

Hi7002 多功能平均电流型 LED 恒流驱动器

1. 特性

- 支持高辉调光,65536:1调光比
- 宽输入电压: 5-60V
- 平均电流工作模式
- 高效率:最高可达 95%
- 输出电流可调范围 60mA~2.5A
- 内驱 80mΩ /60V 的 MOS
- 内置 5V 稳压管
- 最大工作频率 1MHz
- 恒流精度<±3%
- 支持 PWM/模拟调光
- 封装: SOP8*

2. 应用领域

- 景观亮化洗墙灯
- 舞台调光效果灯
- 高端汽车照明
- LCD 背光照明
- 建筑照明

3. 说明

Hi7002 是一款外围电路简单的多功能平均电流型 LED 恒流驱动器,适用于 5-60V 电压范围的降压 BUCK 大功率调光恒流 LED 领域。

芯片 PWM 端口支持超小占空比的 PWM 调光,可响应最小 60ns 脉宽。芯片采用我司专利算法,为客户提供最佳解决方案,最大限度地发挥灯具优势,以实现景观舞台灯高辉的调光效果,65536(256*256)级高辉调光。 PWM 端口为高电平时,芯片正常工作。为低电平芯片时,芯片输出关闭。

芯片采用我司专利的平均电流控制算法,输出电流恒流精度 ≤±3%,且输出电流受输入输出电压、系统电感的影响小;芯片内部集成环路补偿,外围电路简洁,系统更加稳定可靠。

芯片通过对 LD 端口实现模拟调光功能。LD 接 0.2-1.2V 模拟调光信号输入时,系统为模拟调光模式。LD 模拟调光模式时,端口电压低于 0.2V,输出关闭。也可以利用 LD 的模拟调光特性,配合 PWM 调光,实现软启动功能。

LD、PWM 引脚悬空时,建议与 VDD 引脚短接在一起使用。

4. 应用电路

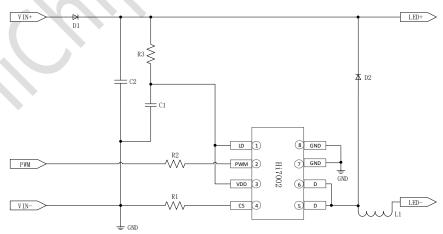
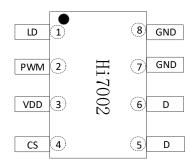



图 4.1 Hi7002应用电路

^{*,}芯片 SOP8 封装,是大功率内置 MOS 芯片常用的超级散热型 SOP8 封装体,散热效果非常明显,确保系统稳定可靠地工作。

5. 管脚配置

* (5、6 PIN 为散热引脚,必须进行散热处理) 图 5.1 Hi7002 管脚图

编号	管脚名称	功能描述
1	LD	模拟调光端口
2	PWM	PWM 调光端口
3	VDD	芯片电源
4	CS	内置功率 MOS 管的 Source 端
5	D	内置功率 MOS 管 Drain 端
6	D	内置功率 MOS 管 Drain 端
7	GND	芯片地
8	GND	芯片地

6. 极限工作参数

符号	说明	范围	单位
VDD	芯片工作电源	-0.3~7.0	V
VCS	CS 输入电压	-0.3~7.0	V
VPWM	PWM 输入电压	-0.3~7.0	V
VLD	模拟或分档调光输入电压	-0.3~7.0	V
TA	工作温度	-40~125	°C
TSTG	存储温度	-40~150	°C
НВМ	人体放电模式	>2	KV

7. 结构框图

图 7.1 结构框图

8. 电气特性

(除非特殊说明,下列条件均为 $T_A=25$ °C)

符号	说明	测试条件	范围			}\
			最小	典型	最大	単位
VDD 工作部分	.,(0)					
IDD	静态电流	V _{DIM} =0V	-	1	-	mA
VDDclamp	VDD 钳位电压		-	5.0	-	V
IDDclamp	VDD 钳位电流			-	25	mA
OSC_MAX	系统最大工作频率			1000		KHz
OSC_MIN	系统最小工作频率			30		KHz
CS 输入部分						
Vcs	过流判断阈值	VDD=5V	216	-	264	mV
VREF	恒流控制电压	VDD=5V	-	200	-	mV
TLEB	LEB 时间		-	120	-	nS

