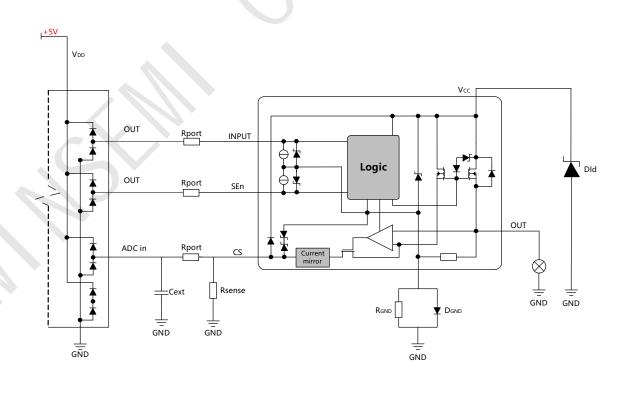


Features

- ◆ Operating voltage range: 4.5V to 28V
- Load current limitation
- Output short-circuit protection
- ♦ Standby current <1.0µA</p>
- On-state resistance Typ=145mΩ
- Thermal shutdown indication
- OFF-state open-load detection
- Overvoltage clamp
- Undervoltage protection
- Multiplexed analog feedback of load current with high precision proportional current mirror
- RoHS compliant and lead free

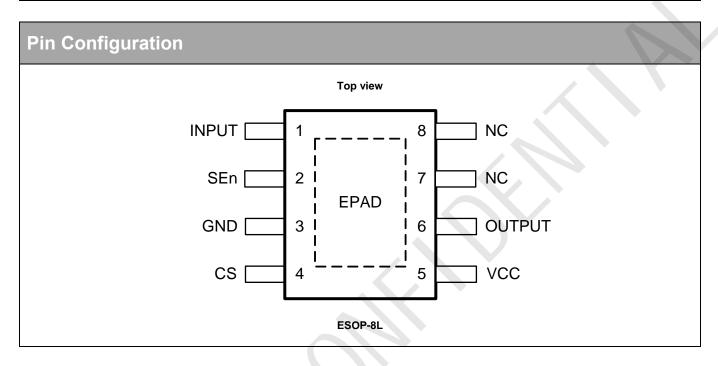

Application

- ◆ All types of automotive resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps

General Description

- WS7140S is single channel high-side drivers with current sense analog feedback for automotive applications, the devices are designed to drive 12 V automotive grounded loads through a 3 V and 5 V.
- WS7140S integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown.
- A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, in addition to the detection of overload and short circuit to ground, short to V_{cc} and OFF-state open-load.
- A sense enable pin allows OFF-state diagnosis to be disabled during the module low power mode as well as external sense resistor sharing among similar devices.
- WS7140S is available in ESOP-8L package.

Typical Application Circuit



WINSEMI MICROELECTRONICS WINSEMI WINSEMI

Ordering Information		
Package	Top Mark	Part No.
8-Pin ESOP-8L, Pb-free	WS7140S	WS7140S
0-FIII E30F-6L, FD-IIEE	XXYMXX	W37 1403

Pin Descr	iption	
Pin Name	Pin NO.	Pin Description
INPUT	1	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
SEn	2	Active high compatible with 3 V and 5 V CMOS outputs pin, it enables the CS diagnostic pin.
GND	3	Ground connection. Must be reverse battery protected by an external diode / resistor network.
CS	4	Multiplexed analog sense output pin; it delivers a current proportional to the load current.
V _{cc}	5	Battery connection.
OUTPUT	6	Power outputs.
NC	7/8	No connect.
EPAD	EPAD	Exposed pad for thermal dissipation enhancement. Must be soldered on the large ground plane on the PCB to increase the thermal dissipation. The pad must be connected to GND electrically.

