

1 Feature

- ESD Protection for RS-485 I/O Pins
 - ±15kV—Human Body Model
 - ±8kV—IEC 1000-4-2, Contact Discharge
 - ±15kV—IEC 1000-4-2, Air-Gap Discharge
- Operate from a Single +3.0V~5.5V Supply— No Charge Pump Required
- Interoperable with +5V Logic
- Guaranteed 12Mbps Data Rate (GM3490E/GM3491E)
- Slew-Rate Limited for Error less Data Transmission (GM3488E)
- -7V to +12V Common-Mode Input Voltage Range
- Current-Limiting and Thermal Shutdown for Driver Overload Protection

2 APPLICATIONS

- Telecommunications
- Industrial-Control Local Area Networks
- Transceivers for EMI-Sensitive Applications
- Integrated Services Digital Networks
- Packet Switching

3 General Description

Devices in the GM3485E family (GM3488E/ GM3490E/ GM3491E) are ±15kV ESD-protected, +3.0V~5.5V, low-power transceivers for RS-422 communications. Each device contains one driver and one receiver. The GM3488E feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission at data rates up to 1Mbps. The GM3490E, and GM3491E transmit at up to 12Mbps.

All devices feature enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model.

Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if both inputs are open circuit. The GM3488E, GM3490E, and GM3491E feature full duplex communication.

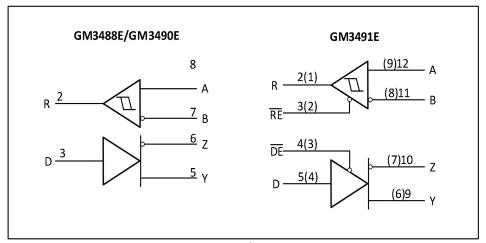


Figure 1 Simplified Schematic

4 Specifications

4.1 ABSOLUTE GMIMUM RATINGS

Parameter	Description	MIN	MAX	UNIT
V _{CC}	Supply Voltage		+7	V
RE , DE	Control Input Voltage	-0.3	+7	V
DI	Driver Input Voltage	-0.3	+7	V
A, B,Y,Z	Driver Output Voltage	-7.5	+12.5V	V
A, B	Receiver Input Voltage	-7.5	+12.5V	V
RO	Receiver Output Voltage	0.3	V _{CC} +0.3V	
	Storage Temperature Range	-65	150	°C

4.2 DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 0.3V, T_A = T_{MIN} \text{ to } T_{GM}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

SYMBOL	PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNIT	
		$R_L = 100\Omega$ (RS-422), Figure	4	2.0				
V_{OD}	Differential Driver Output	$R_L = 54\Omega$ (RS-485), <u>Figure 4</u>		1.5			V	
		$R_L = 60\Omega$ (RS-485), $V_{CC} = 3.3$	3V, <u>Figure 5</u>	1.5				
$\triangle V_{OD}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States(Note 1)	R = 54 Ω or 100 Ω , Figure 4				0.2	V	
V_{OC}	Driver Common-Mode Output Voltage	R = 54Ω or 100Ω, Figure 4				3	V	
riangleVoc	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	R = 54 Ω or 100 Ω , Figure 4				0.2	٧	
V _{IH}	Input High Voltage	DE, DI, RE		2.0			٧	
V _{IL}	Input Low Voltage	DE, DI, RE				0.8	V	
I _{IN1}	Input Current	DE, DI, RE V _{CC} floating				±2	μΑ	
	Longet Commont (A. D)	DE = 0V;	V _{IN} = 12V			1.0	mA	
I _{IN2}	Input Current (A, B)	$V_{CC} = 0V \text{ or } 3.6V$	V _{IN} = -7V			-0.8		
1.	Output Leakage (Y, Z)	DE = $0V$, \overline{RE} = $0V$,	V _{OUT} = 12V			100		
I ₀	Output Leakage (1, 2)	V _{CC} = 0V or 3.6V, GM3491E	V _{OUT} = -7V			-100	μΑ	
1.	Output Leakage (Y, Z)	DE = 0V, \overline{RE} = 3.6V,	V _{OUT} = 12V			100		
l _o	in Shutdown Mode	V _{CC} = 0V or 3.6V, GM3491E V _{OUT} = -7V				-100	μΑ	
V _{TH}	Receiver Differential ThresholdVoltage	-7V≤V _{CM} ≤12V		-0.2		0.2	٧	
$\triangle V_{TH}$	Receiver Input Hysteresis	V _{CM} = 0V			50		mV	
V _{OH}	Receiver Output High Voltage	$I_0 = -4mA, V_{ID} = 200mV, Figure$	ure 6	V _{CC} -0.4			V	

