

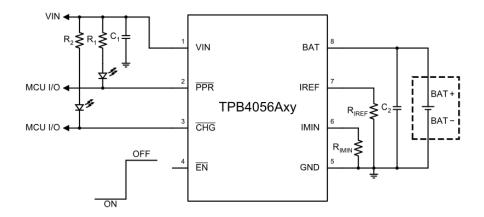
Features

- Single-Chip Charger for 1-cell Li-lon or Polymer Battery
- Constant-Current/Constant-Voltage Battery Charge
- Maximum 1000-mA Programmable Charge Current
 - Protection
 - Wide Input from 4.55 V to 6.8 V or 10.5 V, up to 26.5 V
- · Charging Current Monitor and Thermal Foldback
- Power Presence Indication
- Soft Start for Inrush Current Limitation
- · Automatic Battery Recharge
- No External MOSFET, Current Sensor, or Diode Required
- Operation Temperature: -40°C to +85°C
- Package Options: ESOP8, DFN2×2

Applications

- Portable Devices, GPS, ePOS, e-Cigarette, Walkie-Talkie
- · Wireless Devices, Bluetooth Headset
- Personal Electronics, Personal Healthcare
- Wearable Devices

Description


The TPB4056A is a cost-effective, high-integration linear charger for single-cell Li-ion or Li-ion polymer batteries. The device supports CC/CV charge from either a USB port or an AC adapter. The low BOM component requirement makes the whole system small in size. The high input voltage range with over-voltage protection supports low-cost unregulated adapters.

The charge current of the TPB4056A is fully programmable up to 1000 mA with an external resistor. The TPB4056A automatically terminates the charge cycle when the charge current drops below a programmable minimal charging current of the set charge current value after reaching the float voltage.

The TPB4056A implements two indication pins, \overline{PPR} and \overline{CHG} , allowing connection to a microcontroller or LED to show the status of the device. With the open-drain structure, the \overline{PPR} pin stays low while the input voltage is within the operation range, and the \overline{CHG} pin stays low during the charging state. Else pins are in the high impedance state.

The TPB4056A features the thermal foldback function to limit the charge current and protect the device from over-junction temperature faults. The TPB4056A also integrates the current monitor, UVLO, and OVP function to prevent the device from damage.

Typical Application Circuit

www.3peak.com 1 / 22 FA20241003A5

Table of Contents

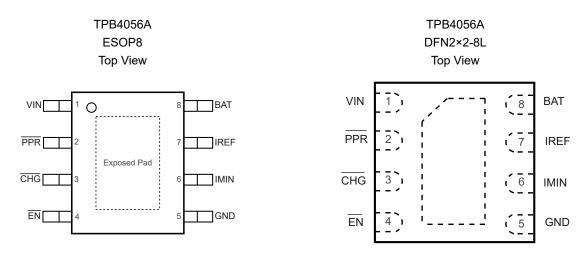
Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Product Family Table	4
Pin Configuration and Functions	5
Specifications	6
Absolute Maximum Ratings (1)	6
ESD, Electrostatic Discharge Protection	6
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	g
Detailed Description	10
Overview	10
Feature Description	10
Application and Implementation	13
Application Information	13
Typical Application	13
Layout	15
Layout Guideline	15
Tape and Reel Information	16
Package Outline Dimensions	18
ESOP8	18
DFN2×2-8	19
Order Information	20
IMPORTANT NOTICE AND DISCLAIMER	21

Revision History

Date	Revision	Notes
2020-12-25	Rev.A.0	First released version.
2021-02-25	Rev.A.1	Changed the wide vin voltage from 4 V to 4.55 V in Features.
2021-04-06	Rev.A.2	Updated EOC Rising Threshold Min and Max.
2021-08-10	Rev.A.3	Modified ISD Parameter and Tape and Reel Information. Changed the max rating of 26.5 V, and added the test condition if ISD. Updated the DFN2×3-6 package.
2022-04-25	Rev.A.4	Added the note in the product family table.
2024-10-23	Rev.A.5	Removed the DFN2x3 and DFN3x3 packages. Updated with a new datasheet format.