符号	说明	测试条件	范围			単位
			最小	典型	最大	里 似
调光端口						
DMAX	最大占空比	-	-	100	-	%
VPWM_H	PWM 调光检测阈值上限	PWM rising	-	1.4	-	V
VDIM_L	PWM 调光检测阈值下限	PWM falling	-	0.8	-	V
VLD_H	模拟调光起始阈值上限			1.2		V
VLD_L	模拟调光起始阈值下限			0.2	10	v
ILD_F	分档调光下拉电流			20		uA
过温处理						
Tovt	过温掉电流阈值			120	-	°C

9. 应用说明

Hi7002 是一款外围电路简单的多功能平均电流型 LED 恒流驱动器,适用于 5-60V 电压范围的 非隔离式恒流 LED 驱动领域。通过对 CS 端口的电流采样来实现精准的电流控制,芯片集成了多种 调光模式,拓展了系统应用。

9.1. 输出电流

输出电流由芯片内部的误差放大器采样并且和内部的 0.2V 进行比较以及误差放大,从而实现系统的恒流控制,输出电流公式如下:

$$I_{out} = \frac{0.2V}{RCS} A$$

其中 Iout 为输出电流, Rcs 为系统的检流电阻。

9.2. 芯片启动

系统上电后通过启动电阻对连接于电源引脚 VDD 的电容充电,当电源电压高于 4.5V 后,芯片电路开始工作,直到 VDD 端口电压稳定达到钳位电压 5.2V 左右,芯片的供电电流主要由 VDD 端口接入的电阻 R3 提供,电阻 R3 的取值请参考 9.6。

9.3. 调光设置

当 LD 接入 0.2V~1.2V 模拟信号时,芯片进入模拟调光模式,当 LD 端口低于 0.2V 以下关闭输出。而且 LD 端口也可以实现 PWM 调光的功能,用 LD 端口进行 PWM 调光的时候 LD 端口的高电平要超过 1.2V。

对 LD 脚并联电容,可以实现软启动功能。

此外 PWM 端口支持超小占空比的 PWM 调光,可以响应<60ns 的 PWM 脉宽波形,当 PWM 信号为低电平,输出关闭,当 PWM 信号为高电平,输出开启,悬空的时候默认该端口为高电平输入。

9.4. 电感选择

由于芯片原理设定,不同的电感值,会影响到驱动的开关频率。电感值决定了输出电流在开关时的升降斜率,而电流斜率决定了FET 开关时电流从波谷到波峰和波峰到波谷消耗的时间。

$$t_{ON} = \frac{L \times \Delta I}{VIN - V_{LED} - I_{OUT} \times (FET_{R_{DS}(ON)} + DCR_L + R_{SENSE})}$$

$$t_{\rm OFF} \, = \, \frac{L \times \Delta I}{V_{\rm LED} \, + \, V_{\rm diode} \, + \, I_{\rm OUT} \times DCR_{\rm L}}$$

 DCR_L 是电感的直流电阻值, V_{LED} 是 LED 的压降, $FET_{RDS(ON)}$ 是功率 MOSFET 的导通电阻, V_{diode} 为蓄流二极管的压降。

开关频率可由下公式计算:

$$f_{SW} = \frac{1}{t_{ON} + t_{OFF}}$$

电感值越大,输出电流的开关越缓慢。由于 CS 检测到 MOSFET 的开关之间存在传播延时,使得期望值和真实的纹波电流之间存在细微的差异。但是,选择电感时,不应使电流峰值超过电感的额定饱和电流。