Low-Power,RS-485/RS-422 Transceivers

DC ELECTRICAL CHARACTERISTICS(continued)

 $(V_{CC} = +3.3V \pm 0.3V, T_A = T_{MIN} \text{ to } T_{GM}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.$)

SYMBOL	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
V _{OL}	Receiver Output Low Voltage	$I_0 = 4\text{mA}$, $V_{ID} = -200\text{mV}$, Figure 6				0.4	٧
I _{OZR}	Three-State (high impedance) Output Current at Receiver	$V_{CC} = 3.6V$, $0V \le V_{OUT} \le V_{CC}$				±1	μΑ
R _{IN}	Receiver Input Resistance	$-7V \le V_{CM} \le 12V$		96			kΩ
Vcc	Supply Voltage Range			3.0		5.5	٧
	Cumply Cumpant	No load,	$DE = V_{CC}$, $\overline{RE} = 0$ or V_{CC}		0.5	1.0	4
Icc	Supply Current	$DI = 0$ or V_{CC}	$DE = 0V, \overline{RE} = 0$		0.45	0.9	mA
I _{SHDN}	Supply Current in Shutdown Mode	$DE = 0$, $\overline{RE} = V_{CC}$, $DI = V_{CC}$ or 0			1.3	2	μΑ
	Duissas Chaut Cinas it Commant	V _{OUT} = -7V				-250	1
l _{OSD}	Driver Short-Circuit Current	V _{OUT} = 12V				250	mA
I _{OSR}	Receiver Short-Circuit Output Current			±8		±60	mA
		IEC 1000-4-2 Air D	ischarge		±15		
	CCD Distriction for V. 7. A. D.	IEC 1000-4-2 Contact Discharge (GM3491E)		(GM3/91F) ±8			1/1/
ESD Protection for Y, Z, A, B		IEC 1000-4-2 Contact Discharge (GM3490E, GM3488E)			±8		KV
		Human Body Model			±15		

4.3 Switching Characteristics—GM3490E/GM3491E

 $(V_{CC} = +3.3V, T_A = +25^{\circ} C.)$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
	Maximum Data Rate		12	15		Mbps		
t _{DD}	Driver Differential Output Delay	$R_L = 60\Omega$, Figure 7	1	22	35	ns		
t _{DD}	Driver Differential Output Transition Time	$R_L = 60\Omega$, Figure 7	3	11	25	ns		
t _{PLH}	Driver Propagation Delay, Low-to-High Level	$R_L = 27\Omega$, Figure 8	7	23	35	ns		
t _{PHL}	Driver Propagation Delay, High-to-Low Level	$R_L = 27\Omega$, Figure 8	7	23	35	ns		
t _{PDS}	t _{PLH} - t _{PHL} Driver Propagation Delay Skew (Note 2)	$R_L = 27\Omega$, Figure 8		-1.4	±8	ns		
DRIVER-	DRIVER-OUTPUT ENABLE/DISABLE TIMES (GM3491E only)							
t _{PZL}	Driver-Output Enable Time to Low Level	$R_L = 110\Omega$, Figure 10		42	90	ns		
t _{PZH}	Driver-Output Enable Time to High Level	$R_L = 110\Omega$, Figure 9		42	90	ns		
t _{PHZ}	Driver-Output Disable Time from High Level	$R_L = 110\Omega$, Figure 9		35	80	ns		
t _{PLZ}	Driver-Output Disable Time from Low Level	$R_L = 110\Omega$, Figure 10		35	80	ns		
t _{PSL}	Driver-Output Enable Time from Shutdown to Low Level	$R_L = 110\Omega$, Figure 10		650	900	ns		
t _{PSH}	Driver-Output Enable Time from Shutdown to High Level	$R_L = 110\Omega$, Figure 9		650	900	ns		

