

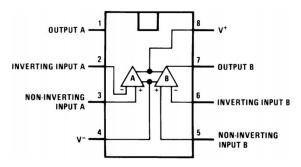
Dual Operational Amplifier

Features

- No Frequency Compensation Required.
- Short-Circuit Protection.
- Wide Common-Mode and Differential Voltage Ranges.
- Low-Power Consumption.
- No Latch Up When Input Common Mode Range is Exceeded.

Description

The LM1458 and the LM1558 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.


The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0° C to +70°C instead of -55°C to +125°C.

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
LM1458N	DIP-8	LM1458	TUBE	2000pcs/box
LM1458M/TR	SOP-8	LM1458	REEL	2500pcs/reel
LM1458MM/TR	MSOP-8	LM1458	REEL	3000pcs/reel
LM1558N	DIP-8	LM1558	TUBE	2000pcs/box
LM1558M/TR	SOP-8	LM1558	REEL	2500pcs/reel
LM1558MM/TR	MSOP-8	LM1558	REEL	3000pcs/reel

Connection Diagram

Dual-In-Line PackageDIP-8/SOP-8/MSOP-8

Absolute Maximum Ratings

Supply Voltage	
LM1558	±22V
LM1458	±18V
Power Dissipation	
LM1558M/LM1458M	500 mW
LM1558N/LM1458N	400 mW
Differential Input Voltage	±30V
Input Voltage	±15V
Output Short-Circuit Duration	Continuous
Operating Temperature Range	
LM1558	-55°C to +125°C
LM1458	0°C to +70°C
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	260°C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability	" for other methods of soldering surface
mount devices.	
ESD tolerance	300V

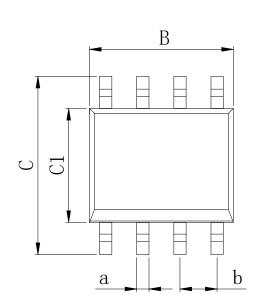
- 1. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
- 2. The maximum junction temperature of the LM1558 is 150°C, while that of the LM1458 is 100°C. For operating at elevated temperatures, devices in the LMC package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 20°C/W, junction to case. For the PDIP the device must be derated based on a thermal resistance of 187°C/W, junction to ambient.
- 3. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
- 4. Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

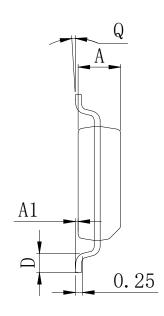
Electrical Characteristics (1)

Parameter	Conditions	ı	LM155	8	ı	Units			
i didilictor	Conditions	Min	Тур	Max	Min	Тур	Max	O mile	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0	mV	
Input Offset Current	T _A = 25°C		80	200		80	200	nA	
Input Bias Current	T _A = 25°C		200	500		200	500	nA	
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		МΩ	
Supply Current BothAmplifiers	$T_A = 25^{\circ}C$, $V_S = \pm 15V$		3.0	5.0		3.0	5.6	mA	
Large Signal Voltage Gain	$T_A = 25$ °C, $V_S = \pm 15$ V $V_{OUT} = \pm 10$ V, $R_L \ge 2$ k Ω	50	160		20	160		V/mV	
Input Offset Voltage	R _S ≤ 10 kΩ			6.0			7.5	mV	
Input Offset Current				500			300	nA	
Input Bias Current				1.5			8.0	μA	
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge k\Omega$	25			15			V/mV	
Output Voltage Swing	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$	±12	±14		±12	±14		V	
Output Voltage Swing	$R_L = 2 k\Omega$	±10	±13		±10	±13		V	
Input Voltage Range	V _S = ±15V	±12			±12			V	
Common ModeRejection Ratio	R _S ≤ 10 kΩ	70	90		70	90		dB	
Supply VoltageRejection Ratio	R _S ≤ 10 kΩ	77	96		77	96		dB	

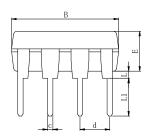
⁽¹⁾ These specifications apply for VS = ± 15 V and -55°C \leq TA \leq 125°C, unless otherwise specified. With the LM1458, however, all specifications are limited to 0°C \leq T_A \leq 70°C and VS = ± 15 V.

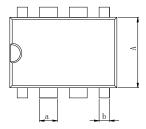
Schematic Diagram




Numbers in parentheses are pin numbers for amplifier B.

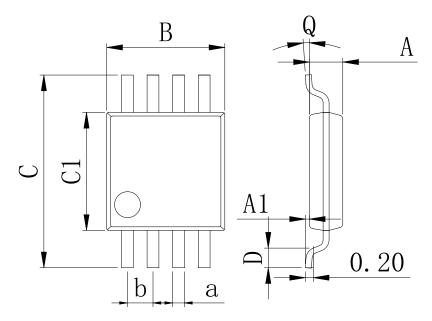
Physical Dimensions


SOP-8



Dimensions In Millimeters(SOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.21 000

DIP-8



Dimensions In Millimeters(DIP-8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 650

Physical Dimensions

MSOP-8

Dimensions In Millimeters(MSOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 650

Revision History

DATE	REVISION	PAGE
2015-10-3	New	1-8
2023-8-29	Update encapsulation type、Updated DIP-8 dimension	1、2、5
2024-11-5	Update Lead Temperature	2

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.