www.3peak.com 3 / 22 FA20241003A5

Product Family Table


Order Number	Float Voltage (V)	OVP (V)	Trickle Voltage (V)	Package
TPB4056A20-ES1R (1)	4.200	6.8	2.5	ESOP8
TPB4056A2X-ES1R	4.200	10.5	2.5	ESOP8
TPB4056A20-DFGR	4.200	6.8	2.5	DFN2×2-8
TPB4056A2X-DFGR (1)	4.200	10.5	2.5	DFN2×2-8
TPB4056A3X-ES1R (1)	4.350	10.5	2.6	ESOP8
TPB4056A3X-DFGR (1)	4.350	10.5	2.6	DFN2×2-8

⁽¹⁾ For future products, contact the 3PEAK factory for more information and samples.

www.3peak.com 4 / 22 FA20241003A5

Pin Configuration and Functions

Table 1. Pin Functions

Pin No.	Name	I/O	Description
1	VIN	I	Power supply voltage input pin. Connect VIN to GND with a 1-µF or greater capacitor.
2	PPR	0	Input voltage good indication pin. Open-drain output is low while the input supply voltage is within the POR and OVP voltage range and high impedance otherwise.
3	CHG	0	Charge state indication pin. Open-drain output is low when the device is charging, while high impedance when end-of-charge (EOC) is qualified, or the charger is disabled.
4	ĒN	I	Enable input pin with active low. Pull this pin to low or left floating to enable charge, while pulling high to disable charge.
5	GND		Ground.
6	IMIN	I	Minimal charging current programming pin. For the charging current continues below the minimal charging current I _{MIN} , an end-of-charge (EOC) is qualified. Set I _{MIN} by a resistor connected between this pin and the ground and the below equation: $I_{MIN} = \frac{10000}{R_{IMIN}} (mA)$ where the unit of R_{IMIN} is $k\Omega$.
7	IREF	I	Charge current feedback pin. Connect a resistor between this pin and the GND pin to set charge constant current limitation. The current is the following equation: $I_{REF} = \frac{1200}{R_{IREF}} (mA)$ Where the unit of R_{IREF} is $k\Omega$.
8	BAT	0	Charger output pin. Connect this pin to the positive of the battery with a 1-µF or greater X5R ceramic capacitor for decoupling. The BAT output is disabled, when the pin is pulled high.
E	Pad		The exposed pad must be connected to the PCB ground plane to maximize the thermal performance.

www.3peak.com 5 / 22 FA20241003A5

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
	VIN	-0.3	26.5	٧
Input	IREF, IMIN	-0.3	6	V
Voltage	Voltage EN	-0.3	26.5	V
Output	PPR, CHG	-0.3	26.5	V
Voltage	BAT	-6	6	٧
TJ	Maximum Operating Junction Temperature	-40	125	°C
T _A	Operating Temperature Range	-40	85	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering, 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	2000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θυΑ	Ө JС	Unit
ESOP8	148	48	°C/W
DFN2×2-8L	103	55	°C/W

www.3peak.com 6 / 22 FA20241003A5

⁽²⁾ This data is taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data is taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: V_{IN} = 5 V, T_A = +25°C, unless otherwise noted.

