

300mA, Low Noise High PSRR LDO Regulator

Description

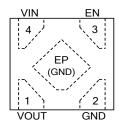
The FP6182 is a low dropout, low noise, high PSRR, low quiescent current positive linear regulator. The FP6182 can supply 300mA output current with low dropout voltage at about 160mV that optimized for battery-powered systems or portable wireless devices such as mobile phones. The shutdown function can provide remote control for the external signal to decide the on/off state of FP6182 that consumes less than 0.1µA during shutdown mode.

The FP6182 regulator is able to operate with output capacitors as small as $1\mu F$ for stability. The FP6182 fault protection includes the current limit protection and current foldback protection.

The FP6182 offers high precision output voltage of $\pm 1\%$. The FP6182 is available in UTDFN-4L (1.0mm×1.0mm) and SOT-23-5 packages which features small size.

Features

- Low V_{IN} and Wide V_{IN} Range: 1.75V to 5.5V
- Output Current 300mA^{*}
- ±1% Output Voltage Accuracy
- Output Noise 65µVrms from 10Hz to 100kHz
- Vout Fixed 1.0V to 3.3V
- Low Dropout Voltage of 160mV at 2.8V/300mA
- Ripple Rejection 65dB at 1kHz
- Low Quiescent Current at 2μA
- Needs Only 1µF Capacitor for Stability
- Current Foldback Protection
- Thermal Shutdown Protection
- Current Limit Protection
- Output Discharge Function
- UTDFN-4L (1.0mm×1.0mm) and SOT-23-5 Packages
- RoHS Compliant
- *1 Attention should be paid to the power dissipation of the package when the output current is large.


Applications

- Smart Watch
- Wireless Mouse
- Wireless Sensor Networks
- Unmanned Aircraft
- Data Recorder
- IP Cam
- Dual Band Working Modes Radio

Pin Assignment

X7 Package: UTDFN-4L (1.0mmx1.0mm) (Top view)

S5 Package: SOT-23-5

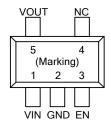
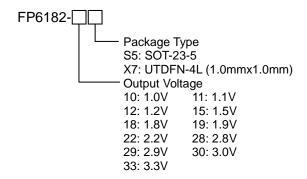



Figure 1. Pin Assignment of FP6182

Ordering Information

Marking Information

Part Number	Product Code	Part Number	Product Code
FP6182-10S5	GH4	FP6182-10X7	ZN
FP6182-11S5	GH5	FP6182-11X7	Ar
FP6182-12S5	FT6	FP6182-12X7	ZF
FP6182-15S5	FT7	FP6182-15X7	ZG
FP6182-18S5	FT8	FP6182-18X7	ZH
FP6182-19S5	FX0	FP6182-22X7	ZJ
FP6182-28S5	FT1	FP6182-28X7	ZK
FP6182-29S5	GH6	FP6182-29X7	Az
FP6182-30S5	FV6	FP6182-30X7	ZR
FP6182-33S5	FT9	FP6182-33X7	ZL

Note: Please consult Fitipower sales office or authorized distributors for availability of special output voltages.

Typical Application Circuit

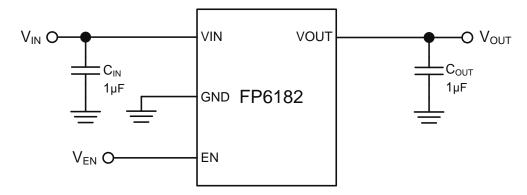


Figure 2. Typical Application Circuit of FP6182

Note 1: To prevent oscillation, it is recommended to use minimum $1\mu F$ X7R or X5R dielectric capacitors if ceramics are used as input/output capacitors.

Functional Pin Description

Pin Name	Pin No. (SOT-23-5)	Pin No. (UTDFN-4L)	Pin Function
VIN	1	4	Power is supplied to this device from this pin which is required an input filter capacitor. In general, the input capacitor in the range of $1\mu F$ to $10\mu F$ is sufficient.
GND	2	2	Common ground pin.
EN	3	3	Pull this pin high to enable IC, pull this pin low to shutdown IC. Floating this pin will be shutdown due to the built-in pull-low resistor.
NC	4	-	NC.
VOUT	5	1	The FP6182 is stable with an output capacitor 1µF or greater. The larger output capacitor will be required for application with larger load transients. The large output capacitor could reduce output noise, improve stability and PSRR.
Exposed pad	-	EP	The exposed pad must be soldered to a large PCB area and connected to GND for maximum power dissipation.

