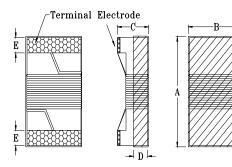
Winding Type Chip Inductor

PAS3225V-102J

1. Features

- 1. Hearing Aid Compatibility-/Telecoil-antennas;
- 2. PAS3225V-series realizes small size and low profile. 3.6x2.8x2.6mm.
- 3. 100% Lead(Pb) & Halogen-Free and RoHS compliant.
- 4. Meets the T3/T4 FCC requirements(HAC) . ANSI C63.19
- 5. High reliability -Reliability tests comply with AEC-Q200
- 6. Operating temperature -55~+125 $^{\circ}$ C (Including self temperature rise)



2. Applications

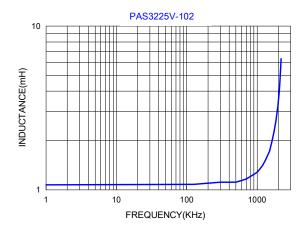
- 1. T-coil/HAC-coil for hearing and aid compatible cell phones.
- 2. Decoupling in RF and IF-circuit .
- 3. Transponder antenna.

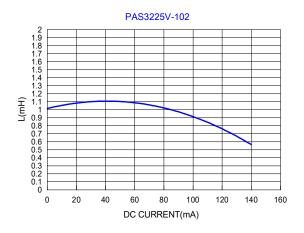
3. Dimension

Size	Α	В	С	D	E
PAS3225	3.60 max.	2.80 max.	2.60 max.	0.80 ref.	0.55±0.10

Unit:mm

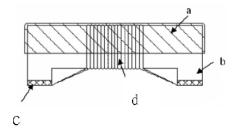
4. Part Numbering


PAS	3225	V	-	102	J
Α	В	С		D	Ε


A: Series

 $\begin{array}{lll} \text{B: Dimension} & \text{L x W} \\ \text{C: Category Code} & \text{V=Vehicle} \\ \text{D: Inductance} & \text{102=1080uH} \\ \text{E: Inductance Tolerance} & \text{J} = \pm 5\% \end{array}$

5. Specification


TAI-TECH Part Number	Inductance (uH)	Tolerance	Test Frequency(Hz)	Q min.	Test Frequency(KHz)	IDC(mA) max.	$DCR(\Omega)$ max.	SRF(MHz) min.
PAS3225V-102J	1080	J	0.1V/125K	15	125K	50	35.00	1.5

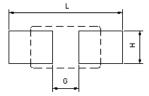
6. Materials

No.	Description	Specification
a.	Upper Plate	UV Glue
b.	Core	Ferrite Core
С	Termination	Ag/Ni/Sn
d	Wire	Enameled Copper Wire

7. Reliability and Test Condition

Item	Performance	Test Condition					
Operating temperature	-55~+125°ℂ (Including self - temperature rise)						
Storage temperature	-55+125℃(on board)						
Electrical Performance Test							
Inductance L		Agilent E4991A , Keysight E4991B ,Keysight 4980AL					
Q		Agilent-4287, Agilent-4285					
SRF	Refer to standard electrical characteristic list	Agilent E4991A , Keysight E4991B					
IDC		Agilent-34420A Agilent-4338B					

Reliability Test						
High Temperature Exposure(Storage) AEC-Q200		Preconditioning: Run through reflow for 3 times. (IPC/JEDECJ-STD-020F Classification Reflow Profiles) Unpowered Temperature: 125±2°C Upper Temperature: maximum specified operating temperature or maximum specified storage temperature (whichever is higher). Minimum test temperature shall be 85°C (For ferrite EMI suppressors/filters only) Duration: 1000hrs Min. Measured at room temperature after placing for 24±4 hrs.				
Temperature Cycling AEC-Q200	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within±15% of initial value and shall not exceed the specification value	Number of cycles: 1000 Measured at room temperature at least 24 hours after test conclusion				
Humidity Bias (AEC-Q200)		Preconditioning: Run through reflow for 3 times. (IPC/JEDEC J-STD-020F Classification Reflow Profiles) Unpowered(For Inductors/Transformers) Apply 10% of maximum rated power. (For ferrite EMI suppressors/filters) Humidity: 85±3% R.H, Temperature: 85℃±2℃ Duration: 1000hrs Min. Measured at room temperature after placing for 24±4hrs.				
High Temperature Operating Life (AEC-Q200)		Preconditioning: Run through reflow for 3 times. (IPC/JEDECJ-STD-020F Classification Reflow Profiles) Temperature: 125±2°C Upper Temperature of the Chamber: maximum specified operating temperature (not including heat rise) at maximum rated power and shall not exceed 125°C. (For Inductors/Transformers) Temperature of the Chamber: maximum specified operating temperature up to 150°C (For ferrite EMI suppressors/filters) Duration: 1000hrs Min. with 100% rated current. Measured at room temperature after placing for 24±4 hrs. Rated IL applied. (For ferrite EMI suppressors/filters)				
External Visual	Appearance : No damage.	Inspect device construction, marking and workmanship. Pre and Post Electrical Test not required.				
Physical Dimension	According to the product specification size measurement	Verify physical dimensions to the applicable component deta specification. Pre and Post Electrical Test not required.				
Terminal Strength (for axial and radial THT components)	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within±15% of initial value and shall not exceed the specification value	Test THT component lead integrity only. Test Condition A (pull test)				