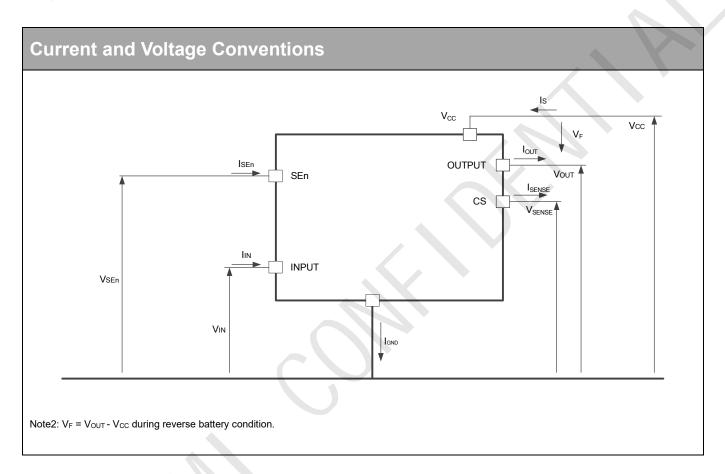

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 2/15 Α0

Table 1. Suggested connections for unused and not connected pins

Connection / pin	cs	OUTPUT	INPUT	SEn
Floating	Not allowed	Х	X	X
To ground	Through 1K resistor	Not allowed	Through 15K resistor	Through 15K resistor

Note1: X do not care.

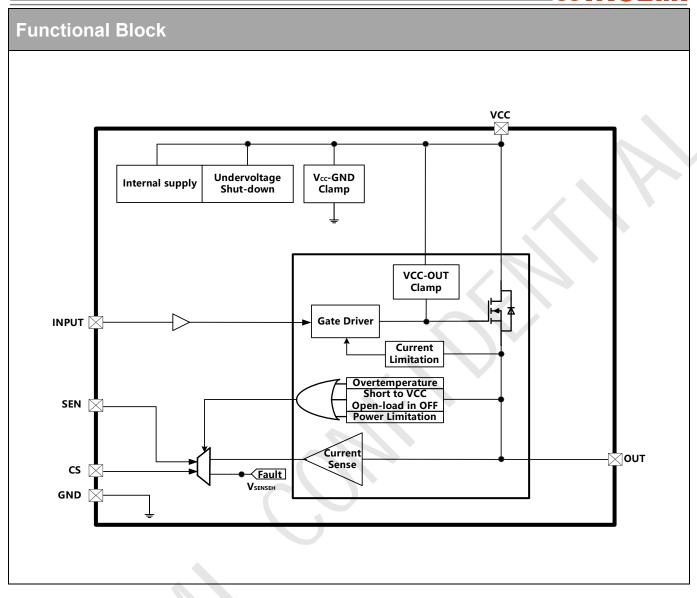
WINSEMI MICROELECTRONICS WINSEMI WINSEMI WINSEMI MICROELECTRONICS WINSEMI WI

Absolute Ma	aximum Ratings ^(Note3)		
Symbol	Parameter	Value	Unit
V _{cc}	DC supply voltage	35	V
-V _{cc}	Reverse DC supply voltage	0.3	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUTPUT DC output current	Internally limited	Α
V _{IN} , V _{SEn}	INPUT, SEn DC input voltage	-0.3 to 6.0	V
	CS pin DC output current	20	
ISENSE	CS pin DC output current in reverse	-20	mA
T _j	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	\mathbb{C}

Note3: Stressing the device above the rating listed in Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

ESD Suscep	tibility (Note4)		
Symbol	Parameter	Values	Unit
V _{ESD(HBM)} ³⁾	ESD Susceptibility all Pins (HBM)	±2	kV
V _{ESD(HBM)_} OUT	ESD Susceptibility OUT vs GND and V _{CC} connected (HBM)	±4	kV
V _{ESD(CDM)} ⁴⁾	ESD Susceptibility all Pins (CDM)	±500	V
V _{ESD(CDM)_CRN}	ESD Susceptibility Corner Pins (CDM) (pins 1, 4, 5, 8)	±750	V

Note4:


- 1) Not subject to production test specified by design.
- 2) Maximum digital input voltage to be considered for Latch-Up tests: 5.5 V.
- 3) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002.
- 4) ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011.

