision applications.

The SGM806x series is a chopper-stabilized amplifier, and the flicker noise is reduced greatly because of this technique. This reduction in the 1/f noise allows the SGM806x series to have much lower noise at DC and low frequency compared to standard low-noise amplifiers.


Figure 19. Circuit Implication for Reducing Input Offset Current Effect

PCB Surface Leakage

In applications where the low input bias current is critical, the Printed Circuit Board (PCB) surface leakage effects need to be considered. The surface leakage is caused by humidity, dust, or other contamination on the board. It is recommended to use the multi-layer PCB layout and route the $-IN$ and $+IN$ signal of the device under the PCB surface.

An effective way to reduce surface leakage is to use a guard ring around the sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in [Figure 20](#) for inverting gain applications.

1. For non-inverting gain and unity-gain buffers:
 - a. Connect the non-inverting pin (V_{+IN}) to the input with a wire that does not touch the PCB surface.
 - b. Connect the guard ring to the inverting input pin (V_{-IN}). This biases the guard ring to the common-mode input voltage.
2. For inverting gain and trans-impedance gain amplifiers (convert current to voltage, such as photo detectors):
 - a. Connect the guard ring to the non-inverting input pin (V_{+IN}). This biases the guard ring to the same reference voltage as the operational amplifier (e.g., $V_{DD} / 2$ or ground).
 - b. Connect the inverting pin (V_{-IN}) to the input with a wire that does not touch the PCB surface.

