General Description

The EA8272 is a fully-integrated high- frequency, synchronous rectified, step-down, switch-mode converter with internal power MOSFETs. The main control loop for the EA8272 control that provides a fast transient response with no external compensation components. It offers a very compact solution to achieve a 2A output current over a wide input range, with excellent load and line regulation. The EA8272 has synchronous-mode operation for higher efficiency over the output current-load range. Constant On-Time control operation provides very fast transient response and easy loop design as well as very tight output regulation. Full protection features include SCP, QCP, UVP and thermal shutdown. The EA8272 requires a minimal number of readily-available, standard, external components and is available in a space-saving SOT563 package.

Features

- Built-in $130m\Omega/75m\Omega$ Low $R_{DS(ON)}$ Power-MOSFETS
- 4.5V to 16V Input Voltage Range
- 2A Continuous Load Current
- Quiescent Current Lower to 350uA
- Output Adjustable Down to 0.8V
- 600KHz Switching Frequency
- Fast Transient Response
- Internal Sost-Start
- **Over-Current Protection**
- Auto Recovery Hiccup Mode Short Circuit Protection
- Input UVLO Protection
- **Auto Recovery OTP Protection**
- Available in SOT-563 Package

Applications

- Distributed Power Systems
- Netcom Products
- LCD TVs and Flat TVs
- Notebooks (

Pin Configurations

Datasheet

Pin Description

Pin Name	Function Description	Pin No.
PWR	The EA8272 power input pin. Recommended to use two 10uF MLCC capacitors between PWR pin and GND pin.	1
SWITCH	Internal MOSFET switching output. Connect SWITCH pin with a low pass filter circuit to obtain a stable DC output voltage.	2
GND	Ground pin.	3
воот	The power input of the internal high side N-MOSFET gate driver. Connect a 33nF ceramic capacitor from BOOT pin to SWITCH pin.	4
RUN	The device turns on/turns off control input. The EA8272 on/off state can be controlled by RUN pin voltage level. Connect RUN pin to PWR pin with a 150K Ω pull up resistor for automatic startup. Internal 1M Ω pull-low resistor.	5
FBK	Feedback input. Connect FBK pin and GND pin with voltage dividing resistors to set the output voltage.	6

Function Block Diagram

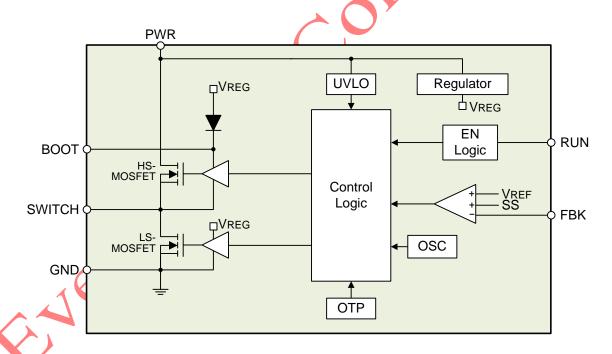


Figure 1. EA8272 internal function block diagram

16V, 3A, 600KHz, COT mode Synchronous Buck Converter

Absolute Maximum Ratings

Parameter	Value
Input Voltage (V _{PWR})	-0.3V to +17V
RUN Pin Input Voltage (V _{RUN})	-0.3V to +6V
BOOT Pin Voltage (V _{BOOT})	V _{SWITCH} -0.3V to V _{SWITCH} +5V
SWITCH Pin Voltage (V _{SWITCH})	-1V to +17.5V
FBK Pin Voltage (V _{FBK})	-0.3V to +6V
Ambient Temperature operating Range (T _A)	-40°C to +85°C
Maximum Junction Temperature (T _{Jmax})	+150°C
Lead Temperature (Soldering, 10 sec)	+260°C
Storage Temperature Range (T _S)	-65°C to +150°C
ESD (HBM)	2KV

Note (1):Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability and lifetime.

Package Thermal Characteristics

Parameter	Value
SOT-563 Thermal Resistance (θ _{JC})	60°C/W
SOT-563 Thermal Resistance (θ _{JA})	130°C/W
SOT-563 Power Dissipation at T _A =25°C (P _{Dmax})	1W

Note (1): P_{Dmax} is calculated according to the formula: $P_{Dmax}=(T_{JMAX}-T_A)/\theta_{JA}$.

