MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PLED

MSLM2904DT

Product specification

GENERAL DESCRIPTION

The MSLM2904DT consists of two independent, high g ain and internally frequency compensated operational amplifiers, they are specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. Typical applications include transducer amplifiers, DC gain blocks and most conventional operational amplifier circuits.

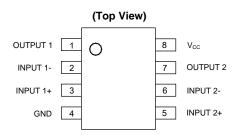
The MSLM2904DT is available in SOP-8 package.

FEATURES

- Internally Frequency Compensated for Unity Gain
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage: Single Supply: 3V to 36V

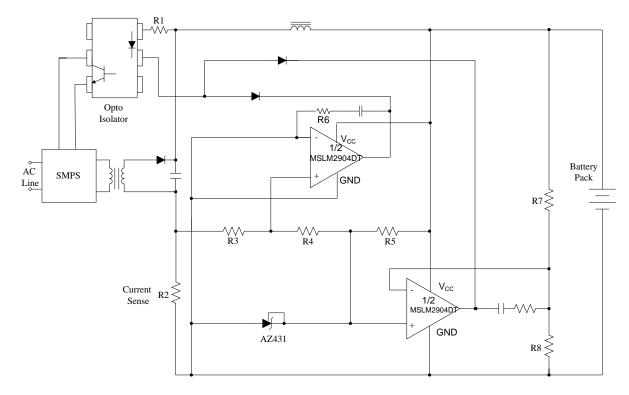
Dual Supplies: ±1.5V to ±18V

- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to V_{CC}-1.5V
- Lead-Free Packages: SOP-8

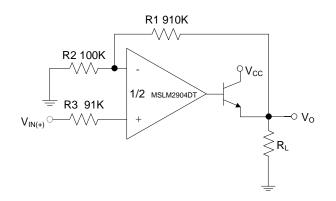

Applications

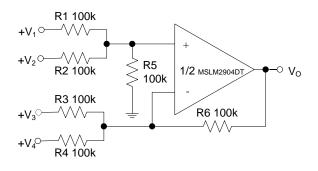
- Battery Charger
- Cordless Telephone
- Switching Power Supply

Reference News


Type No	SOP-8	MARKING		
MSLM2904DT		MSKSEMI LM2904DT MS**		

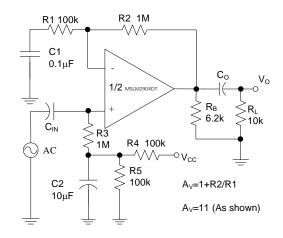
Pin Assignments



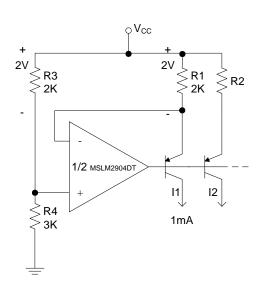


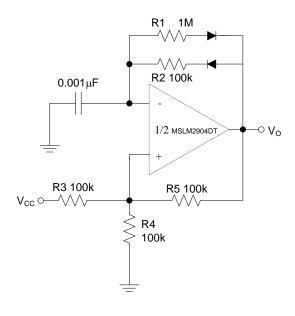
Typical Applications Circuit

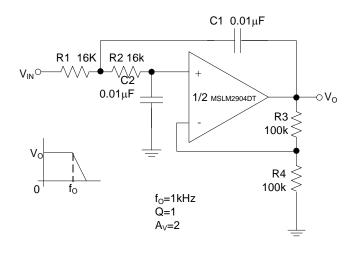
Battery Charger



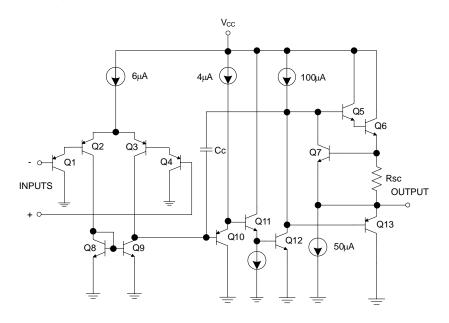
Power Amplifier


DC Summing Amplifier


Typical Applications Circuit (Cont.)