Figure 20. The Layout of Guard Ring

Typical Application

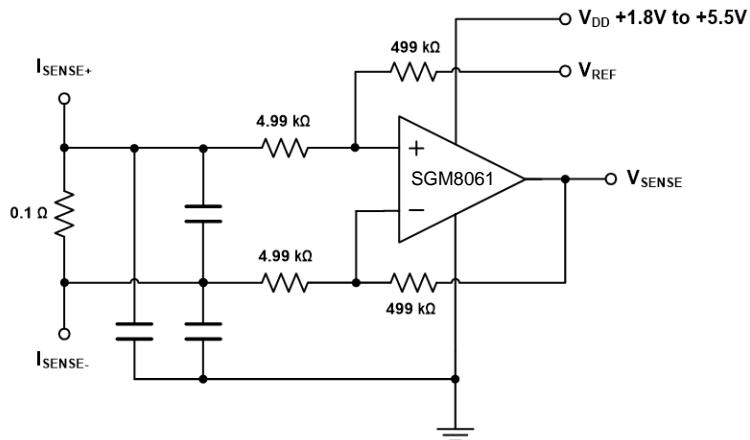
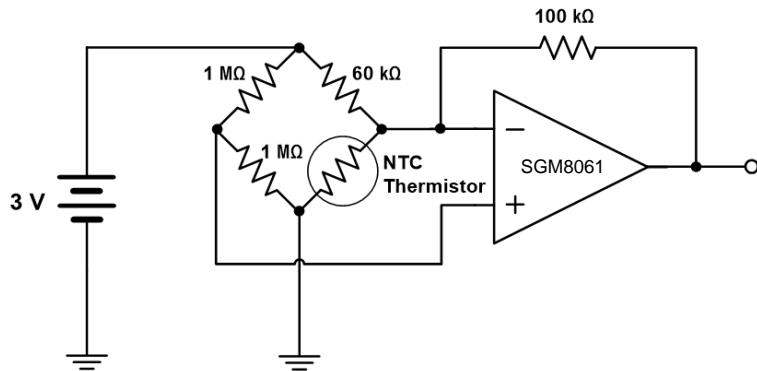
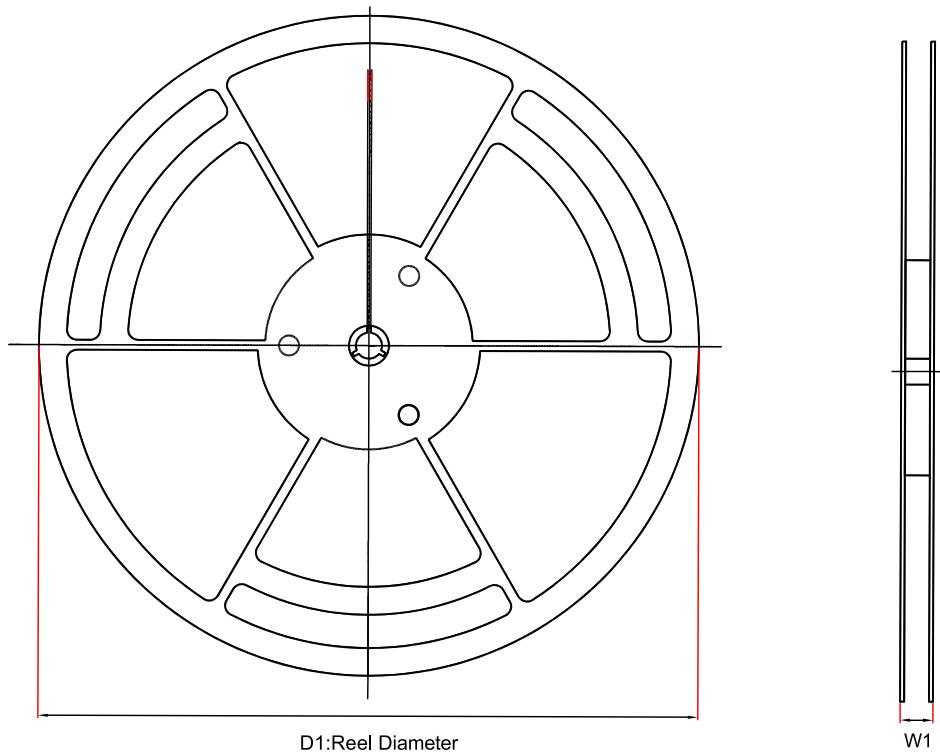
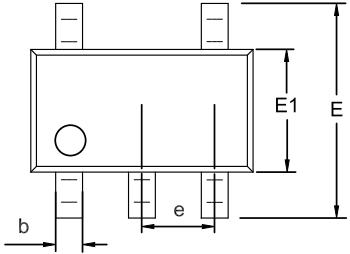
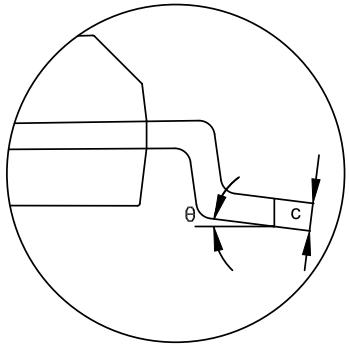
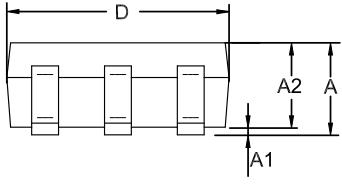
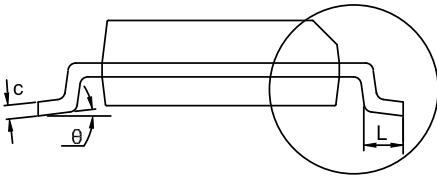


Figure 21. Bi-Directional Current Sense Amplifier





Figure 22. Thermistor Measurement

Tape and Reel Information

Package Outline Dimensions

SOT23-5

Package Outline Dimensions		S5T(SOT23-5-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.150	0.000	0.006	
A2	1.000	1.200	0.039	0.047	
b	0.280	0.500	0.011	0.020	
c	0.100	0.230	0.004	0.009	
D	2.820	3.020	0.111	0.119	
E	2.600	3.000	0.102	0.118	
E1	1.500	1.720	0.059	0.068	
e	0.950 BSC		0.037 BSC		
L	0.300	0.600	0.012	0.024	
θ	0	8°	0	8°	

