

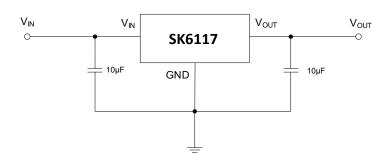
SK6117 1A Bipolar Linear Regulator

General Description

The SK6117 is a series of low dropout three-terminal regulators with a dropout. It provide a fixed output voltage from 1.2V to 5V. And an adjustable output voltage, which can provide an output voltage from 1.25V to 12V with external resistors.

The SK6117 offers thermal shutdown function to assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within 2%.

SK6117 is available in SOT-223 and TO-252 packages.

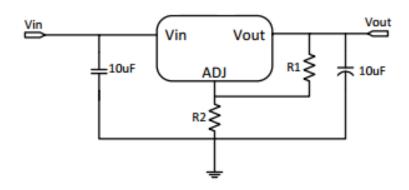

Features

- Maximum Input Operating Voltage: 15V
- Maximum Output Current is 1A
- Fixed Output Voltage: 1.2V/1.5V/1.8V/2.5V/3.3V/5.0V
- Adjustable Output Voltage: 1.25V to 12V
- Quiescent Current: 2mA (typ.)
- Voltage Accuracy: ±2%
- Pb Free & ROHS Compliant

Applications

- Power Management for Computer Mother Board, **Graphic Card**
- LCD Monitor and LCD TV
- **DVD** Decode Board
- ADSL Modem
- Post Regulators For Switching Supplies

Typical Application Circuits

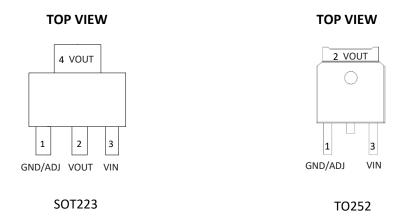

Fixed Output Voltage Version

Note

- (1) Recommend using 10uF tan capacitor as bypass capacitor for all application circuit.
- (2) Recommend using 10uF tan capacitor to assure circuit stability.

Typical Application Circuits (Continued)

Adjustable Output Voltage Version


Note: The output voltage of adjustable version follows the equation: $V_{OUT}=1.25\times(1+R2/R1)+I_{ADJ}\times R2$. We can ignore I_{ADJ} because I_{ADJ} (about 50µA) is much less than the current of R1 (about 2~10mA).

- (1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125Ω or lower. As SK6117-ADJ can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625Ω .
- (2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified.
- (3) As R1 is normally in the range of $100\Omega^{\sim}500\Omega$, the value of C_{ADJ} should satisfy this equation:

 $1/(2\pi \times f_{ripple} \times C_{ADJ}) < R1$

Pin Configuration

Pin Description

PIN NO.		PIN NAME	FUNCTION	
SOT223	TO252	PIN NAIVIE	FONCTION	
1	1	GND/ADJ	GND/ADJ pin	
2	2	VOUT	Output voltage pin	
3	3	VIN	Input voltage pin	
4	-	VOUT	Output voltage pin	

Ordering Information

Part Number	Package	Temperature	Quantity/ Reel
SK6117-XXLR	SOT223	-40°C~85°C	2500
SK6117-ADLR	SOT223	-40°C~85°C	2500
SK6117-XXOR	TO252	-40°C~85°C	2000
SK6117-ADOR	TO252	-40°C~85°C	2000

NOTE:

XX indicates output voltage. For example, 33 means product outputs 3.3V, AD means adjustable output. SK6117 devices are Pb-free and RoHS compliant.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{IN_MAX}	Max Input Voltage	18	V
Tj	Max Operating Junction Temperature	+150	°C
T _A	Ambient Temperature	-40~+85	°C
T _S	Storage Temperature	-55~+150	°C
T _{SOLDER}	Package Lead Soldering Temperature	260°C, 10s	

Thermal Information

Symbol	Parameter	Package	Value	Unit
$R_{ heta JA}$	Thermal	SOT-223	140	°C/W
NejA	resistance	TO-252	120	°C/W

Electrical Characteristics

T_A=25°C, unless otherwise noted.

