MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PLED

MAX809xEUR+MSK

产品手册

产品简介

MAX809xEUR+MSK 系列是一款采用数字系统电路设计技术实现的三端口低电压复位检测监控器,可以对主机处理器 提供一个复位监控信号。该系列复位检测监控器能监控 1.0V~5.0V 的固定电压,应用简单,无需外部器件。

产品特点

- 低功耗: 5.5uA, @VCC=6V (典型值)
- 宽工作电压范围: 1V~6.0V
- 具有 VCC 瞬态抗干扰
- 无需外部元件
- 内置复位延时时间 200ms (典型值)
- 高精度复位电压值: ±2.5%
- 小体积封装: SOT-23

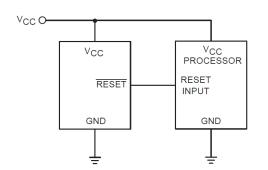
产品用途

- 电池供电设备
- 掉电检测器
- 电脑、微机处理器
- 非易失性 RAM 信号存储保护器
- 临界 MP 电源监控
- 嵌入式系统

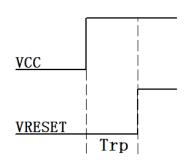
封装形式和管脚定义功能

封装形式	管脚定义
MSHSEMI Selection of the selection of th	1 2
SOT-23	

管脚序号	管脚定义	功能说明
S0T-23		
1	GND	芯片接地端
3	VCC	芯片输入端
2	RESET	复位输出端


型号和丝印详情

名称	型号	最高输入电压VC	复位电压Vth _® (V)	容差	封装形式
	MAX809LEUR+MSK	6.0	4.63	<u>+</u> 2.5%	
	MAX809MEUR+MSK	6.0	4.38	<u>+</u> 2.5%	
MAX809*	MAX809JEUR+MSK	6.0	4.00	<u>+</u> 2.5%	
EUR+MSK (*=VTH)	MAX809TEUR+MSK	6.0	3.08	<u>+</u> 2.5%	SOT-23
	MAX809SEUR+MSK	6.0	2.93	<u>+</u> 2.5%	
	MAX809REUR+MSK	6.0	2.63	<u>+</u> 2.5%	


MAX809LEUR+MSK	MAX809MEUR+MSK	MAX809JEUR+MSK
AAAA	ABAA	CWAA
MAX809TEUR+MSK	MAX809SEUR+MSK	MAX809REUR+MSK
ACAA	ADAA	AFAA

应用电路

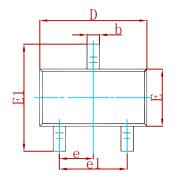
上电复位时间

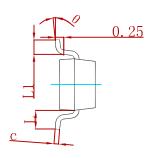
极限参数

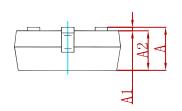
项目	符号	说明	极限值	単位
电压	V _{CC}	输入电压	6. 5	V
巴 压	V_{RESET}	复位输出电压	-0.3∼ V _{cc} +0.3	V
功耗	PD	SOT23	200	mW
	Tw	工作温度范围	-25~85	$^{\circ}$
温度	Tc	存储温度范围	-55~125	C
	Th	焊接温度	260	°C, 10s

注:极限参数是指无论在任何条件下都不能超过的极限值。如果超过此极限值,将有可能造成产品劣化等物理性损伤;同时在接近极限参数下,不能保证芯片可以正常工作。

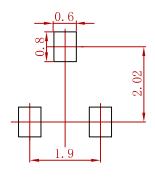
电学特性


MAX809xEUR+MSK (Ta=25℃, 除非特殊说明)


符号	项目	测试条件		最小值	典型值	最大值	单位
VCC	工作电压			1.0	_	6.0	V
ICC	静态电流	VCC=6V,	No Load	-	5. 5	-	uA
Vth (1)	复位电压	VCC=Vth+0.5V to Vth, 空载,		0. 975*	_	1. 025*	V
	V _{RESET} =VCC to GND		CCC to GND	$Vth_{(E)}$		$Vth_{(E)}$	·
Trd	下降沿时间	VCC= Vth to (Vth-100mV)		-	5	-	us
Т-1010	上电复位时间	R/S/T	VCC=0 to 3.5V, 空载	80	-	350	ms
Trp	工电复型时间	L/M/J	VCC=0 to 5V, 空载	80	-	350	ms
VOL	复位输出低电压	VCC=Vth _{min} , I _{SINK} =1.2mA		_	_	0.3	V
VOH	复位输出高电压	VCC>Vthmax, ISOURCE=500uA		0.8V _{cc}	_	_	V
Δ Vth/ (Vth* Δ Ta)	温度系数	-40°C≤Ta≤85°C		-	±150	-	ppm/℃


注:(1)、Vth 为实际电压值, Vth (E)为标称值。

封装信息



Symbol	Dimensions In Millimeters		Dimension	ns In Inches
Symbol	Min	Max	Min	Max
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.95	0 TYP	0.03	7 TYP
e1	1.800	2.000	0.071	0.079
L	0.55	0 REF	0.02	2 REF
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

焊盘布局建议

Note:

- 1.Controlling dimension:in millimeters. 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

订购信息

P/N	PKG	QTY
MAX809xEUR+MSK	SOT-23-3	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.