

规 格书 SPECIFICATION

Customer name:

BERYL SERIES: SS TYPE: SMD

DESCRIPTION: SS016M220TR5*5.4

Apply date: 2025-09-04

BERYL		CUSTOMER			
P/N:SS016M220TR5*5.4	P/N:				
PREPARED CHECKED	APPROVED	PREPARED	CHECKED	APPROVED	
董桂茹	成 旭				

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

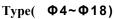
Sheet NO.: 20250904 Page: 1/17

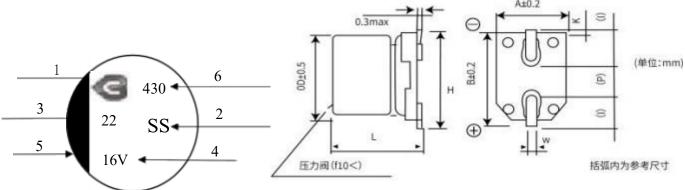
Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2025.09.04	First issue	First issue	董桂茹

Sheet NO.: 20250904 Page: 2 / 17

1 , Application

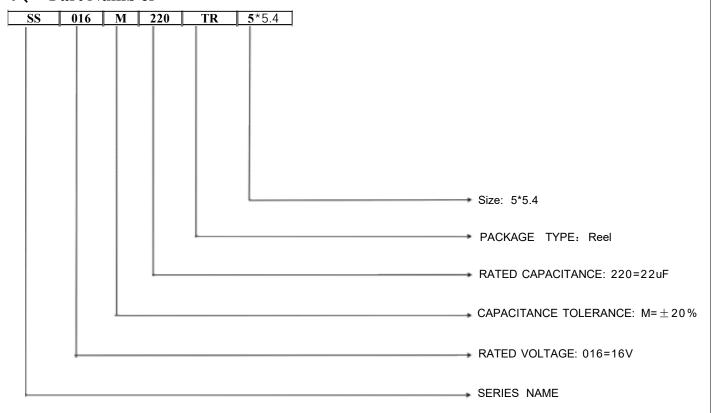

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.


2 \ Table of specification and ch aract eri stics

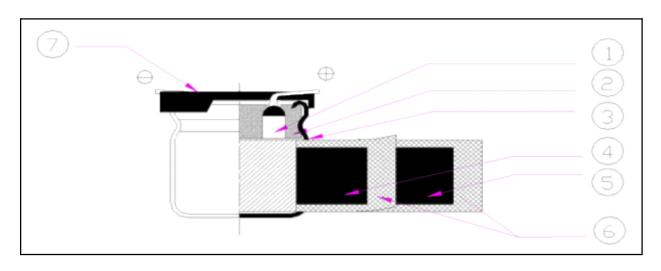
Series	Cap(uF)	WV(V)	Size (mm)	Temper	ature	Capacitance	Life(hours)
Series	120Hz/20°C	,,,(,,	D	L	(°C)		Tolerance	@105(°C)
SS	22	16	5	5.4	-40~+	105	±20%	2000
DF (%)(MAX) 120Hz/20°C		LC(μA)(I 2min/2		ESR(Ω) 100KH	(MAX) Iz/25°C		C (mA rms) ()105°C/120Hz	Surge voltage(V)
	€20	≪4		-		28		18

Other: /

3 , Prod uct Di mensi ons



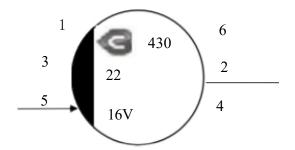
Dimension	ns				Unit: mm		
ΦD	L	A/B	Н	I	W	Р	К
4/D		4.3	5.5	1.8		1.0	
5/E	5.4±0.5	5.3	6.5	2.1	0.5~0.8	1.3	0.35+0. 15/-0.20
6.3/F	7.7±0.5	6.6	7.8	2.4		2.2	0.0010. 10/-0.20
8/H	10.5±0.5	0.2	10	2.4		2.4	
0/П	12.5±0.5	8.3	10	3.4		3.1	0.7010.00
10/J	10.5±0.5	40.0	12	0.5	0.8~ 1. 1	4.5	0.70±0.20
	12.5±0.5	10.3		3.5		4.5	