Item	Performance			Test Co	nditio	n		
Resistance to Solvents		recommen	ded paramet	chemical and fo ers (i.e. solutio d components	n tempera	ature and	d immersio	on time).
		Туре	Peak value (g's)	Normal duration (D) (Vave form		ocity (Vi)ft/sec
		SMD	100	6		alf-sine		2.3
Mechanical Shock		THT	100	6	На	alf-sine	12	2.3
Vibration		(18 shock Precondition (IPC/JEDI Oscillation Equipment Total Amp	ks). oning: Run th EC J-STD-02 Frequency: t: Vibration c litude: 5g me: 12 hours	rough reflow for OF Classification 10Hz~2kHz~hecker	or 3 times on Reflow 10Hz for	Profiles 20 minu	i) ites	ons)
			litions B or C					
		Solder technique simulatio		Temperature (°C)	Time(s)	ramp/ir and e	perature nmersion mersion rate	Number of heat cycles
	Appearance : No damage.	Dip B 260 ±5 (solder temp) 10±1 25n ±6				mm/s 6mm/s	1	
	Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within±15% of initial value and shall not exceed the specification value	Wave: Topside board-mou nt product Wave: 260 ±5 (solder temp) 20±1			1			
Resistance to Soldering Heat		SMD: Con Continenta Tempera Tempera Compose Compose Tempera Tempera	Temen Te	Time to Those 2100° 2110s 2200°C C 2110s 2200°C	w process	Tpeak tp tt ramp dow	Time	mp down 16 1°Cls e e e epoponent gel in all all all all all all all all all al
ESD		Discharge Test metho Test mode	tact and Air I Waveform to od: AEC-Q20 : Contact Di level: 4 KV	scharge	SIVE CO	MPONE	NT HBM E	ESD

Item	Performance			Test C	Condition	
		Through-hole Technology (THT: Method A1, Coating Durability Category 2) • SMD: Method B1, Coating Durability Category 2 Method D, Coating Durability Category 2 • Magnification 50x • Pre and Post Electrical Test not required. • Non-soldered type mounting/attach are not applicable.				
			參照	Method A1	Method B1	Method D
	Appearance : No damage. Inductance : within±10% of initial value		焊接工藝	再流焊	其他器件的再流焊	無鉛銲接
Solderability	Q : Shall not exceed the specification value.		焊接類型	錫銀銅焊料	錫銀銅焊料	錫銀銅焊
	RDC: within±15% of initial value and shall not exceed the specification value		浸入助焊劑時	5-10s	5-10s	5-10s
			浸入錫爐角度	20°~45°	20°~45°	20 ° ~45 °
			焊料溫度	245 ±5°C	245 ±5°C	260 ±5°C
			浸入焊料時間	5+0/-0.5s	5+0/-0.5s	30+5/-0s
			浸入和提出速	25 ±6mm/s	25 ±6mm/s	25
Electrical Characterization	Refer Specification for Approval In accordance with Referenced Standards	Parametrically test per lot and sample size requirements, summary to sho Min, Max, Mean and Standard deviation at room as well as Min and Ma operating temperatures. Pre and Post Electrical Test not required UL-94 or IEC 60695-11-5				
Board Flex (SMD)	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within±15% of initial value and shall not exceed the	Preconditioning: Run through reflow for 3 times. (IPC/JEDEC J-STD-020F Classification Reflow Profiles) Place the 100mm X 40mm board into a fixture similar to the one shown below Figure with the component facing down. The apparatus shall consist mechanical means to apply a force which will bend the board (D) x = 2 minimum. The duration of the applied forces shall be 60 (+ 5) sec. The form is to be applied only once to the board. Support Solder Chip Printed circuit board before testing Probe to exert bending force Radius 340 Printed circuit board under test Displacement				
Terminal Strength(SMD)	Spoombaudi vand	Preconditioning: Run through reflow for 3 times. (IPC/JEDEC J-STD-020E Classification Reflow Profiles) With the component mounted on a PCB with the device to be tested, app 17.7 N (1.8 Kg) force to the side of a device being tested. This force shall applied for 60 +1 seconds. Also the force shall be applied gradually as no apply a shock to the component being tested. radius 0,5 mm DUT wide thickness shear force				his force shall be radually as not to

