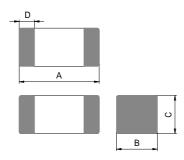
TAI-TECH P1.

High Current Ferrite Chip Bead(Lead Free)

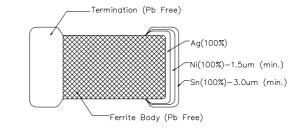
HCB2012KF-101T30

1.Features


- 1. Monolithic inorganic material construction.
- 2. Closed magnetic circuit avoids crosstalk.
- 3. Suitable for reflow soldering.
- 4. Shapes and dimensions follow E.I.A. spec.
- 5. Available in various sizes.
- 6. Excellent solder ability and heat resistance.
- 7. High reliability.
- 8. 100% Lead(Pb) & Halogen-Free and RoHS compliant.
- 9. Low DC resistance structure of electrode to prevent wasteful electric power consumption.

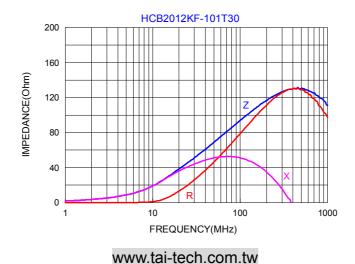
2.Dimensions

Chip Size									
Α	2.00±0.20								
В	1.25±0.20								
С	0.85±0.20								
D	0.50±0.30								


Units: mm

3.Part Numbering

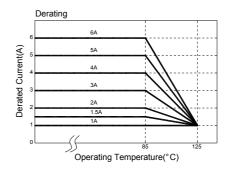
D: Impedance 101=100 E: Packaging T=Taping and Reel, B=Bulk(Bags)


F: Rated Current 30=3000m

4. Specification

Tai-Tech Part Number	Impedance ()	Test Frequency (Hz)	DC Resistance () max.	Rated Current (mA) max.
HCB2012KF-101T30	100±25%	60mV/100M	0.04	3000

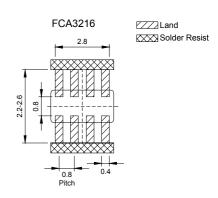
■ Impedance-Frequency Characteristics

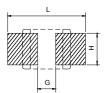

5. Reliability and Test Condition

Item					Perfor	mance					Test Condition			
Series No.	FCB	FCM	нсв	GHB	FCA	FCI	FHI	FCH	HCI	MGI				
Operating Temperature	(Ir		40~+125 self-temp		rise)	(Ir		40~+105 self-temp		rise)				
Transportation Storage Temperature		-	-40~+125	5				40~+10 <u></u>	5		Long storage conditions, please see the Application Notice			
Impedance (Z)											Agilent4291			
Inductance (Ls)											Agilent E4991			
Q Factor	Refe	r to stand	dard elec	trical ch	aracteris	tics list					Agilent4287 Agilent16192			
DC Resistance											Agilent 4338			
Rated Current											DC Power Supply Over Rated Current requirements, there will be some risk			
Temperature Rise Test			A ΔT 20 1A ΔT 40								Applied the allowed DC current. Temperature measured by digital surface thermometer.			
Solder heat Resistance	Imped	dance cha	lo significange: With	nin ± 30	%.			damage. ninal elect	rode:75°	% min.	Preheat: 150 ,60sec. Solder: Sn-Cu0.5 Solder tamperature: 260±5 Flux for lead free: ROL0 Dip time: 10±0.5sec. Preheating Dipping Natural cooling 150°C 150°C 150°C 10±0.5 10±0.5 10±0.5 10±0.5 10±0.5			
Solderability	More than 95% of the terminal solder: electrode should be covered solder to						Preheat: 150 ,60sec. Solder: Sn-Cu0.5 Solder tamperature: 245±5 Flux for lead free: ROL0 Dip time: 4±1sec.							
Terminal strength	not be		electrode ed by the s.				11/11/1 11/11/11		∏ → W	W	For FCB FCM HCB GHB FCI FHI FCH HCI MGI: Size Force (Kgf) Time(sec) 1005 0.2 1608 0.5 2012 0.6 3216 1.0 >30 3225 1.0 4516 1.0 4532 1.5 For FCA: Size Force (Kgf) Time(sec) 3216 0.5 >30			
Flexture strength	not be		electrode ed by the				 	5(1.772) 45(1.772)		Bending 40(1.575)	Solder a chip on a test substrate, bend the substrate by 2mm (0.079in)and return. The duration of the applied forces shall be 60 (+ 5) Sec.			
Bending Strength			ould not			<u>R 0</u>	.5(0.02	1.0(0.039 2) - - chip)		Size mm(inches) P-Kgf 1608 0.80(0.033) 0.3 2012 1.40(0.055) 1.0 FCA3216 2.00(0.079) 1.5 3216 3225 2.00(0.079) 2.5 4516 4532 2.70(0.106) 2.5			
Random Vibration Test	chara	acteristica dance: w	Cracking s should vithin±30 ^t nange: : w	not be a	allowed.	ny other	defects	harmful t	o the		Frequency: 10-55-10Hz for 15 min. Amplitude: 1.52mm Directions and times: X, Y, Z directions for 15 min This cycle shall be performed 12 times in each of three mutually perpendicular directions (Total 9hours).			