Symbol	l Parameter		Conditions	Min	Тур	Max	Unit
Supply '	Voltage and Current						
	Supply Voltage Range					26.5	V
V _{IN} Operatin		TPB4056A20		4.55		0.40	\ \
	Operating Supply Voltage	TPB4056A35		4.55		6.10	V
	Operating Supply Voltage	TPB4056A2X		4.55		9.35	V
		TPB4056A3X		4.55		9.55	V
	VIN Pin Supply Current		$V_{BAT} = 4.4 \text{ V}, \overline{EN} = \text{Low}$		180	250	μΑ
			EN = High, V _{IN} > UVLO ⁽²⁾		80	110	μΑ
I _{SD}	Shutdown Current		IREF floating, V _{IN} > UVLO (2)		80	110	μΑ
UVLO	Under Voltage Lockout		V _{IN} rising	3.5	3.7	3.9	V
UVLU	Hysteresis		V _{IN} drop	120	200	280	mV
Charge	Voltage and Current						
V _{IREF}	IREF Voltage		Constant current mode, $R_{IREF} = 1.2 \text{ k}\Omega$	0.92	1	1.08	V
I _{IREF}	IREF Source Current		V _{IREF} = 5 V		2		μA
	BAT Pin Float Voltage or Battery End of Charge	TPB4056A20		4.450	3 4.2	4.040	V
V _{FLOAT}		TPB4056A2X		4.158		4.242	V
	Voltage	TPB4056A3X		4.306	4.35	4.394	V
Ron	Power FET Turn on Resistar	ice			650		mΩ
			Constant current range	50		1000	mA
			Constant current mode, $R_{IREF} = 2.4 \text{ k}\Omega$	450	500	550	mA
Іват	BAT Pin Output Charge Curr	ent	Constant current mode, $R_{IREF} = 1.2 \text{ k}\Omega$	930	1000	1070	mA
			V _{BAT} = 4.2 V		-4.0	-6	μΑ
			V _{IN} = 0 V		-3.2	-4	μΑ
tss	Soft Start Delay Time		Charge current from 0 mA to I _{BAT}		1		ms
		TPB4056A20		2.4	2.5	0.0	\/
V	Battery Trickle Voltage	TPB4056A2X	$V_{BAT} < V_{TCK}$, $R_{IREF} = 1.2 \text{ k}\Omega$	2.4	2.5	2.6	V
V _{TCK}	TPB4056A3X			2.5	2.6	2.7	V
	Hysteresis		$R_{IREF} = 1.2 \text{ k}\Omega$	50	110	170	mV
I _{TCK}	Battery Trickle Charge Curre	nt	$V_{BAT} < V_{TCK}$, $R_{IREF} = 1.2 \text{ k}\Omega$	60	100	140	mA
V _{BAT, LO}	Battery Charge Lockout Three	shold, V _{IN} - V _{BAT}	V _{IN} rising	80	110	140	mV

www.3peak.com 7 / 22 FA20241003A5

Symbol	Paramete	er	Conditions	Min	Тур	Max	Unit
	,		V _{IN} failing	15	30	55	mV
Charge '	Voltage and Current						
I _{MIN}	Minimal Charging Current TI	nreshold	R _{IMIN} = 243 kΩ	15	35	70	mA
t _{MIN}	End of Charge Deglitch Time	e			2		ms
	EOC Rising Threshold		R _{IREF} = 2.4 kΩ	325	380	445	mA
trechg	Recharge Deglitch Time				2		ms
Logic In	put and Output						
V _{EN, IH}	EN Logic-Input High Level (Enable)			1.6			V
V _{EN, IL}	EN Logic-Input Low-Level (D	Disable)				0.4	V
R _{EN}	EN Pin Internal Pulldown Resistance		V _{IN} = 5 V		200		kΩ
V _{PPR, OL}	PPR Low-Level Output Voltage		I _{PPR} = 5 mA		0.25	0.6	V
V _{CHG} , OL	CHG Low-Level Output Volta	age	I _{CHG} = 5 mA		0.25	0.6	V
Protection	on						
		TPB4056A20		6.4	6.8	7.2	V
.,	Input Over-Voltage Protection	TPB4056A2X	V _{IN} Rising	0.0	40.5	44.0	.,,
V _{OVP}	Protection	TPB4056A3X		9.8	10.5	11.2	V
	Hysteresis			140	200	260	mV
V _{BAT, SP}	Battery Short to Ground Protection Threshold				1.8		V
I _{BAT, SP}	Battery Short to Ground Protection		BAT Short to Ground		17		mA
Junction	Temperature Protection			•	,		
Тотр	Over Temperature Protection	n Threshold			150		°C

^{(1) 100%} tested at $T_A = 25$ °C.

www.3peak.com 8 / 22 FA20241003A5

⁽²⁾ Only tested at VIN > UVLO.

Typical Performance Characteristics

All test conditions: V_{IN} = 5 V, T_A = +25°C, unless otherwise noted.

