

General description

The MX5050S3028A2 high-side OR-ing works with an internal MOSFET and acts as an ideal diode rectifier when connected in series with the power supply. This OR-ing circuit enables MOSFETs to replace diode rectifiers in power distribution networks, reducing power loss and voltage drop.

The MX5050S3028A2 controller provides charge pump gate drive for an internal N-channel MOSFET and fast response comparator to turn off the FET when current flows in reverse.

The MX5050S3028A2 can be connected to power supplies from 4V to 20V and can withstand transient voltages up to 30V.

Features

- ♦ Wide operating input voltage range V_{IN}: 4V to 24V
- ♦30V transient voltage
- ♦ Charge pump gate driver for internal N-channel MOSFET
- ♦ 50ns fast response to current reversal
- ♦2A peak gate off current internal
- ♦Ultra-small V_{DS} turn-off voltage reduces turn-off time
- ♦ 8-Pin SOP8L

Applications

Active OR-ing of redundant (N+1) power supplies

General information

Ordering information

Part Number	Description
MX5050S3028A2	SOP8L
MPQ	3000pcs

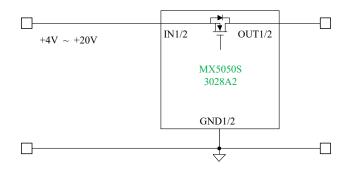
Package dissipation rating

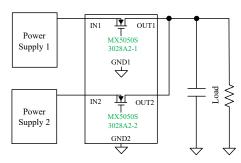
Package	RθJA (°C/W)
SOP8L	108.1

Absolute maximum ratings

Parameter	Value
IN, OUT Pins to GND	-0.3 to 30V
Internal MOSFET VDS	≥30V
Junction temperature	150°C
Storage temperature, Tstg	-50 to 150°C
Leading temperature (soldering,10secs)	260°C
ESD Susceptibility HBM	±2000V

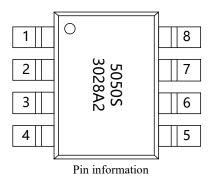
Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

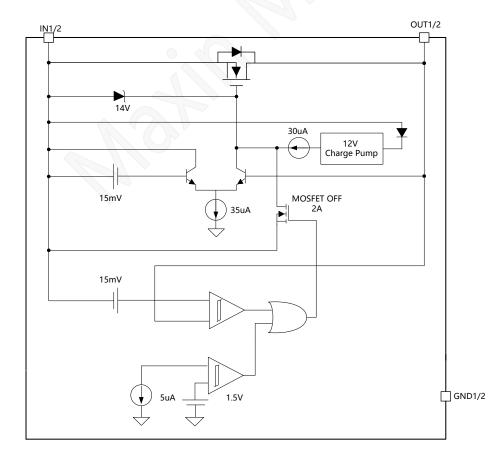

Marking information



Recommended operating condition

Symbol	Range
IN Pin	4-24V
Operating temperature	-40~125°C


Typical application



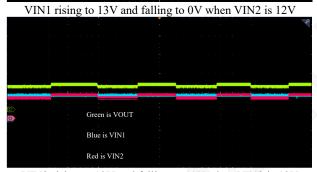
Terminal assignments

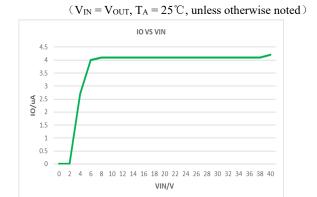
PIN NO.	PIN name	Description
1	IN1	Voltage sense connection and power supply for channel 1.
2	GND1	Ground for the controller with channel 1.
3	IN2	Voltage sense connection and power supply for channel 2.
4	GND2	Ground for the controller with channel 2.
5, 6	OUT2	Voltage sense connection to the OUTPUT for channel 2.
7、8	OUT1	Voltage sense connection to the OUTPUT for channel 1.