9.5. 续流二极管

注意续流二极管的额定平均电流应大于流过二极管的平均电流。平均电流计算公式如下:

$$I_{avg_diode} = I_{OUT} \times \frac{t_{OFF}}{t_{ON} + t_{OFF}}$$

注意,二极管应具有承受反向峰值电压的能力。建议选择反向额定电压大于 VIN 的二极管。为了提高效率,选择肖特基二极管。

9.6. VDD 供电电阻

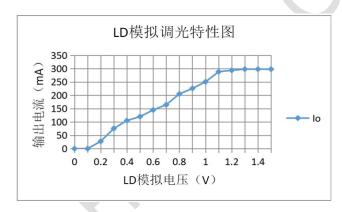
芯片的主要是通过一个供电电阻 R3 到芯片 VDD 提供芯片的工作电流,通常情况下,VDD 满足

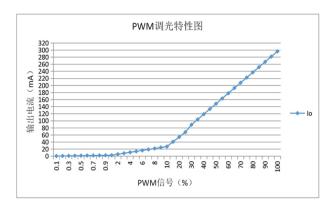
$$VDD = VIN - I_D \times R_3$$

公式中可以看出,R3 过大会导致系统供电不足,过小则会导致功耗过大、芯片过热。而且该电阻的选择还与开关频率有一定的关系,系统频率越高,需要R3 的阻值越小。

下面以一个输出电流为 1A 的系统给出设计指导, 电感为 47uH,

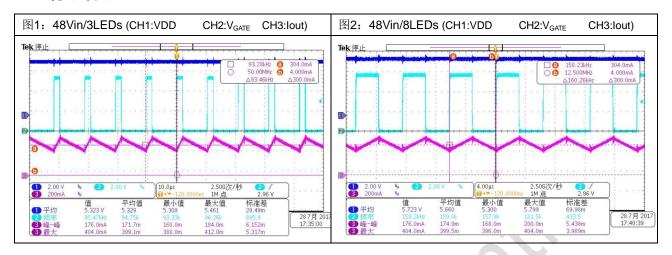
VIN (V)	5	12	24	36
R3(Ω)	100	1~2K	2~4K	3~5K