Item	Perfor	mance		Test Condition
Life testing at High Temperature	Appearance: no damage. Impedance: within±30%of initial value.			Temperature: 125±2 (bead), 105±2 (inductor) Applied current: rated current. Duration: 1008±12hrs. Measured at room temperature after placing for 2 to 3hrs.
Humidity	Inductance: within±10%of initial value. Q: within±30%of initial value. (FCI FHI Q: within±20%of initial value. (HCI MG	Humidity: 90~95%RH. Temperature: 40±2 Temperature: 60±2 Uration: 504±8hrs. Measured at room temperature after placing for 2 to 3hrs.		
Thermal shock	Appearance: no damage. Impedance: within±30%of initial value. Inductance: within±10%of initial value. Q: within±30%of initial value. (FCI FHI FCH)		Time(min.) 30±5 0.5 30±5	Condition for 1 cycle Step1: -40±2 30±5 min. Step2: +105±2 30±5min. Number of cycles: 500 Measured at room temperature after placing for 2 to 3 hrs.
Low temperature storage test	Q: within±20%of initial value. (HCI MGI)			Temperature: -40±2 . Duration: 500±8hrs. Measured at room temperature after placing for 2 to 3hrs.
Drop	No mechanical damage Impedance change: ±30% Inductance change: : within±10%			Drop 10 times on a concrete floor from a height of 75cm

**Derating Curve


For the ferrite chip bead which withstanding current over 1.5A, as the operating temperature over 85 , the derating current information is necessary to consider with. For the detail derating of current, please refer to the Derated Current vs. Operating Temperature curve.



6. Soldering and Mounting

6-1. Recommended PC Board Pattern

			Land Patterns For Reflow Soldering					
Series	Туре	A(mm)	B(mm)	C(mm)	D(mm)	L(mm)	G(mm)	H(mm)
FCB	0603	0.6±0.03	0.30±0.03	0.30±0.03	0.15±0.05	0.80	0.30	0.30
FCM	1005	1.0±0.10	0.50±0.10	0.50±0.10	0.25±0.10	1.50	0.40	0.55
нсв	1608	1.6±0.15	0.80±0.15	0.80±0.15	0.30±0.20	2.60	0.60	0.80
GHB	2012	2.0±0.20	1.25±0.20	0.85±0.20	0.50±0.30	3.00	1.00	1.00
FCI	2012	2.0±0.20	1.25±0.20	1.25±0.20	0.50±0.30	3.00		
FHI	3216	3.2±0.20	1.60±0.20	1.10±0.20	0.50±0.30	4.40	2.20	1.40
FCH	3225	3.2±0.20	2.50±0.20	1.30±0.20	0.50±0.30	4.40	2.20	3.40
HCI	HCI 4516	4.5±0.20	1.60±0.20	1.60±0.20	0.50±0.30	5.70	2.70	1.40
MGI	4532	4.5±0.20	3.20±0.20	1.50±0.20	0.50±0.30	5.90	2.57	4.22

PC board should be designed so that products are not sufficient under mechanical stress as warping the board.

Products shall be positioned in the sideway direction against the mechanical stress to prevent failure.

6-2. Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

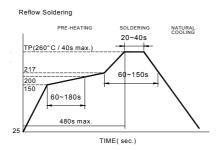
If Use Wave soldering is there will be some risk.

Re-flow soldering temperatures below 240 degrees, there will be unwitting risk

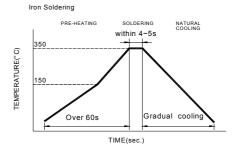
6-2.1 Lead Free Solder re-flow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1.

6-2.2 Soldering Iron:


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. for Iron Soldering in Figure 2.

Preheat circuit and products to 150 350 tip temperature (max)


Never contact the ceramic with the iron tip 1.0mm tip diameter (max)

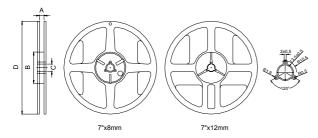
Use a 20 watt soldering iron with tip diameter of 1.0mm

Limit soldering time to 4~5sec.