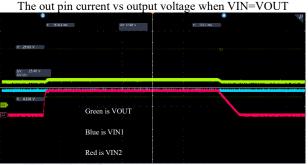
Block diagram

Electrical characteristics


(V_{IN} =12V, TA = 25°C, unless otherwise noted)


Symbol	Parameter	Test condition	Min	Тур.	Max	Unit
IN PIN						
$V_{\rm IN}$	Operating Input Voltage Range		4		24	V
I _{IN}	IN Pin current	V _{IN} =5V		240	300	4
		$V_{IN} = 8V$ to $20V$		300	400	uA
OUT PIN						
V_{OUT}	Operating Output Voltage Range		4		24	V
I _{OUT}	OUT Pin Current	$V_{IN} = 4V$ to $20V$		4.1		uA
INTERNA	L REGULATOR					
V _{SD(REV)}	$ \begin{array}{ c c } \hline Reverse \ V_{SD} \ Threshold \ V_{IN} < \\ \hline V_{OUT} \end{array} $	V _{IN} - V _{OUT}	-35	-15	-5	mV
V _{SD(REG)}	Regulated Forward V _{SD}	$V_{\rm IN} = 5V$, $V_{\rm IN}$ - $V_{\rm OUT}$	1	30	40	3.7
	Threshold V _{IN} > V _{OUT}	$V_{IN} = 12V$, V_{IN} - V_{OUT}	5	60	80	mV
INTERNA	L MOSFET					
V_{DS}	Drain to source voltage	$I_{DS} = 250uA$	30			V
Ron	On resistance	$I_D = 1A$		28	35	mΩ


Characteristic plots

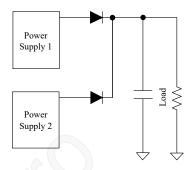


VIN2 rising to 13V and falling to 11V when VIN2 is 12V

VIN2 rising to 13V and falling to 0V when VIN1 is 12V

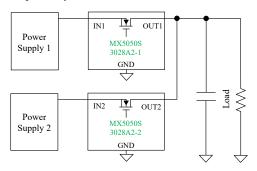
Operation description

IN and OUT Pins


When power is initially applied, the load current will flow from source to drain through the body diode of the MOSFET. Once the voltage across the body diode exceeds $V_{\text{SD(REG)}}$ then the MX5050S3028A2 begins charging the internal MOSFET gate through a 30 μ A (typical) charge pump current source. In forward operation, the gate of the internal MOSFET is charged. The MX5050S3028A2 is designed to regulate the internal MOSFET gate-to-source voltage. If the MOSFET current decreases to the point that the voltage across the MOSFET falls below the $V_{\text{SD(REG)}}$ voltage regulation point of 30mV (typical), the internal MOSFET gate voltage will be decreased until the voltage across the MOSFET is regulated at 30mV. If the source-to-drain voltage is greater than the $V_{\text{SD(REG)}}$ voltage, the gate-to-source voltage will increase and eventually reach the 12V gate to IN pin Zener clamp level.

If the MOSFET current reverses, possibly due to failure of the supply, such that the voltage input MX5050S3028A2 IN and OUT pins is more negative than the V_{SD(REV)} voltage of -28mV (typical), the MX5050S3028A2 will quickly discharge the internal MOSFET gate through a strong gate to IN pin discharge transistor. If the input supply fails abruptly, as would occur if the supply was shorted directly to ground, a reverse current will temporarily flow through the MOSFET until the gate can be fully discharged. This reverse current is sourced from the load capacitance and from the parallel connected supplies. The MX5050S3028A2 responds to a voltage reversal condition typically within 50ns. The actual time required to turn off the MOSFET will depend on the charge held by the gate capacitance of the MOSFET being used. For MX5050S3028A2, the gate capacitance of the internal MOSFET is 4.6nF and the typical turn off time is 25ns. This fast turnoff time minimizes voltage disturbances at the output, as well as the current transients from the redundant supplies.

Application and Implementation


Application Information

Systems that require high availability often use multiple, parallel-connected redundant power supplies to improve reliability. Schottky OR-ing diodes are typically used to connect these redundant power supplies to a common point at the load. The disadvantage of using OR-ing diodes is the forward voltage drop, which reduces the available voltage and the associated power losses as load currents increase. Using an N-channel MOSFET to replace the OR-ing diode requires a small increase in the level of complexity, but reduces, or eliminates, the need for diode heat sinks or large thermal copper area in circuit board layouts for high power applications.