Block Diagram

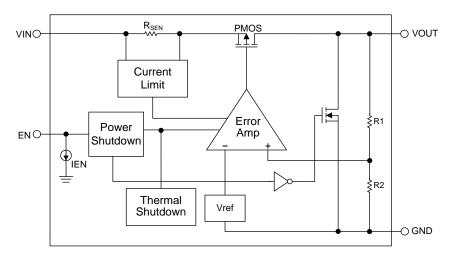


Figure 3. Block Diagram of FP6182

Absolute Maximum Ratings (Note 2)

• Input Voltage V _{IN}	0.3V to +6.5V
Output Voltage V _{OUT}	0.3V to +6.5V
EN Voltage V _{EN}	0.3V to V _{IN} +0.3V
 Power Dissipation @ T_A=25°C & T_J=125°C (P_D) 	
UTDFN-4L (1.0mmx1.0mm)	0.5W
SOT-23-5	0.4W
 Package Thermal Resistance (θ_{JA}) (Note 3) 	
UTDFN-4L (1.0mmx1.0mm)	195°C/W
SOT-23-5	250°C/W
$ullet$ Package Thermal Resistance (eta_{JC})	
UTDFN-4L (1.0mmx1.0mm)	65°C/W
SOT-23-5	130°C/W
• Lead Temperature (Soldering, 10sec.)	+260°C
• Junction Temperature (T _J)	-40°C to +150°C
• Storage Temperature (T _{STG})	-65°C to +150°C
Note 2: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the Note 3: θ_{JA} is measured at 25°C ambient with the component mounted on a high effective thermal conductivity	

Recommended Operating Conditions

The thermal resistance greatly varies with layout, copper thickness, number of layers and PCB size.

Supply Voltage V _{IN}	+1.75V to +5.5V
Output Current I _{OUT}	300mA
Operating Ambient Temperature Range	-40°C to +85°C
Operating Junction Temperature Range	-40°C to +125°C

Electrical Characteristics

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Voltage Range	Vin			1.75		5.5	V
Quiescent Current (Note 4)	ΙQ	I _{OUT} =0A			2	4	μΑ
Standby Current	I _{STBY}	EN Pin Conne	ected to GND		0.1	1	μΑ
Output Voltage Accuracy	ΔV_{OUT}	I _{OUT} =1mA		-1		+1	%
			V _{OUT} =1.0V		650	850	
			V _{OUT} =1.05V		590	770	
			V _{OUT} =1.1V		530	690	
			V _{OUT} =1.2V		440	570	
			V _{OUT} =1.5V		350	460	
Dropout Voltage (Note 5)	V_{DROP}	I _{OUT} =300mA	V _{OUT} =1.8V		230	300	mV
			V _{OUT} =2.2V		215	280	
			V _{OUT} =2.5V		180	230	
			V _{OUT} =2.8V		160	210	
			V _{OUT} =3.0V		150	200	
			V _{OUT} =3.3V		135	180	
Line Regulation	ΔV_{LINE}	I _{OUT} =1mA, V _{IN}	I_{OUT} =1mA, V_{IN} = V_{OUT} +1V to 5V		1	8	mV
Load Regulation (Note 6)	ΔV_{LOAD}	I _{OUT} =0A to 30	I _{OUT} =0A to 300mA		6	30	mV
Ripple Rejection (Note 7)	PSRR	$V_{IN}=V_{OUT}+1V_{DC}+0.2V_{P-P(AC)},$ $f_{RIPPLE}=1KHz,V_{OUT}=1.2V,$ $I_{OUT}=30mA$			65		dB
Output Noise Voltage (Note 7)	V _{NOISE}	C _{OUT} =1µF, I _{OU} BW=10Hz ~ 1			65		μV _{RMS}
Current Limit	I _{LIMIT}			320			mA
Current Foldback	I _{CFB}	R _{Load} =1Ω			100		mA
Output Discharge Resistance	R _{DIS}	V _{EN} =0V			60		Ω
Thermal Shutdown Threshold	T _{SD}				160		°C
Thermal Shutdown Threshold Hysteresis (Note 7)	ΔT_{SD}				30		°C
EN Pin Current	I _{EN}	V _{EN} =2.5V	V _{EN} =2.5V		0.3		uA
EN Pin Threshold	V _{EN(ON)}	Start-up		1.0			V
EIN PIII THIESHOID	V _{EN(OFF)}	Shutdown				0.4	V

Note 4: except EN pull down current (I_{EN}).