Reflow times: 3 times max Fig.1

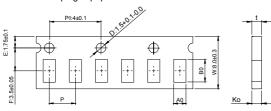
Iron Soldering times: 1 times max Fig.2

6-2.3 Solder Volume:


Accordingly increasing the solder volume, the mechanical stress to product is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance. Solder shall be used not to be exceed as shown in right side:

Minimum fillet height = soldering thickness + 25% product height

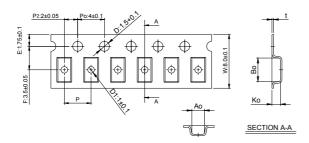
7. Packaging Information


7-1. Reel Dimension

Туре	A(mm)	B(mm)	C(mm)	D(mm)
7"x8mm	9.0±0.5	60±2	13.5±0.5	178±2
7"x12mm	13.5±0.5	60±2	13.5±0.5	178±2

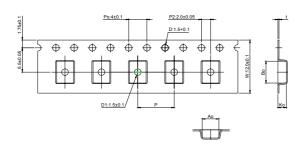
7-2.1 Tape Dimension / 8mm

Material of taping is paper



.0.1	P2.2±0.1 P0.4±0.1	-t
E:1.75±0.1	W800401	
E.	Р А0	Ko

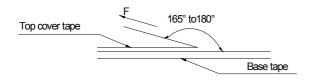
Size	Bo(mm)	Bo(mm) Ao(mm)		P(mm)	t(mm)	D1(mm)
060303	0.68±0.05	0.38±0.05	0.50max	2.0±0.05	0.50max	none


Size	Bo(mm) Ao(mm)		Ko(mm)	P(mm)	t(mm)	D1(mm)
100505	1.12±0.03	0.62±0.03	0.60±0.03	2.0±0.10	0.60±0.03	none
160808	1.85±0.05	1.05±0.05	0.95±0.05	4.0±0.10	0.95±0.05	none
201209	2.30±0.05	1.50±0.05	0.95±0.05	4.0±0.10	0.95±0.05	none

Material of taping is plastic

Size	Bo(mm)	Ao(mm)	Ko(mm)	P(mm)	t(mm)	D1(mm)	
160808	1.95±0.10	1.05±0.10	1.05±0.10	4.0±0.10	0.23±0.05	none	
201209	2.25±0.10	1.42±0.10	1.04±0.10	4.0±0.10	0.22±0.05	1.0±0.10	
201212	2.35±0.10	1.50±0.10	1.45±0.10	4.0±0.10	0.22±0.05	1.0±0.10	
321611	3.50±0.10	1.88±0.10	1.27±0.10	4.0±0.10	0.22±0.05	1.0±0.10	
322513	3.42±0.10	2.77±0.10	1.55±0.10	4.0±0.10	0.22±0.05	1.0±0.10	
321609	3.40±0.10	1.77±0.10	1.04±0.10	4.0±0.10	0.22±0.05	1.0±0.10	

7-2.2 Tape Dimension / 12mm



Size	Bo(mm)	Ao(mm)	Ko(mm)	P(mm)	t(mm)	D1(mm)
451616	4.95±0.1	1.93±0.1	1.93±0.1	4.0±0.1	0.24±0.05	1.5±0.1
453215	4.95±0.1	3.66±0.1	1.85±0.1	8.0±0.1	0.24±0.05	1.5±0.1

7-3. Packaging Quantity

Chip Size	453215	451616	322513	321611	321609	201212	201209	160808	100505	060303
Chip / Reel	1000	2000	2500	3000	3000	2000	4000	4000	10000	15000
Inner box	4000	8000	12500	15000	15000	10000	20000	20000	50000	75000
Middle box	20000	40000	62500	75000	75000	50000	100000	100000	250000	375000
Carton	40000	80000	125000	150000	150000	100000	200000	200000	500000	750000
Bulk (Bags)	12000	20000	30000	50000	50000	100000	150000	200000	300000	

7-4. Tearing Off Force

The force for tearing off cover tape is 15 to 60 grams in the arrow direction under the following conditions.

Room Temp.	Room Humidity	Room atm	Tearing Speed
()	(%)	(hPa)	mm/min
5~35	45~85	860~1060	300

Application Notice

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. TAI-TECH products meet IPC/JEDEC J-STD-020D standard-MSL, level 1.
- 2. Temperature and humidity conditions: -10~ 40 and 30~70% RH.
- 3. Recommended products should be used within 6 months from the time of delivery.
- 4. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.