AC Coupled Non-Inverting Amplifier

Fixed Current Sources


Pulse Generator

DC Coupled Low-Pass Active Filter

Functional Block Diagram

Absolute Maximum Ratings (Notes 1 & 2)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	40	V
VID	Differential Input Voltage	40	V
Vic	Input Voltage	-0.3 to 40	V
Po	Power Dissipation (T _A = +25°C)	550	mW
TJ	Operating Junction Temperature	+150	°C
Тѕтс	Storage Temperature Range	-65 to +150	°C
TLEAD	Lead Temperature (Soldering, 10 Seconds)	+260	°C

Notes:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 2. ESD sensitivity.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	Supply Voltage	3	36	V
Та	Ambient Operating Temperature Range	-40	+85	°C

Absolute Maximum Ratings (Notes 1 & 2)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	40	V
VID	Differential Input Voltage	40	V
Vic	Input Voltage	-0.3 to 40	V
PD	Power Dissipation (T _A = +25°C)	550	mW
TJ	Operating Junction Temperature	+150	°C
Тѕтс	Storage Temperature Range	-65 to +150	°C
TLEAD	Lead Temperature (Soldering, 10 Seconds)	+260	°C

Notes:

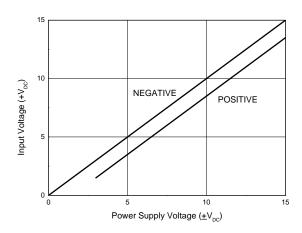
- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 2. ESD sensitivity.

Recommended Operating Conditions

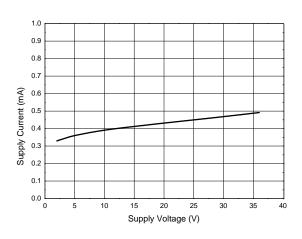
Symbol	Parameter	Min	Max	Unit
Vcc	Supply Voltage	3	36	V
ТА	Ambient Operating Temperature Range	-40	+85	°C

Electrical Characteristics (Limits in standard typeface are for TA = +25°C, bold typeface applies over -40°C to +85°C (Note 6), V

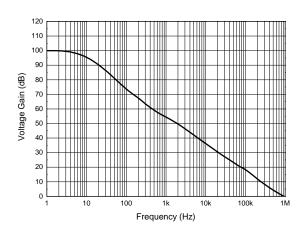
Symbol	Parameter Conditions		Min	Тур	Max	Unit	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	l		$V_0 = 1.4V$, $R_S = 0\Omega$, $V_{CC} = 5V$ to	_	2	5	mV
V_{10}	Input Offset Volta	age	30V	_		7	
ΔV10/ΔΤ	Average Temperature Coefficient of Input Offset Voltage		Coefficient of Input Offset		7	_	μV/°C
IBIAS	Input Bias Curre	nt	lin+ or lin-, Vcm = 0V	_	20	200	nA
IBIAS	mpat Blac Carro		IIIV OI IIIV-, V CIVI — O V			200	11/1
lio	Input Offset Curr	rent	IIN+ - IIN-, VCM = 0V	_	5	30	nA
			inv, voivi ov	_	_	100	11/ \
VIR	Input Common N (Note 2)	lode Voltage Range	Vcc = 30V	0	_	Vcc - 1.5	V
Icc	Supply Current		TA = -40°C to +85°C, RL = ∞ , Vcc = 30V	_	0.7	2	mA
	Supply Surrent		TA = -40°C to +85°C, RL = ∞ , Vcc = 5V	_	0.5	1.2	1117 (
Gv	Large Signal Vol	ge Signal Voltage Gain	Vcc = 15V, Vo = 1V to 11V, RL≥	85	100	_	dB
Gy Large orginal vol		9	2kΩ	80	_	_	
CMRR	Common Mode I	Rejection Ratio	DC, Vcm = 0V to (Vcc-1.5)V	60	70		dB
Civil (1) Continion Mode	rejection realio	DC, V CW = 0V to (VCC-1.5)V	60		_	uБ	
PSRR Power Supply Reject		eiection Ratio	Vcc = 5V to 30V	70	100		dB
			V CC = 3V 10 30V	60	_	_	
CS	Channel Separat	tion	f = 1kHz to 20kHz	_	-120	_	dB
Isource		Source	VIN+ = 1V, VIN- = 0V, VCC =	20	40	_	mA
			15V, Vo = 2V	20		_	
	Output Current		V _{IN} + = 0V, V _{IN} - = 1V, V _{CC} =	10	15		mA
Isink		Sink	15V, Vo = 2V	5	_	_	
			V _{IN} + = 0V, V _{IN} - = 1V, V _{CC} = 15V, V _O = 0.2V	12	50	_	μΑ
Isc	Output Short Circuit Current to Ground		Vcc = 15V		40	60	mA
			$V_{CC} = 30V, R_L = 2k\Omega$	26			V
VoH Output \			$Vcc = 30V$, $RL = 2k\Omega$ $Vcc = 30V$, $RL = 10k\Omega$	26		_	
	Output Voltage S	Swing		27	28	_	
Output Voltage		willig	V CC COV, TEL TORS2	27		_	
Vol			$Vcc = 5V$, $RL = 10k\Omega$	_	5	20	mV
			- ,			30	
θις	Thermal Resistance (Junction to Case)			_	17		°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)				115		