Recommended Operating Conditions

Parameter	Value		
Input Voltage (V _{PWR})	+4.5V to +16V		
RUN Rin Input Voltage (V _{RUN})	-0.3V to +16V		
Junction Temperature Range (T _J)	-40°C to +125°C		

Datasheet

Electrical Characteristics

 V_{PWR} =12V, T_A =25°C, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	V_{PWR}		4.5		16	V
Shutdown Supply Current	I _{SD}	$V_{RUN} = 0V$		3.6	10	uA
Quiescent Current	I_Q	$V_{RUN} = 2V, V_{FBK} = 1V$		350	,	uA
UVLO Threshold	V_{UVLO}	V _{PWR} Rising		4.3		V
UVLO Hysteresis	$V_{\text{UV-HYST}}$			200		mV
Reference Voltage	V_{REF}	$4.5V \le V_{PWR} \le 16V$	0.791	0.807).823	V
Switching Frequency	F_{SW}			600		KHz
Input OVP Voltage	V_{OVP}		2	19		V
High Side MOSFET On-Resistance	R _{DS(ON)-HM}			130		mΩ
Low Side MOSFET On-Resistance	R _{DS(ON)-LM}	~		75		mΩ
High Side MOSFET Current Limit	I _{LIM-HM}	~ O'		3		А
ZCD Current	I _{ZCD}	V _{ou⊤} =3.3V, L=4.7uH		50		mA
RUN Pin Rising Threshold Voltage	V_{RUN-th}	0	1.5			V
RUN Pin Voltage Hysteresis	V _{RUN-H}			100		mV
RUN Pin Input Current	I _{RUN}	$V_{RUN} = 2V$		2		uA
FBK UV Threshold (H to L)	V_{FBK-UV}			75%		V_{REF}
Hiccup Duty Cycle	D_{HICCUP}			25		%
Minimum On Time	T_{ONMIN}			45		ns
Minimum Off Time	T_{OFFMIN}			140		ns
Internal Soft-Start Time	t _{SS}			1.2		ms
Thermal Shutdown Threshold	T _{OTP}			150		°C
Thermal Shutdown Hysteresis	T _{HYST}			20		°C

Note (1): MOSFET on-resistance specifications are guaranteed by correlation to wafer level measurements.

^{(2):} Thermal shutdown specifications are guaranteed by correlation to the design and characteristics analysis.

16V, 3A, 600KHz, COT mode Synchronous Buck Converter

Application Circuit Diagram

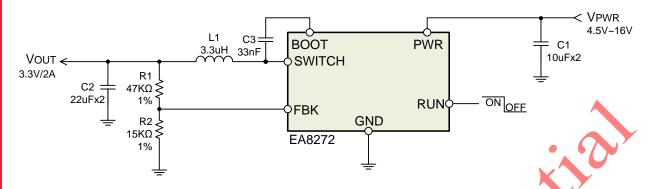
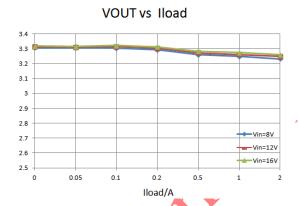


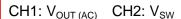
Figure 2. Typical application circuit diagram

Ordering Information

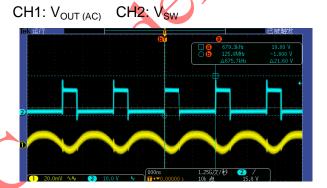
Part Number	Package Type	Packing Information
EA8272T7R	SOT-563	Tape & Reel / 3000

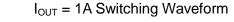

Note (1):"T7": Package type code.

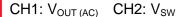

(2):"R": Tape & Reel.


Datasheet

Typical Operating Characteristics


 V_{PWR} =12V, V_{OUT} =3.3V, L1=3.3uH, C1=10Fx2, C2=22uFx2, T_A =25°C, unless otherwise noted

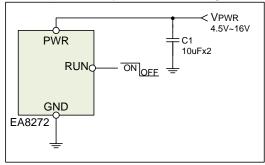




I_{OUT} = 50mA Switching Waveform

CH1: V_{OUT (AC)} CH2: V_{SW}

Jour = 1.5A Switching Waveform


I_{OUT} = 2A Switching Waveform

16V, 3A, 600KHz, COT mode Synchronous Buck Converter

Application Information

Enable Control

The EA8272 use RUN pin to control the regulator turns on / turns off. When the RUN pin input voltage is higher than 1.5V(typ.), the EA8272 enters the operating mode. Drive the RUN pin input voltage lower than 0.4V to ensure the EA8272 into shutdown mode, as shown in Figure3. When the device works in the shutdown mode, the shutdown supply current is less than 10uA. The EA8272 also provides automatic startup function as shown in Figure 4. Connect RUN pin and PWR pin with a 150K Ω resistor, when the PWR supply input voltage increasing and higher than RUN pin threshold voltage, the EA8272 will enter operating mode automatically. Do not short PWR pin to RUN pin directly or it will damage the internal zener diode.

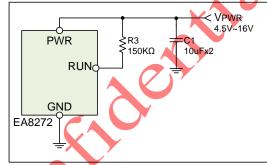


Figure 3. Enable control by RUN pin voltage

Figure 4. Automatic startup application circuit

Output Voltage Setting

The EA8272 output voltage can be set via a resistor divider (R1, R2). The output voltage is calculated by following equation:

$$V_{OUT} = 0.807 \times \frac{R1}{R2} + 0.807 \text{ V}$$

The following table lists common output voltage and the corresponding R1, R2 resistance value for reference.