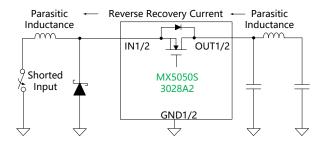
OR-ing with Diodes

The MX5050S3028A2 is a positive voltage (that is, high-side) OR-ing controller that will drive an external N-channel MOSFET to replace an OR-ing diode. The voltage across the MOSFET source and drain pins is monitored by the MX5050S3028A2 at the IN and OUT pins, while the internal MOSFET gate drives the MOSFET to control its operation based on the monitored source-drain voltage. The resulting behavior is that of an ideal rectifier with source and drain pins of the MOSFET acting as the anode and cathode pins of a diode respectively.

OR-ing with internal MOSFETs

Short Circuit Failure of an Input Supply

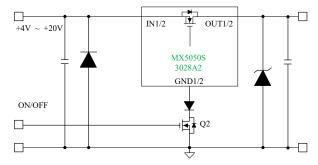
An abrupt 0Ω short circuit across the input supply will cause the highest possible reverse current to flow while the internal MX5050S3028A2 control circuitry discharges the gate of the MOSFET. During this time, the reverse current is limited only by the $R_{DS(ON)}$ of the MOSFET, along with parasitic wiring


resistances and inductances. Worst case instantaneous reverse current would be limited to:

$$I_{D(REV)} = (V_{OUT} - V_{IN}) / R_{DS(ON)}$$
 (1)

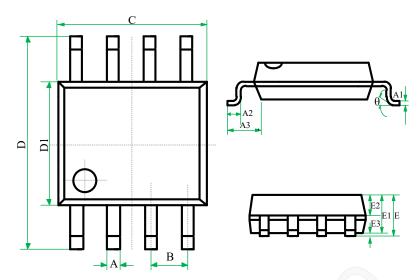
The internal Reverse Comparator will react, and will start the process of discharging the internal MOSFET gate, when the reverse current reaches:

$$I_{D(REV)} = V_{SD(REV)} / R_{DS(ON)}$$
 (2)


When the MOSFET is finally switched off, the energy stored in the parasitic wiring inductances will be transferred to the rest of the circuit. As a result, the MX5050S3028A2 IN pin will see a negative voltage spike while the OUT pin will see a positive voltage spike. The IN pin can be protected by diode clamping the pin to GND in the negative direction. The OUT pin can be protected with a TVS protection diode, a local bypass capacitor, or both.

Reverse Recovery Current Generates Spikes at $V_{\mbox{\scriptsize IN}}$ and $V_{\mbox{\scriptsize OUT}}$

Reverse Input Voltage Protection with IQ Reduction


In battery powered applications, whenever MX5050S3028A2 functionality is not needed, the supply to the MX5050S3028A2 can be disconnected by turning off Q2, as shown in the following figure. This disconnects to the ground path of the MX5050S3028A2 and eliminates the current leakage from the battery.

Reverse input voltage protection with IQ reduction schematic

Package information

SYMBOL	M	MILLIMETERS		INCHES			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.39	-	0.48	0.0154	-	0.0189	
A1	0.21	-	0.28	0.008		0.011	
A2	0.50	-	0.80	0.020	<u></u>	0.031	
A3		1.05BSC			0.041BSC		
В		1.27BSC			0.050BSC		
С	4.70	4.90	5.10	0.185	0.193	0.201	
D	5.80	6.00	6.20	0.228	0.236	0.244	
D1	3.70	3.90	4.10	0.146	0.154	0.161	
Е	-	-	1.75	-	-	0.069	
E1	1.30	1.40	1.50	0.051	0.055	0.059	
E2	0.60	0.65	0.70	0.024	0.026	0.028	
E3	0.10	-	0.225	0.004	-	0.009	
θ	0		8°	0	_	8°	

SOP8 for MX5050S3028A2

Restrictions on Product Use

- ♦ MAXIN micro is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing MAXIN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such MAXIN products could cause loss of human life, bodily injury or damage to property.
- ♦ In developing your designs, please ensure that MAXIN products are used within specified operating ranges as set forth in the most recent MAXIN products specifications.
- ◆ The information contained herein is subject to change without notice.

Version update record:

V10 The original version