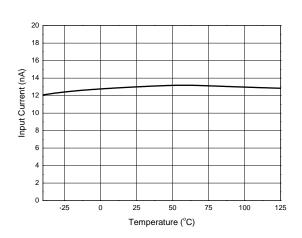

Notes: 1. Limits over the full temperature are guaranteed by design, but not tested in production.

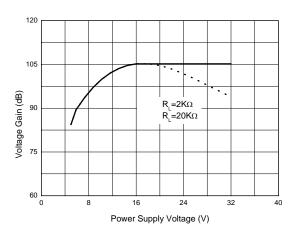
^{2.} The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at +25°C). The upper end of the common-mode voltage range is Vcc-1.5V (at +25°C), but either or both inputs can go to +36V without damages, independent of the magnitude of the VCC.

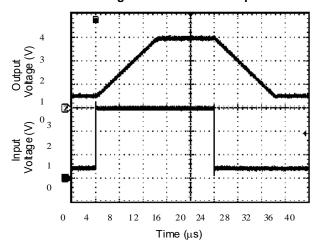


Performance Characteristics

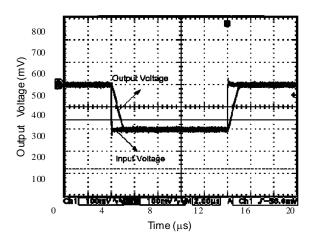

Input Voltage Range

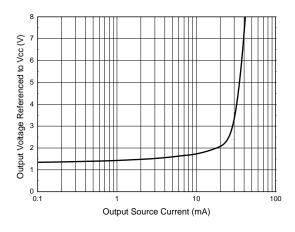

Supply Current


Open Loop Frequency Response

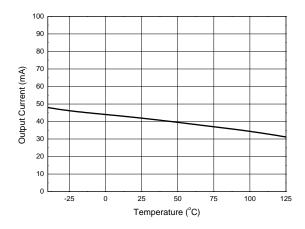

Input Current

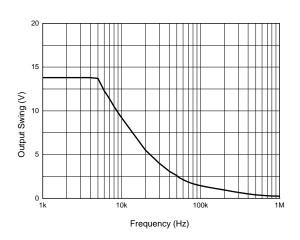
Voltage Gain

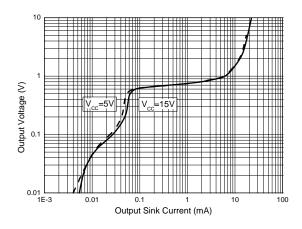

Voltage Follower Pulse Response



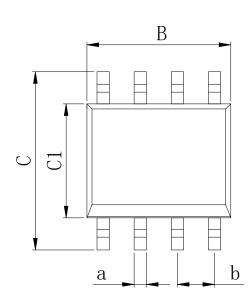
Performance Characteristics (Cont.)

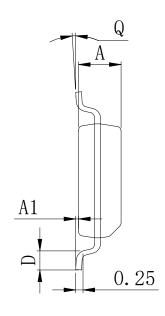

Voltage Follower Pulse Response (Small Signal)


Output Characteristics: Current Sourcing


Current Limiting

Large Signal Frequency Response


Output Characteristics: Current Sinking



Physical Dimensions

SOP-8

Dimensions In Millimeters(SOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	5.10	9 6.20	4.00	0.80	8°	0.45	1.27 BSC

ORDER INFORMATION

P/N	PKG	QTY
MSLM2904DT	SOP-8	2500

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.