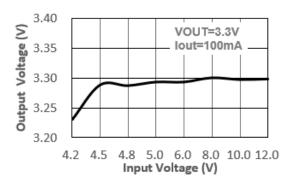
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage		-	15	18	V
V_{REF}	Reference	SK6117-ADJ	1.225	1.25	1.275	V
	Voltage	10mA≤lout≤1A , Vin=2.55V	1.225	1.23	1.275	
		SK6117-1.2V	1.176	1.2	1.224	V
		0≤lout≤1A , Vin=2.5V	1.170			
		SK6117-1.5V	1.47	1.5	1.53	V
		0≤lout≤1A , Vin=2.8V	1.47			
		SK6117-1.8V	1.764	1.8	1.836	V
V_{OUT}	Output Voltage	0≤lout≤1A , Vin=3.1V	1.704	1.0	1.030	V
		SK6117-2.5V	2.45	2.5	2.55	V
		0≤lout≤1A , Vin=3.8V	2.43	2.5	2.55	V
		SK6117-2.85V	2.793	2.85	2.907	V
		0≤lout≤1A , Vin=4.15V	2.793			
		SK6117-3.3V	3.234	3.3	3.366	V
		0≤lout≤1A , Vin=4.6V	3.234	3.3	3.300	V
		SK6117-5.0V	4.9	5	5.1	V
		0≤lout≤1A , Vin=6.3V	4.5	3	5.1	V
	Line Regulation	SK6117-1.2V		4	19	mV
		lout=10mA, 2.5V≤Vin≤10V				
		SK6117-1.5V		5	26	mV
		Iout=10mA, 2.8V≤Vin≤10V		,	20	1114
		SK6117-ADJ		5	24	mV
		lout=10mA, 2.55V≤Vin≤12V		J	24	111 V
$ riangle V_OUT$		SK6117-1.8V		5	32	mV
△ • 001		Iout=10mA, 3.1V≤Vin≤12V		,	32	IIIV
		SK6117-2.5V		8	41	mV
		Iout=10mA, 3.8V≤Vin≤12V		Ů	71	1114
		SK6117-2.85V		8	46	mV
		lout=10mA, 4.15V≤Vin≤12V		0	40	IIIV
		SK6117-3.3V		9	49	mV
		lout=10mA, 4.6V≤Vin≤12V		3	73	111 V
		SK6117-5.0V		10	56	mV
		lout=10mA, 6.3V≤Vin≤12V				

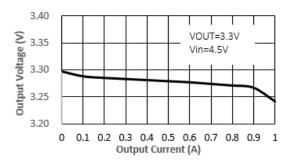
Electrical Characteristics (Continued)

T_A=25°C, unless otherwise noted.

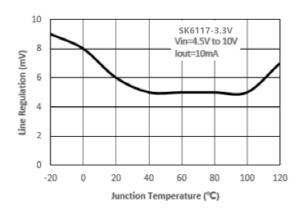
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		SK6117-1.2V		10	40	mV
		Vin=2.5V, 10mA≤lout≤1A		10	40	IIIV
		SK6117-1.5V			40	mV
		Vin=2.8V, 10mA≤lout≤1A		10		
		SK6117-ADJ		10	40	\/
		Vin=2.55V, 10mA≤lout≤1A	10		40	mV
△V _{out}	Load	SK6117-1.8V		10	40	m)/
△ • 001	Regulation	Vin=3.1V, 10mA≤lout≤1A	10		40	mV
		SK6117-2.5V		10	40	mV
		Vin=2.8V, 10mA≤lout≤1A		10	40	
		SK6117-2.85V	10			mV
		Vin=4.15V, 10mA≤lout≤1A			40	
		SK6117-3.3	10		40	m\/
		Vin=4.6V, 10mA≤lout≤1A			40	mV
		SK6117-5.0			40	mV
		Vin=6.3V, 10mA≤lout≤1A		10	40	IIIV
V	Drangut Voltage	lout=100mA		1.1	1.3	V
V_{DROP}	Dropout Voltage	lout=1A		1.2	1.5	V
Ι _Q	Quiescent	Vin=10V, Vout=1.2, 1.5V Vin=12V, Vout=1.8, 2.5, 3.3, 5.0V		2	5	mA
	Current Adjust Pin	SK6117-ADJ				
I _{ADJ}	Current	Vin=5V, 10mA≤lout≤1A	55		120	μΑ
	I _{ADJ} Change	SK6117-ADJ				
I _{CHANGE}	Current	Vin=5V, 10mA≤lout≤1A		0.2	10	μΑ
I _{MIN}	Minimum Load Current	SK6117-ADJ		2	10	mA