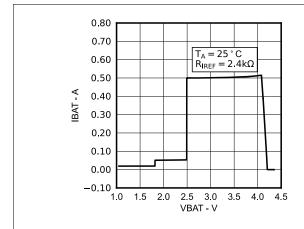


Figure 1. Charging Current IBAT vs. VBAT Voltage

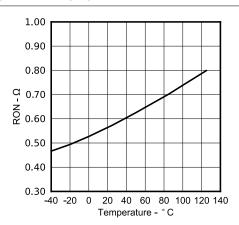


Figure 3. Ron vs. Temperature

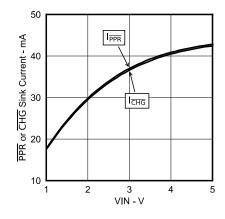


Figure 5. Sink Current of PPR or CHG vs. VIN

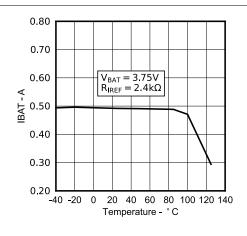


Figure 2. Charging Current IBAT vs. Temperature

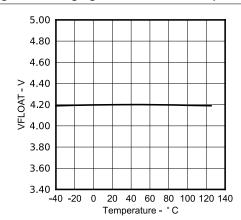


Figure 4. VFloat Voltage vs. Temperature

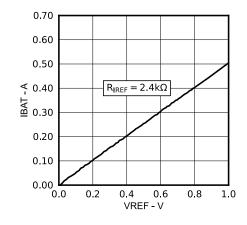


Figure 6. Charging Current I_{BAT} vs. I_{REF} Voltage V_{REF}

www.3peak.com 9 / 22 FA20241003A5

Detailed Description

Overview

The TPB4056A is a cost-effective, high-integrated linear charger for single-cell Li-ion or Li-ion polymer batteries. The device supports CC/CV charge from either a USB port or an AC adapter. The low BOM component requirement makes the whole system small in size. The high input voltage range with over-voltage protection supports low-cost unregulated adapters. The TPB4056A charge current is fully programmable from 50 mA to 1000 mA with an external resistor. The charge current can automatically terminate the charge cycle when the charge current drops below a minimal current which is set by the external resistor on the IMIN pin with a range from 5% (or 10 mA, which one is higher) to 50% of constant current set by the IREF pin after reaching the float voltage.

Feature Description

Enable (EN)

The TPB4056A is in shutdown mode when the chip enable pin (\overline{EN}) is high. Connect this pin to the GPIO of an external processor or a digital logic control circuit to enable and disable the device. Or connect this pin to the VIN pin for self-bias applications.

Under-Voltage Lockout (UVLO)

The TPB4056A uses an under-voltage lockout circuit to keep the device in shutdown mode until the supply voltage is higher than the UVLO threshold.

Over-Voltage Protection (OVP)

The TPB4056A uses an over-voltage protection circuit to prevent the device from damage when the supply voltage is higher than the OVP threshold. The internal power FET, if previously on, turns off after a certain deglitch period. After the supply voltage falls below the normal voltage range, the device recovers to the normal operating mode after another deglitch period.

Battery Charge Current Value Setting

The TPB4056A provides a fully programmable charge current from 50 mA to 1000 mA under normal charge conditions. A single current-programming resistor connected from the IREF pin to GND determines the constant battery charge current value at the BAT pin, and no additional block diode or sensing resistor is required. Use Equation 1 to calculate the resistor value.

$$I_{BAT} = \frac{1200}{R_{IREE}} \tag{1}$$

Where

IBAT is the desired constant charge current;

RIREF is the external current setting resistor.

The TPB4056A implements the IREF pin short protection function. When the R_{IREF} resister is set too small or short to GND unintentionally, short protection occurs, and the battery charge current is limited to 1.5 A, which is the IREF short protection charge current. Meanwhile, the thermal foldback and over-temperature protection still limit the constant current I_{BAT} .

When the TPB4056A is powered up, the whole battery charging process can be divided into five sections below:

Trickle Current Battery Charge

The TPB4056A operates in the trickle charge mode when detects the battery voltage below the trickle charge threshold, V_{TCK} . In trickle charge mode, the battery charge current is limited to a small current range, I_{TCK} , to protect the battery.

www.3peak.com 10 / 22 FA20241003A5

Constant Current Battery Charge

The TPB4056A enters the constant current (CC) battery charge mode when the battery voltage ramps higher than the trickle charge threshold V_{TCK} . In this mode, the constant current, determined by the resistor from I_{REF} to GND, flows out from the BAT pin to the positive side of the load battery.

Constant Voltage Battery Charge

The TPB4056A enters the constant voltage (CV) battery charge mode when the battery voltage reaches the floating voltage V_{FLOAT} . In this mode, the battery charge current decreases from the constant current value, and the BAT pin voltage keeps constant at V_{FLOAT} .