4.4 SWITCHING CHARACTERISTICS—GM3488E

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C.)$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Maximum Data Rate			1000		Kbps
t _{DD}	Driver Differential Output Delay	$R_L = 60\Omega$, Figure 7	200	300	500	ns
t _{DD}	Driver Differential Output Transition Time	$R_L = 60\Omega$, Figure 7	150	240	400	ns
t _{PLH}	Driver Propagation Delay, Low-to-High Level	$R_L = 27\Omega$, Figure 8	200	300	500	ns
t _{PHL}	Driver Propagation Delay, High-to-Low Level	$R_L = 27\Omega$, Figure 8	200	300	500	ns
t _{PDS}	t _{PLH} - t _{PHL} Driver Propagation Delay Skew (Note 2)	$R_L = 27\Omega$, Figure 8		±50		ns
t_{PZL}	Driver-Output Enable Time to Low Level	$R_L = 110\Omega$, Figure 10		300	500	ns
t_{PZH}	Driver-Output Enable Time to High Level	$R_L = 110\Omega$, Figure 9		150	400	ns
t_{PHZ}	Driver-Output Disable Time from High Level	$R_L = 110\Omega$, Figure 9		50	80	ns
t_{PLZ}	Driver-Output Disable Time from Low Level	$R_L = 110\Omega$, Figure 10		50	80	ns
t _{PSL}	Driver-Output Enable Time from Shutdown to Low Level	$R_L = 110\Omega$, Figure 10		1.9	2.7	μs
t _{PSH}	Driver-Output Enable Time from Shutdown to High Level	$R_L = 110\Omega$, Figure 9		2.2	3.0	μs

4.5 NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS

Note 1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Note 2: Measured on $|t_{PLH}(Y) - t_{PHL}(Y)|$ and $|t_{PLH}(Z) - t_{PHL}(Z)|$.

Note 3: The transceivers are put into shutdown by bringing high RE and DE low. If the inputs are in this state for less than 80ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 300ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

4.6 Pin Description

PIN GM3488E GM3490E GM3491E			
		NAME	FUNCTION
SOP8	SOP14		
2	2	RO	Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.
_	3	RE	Receiver Output Enable. RO is enabled when \overline{RE} is low; RO is high impedance when RE is high.
_	4	DE	Driver Output Enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are
			high impedance, they function as line receivers if RE is low.
3	5	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
4	6, 7	GND	Ground
5	9	Υ	Non-inverting Driver Output
6	10	Z	Inverting Driver Output
_	_	Α	Non-inverting Receiver Input and Non-inverting Driver Output
8	12	Α	Non-inverting Receiver Input
_	_	В	Inverting Receiver Input and Inverting Driver Output
7	11	В	Inverting Receiver Input
1	14	V _{CC}	Positive Supply: 3.0V \leq V _{CC} \leq 5.5V. Do not operate device with V _{CC} $>$ 5.5V
_	1, 8, 13	N.C.	No Connect—not internally connected