Sheet NO.: 20250904 Page: 3 / 17

4 、 Part Numb er

5 . Frame drawing and materials

Sheet NO.: 20250904 Page: 4/17


No	Parts	Material	Main supply Factory
1	Lead wire	Aluminum- wire LG3+Tin- plating of copper cover steel	NANTONG GENENIC ELECTRONIC INDUSTRY CO., LTD
2	Rubber bung	IIR rubber	Tiantai Pengyu Rubber Co., Ltd. Zhejiang Tiantai Xianghe Industrial Co., Ltd
3	CASE	Aluminum - 99.5%	Shenzhen Xiesheng Precision Products Co., Ltd. Hangzhou Lin'an Yipeng Electronic Technology Co., Ltd
4	Anode foil(+)	Formed Aluminum 99.98% or 99.98%	Dongguang Sunshine Foil Co., Ltd. Lidon Electronic Technology Co., Ltd.
5	Cathode foil(-)	Etched Aluminum 99.7%	AFT ELECTRONIC CO. LTD. BOLUO
6	Separator paper	Electrolytic Capacitor paper	NKK NIPPON KODOSHI CORPORATION. Zhejiang Kane Special Paper CO., Ltd.
7	BASE	PPA	Hongxinde Electronic Technology Co. Ltd.

Sheet NO.: 20250904 Page: 5 / 17

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) Series symbol
- 3) Nominal capacitance(22uF)
- 4) working voltage(16V)
- 5) Cathode marked
- 6) Date code (430)

Sheet NO.: 20250904 Page: 6 / 17

7. Ch aract eri stics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15oC to 35oC
Relative humidity: 45% to 85%
Air pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : 20oC ± 2oC Relative humidity : 60% to 70% Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(4\sim 120 \text{WV})$ -40oC to + 105oC.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 1 2 0 Hz± 1 2 Hz Measuring circuit: Series equivalent circuit Measuring Voltage: Not more than 0.5 Vrms + 1.5 ~ 2.0 V. DC Measuring Temperature: 2 0 ± 2 °C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	 <condition> Connecting the capacitor with a protective resistor (1kΩ± 10Ω) in series for 2 minutes, and then, measure leakage current.</condition> <criteria> I: Leakage current (μA) I (μA) ≤0.01CVor 3 (μA) whichever is greater, measurement circuit refer to right drawing.</criteria> C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	< Condition> Nominal capacitance, for measuring frequency, voltage and temperature. < Criteria> Must be within the parameters (See page 3)

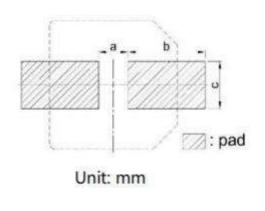
Sheet NO.: 20250904 Page: 7 / 17

	ITEM		PERFORMANCE						
4	Impedance	Condition> Measuring frequency: 1 0 0 kHz; Measuring temperature: 2 0 ± 2 °C Measuring point: 2 mm max. from the surface of a sealing rubber on the lead wire. Criteria> (25 °C) Must be within the parameters (See page 3)							
5	Load life test	 Condition> According to IEC6 (Maximum operating current for Rated liexceed the rated was recovering time at Criteria>	temperature fe +48/0 houvorking voltage atmospheric shall meet the Note ange With	± 2 ° C with DO ars. (The sum of the process) Then the process are following required to the process are followed by the	C bias voltage por DC and ripple oduct should be result should ruirements. Specified value. Wo of the specifi	olus the rated repeak voltage stested after 16 meet the followed ed value.	ipple shall not hours		
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operating temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for16 hours. measure leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ± 2 0 % of initial value Dissipation Factor Not more than 200% of the specified value.							
7	Maximum permissible (ripple current, temperature coefficient)	Appearance There shall be no leakage of electrolyte.							