NOTES

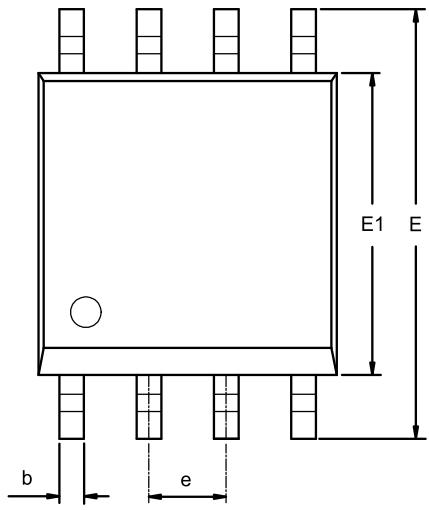
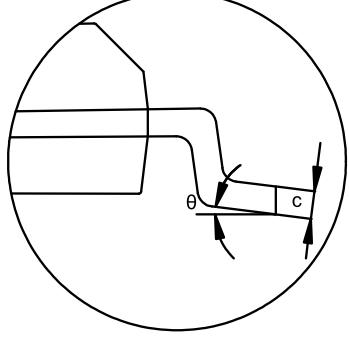
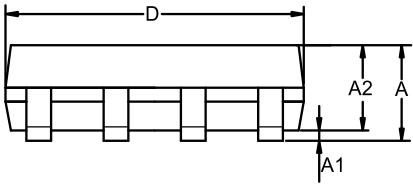
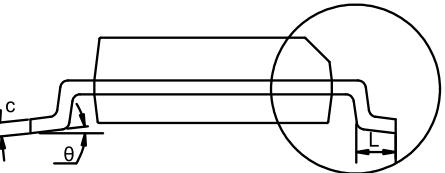
1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

SOT353 (SC70-5)

Package Outline Dimensions		SC5(SOT353-5-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.850	1.100	0.033	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.800	1.000	0.031	0.039	
b	0.150	0.350	0.006	0.014	
c	0.110	0.230	0.004	0.009	
D	2.000	2.200	0.079	0.087	
E	2.150	2.450	0.085	0.096	
E1	1.150	1.350	0.045	0.053	
e	0.650 BSC		0.026 BSC		
L	0.260	0.460	0.010	0.018	
θ	0	8°	0	8°	

NOTES

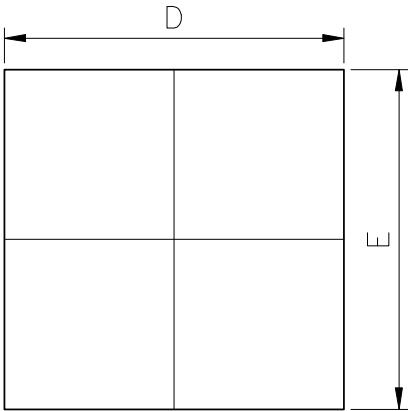
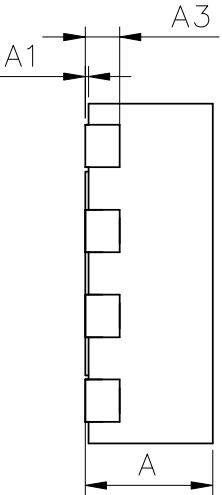
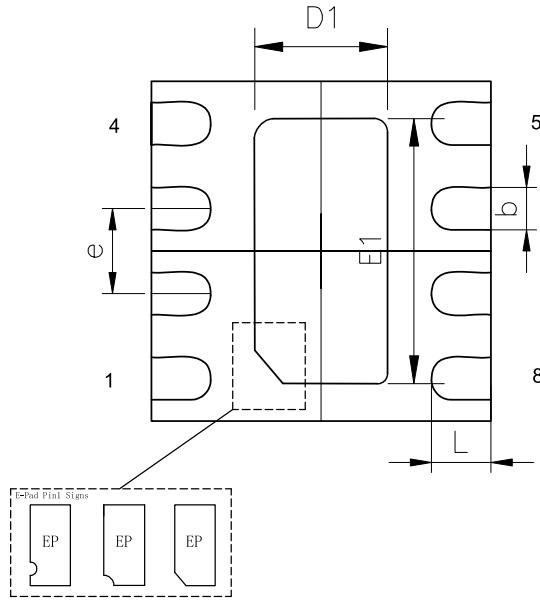
1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.





SOP8

Package Outline Dimensions		SO1(SOP-8-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.550	0.049	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	1.270 BSC		0.050 BSC		
L	0.400	1.000	0.016	0.039	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.