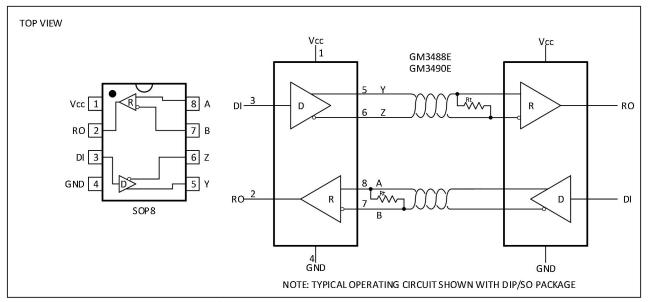


Figure 2. GM3488E/GM3490E Pin Configuration and Typical Operating Circuit

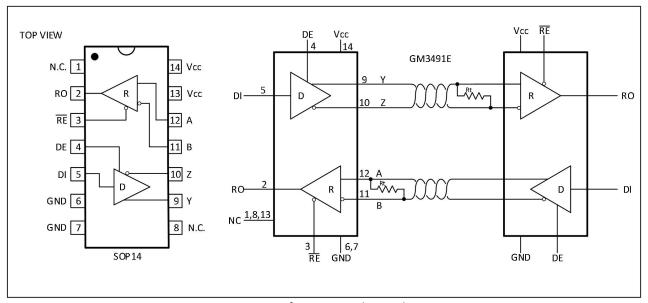


Figure 3. GM3491E Pin Configuration and Typical Operating Circuit

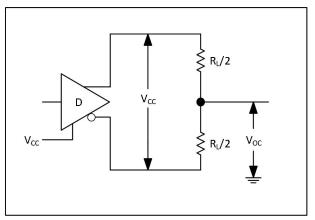


Figure 4. Driver V_{OD} and V_{OC}

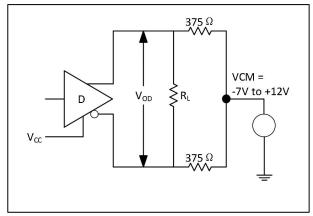


Figure 5.Driver V_{OD} with Varying Common-Mode Voltage

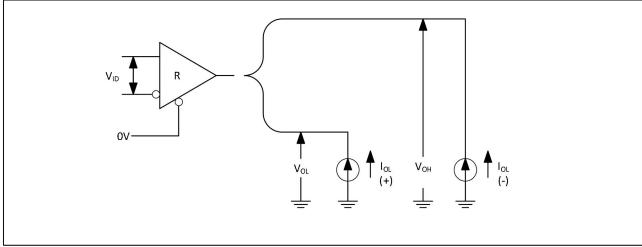


Figure 6. Receiver V_{OH} and V_{OL}

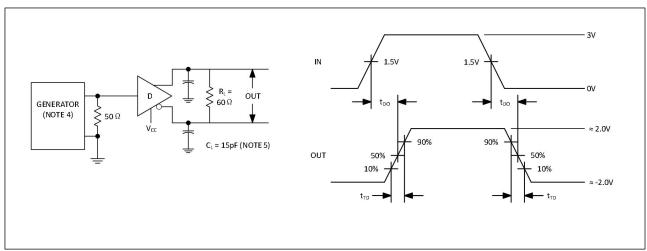


Figure 7. Driver Differential Output Delay and Transition Times

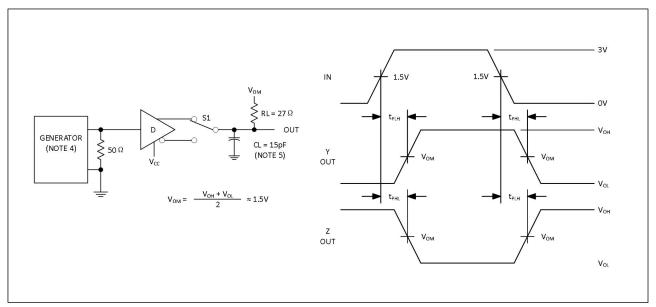


Figure 8. Driver Propagation Times

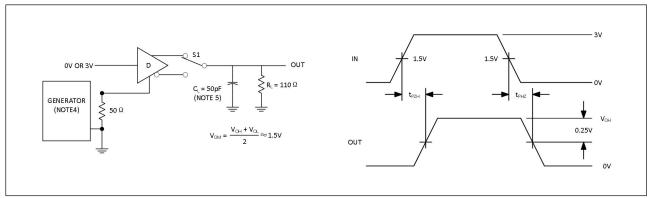


Figure 9. Driver Enable and Disable Times (t_{PZH}, t_{PSH}, t_{PHZ})