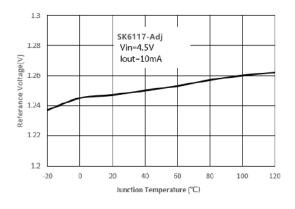
Note

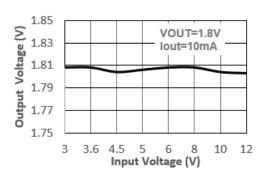

- (1) All test are conducted under ambient temperature 25°C and within a short period of time 20ms.
- (2) Load current smaller than minimum load current of SK6117-ADJ will lead to unstable or oscillation output.

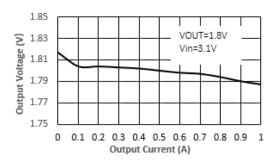

Typical Performance Characteristics

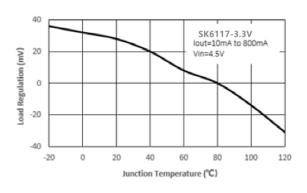
T_A=25°C, unless otherwise noted.

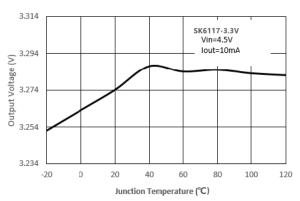

Output Voltage vs. Input Voltage (VOUT=3.3V)


Output Voltage vs. Output Current (VOUT=3.3V)


Line Regulation vs. Junction Temperature

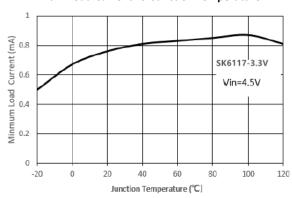

Reference Voltage vs. Junction Temperature

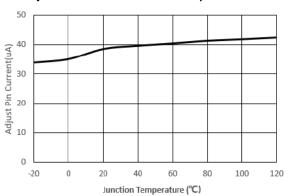

Output Voltage vs. Input Voltage (VOUT=1.8V)


Output Voltage vs. Output Current (VOUT=1.8V)

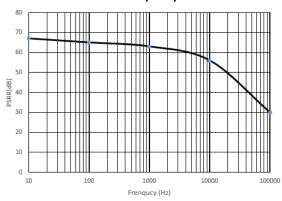
Load Regulation vs. Junction Temperature

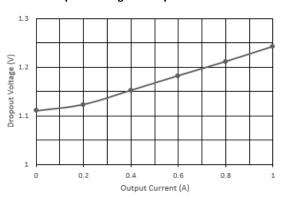
Output Voltage vs. Junction Temperature

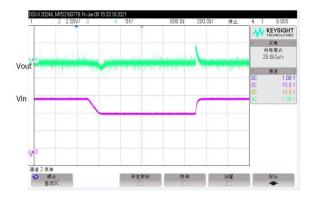


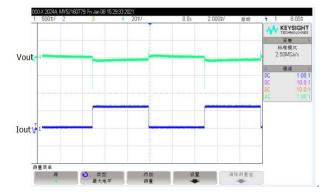

Typical Performance Characteristics (Continued)

T_A=25°C, unless otherwise noted.