Battery Charge Termination

When the charge current falls below I_{MIN}, the TPB4056A terminates the battery charge cycle after a deglitch period with the CHG pin going to high. Meanwhile, the TPB4056A keeps a very small charging current to force the battery to stay fully charged.

Battery Recharge

In the battery charge standby mode, the TPB4056A monitors the battery voltage continuously. Figure 7 shows the typical behavior during one battery charging cycle.

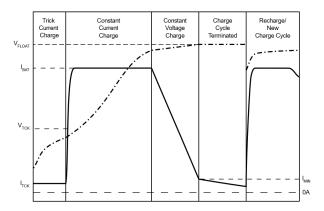


Figure 7. Current and Voltage During One Charging Cycle

Soft-Start

The TPB4056A integrates a soft-start circuit to reduce the inrush current after the new charge cycle starts. When one new charge cycle starts, the battery charge current is limited to ramp up from 0 to set value in 20 μs.

Battery Short Circuit and Reverse Polarity Protection

The TPB4056A features the BAT output short-to-ground protection and the battery reverse polarity protection.

When the TPB4056A detects the BAT output voltage below the short-to-ground protection threshold, the BAT output short-to-ground protection works after a deglitch period, and the BAT output current is limited to 20 mA.

When the TPB4056A detects the BAT output voltage below the reverse protection threshold, the battery reverse protection works after a deglitch period, and the leakage current of the BAT pin is limited to 100 µA.

Battery Charge Status Indication

The TPB4056A has two pins to indicate the power present status and the battery charge status: \overline{PPR} and \overline{CHG} . Connect these two pins to the GPIO of a microcontroller to read the working status of the TPB4056A or to connect with LEDs pull-up circuit as the status indicators. Pull down these two pins to the ground directly when the status indication function is not used.

www.3peak.com 11 / 22 FA20241003A5

Table 2. Battery Charge Status Indication

Conditions	CHG Pin/LED
Battery Charging	Low/On
Battery Fully Charged	
No Battery Connected or Battery Reverse Connected	
EN = High	Ui-b 7/0#
IREF Floating	High-Z/Off
V_{IN} > OVP or V_{IN} < UVLO or $V_{IN} - V_{BAT}$ < $V_{BAT, LO}$	
Over-Temperature Protection	
Conditions	PPR Pin/LED
V _{IN} < UVLO	
V _{IN} > OVP	High-Z/Off
$V_{IN} - V_{BAT} < V_{BAT, LO}$	
$UVLO < V_{IN} < OVP \& V_{IN} - V_{BAT} > V_{BAT, LO}$	Low/On

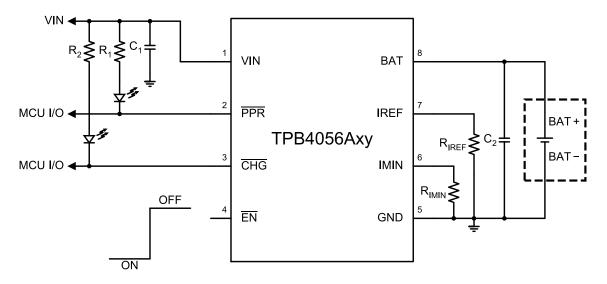
Over Temperature Protection (OTP)

The TPB4056A integrates the foldback circuit and the over-temperature protection to prevent the device from over-heated and damage. When the junction temperature is higher than T_{OTP} , 150°C, a current thermal foldback circuit starts to work and decreases the output charge current of the device gradually with T_J rise. If T_J still rises and reaches 180°C, the device shuts down the charging loop until T_J drops below 100°C.

www.3peak.com 12 / 22 FA20241003A5

Application and Implementation

Note


Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPB4056A is a cost-effective, high-integrated linear charger for single-cell Li-ion or Li-ion polymer batteries. The device supports the CC/CV charge from either a USB port or an AC adapter. The low BOM component requirement makes the whole system small in size. The following sections show the typical application of the TPB4056A.

Typical Application

Figure 8 shows the typical application schematic of the TPB4056A.

Figure 8. Typical Application Circuit

VIN Input Capacitor and BAT Output Capacitor

3PEAK recommends adding a $1-\mu F$ to $10-\mu F$ capacitor with a $0.1-\mu F$ bypass capacitor in parallel at V_{IN} to keep the input voltage stable. The voltage rating must be greater than the maximum power supply voltage.