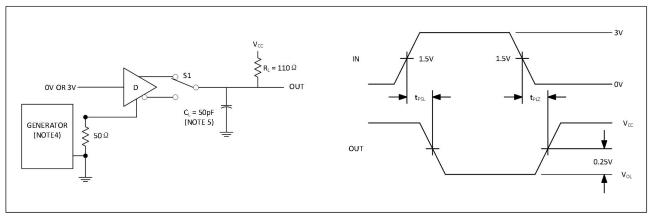


Figure 10. Driver Enable and Disable Times (t_{PZL} , $t_{PS}L$, t_{PLZ})

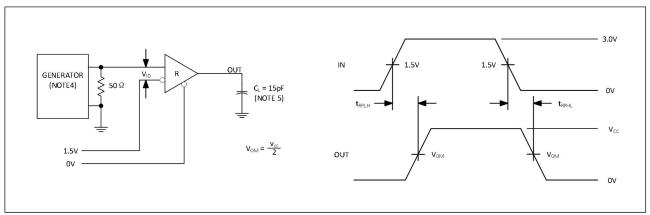


Figure 11. Receiver Propagation Delay

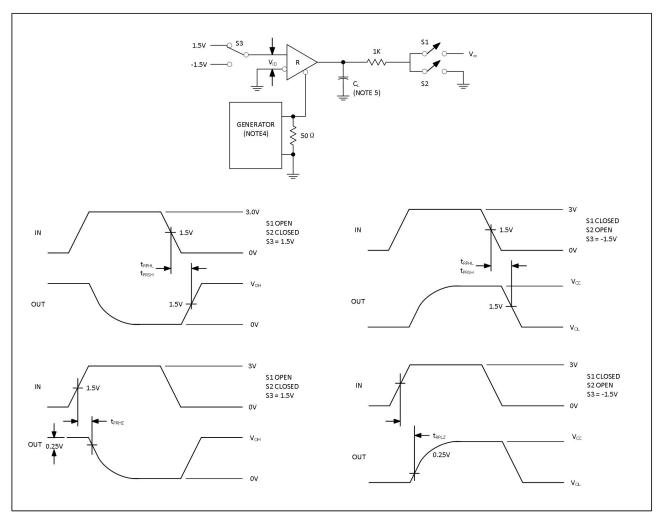


Figure 12. Receiver Enable and Disable Times

Note 4: The input pulse is supplied by a generator with the following characteristics: f = 250 kHz, 50% duty cycle, $t_r \le 6.0 \text{ns}$, $Z_0 = 50 \Omega$.

Note 5: C_L includes probe and stray capacitance.

1.

5 Function Tables

5.1 Devices with Receiver/Driver Enable (GM3491E)

Table 1. Transmitting

	INPUTS		OUTI	PUTS	MODE
RE	DE	DI	B*	A*	MODE
×	1	1	0	1	Normal
×	1	0	1	0	Normal
0	0	×	High-Z	High-Z	Normal
1	0	×	High-Z	High-Z	Shutdown

^{*} B and A outputs are Z and Y, respectively, for full-duplex part (GM3491E).

Table 2. Receiving

	INI	PUTS	OUTPUTS	MODE
RE	DE	A,B	RO	MODE
×	1	≧ +0.2V	1	Normal
×	1	≦ -0.2V	0	Normal
0	0	Inputs Open	1	Normal
1	0	×	High-Z	Shutdown

^{*} DE is a "don't care" (x) for the full-duplex part (GM3491E).