FP6182-1.1-JUN-2023 5

Note 5: The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} drops 2% of its normal value with the specified output current.

Note 6: Load regulation and dropout voltage are measured at a constant junction temperature by using a 40ms low duty cycle current pulse.

Note 7: Guarantee by design.

Typical Performance Curves

 $V_{IN}=V_{OUT}+1V$, EN pin connected to V_{IN} , $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$, $T_A=25^{\circ}C$, unless otherwise specified.

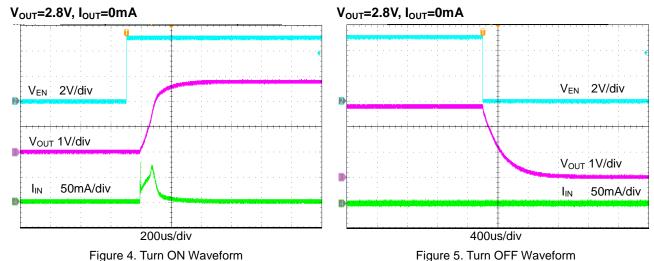


Figure 4. Turn ON Waveform

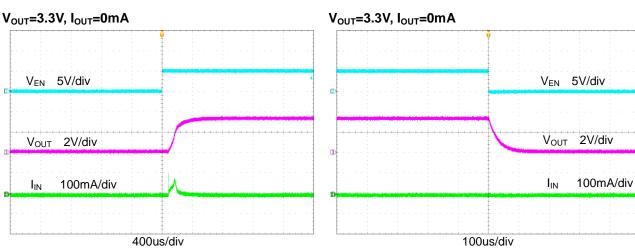


Figure 6. Turn ON Waveform

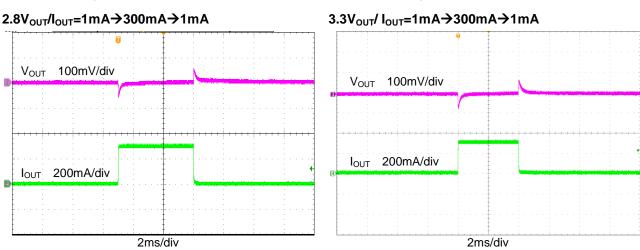
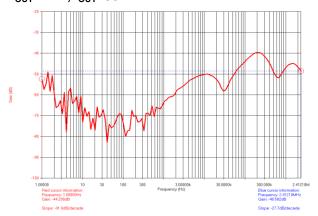


Figure 8. Load Transient Response

Figure 9. Load Transient Response


Figure 7. Turn OFF Waveform

Typical Performance Curves (Continued)

 $V_{IN}=V_{OUT}+1V$, EN pin connected to V_{IN} , $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$, $T_A=25^{\circ}C$, unless otherwise specified.

V_{OUT}=1.2V, I_{OUT}=30mA

V_{OUT}=2.8V, I_{OUT}=30mA

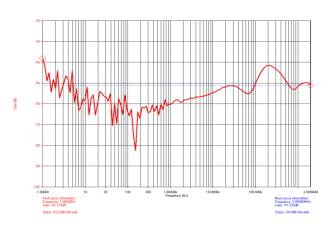



Figure 10. PSRR vs. Frequency

Figure 11. PSRR vs. Frequency

$V_{OUT}=3.3V$, $I_{OUT}=30mA$

 $V_{IN} = 3.8 V, V_{OUT} = 2.8 V$

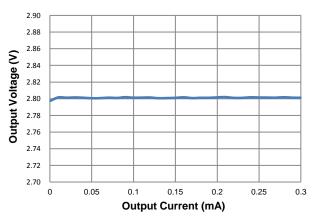
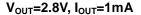
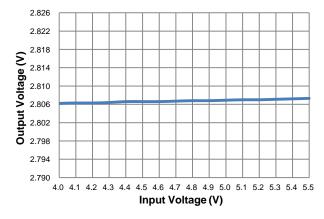




Figure 12. PSRR vs. Frequency

 $V_{OUT}=3.3V$, $I_{OUT}=1mA$

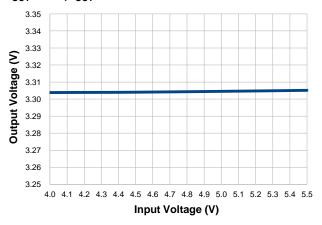


Figure 14. Output Voltage vs. Input Voltage

Figure 15. Output Voltage vs. Input Voltage

Typical Performance Curves (Continued)

 $V_{IN}=V_{OUT}+1V$, EN pin connected to V_{IN} , $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$, $T_A=25$ °C, unless otherwise specified.