Sheet NO.: 20250904 Page: 8 / 17

	ITEM	PERFORMANCE					
8	Terminal strength	Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire					
9	Temperature characteristics	 Condition> STEP Testing temperature (°C) Time 1 20±2 Time to reach thermal equilibrium 2 -40 -25±3 Time to reach thermal equilibrium 3 20±2 Time to reach thermal equilibrium 4 105±2 Time to reach thermal equilibrium Capacitance, DF, and impedance shall be measured at 1 2 0 Hz. Criteria> a. At +105°C, capacitance measured at +20°C shall be within ±25% of its original value. Dissipation factor shall be within the limit of Item 7 . 3 The leakage current measured at +20°C shall be within ± 10% of its original value. Dissipation factor shall be within the limit of Item 7 . 3 The leakage current measured at +20°C shall be within ± 10% of its original value. Dissipation factor shall be within the limit of Item 7 . 3 The leakage current shall not more than 10 times of its original value. Dissipation factor shall be within the limit of Item 7 . 3 The leakage current shall not more than the specified value. c. At- 40°C, Impedance (Z) ratio shall not exceed the value of the following table. Voltage (V) 4 6.3 10 16 25 35 50 63 80 100 120 Z-25 (//Z+20 C) 7 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
10	Surge test	Z-40 C/Z+20 C 15 8 6 4 4 3 3 3 3 3 4					

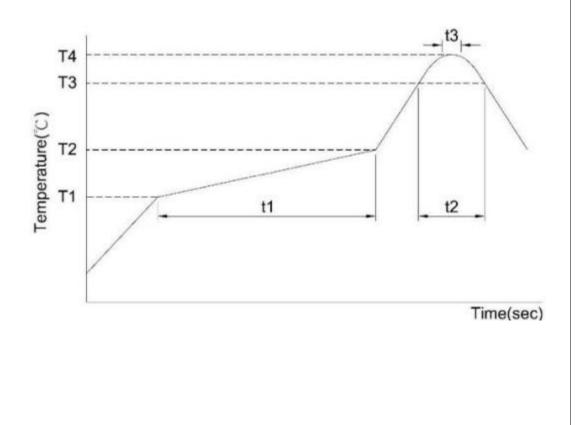
Sheet NO.: 20250904 Page: 9 / 17


	ITEM	PERFORMANCE						
		Condition> Temperature cycle: According to IEC6 0 3 8 4 - 4 No. 4 . 7 methods, capacitor shall be placed in an oven, the condition according as below:						
				perature	Time			
		(1)+	-20°C		3 Minutes			
	Change of	(2) F	Rated low temperatur	e (- 40°C)(-25°C)	30±2 Minutes			
11	temperature test	(3) F	Rated high temperatu	re (+105°C)	30±2 Minutes			
		(1) t	o (3) = 1 cycle, total	5 cycle				
		< Criteria> The charac	teristic shall meet ti	he following requiremen	nt.			
			age current	Not more than the s ₁				
		Dissi	pation Factor	Not more than the sp	pecified value.			
		Appe	earance	There shall be no lea	akage of electrolyte.			
12	Damp heat test	According to be exposed $40\pm2^{\circ}\mathrm{C}$, < Criteria> Leakage Capacit Dissipat	 Condition> Humidity test: According to IEC60384-4 No.4. 12 methods, capacitor shall be exposed for 500± 8 hours in an atmosphere of 90~95%R H .at 40±2°C , the characteristic change shall meet the following requirement. Criteria> Leakage current Not more than the specified value. Capacitance Change Within ± 10% of initial value. Dissipation Factor Not more than 120% of the specified value. Appearance There shall be no leakage of electrolyte. 					
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ± 50C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed						

Sheet NO.: 20250904 Page: 10 / 17

ITEM PERFORMANCE

Recommended pad pattern and size



수 미미그	,	焊盘尺寸	•
产品尺寸	a	b	с
4Ф	1.0	2.6	1.6
5Ф	1.4	3.0	1.6
6.3Ф	1.9	3.5	1.6
8 Ф	3 0	4 5	2 5
10Ф	4 0	4 0	2 5
12 5Ф	4 0	6.0	3 2
16Ф	6 0	7 0	3 2
18Ф	6.0	8.0	3.2

Recommended Soldering Methods

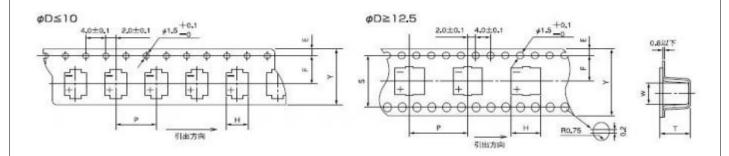
2. 1 Solder iron method: Bit temperature: $350 \pm 5^{\circ}C$, Application time of soldering Iron: 3 + 1/-0 sec 2.2 Reflow Soldering (Pb-free):