5.2 Devices without Receiver/Driver Enable(GM3488E/GM3490E)

Table 3. Transmitting

INPUT	OUTPUTS		
DI	Z	Υ	
1	0	1	
0	1	0	

Table 4. Receiving

INPUT	OUTPUT
A,B	RO
≧ +0.2V	1
≦ -0.2V	0
Inputs Open	1

6 Applications Information

TheGM3488E/GM3490E/GM3491E are low-power transceivers for RS-485 and RS-422 communications. The GM3488E can transmit and receive at data rates up to 1Mbps, and the GM3490E/GM3491E at up to 12Mbps. The GM3488E/GM3490E/GM3491E are full-duplex transceivers, Driver Enable (DE) and Receiver Enable (RE) pins are included on the GM3491E. When disabled, the driver and receiver outputs are high impedance.

7 Reduced EMI and Reflections(GM3488E)

The GM3488E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 13 shows the driver output waveform of a GM3490E/GM3491E transmitting a 125kHz signal, as well as the Fourier analysis of that waveform. High-frequency harmonics with large amplitudes are evident. Figure 14 shows the same information, but for the slew-rate-limited GM3488E transmitting the same signal. The high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.

8 Low-Power Shutdown Mode(GM3491E)

A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled (high impedance). In shutdown, the devices typically draw only 1.3uA of supply current. For these devices, the t_{PSH} and t_{PSL} enable times assume the part was in the low-power shutdown mode; the t_{PZH} and t_{PZL} enable times assume the receiver or driver was disabled, but the part was not shut down.

X = Don't care; High-Z = High impedance

X = Don't care; High-Z = High impedance

GATEMODE 捷茂微曲子

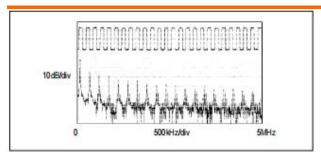


Figure 13. Driver Output Waveform and FFT Plot of GM3490E/GM3491E Transmitting a 125kHz Signal

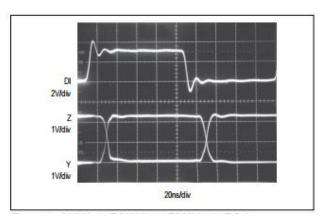


Figure 15. GM3490E/GM3491E Driver Propagation Delay

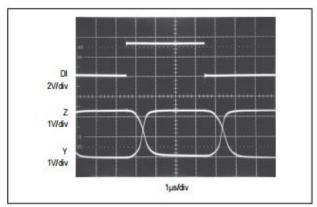


Figure 17. GM3488E Driver Propagation Delay

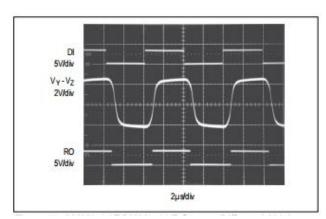


Figure 19. GM3488E System Differential Voltage at 125kHz Driving 4000 Feet of Cable

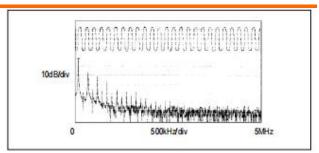


Figure 14. Driver Output Waveform and FFT Plot of GM3488E Transmitting a 125kHz Signal

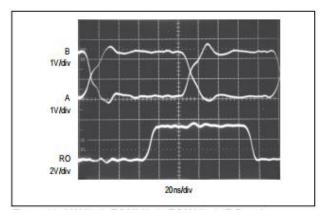


Figure 16. GM3490E/GM3491E Receiver Propagation Delay Driven by External RS-485 Device