V_{OUT}=2.8V

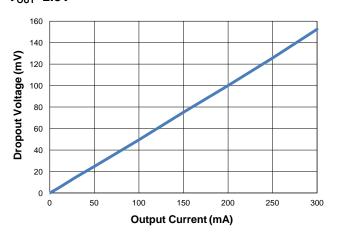


Figure 16. Dropout Voltage vs. Output Current

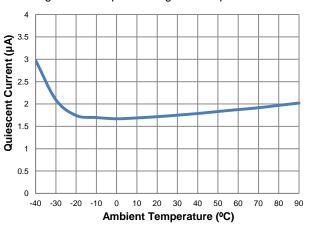


Figure 18. Quiescent Current vs. Ambient Temperature

V_{OUT}= 1.2V

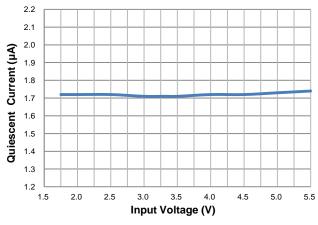


Figure 20. Quiescent Current vs. Input Voltage

V_{OUT}=1.2V

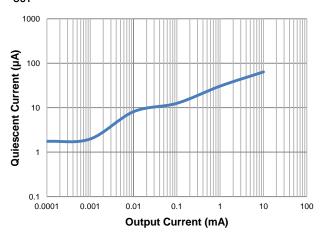


Figure 17. Quiescent Current vs. Output Current

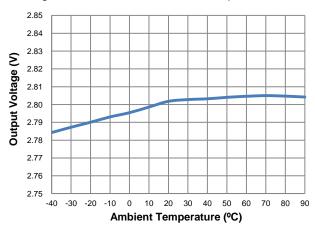


Figure 19. Output Voltage vs. Ambient Temperature

V_{IN}= Li-ion Battery 3.6V, V_{OUT}=1.8V, I_{OUT}=1mA

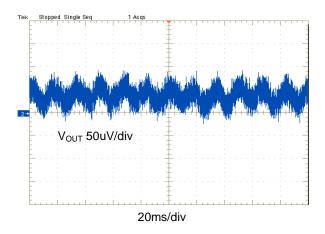


Figure 21. Output Noise Voltage

Application Information

The FP6182 is a low dropout linear regulator that could provide 300mA output current at dropout voltage about 160mV (2.8V output voltage).

1. Output and Input Capacitor

The FP6182 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability. Larger value of the output capacitor decreases the peak deviations and improves transient response for larger current changes.

The capacitor types (aluminum, ceramic, and tantalum) have different characterizations such as temperature and voltage coefficients. All ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature and applications. Common dielectrics used are X5R, X7R and Y5V. It is recommended to use $1\mu F$ to $10\mu F$ X5R or X7R dielectric ceramic capacitors with $30m\Omega$ to $50m\Omega$ ESR range between device outputs and ground for stability. The FP6182 is designed to be stable with low ESR ceramic capacitors and higher values of capacitors and ESR could improve output stability. The ESR of output capacitor is very important because it generates a zero to provide phase lead for loop stability.

There are no requirements for the ESR on the input capacitor, but its voltage and temperature coefficient have to be considered for device application environment.

2. Protection Features

In order to prevent overloading or thermal condition from damaging the device, FP6182 has internal thermal and current limiting functions designed to protect the device. It will rapidly shut off PMOS pass element during over-temperature condition.

3. Thermal Consideration

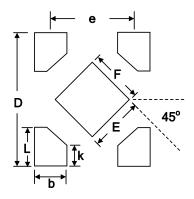
The power handling capability of the device will be limited by allowable operation junction temperature (125°C). The power dissipated by the device will be estimated by $P_D=I_{OUT}\times(V_{IN}-V_{OUT})$. The power dissipation should be lower than the maximum power dissipation listed in "Absolute Maximum Ratings" section.

4. Shutdown Operation

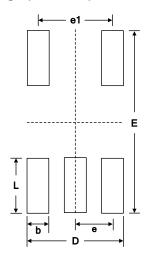
The FP6182 is shutdown by pulling the EN input low, and turned on by driving the EN high. If EN pin floating, the FP6182 will shut down because EN pin has built-in a pull low resistor (refer to Block Diagram).