Reflow Conditions for SMD type

Sheet NO.: 20250904 Page: 11 / 17

	ITEM			PERFOR	RMANCE			
15	Vibration	 Condition> The following condirections. Vibrate each to peak amplitude. Sweep rate Mounting method: must be fixed in process. 	tion frequency in the second s	range: 10 mm ~ 55 Hz ~ 10 H r with diameter	$Hz \sim 55 Hz$ $Hz in about 1 min$	nute		
13	test	After the test, the fo	ollowing items	shall be tested	l:			
		Inner construct	ion i		tacts, open or terminals or e		ng.	
		Appearance	of ele		nage in termin relling of the c legible		ge	
		acitors shall meet the te and restored to 20°C < Criteria> Leakage current	•	-	an the specifie		are removed	from
16		ate and restored to 20°C < Criteria>	characteristic ent Change factor	Not more the Within $\pm 10^{\circ}$ Not more the		d value. ue. d value of electrolyte		
16	Resistance to	te and restored to 20°C <criteria> Leakage curro Capacitance C Dissipation F Appearance</criteria>	characteristic ent Change factor	Not more the Within ± 10° Not more the There shall 1	an the specifie % of initial val an the specifie	d value. ue. d value of electrolyte	#### E30	
16	Resistance to	te and restored to 20°C <criteria> Leakage curro Capacitance C Dissipation F Appearance</criteria>	characteristic ent Change factor	Not more the Within ± 10° Not more the There shall 1	an the specifie % of initial val an the specifie be no leakage	d value. ue. d value of electrolyte	#### E30	
16	Resistance to	te and restored to 20°C <criteria> Leakage curre Capacitance Dissipation F Appearance Recommendable reflow</criteria>	characteristic ent Change factor condition	Not more that Within ± 10° Not more that There shall to the shall to t	an the specifie % of initial val an the specifie be no leakage	d value. ue. d value of electrolyte	# 230 tp	
116	Resistance to	te and restored to 20°C <criteria> Leakage curre Capacitance O Dissipation F Appearance Recommendable reflow</criteria>	characteristic ent Change factor condition	Not more the Within ± 10° Not more the There shall to the	an the specifie % of initial val an the specifie be no leakage ***M********************************	d value. ue. d value of electrolyte	#852 tp	
16	Resistance to	te and restored to 20°C <criteria> Leakage curre Capacitance Dissipation F Appearance Recommendable reflow Size 24°26.3*7.7L</criteria>	characteristic ent Change factor condition Thickness (nn) 22.5	Not more the Within ± 10° Not more the There shall to the work of	an the specifie % of initial val an the specifie be no leakage ### ### ### ### ### ### ### #	d value. ue. d value of electrolyte	#### tp	

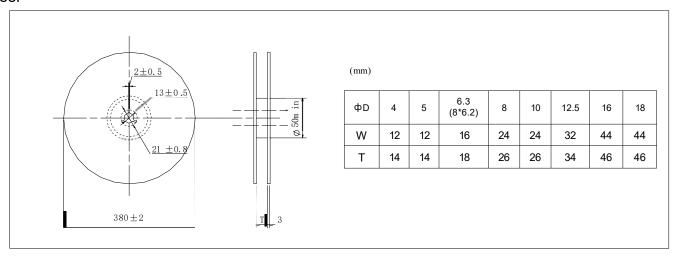
Sheet NO.: 20250904 Page: 12 / 17



IT	ГЕМ	PERFORMANCE					
17	Vent test	Condition> The following test only apply to those products with vent products at diameter > 26 . 3 with vent. D. C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2> Diameter (mm) DC Current (A)					
		22.4 or less 1 Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.					