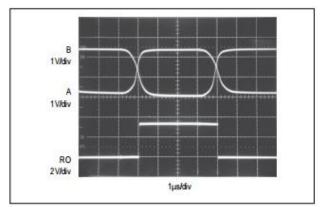


Figure 18. GM3488E Receiver Propagation Delay

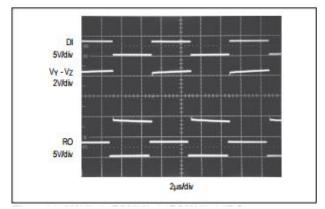


Figure 20. GM3490E/GM3491E System Differential Voltage at 125kHz Driving 4000 Feet of Cable

- 11 -

9 Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A fold-back current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

10 Propagation Delay

Figures 15 - 18 show the typical propagation delays. Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle). The receiver skew time, |tprlh - tprhl |, is under 10ns 20ns for the GM3488E). The driver skew times are 8ns for the GM3490E/GM3491E.

11 Line Length vs. Data Rate

The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 21 for an example of a line repeater. Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted-pair wire at 125kHz into 120 Ω loads. For faster data rate transmission, please consult the factory.

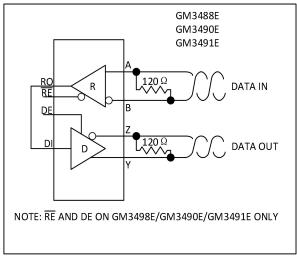


Figure 21. Line Repeater for GM3488E/GM3490E/GM3491E

12 ±15kV ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the GM3485E family of devices have extra protection against static electricity. Engineers have developed state-of the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down.

ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:

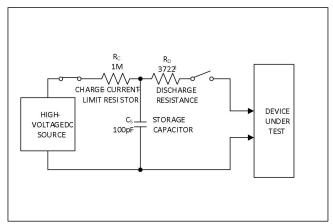
- 1) ±15kV using the Human Body Model
- 2) ±8kV using the Contact-Discharge method specified in IEC 1000-4-2
- 3) ±15kV using IEC 1000-4-2's Air-Gap method.

13 ESD Test Conditions

ESD performance depends on a variety of conditions. Contact us for a reliability report that documents test setup, test methodology, and test results.

14 Human Body Model

<u>Figure 22a</u> shows the Human Body Model and <u>Figure 22b</u> shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.


15 IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The GM3485E family of devices helps you design equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without the need for additional ESD-protection components.

The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 23a shows the IEC 1000-4-2 model, and Figure 23b shows the current waveform for the ±8kV IEC 1000-4-2, Level 4 ESD contact-discharge test. The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.

- 13 -

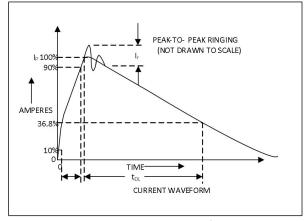


Figure 22a. Human Body ESD Test Model

Figure 22b. Human Body Current Waveform

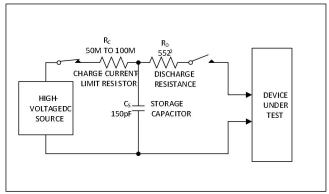


Figure 23a. IEC 1000-4-2 ESD Test Model

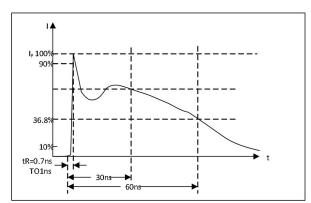


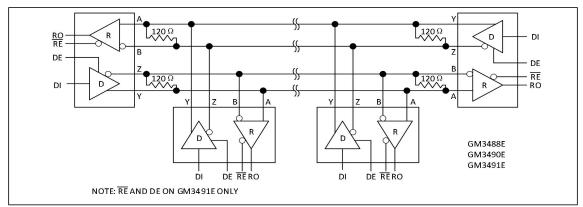
Figure 23b.IEC 1000-4-2 ESD Generator Current Waveform

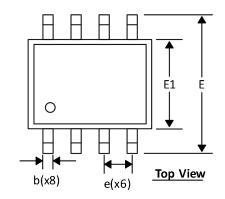
16 Machine Model

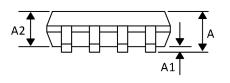
The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. of course, all pins require this protection, not just RS-485 inputs and outputs.