5. Output Discharge Function

The FP6182 provides auto discharge function, an discharge MOSFET with $R_{\text{DS}(\text{ON})}$ of 60Ω typical is integrated between VOUT and GND pins, which can discharge the charge of the output capacitors quickly when turning off FP6182 with EN pin.


6. PCB Layout Recommendation

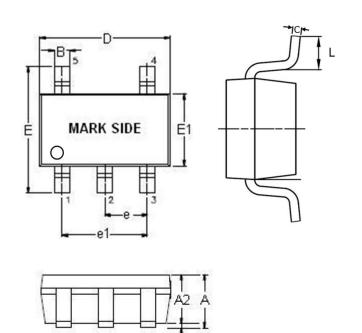
Place the input capacitors and output capacitors as close to the device as possible. The traces which connect to these capacitors should be as short and wide as possible to minimize parasitic inductance and resistance.


PCB Footprint

UTDFN-4L (1.0mm×1.0mm) Package (Unit: mm)

SYMBOLS UNIT	DIMENSION IN MILLIMETER			
D	1.3			
E	0.48			
F	0.48			
L	0.4			
k	0.22			
b	0.25			
е	0.625			

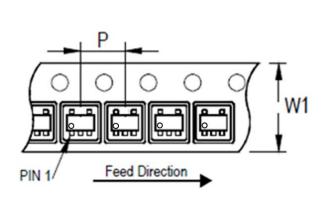
SOT-23-5 Package (Unit: mm)

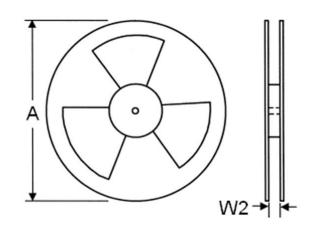


SYMBOLS UNIT	DIMENSION IN MILLIMETER				
b	0.55				
D	2.45				
E	3.80				
L	1.27				
е	0.95				
e1	1.90				

Outline Information

SOT-23-5 Package (Unit: mm)

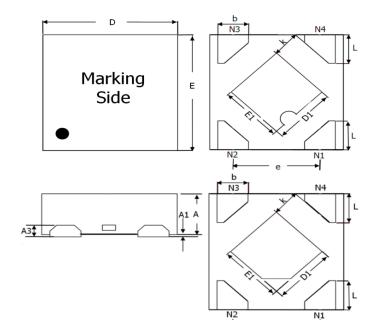



SYMBOLS	DIMENSION I	N MILLIMETER		
UNIT	MIN	MAX		
Α	0.90	1.30		
A1	0.00	0.15		
A2	0.90	1.15		
В	0.28	0.50		
D	2.80	3.00		
Е	2.60	3.00		
E1	1.50 1.70			
е	0.95			
e1	1.90			
С	0.08 0.20			
L	0.30 0.60			
Note O. Dady dimensions de not include mold fla				

Note 8: Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.3mm.

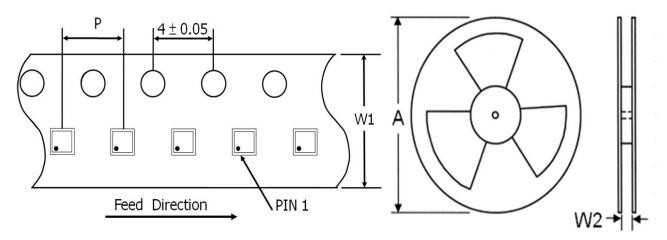
Note 9: Followed From JEDEC MO-178-C.

Carrier Dimensions


Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in mm		(W2) mm	Length mm	
8	4	7	180	8.4	300~1000	3,000

FP6182-1.1-JUN-2023 <u>11</u>

Outline Information (Continued)


UTDFN-4L (1.0mmx1.0mm) (pitch 0.625mm) Package (Unit: mm)

SYMBOLS	DIMENSION IN	MILLIMETER
UNIT	MIN	MAX
Α	0.32	0.60
A1	0.00	0.05
А3	0.152	REF.
D	0.95	1.05
E	0.95	1.05
D1	0.38	0.58
E1	0.38 0.58	
k	0.20	REF.
b	0.18	0.30
е	0.60	0.70
L	0.20 0.30	

Note10: Followed From JEDEC 664-1.

Carrier Dimensions

Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in mm		(W2) mm	Length mm	
8	4	7	180	9.5	400~1000	5000

Life Support Policy

Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.