Sheet NO.: 20250904 Page: 13 / 17

8 . V- Chip Type Aluminum Electrolytic Capacitors Carrier tape


(mm)

ΦD*L	Y(±0.3)	P(±0. 1)	F(±0. 1)	H(±0.2)	T(±0. 1)	E(±0. 15)
4*3.95		8	5.5	4.5	4.4	1.75
4*4.5					5	
4*5.4/5.7					5.9	
4*5.8					6.4	
4*7					7.2	
4*10.5	12				11	
5*3.95		12		5.5	4.4	
5*4.5					5	
5*5.4/5.7					5.9	
5*5.8					6.4	
5*7					7.6	
5*10.5		12	7.5		11	
6.3*3.95					4.4	
6.3*4.5				6.8	5	
6.3*5.4/5.7	1				6.1	
6.3*5.8	16				6.4	
6.3*7.7	10				8.3	
6.3*8.7					9.3	
6.3*10.5					11	
8*6.2	24			8.7	7	
8*6.5					7.3	
8*10.5		16			11	
8*12.5					13. 1	
10*7.7				10.7	8.7	
10*10.5					11	
10*12.5					13.0	
10*16					13.0	
12.5*13.5	20	24	14.2	13.4	14.5	
12.5*16.5	32				17.0	
16*16.5		28	20.2	17.5 19.5	17.0	
16*21.5	4.4				23.0	
18*16.5	44	20			17.5	
18*21.5	<u> </u>	32			23.0	

Sheet NO.: 20250904 Page: 14 / 17

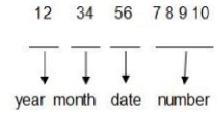
Reel

Package quantity

ΦD×L	Quantity / Reel 数量 / 每盘	pcs/ Small packing box 数量/小包装箱	pcs/Large packing box 数量/大包装箱
4*3.95、4*4.5、4*5.4、4*5.7、4*5.8	2000pcs	24000pcs	48000pcs
5*3.95、5*4.5、5*5.4、5*5.7、5*5.8、 5*7	1000pcs	12000pcs	24000pcs
6.3*3.95、6.3*4.5、6.3×5.4、6.3*5.7、 6 3*5 8 、6 3*7 7、8*6 2 、8*6 5	1000pcs	10000pcs	20000pcs
6.3*8.7	900pcs	9000pcs	18000pcs
4*10.5、5*10.5、6.3*10.5	700pcs	7000pcs	14000pcs
8*10.5、10*7.7、10*10.5	500pcs	3500pcs	7000pcs
8*12.5	400pcs	2800pcs	5600pcs
10*12.5	400pcs	2800pcs	5600pcs
10*16	350pcs	2450pcs	4900pcs
12.5*13.5	200pcs	1200pcs	2400pcs
12.5*16.5	150pcs	900pcs	1800pcs
16*16.5	125pcs	625pcs	1250pcs
16*21.5	75pcs	375pcs	750pcs
18*16.5	125pcs	625pcs	1250pcs
18*21.5	75pcs	375pcs	750pcs

Sheet NO.: 20250904 Page: 15 / 17

9 . Packing Information


Packing Label Marked (the following items shall be marked on the label)

(Inside box or bag)

(1) Clint order number (2) Client part number (3) Beryl part number (4) Capacitance (5) Voltage (6) Dimension

(7) Packaging quantity (8) Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:

1) Outer box

2) Outer box label:

BERYL Zhao Qin	Ltd	recreasing co.
C.S.R:		B 110 115
C.S.R P/O:	ROHS HE	
C.S.R P/N:		
SPR P/N	QC	
SPEC:	90	
QTY: PCS	TOL: %	
L/N:	S.P.R.	

Sheet NO.: 20250904 Page: 16 / 17

10 \ Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	Cadmium and cadmium compounds			
Accord with	Lead and lead compounds			
heavy metal	Mercury and mercury compounds			
	Hexavalent chromium compounds			
Organic chlorin compounds	Polychlorinated biphenyls (PCB)			
	Polychlorinated naphthalenes (PCN)			
	Polychlorinated terphenyls (PCT)			
	Chlorinated paraffins (CP)			
	Other chlorinated organic compounds			
Organic	Polybrominated biphenyls (PBB)			
bromine	Polybrominated diphenylethers (PBDE)			
compounds	Other brominated organic compounds			
Tributyltin compounds				
Triphenyltin compounds				
Asbestos				
Specific azo compounds				
Formaldehyde				
Polyvinyl chloride (PVC) and PVC blends				
F、Cl、Br、I				
REACH				

Sheet NO.: 20250904 Page: 17 / 17