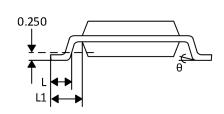
17 Typical Applications

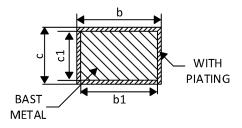
The GM3488E/GM3490E/GM3491E transceivers are designed for bidirectional data communications on multi point bus transmission lines. Figures 24 show typical net work applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 21. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited GM3488E is more tolerant of imperfect termination.



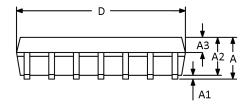

Figure 24. GM3488E/GM3490E/GM3491E Full-Duplex RS-485 Network

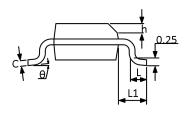

Tel: (+86) 13135660803 Email: sales@gmmicro.com

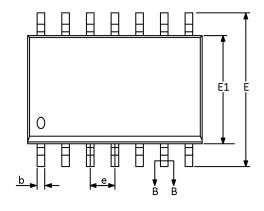

Copyright © GATEMODE Corp.

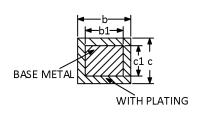


PACKAGE DIMENSION SOP8




CVAADOLC		MILLIMETER					
SYMBOLS	MIN	NOM	MAX				
Α	-	-	1.75				
A1	0.10	0.175	0.25				
A2	1.30	1.40	1.50				
b	0.31	-	0.50				
b1	0.30	0.40	0.45				
С	0.20	-	0.24				
c1	0.19	0.203	0.21				
D	4.80	-	5.00				
E	5.80	6.00	6.20				
E1	3.80	-	4.00				
е		1.27 BSC					
L	0.40	-	0.80				
L1		1.05 REF					
θ	0°	-	8°				


- 15 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com



SOP-14

CVMADOLC		MILLIMETER		
SYMBOLS	MIN	NOM	MAX	
Α	-	-	1.75	
A1	0.05	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.47	
b1	0.38	0.41	0.44	
С	0.20	-	0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27BSC		
h	0.25	-	0.50	
L	0.50	-	0.80	
L1	1.05REF			
θ	0°	-	8°	

Low-Power,RS-485/RS-422 Transceivers

Order Information

Order number	Package	Marking information	Operation Temperature Range	MSL Grade	Ship, Quantity	Green
GM3488ESA	SOP8	GM3488E	-40 to 85°C	3	T&R, 2500	Rohs
GM3490ESA	SOP8	GM3490E	-40 to 85°C	3	T&R, 2500	Rohs
GM3491ESA	SOP14	GM3491E	-40 to 85°C	3	T&R, 2500	Rohs

Low-Power,RS-485/RS-422 Transceivers

Version modification record

version	Modify the description	page	time	Modify personnel
1.1	1.Original:GM3490_GM3491_1.0 →		On June 21,2024	Fan
	GM3490_GM3491_1.1			
	2.Input Current testing environment.Increase the VCC			
	Floating			
	3.Output Leakage (Y, Z)	2		
	V _{OUT} = 12V environment MAX=20uA → MAX=100uA.			
	$V_{OUT} = -7V$ environment MAX=-20uA \rightarrow MAX=-100uA.			
	4.Output Leakage (Y, Z) in Shutdown Mode,			
	testing environment $\overline{RE} = 0V \rightarrow \overline{RE} = 5V$,			
	V _{OUT} = 12V environment. MAX=1uA → MAX=100uA.			
	V _{OUT} = -7V environment MAX=-1uA → MAX=-100uA.			