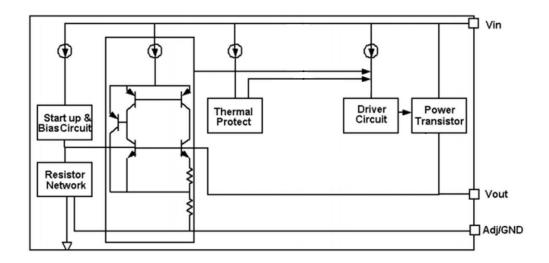

Minimum Load Current vs. Junction Temperature


Adjust Pin Current vs. Junction Temperature


PSRR vs. Frequency


Dropout Voltage vs. Ouput Current

Line Transient Response



Load Transient Response

Block Diagram

Functional Description

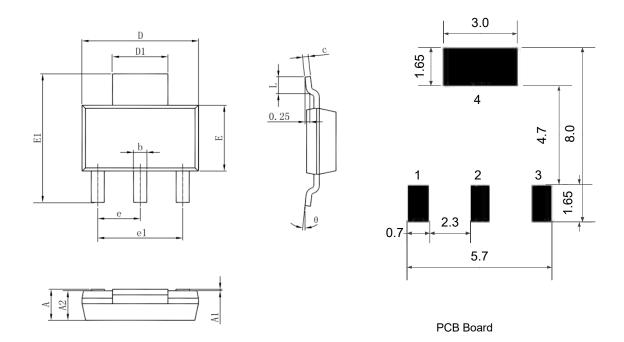
SK6117 is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations.

The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

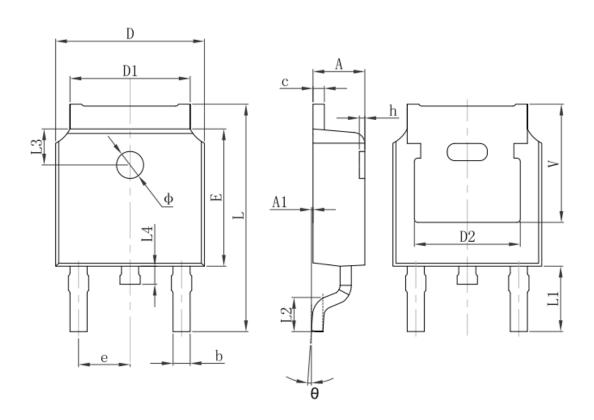
Thermal Considerations

We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by SK6117 is very large.


SK6117 series uses SOT223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W+30°C/W. We can decrease total thermal resistance by increasing copper area in application board.

When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of SK6117 could allow on itself is less than 1W.

And furthermore, the SK6117 will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.


Package Dimensions: SOT223

Cumb a l	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.520	1.800	0.060	0.071
A1	0.000	0.100	0.000	0.004
A2	1.500	1.700	0.059	0.067
b	0.660	0.820	0.026	0.032
С	0.250	0.350	0.010	0.014
D	6.200	6.400	0.244	0.252
D1	2.900	3.100	0.114	0.122
E	3.300	3.700	0.130	0.146
E1	6.830	7.070	0.269	0.278
е	2.300(BSC)		0.091(BSC)
e1	4.500	4.700	0.177	0.185
L	0.900	1.150	0.035	0.045
θ	0°	10°	0°	10°

Package Dimensions: TO252

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.660	0.860	0.026	0.034
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830	REF.	0.190	REF.
E	6.000	6.200	0.236	0.244
е	2.186	2.386	0.086	0.094
L	9.800	10.400	0.386	0.409
L1	2.900	REF.	0.114 REF.	
L2	1.400	1.700	0.055	0.067
L3	1.600 REF.		0.063	REF.
L4	0.600	1.000	0.024	0.039
Ф	1.100	1.300	0.043	0.051
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.350 REF.		0.211	REF.