3PEAK recommends selecting an X5R- or X7R-type 1-μF to 10-μF high-frequency decoupling ceramic capacitor at the BAT output.

Both input and output capacitors must be placed as close to the device pins as possible.

Power Dissipation and Thermal Consideration

During normal operation, the junction temperature limitation is 150°C. When the junction temperature exceeds 150°C, the charge current decreases with the temperature value. Use Equation 2 and Equation 3 to calculate the power dissipation and estimate the junction temperature.

www.3peak.com 13 / 22 FA20241003A5

The maximum power dissipation can be calculated using Equation 2.

$$P_{D} = (V_{IN} - V_{BAT}) \times I_{BAT} = \frac{T_{J, \text{max}} - T_{A}}{\theta_{JA}}$$
 (2)

Where,

T_{J, max} is the junction temperature limitation, 150°C;

T_A is the ambient temperature;

 θ_{JA} is the junction-to-ambient thermal resistance.

Solve Equation 2, the constant charge current value is calculated in Equation 3.

$$I_{BAT} = \frac{150^{\circ}C - T_{A}}{(V_{IN} - V_{BAT}) \times \theta_{JA}}$$
 (3)

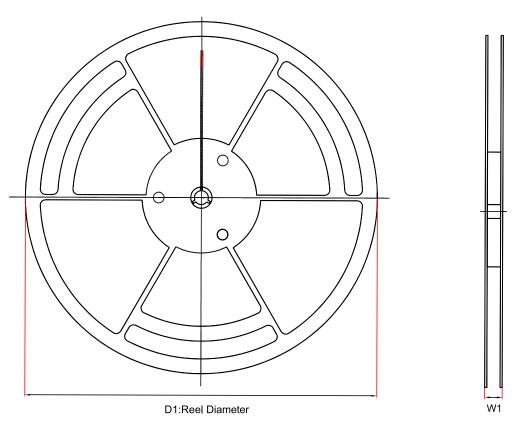
www.3peak.com 14 / 22 FA20241003A5

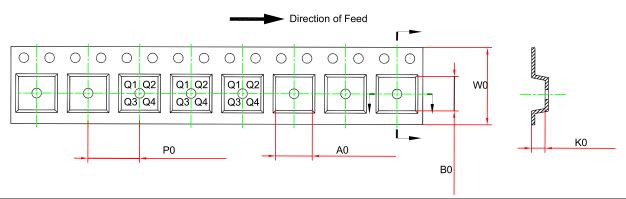
Layout

Layout Guideline

Both input and output capacitors must be placed as close to the device pins as possible.

It is recommended to bypass the input pin to ground with a 0.1- μF bypass capacitor. The loop area formed by the bypass capacitor connection, the IN pin, and the GND pin of the system must be as small as possible.


It is recommended to use wide and thick traces to minimize the I×R drop and heat dissipation.

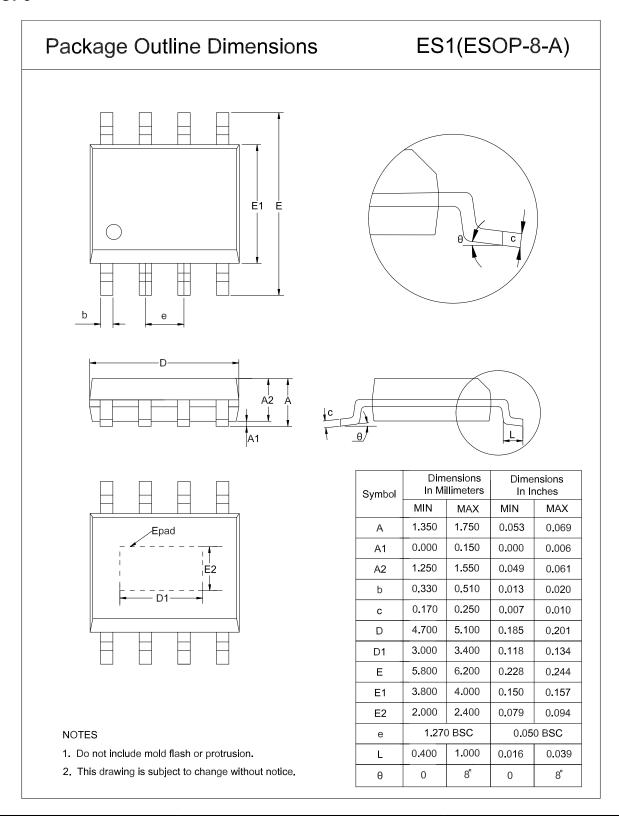

The exposed pad must be connected to the PCB ground plane directly, and the copper area must be as large as possible. To get the best thermal performance, thermal vis should be placed under and around the exposed pad with enough number and size.