Output Voltage	R1 Resistance	R2 Resistance	Tolerance
5V	43ΚΩ	8.2ΚΩ	1%
3.3V	47ΚΩ	15ΚΩ	1%
1.8V	20ΚΩ	15ΚΩ	1%
1.2V	15ΚΩ	30ΚΩ	1%
1V,	7.5 ΚΩ	30 ΚΩ	1%

Input Output Capacitors Selection

The input capacitors are used to suppress the noise amplitude of the input voltage and provide a stable and clean DC input to the device. Because the ceramic capacitor has low ESR characteristic, so it is suitable for input capacitor use. It is recommended to use X5R or X7R MLCC capacitors in order to have better temperature performance and smaller capacitance tolerance. In order to suppress the output voltage ripple, the MLCC capacitor is also the best choice. The suggested part numbers of input / output capacitors are as follows:

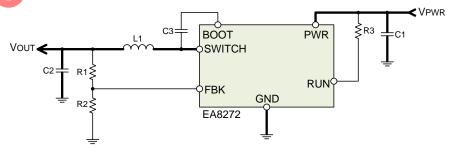
Datasheet

Vendor	Part Number	Capacitance	Edc	Parameter	Size
TDK	C2012X5R1C106K	10uF	16V	X5R	0805
TDK	C3216X5R1E106K	10uF	25V	X5R	1206
TDK	C2012X5R0J226K	22uF	6.3V	X5R	0805
TDK	C3216X5R1A226M	22uF	10V	X5R	1206

Output Inductor Selection

The output inductor selection mainly depends on the amount of ripple current through the inductor ΔI_{L} . Large ΔI_{L} will cause larger output voltage ripple and loss, but the user can use a smaller inductor to save cost and space. On the contrary, the larger inductance can get smaller ΔI_{L} and thus the smaller output voltage ripple and loss. But it will increase the space and the cost. The inductor value can be calculated as:

$$L = \frac{V_{PWR} - V_{OUT}}{\Delta I_L \times F_{SW}} \times \frac{V_{OUT}}{V_{PWR}}$$

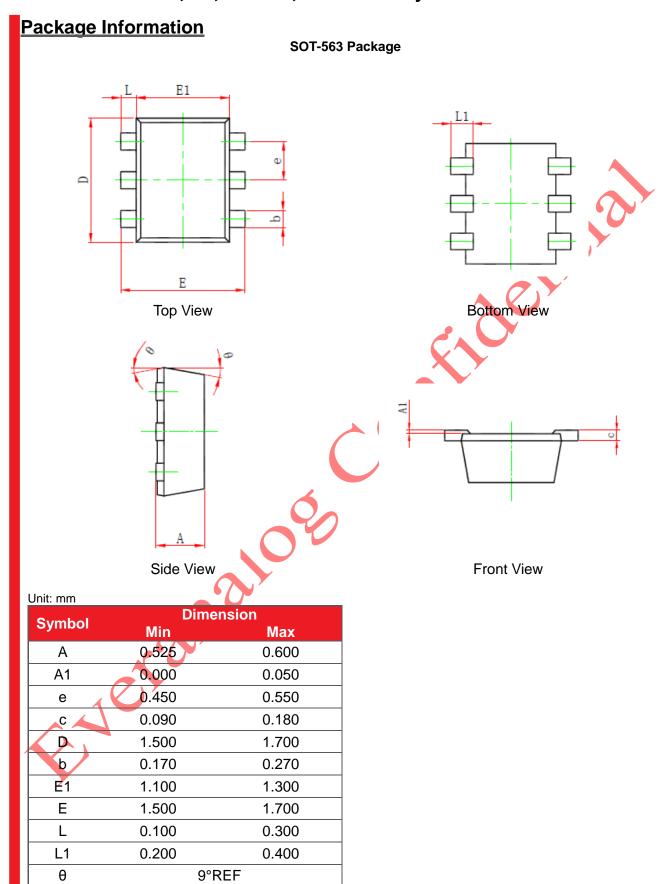

The following table lists common output voltage and the corresponding L inductance value for reference.

Output Voltage	L Inductance Value
5V	4, 7 uH
3.3V	3.3uH
1.8V	2.2uH
1.2V	1.0uH ~ 1.5uH
1V	1.0uH ~ 1.5uH

PCB Layout Recommendations

For EA8272 PCB layout considerations, please refer to the following suggestions in order to get good performance.

- ► High current path traces (shown as Figure 5.) need to be widened.
- Place the input capacitors as close as possible to the PWR pin to reduce noise interference.
- ► Keep the feedback path (from V_{OUT} to FBK) away from the noise node (ex. SWITCH).
- SWITCH is a high current noise node. Complete the layout by using short and wide traces.



^{*} Bold lines indicate high current paths

Figure 5. Recommended high current traces layout guide

16V, 3A, 600KHz, COT mode Synchronous Buck Converter