8. Soldering and Mounting

8-1. Recommended PC Board Pattern

Chip size							Pattern		
Series	Туре	A(mm)	B(mm)	C(mm)	D(mm) E(mm)		L(mm)	G(mm)	H(mm)
PAS	3225	3.60max	2.80max	2.60max	0.80 ref.	0.55±0.1	3.82	1.78	2.80

8-2. Soldering

Mildly activated rosin fluxes are preferred. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-2.1 Soldering Reflow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2 (J-STD-020E)

8-2.2 Soldering Iron:

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. (Figure 2.) • Preheat circuit and products to 150℃

- 350°C tip temperature (max)
- · Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm

- 1.0mm tip diameter (max)
- · Limit soldering time to 4~5sec.

Fig.1 Soldering Reflow

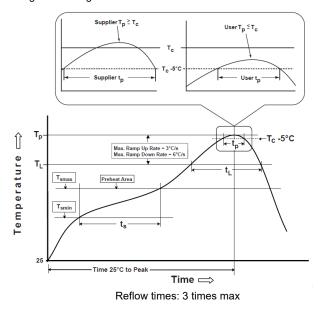
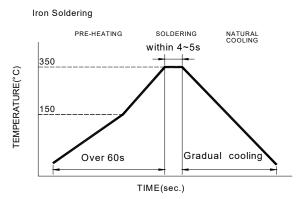



Fig.2 Iron soldering temperature profiles

Iron Soldering times: 1 times max

Table (1.1): Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat -Temperature Min(T _{smin}) -Temperature Max(T _{smax}) -Time(t _s)from(T _{smin} to T _{smax})	150°C 200°C 60-120seconds
Ramp-up rate(T _L to T _p)	3°ℂ/second max.
$\label{eq:Liquidus} \begin{array}{c} \text{Liquidus temperature}(T_L) \\ \text{Time}(t_L) \\ \text{maintained above } T_L \end{array}$	217°C 60-150 seconds
Classification temperature(T _c)	See Table (1.2)
$\label{eq:total_final_continuous} \mbox{Time}(t_p) \mbox{ at Tc-} 5^{\circ}\mbox{\mathbb{C}} \mbox{ (Tp should be equal to or less than Tc.)}$	< 30 seconds
Ramp-down rate(T _p to T _L)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

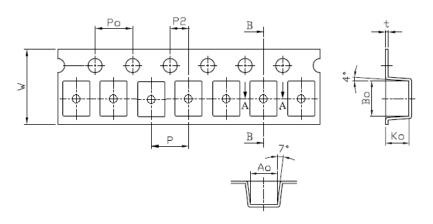
Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume mm ³
	Thickness	<350	350-2000	>2000
	<1.6mm	260°C	260°C	260°C
PB-Free Assembly	1.6-2.5mm	260°C	250°C	245°C
	≥2.5mm	250°C	245°C	245°C

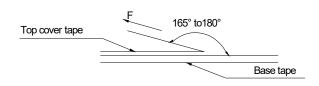
Reflow is referred to standard IPC/JEDEC J-STD-020E •


9. Packaging Information

9-1. Reel Dimension

Туре	A(mm)	B(mm)	C(mm)	D(mm)
7"x8mm	9.0±0.5	60.0±2.0	13.5±0.5	178.0±2.0

9-2. Tape Dimension / 8mm



Series	P(mm)	Po(mm)	P2(mm)	Bo(mm)	Ao(mm)	Ko(mm)	W(mm)	t(mm)
PAS	4.00±0.10	4.00±0.10	2.00±0.05	3.72±0.10	2.88±0.10	2.50±0.10	8.00±0.10	0.26±0.05

9-3. Packaging Quantity

PAS	3225		
Chip / Reel	2000		
Reel Size	7"x8mm		

9-4. Tearing Off Force

The force for tearing off cover tape is 15 to 80 grams in the arrow direction under the following conditions.

Room Temp.	Room Humidity	Room atm	Tearing Speed	
(℃)	(%)	(hPa)	mm/min	
5~35	45~85	860~1060	300	

Application Notice

Storage Conditions(component level)

To maintain the solderability of terminal electrodes:

- 1. TAI-TECH products meet IPC/JEDEC J-STD-020F standard-MSL, level 1.
- 3. Recommended products should be used within 12 months form the time of delivery.
- 4. The packaging material should be kept where no chlorine or sulfur exists in the air.
- Transportation
 - 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.