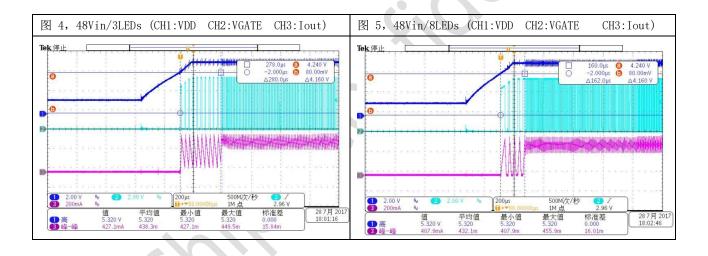

9.7. VDD 旁路电容

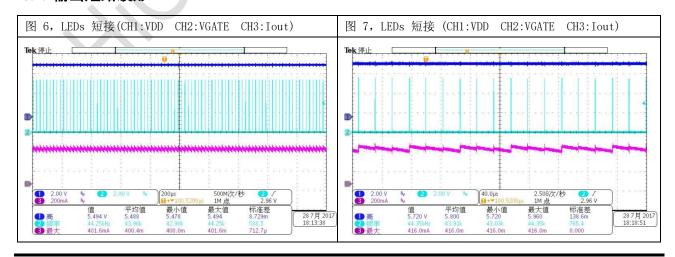

VDD 引脚需要并联一个 1.0uF 以上的旁路电容, PCB 布板时, VDD 电容需要紧挨着端口布局。

10. 典型特性曲线

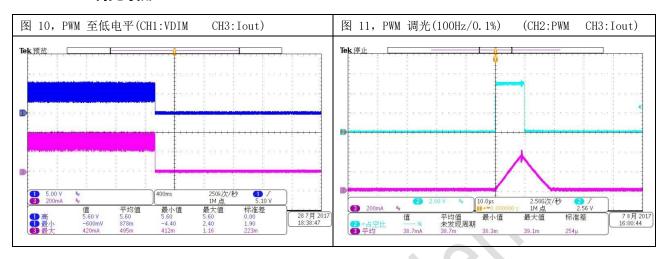
10.1. 调光特性

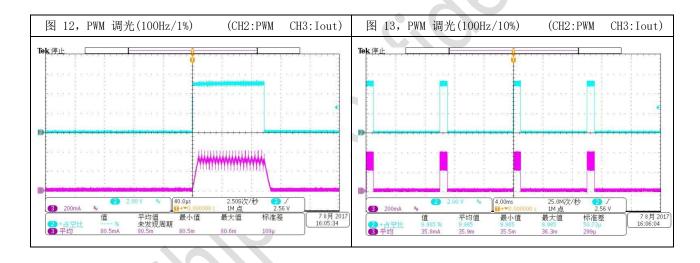

 $T_A=25$ °C, $I_{OUT}=300$ mA

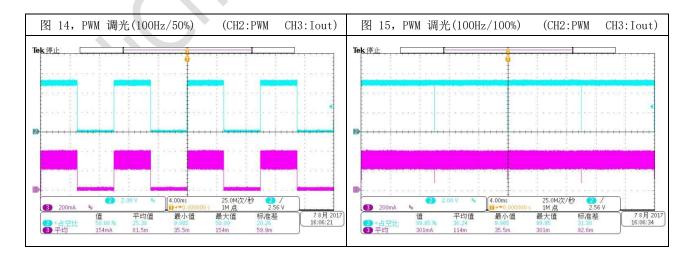



10.2. 稳态波形

10.3. 启动波形




10.4. 输出短路波形



10.5. PWM 调光波形

11. PCB 设计注意事项

一个好的 PCB 设计能够最大程度地提高系统的稳定性、终端产品的量产良率。为了提高 Hi7002 系统 PCB 的设计水准,请尽可能遵循以下布局布线规则:

- 1. 芯片 D 端或 MOSFET Drain 端与续流二极管、功率电感的布线覆铜尽可能长度短、线宽大;
- 2. 芯片 D 端或 MOSFET Source 端与 CS 检流电阻的布线覆铜, CS 检流电阻与输入电容 GND 的布线覆铜,都应尽可能长度短、线宽大;
- 3. 芯片的 VDD 电容靠近芯片布局,且 VDD 电容的 GND 端与 CS 检流电阻 GND 端保持单点连接:
- 4. 系统的输入电容尽可能靠近 Hi7002 系统布局,保证输入电容达到最好的滤波效果;
- 5. 当 Hi7002 系统工作在 RGBW 并联工作时,多路系统与 LEDs 模组连接推荐共阳布线,示意 图见图 11.1,四路 RGBW LEDs 系统布局布线见图 11.2;

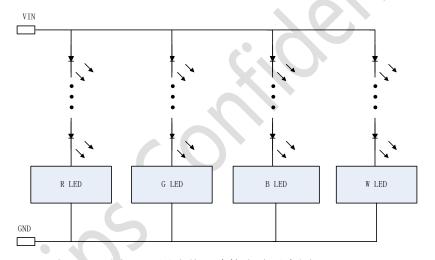
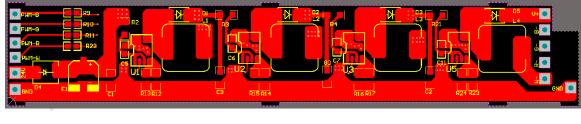
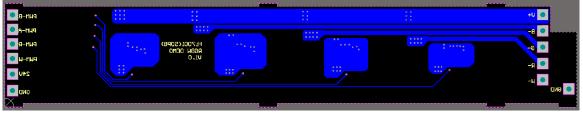
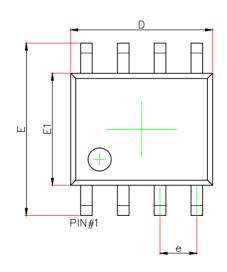
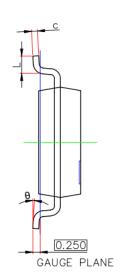
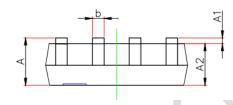



图 11.1 四路共阳连接电路示意图


图 11.2 四路 RGBW 共阳连接电路布局布线图

12. 封装信息

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	