www.3peak.com 15 / 22 FA20241003A5

Tape and Reel Information

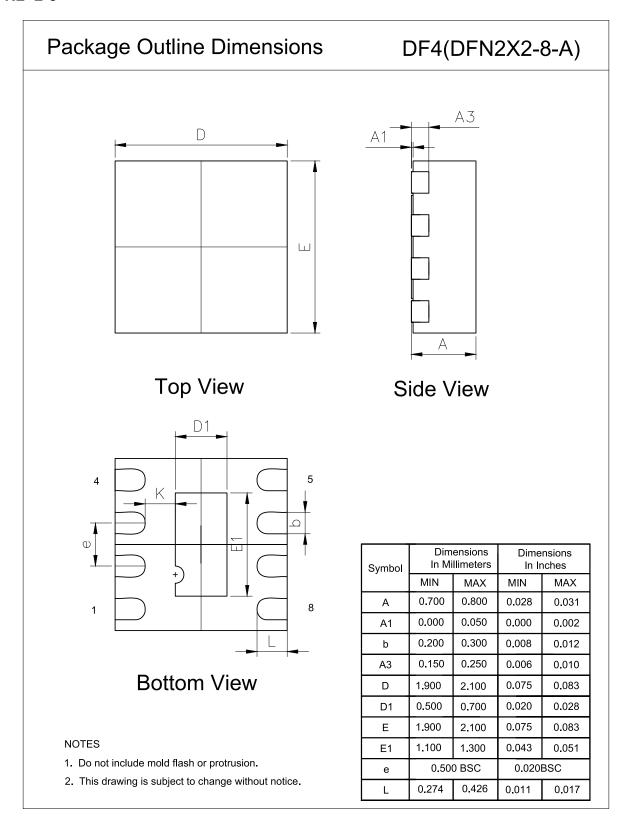
Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPB4056A20- ES1R	ESOP8	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TPB4056A2X- ES1R	ESOP8	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TPB4056A20- DFGR	DFN2×2-8	180.0	13.1	2.3	2.3	1.1	4.0	8.0	Q1

www.3peak.com 16 / 22 FA20241003A5


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPB4056A2X- DFGR	DFN2×2-8	180.0	13.1	2.3	2.3	1.1	4.0	8.0	Q1
TPB4056A3X- ES1R	ESOP8	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TPB4056A3X- DFGR	DFN2×2-8	180.0	13.1	2.3	2.3	1.1	4.0	8.0	Q1

www.3peak.com 17 / 22 FA20241003A5

Package Outline Dimensions


ESOP8

www.3peak.com 18 / 22 FA20241003A5

DFN2×2-8

www.3peak.com 19 / 22 FA20241003A5

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPB4056A20-ES1R (1)	−40 to 85°C	ESOP8	6A20	3	Tape and Reel, 4000	Green
TPB4056A2X-ES1R	−40 to 85°C	ESOP8	6A2X	3	Tape and Reel, 4000	Green
TPB4056A20-DFGR	-40 to 85°C	DFN2×2-8	A20	3	Tape and Reel, 3000	Green
TPB4056A2X-DFGR (1)	−40 to 85°C	DFN2×2-8	A2X	3	Tape and Reel, 3000	Green
TPB4056A3X-ES1R (1)	−40 to 85°C	ESOP8	6A3X	3	Tape and Reel, 4000	Green
TPB4056A3X-DFGR (1)	−40 to 85°C	DFN2×2-8	A3X	3	Tape and Reel, 3000	Green

⁽¹⁾ For future products, contact the 3PEAK factory for more information and samples.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 20 / 22 FA20241003A5

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 21 / 22 FA20241003A5

This page intentionally left blank

www.3peak.com 22 / 22 FA20241003A5