MSOP8

Package Outline Dimensions		VS1(MSOP-8-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.800	1.100	0.031	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
c	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	4.700	5.100	0.185	0.201	
E1	2.900	3.100	0.114	0.122	
e	0.650 BSC		0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0	8°	0	8°	

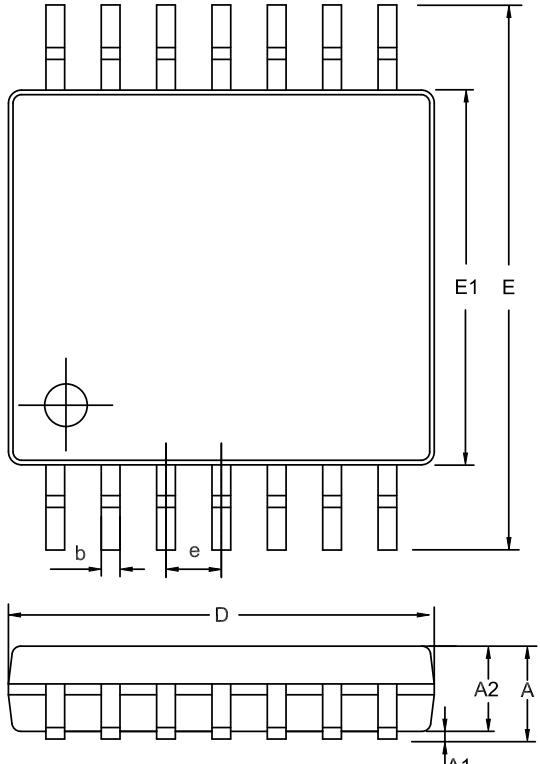
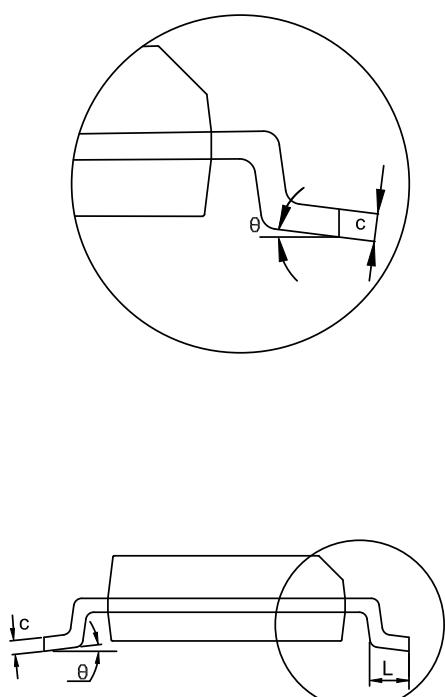
NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

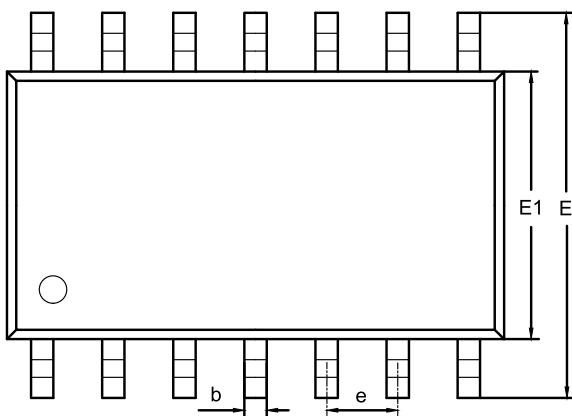
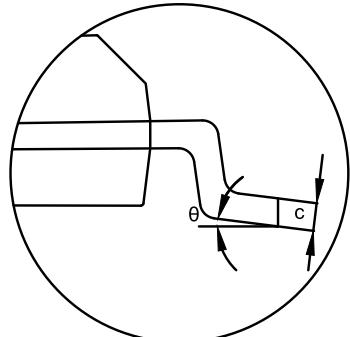
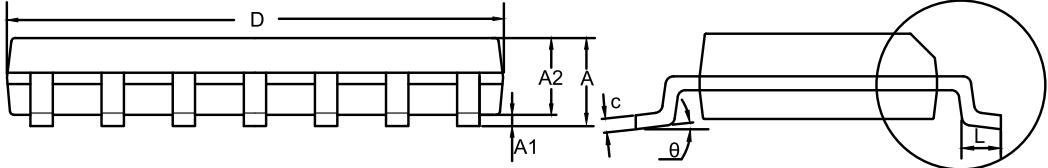
DFN2X2-8

Package Outline Dimensions		DFG(DFN2X2-8-E)																																																														
Top View		Side View																																																														
	<table border="1"> <thead> <tr> <th rowspan="2">Symbol</th><th colspan="2">Dimensions In Millimeters</th><th colspan="2">Dimensions In Inches</th></tr> <tr> <th>MIN</th><th>MAX</th><th>MIN</th><th>MAX</th></tr> </thead> <tbody> <tr> <td>A</td><td>0.500</td><td>0.600</td><td>0.020</td><td>0.024</td></tr> <tr> <td>A1</td><td>0.000</td><td>0.050</td><td>0.000</td><td>0.002</td></tr> <tr> <td>b</td><td>0.150</td><td>0.300</td><td>0.006</td><td>0.012</td></tr> <tr> <td>A3</td><td>0.100</td><td>0.200</td><td>0.004</td><td>0.008</td></tr> <tr> <td>D</td><td>1.900</td><td>2.100</td><td>0.075</td><td>0.083</td></tr> <tr> <td>D1</td><td>0.800</td><td>1.000</td><td>0.031</td><td>0.039</td></tr> <tr> <td>E</td><td>1.900</td><td>2.100</td><td>0.075</td><td>0.083</td></tr> <tr> <td>E1</td><td>1.600</td><td>1.800</td><td>0.063</td><td>0.071</td></tr> <tr> <td>e</td><td colspan="2">0.500 BSC</td><td colspan="2">0.020BSC</td></tr> <tr> <td>L</td><td>0.224</td><td>0.376</td><td>0.009</td><td>0.015</td></tr> </tbody> </table>	Symbol	Dimensions In Millimeters		Dimensions In Inches		MIN	MAX	MIN	MAX	A	0.500	0.600	0.020	0.024	A1	0.000	0.050	0.000	0.002	b	0.150	0.300	0.006	0.012	A3	0.100	0.200	0.004	0.008	D	1.900	2.100	0.075	0.083	D1	0.800	1.000	0.031	0.039	E	1.900	2.100	0.075	0.083	E1	1.600	1.800	0.063	0.071	e	0.500 BSC		0.020BSC		L	0.224	0.376	0.009	0.015				
Symbol	Dimensions In Millimeters		Dimensions In Inches																																																													
	MIN	MAX	MIN	MAX																																																												
A	0.500	0.600	0.020	0.024																																																												
A1	0.000	0.050	0.000	0.002																																																												
b	0.150	0.300	0.006	0.012																																																												
A3	0.100	0.200	0.004	0.008																																																												
D	1.900	2.100	0.075	0.083																																																												
D1	0.800	1.000	0.031	0.039																																																												
E	1.900	2.100	0.075	0.083																																																												
E1	1.600	1.800	0.063	0.071																																																												
e	0.500 BSC		0.020BSC																																																													
L	0.224	0.376	0.009	0.015																																																												

NOTES



1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.
3. The many types of E-pad Pin1 signs may appear in the product.

TSSOP14




Package Outline Dimensions		TS2(TSSOP-14-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.200	0.035	0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
c	0.090	0.200	0.004	0.008	
D	4.900	5.100	0.193	0.201	
E	6.200	6.600	0.244	0.260	
E1	4.300	4.500	0.169	0.177	
e	0.650 BSC		0.026 BSC		
L	0.450	0.750	0.018	0.030	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

SOP14

Package Outline Dimensions		SO2(SOP-14-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.650	0.049	0.065	
b	0.310	0.510	0.012	0.020	
c	0.100	0.250	0.004	0.010	
D	8.450	8.850	0.333	0.348	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	1.270 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
SGM8061XN5	-40 to 125°C	SOT23-5	E31T	3	Tape and Reel, 3,000	Green
SGM8061U	-40 to 125°C	SOT23-5	E31U	3	Tape and Reel, 3,000	Green
SGM8061U-C	-40 to 125°C	SOT353 (SC70-5)	31V	3	Tape and Reel, 3,000	Green
SGM8062AR	-40 to 125°C	SOP8	SGM8062	3	Tape and Reel, 4,000	Green
SGM8062BR	-40 to 125°C	DFN2X2-8	8062	3	Tape and Reel, 3,000	Green
SGM8062CR	-40 to 125°C	MSOP8	SGM8062	3	Tape and Reel, 3,000	Green
SGM8064A	-40 to 125°C	SOP14	SGM8064	3	Tape and Reel, 2,500	Green
SGM8064B	-40 to 125°C	TSSOP14	SGM8064	3	Tape and Reel, 3,000	Green