Thermal Resis	stance (Note5)		
Symbol	Parameter	Value	Unit
T _{JA}	Junction-to-Ambient Thermal Resistance	43	°C/W

Note5: According to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 A0 4/15 High-side driver with current sense analog feedback for automotive applications

WINSEMI MICROELECTRONICS WINSEMI WIN

Electrical Characteristics (Note6)

-7	-7 V V		60	α
	m W.V.	er	-1-	 (W)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	V _{CC}		4.5	13	28	٧
Under voltage shutdown	V _{USD}				4.5	V
Under voltage shutdown reset	V _{USDReset}				5	V
Under voltage shutdown hysteresis	$V_{USDhyst}$			0.3		V
		I _{OUT} =1A, T _j = 25°C		145		
On-state resistance	R_{ON}	I _{OUT} =1A, T _j =150°C			280	mΩ
		I _{OUT} =1A, V _{CC} =4.5V, T _j = 25°C			240	
Nominal load current	I _{L(NOM)}	T _A =25℃		2.0		Α
Nominal load current at T _A =85℃	I _{L(NOM)_85}	T _A =85℃, T _j < 150℃		1.8		Α
Inverse Current Capability	I _{L(INV)}	V _{CC} <v<sub>OUT, V_{IN}=5V, T_A=25℃</v<sub>		2.0		Α
N. dama with a		I _S =20 mA, 25°C < T _j < 150°C	35	42	48	
V _{CC} clamp voltage	V_{CLAMP}	I _S =20 mA, T _j =-40°C	33			\ \
Own by summer time to a three stay.		$V_{CC} = 13V$, $V_{IN}=V_{OUT}=V_{SEn}=0V$, $T_j = 25$ °C			1.0	μΑ
Supply current in standby at V_{CC} = 13 V	I _{STBY}	V _{CC} =13V, V _{IN} =V _{OUT} =V _{SEn} =0V, T _j = 125°C			3.0	μΑ
Standby mode blanking time	t _{D_STBY}	V_{CC} =13V, V_{IN} = V_{OUT} =0V, V_{SEn} =5 V to 0 V	100	450	900	us
Supply current	I _{S(ON)}	V _{CC} =13V, V _{SEn} =0V, V _{IN} =5V, I _{OUT} =0A		3	6	mA
Control stage current consumption in ON state	I _{GND(ON)}	V _{CC} =13V, V _{SEn} =5V, V _{IN} =5V, I _{OUT} =1A			6	mA
26.		V _{IN} =V _{OUT} =0V, V _{CC} =13V, T _j =25°C	0	0.05	0.5	μA
Off-state output current at V _{CC} =13V	$I_{L(off)}$	V _{IN} =V _{OUT} =0V, V _{CC} =13V, T _j =125°C	0		3.0	μA
Output - V _{CC} diode voltage at T _j =150°C	V_{F}	I _{OUT} =-0.2A, T _j =150°C			0.9	V

Switching/ V_{CC} = 13 V, -40°C < T_j< 150°C, unless otherwise specified

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Turn-on delay time at T _j = 25°C	T _{d (on)}	D =120	10	35	120	us
Turn-off delay time at T _j = 25°C	T _{d (off)}	R _L =13Ω	10	60	120	us
Turn-on voltage slope at T _j = 25°C	(dV _{OUT} /dt) _{on}	D -420	0.05	0.2	0.7	\//
Turn-off voltage slope at T _j = 25°C	(dV _{OUT} /dt) _{off}	R _L =13Ω	0.05	0.45	0.7	V/us
Differential pulse skew(t _{PHL} - t _{PLH})	t _{skew}	R _L =13Ω	-60	-10	60	us

Logic input (IN, SEn)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic input low level voltage	V _L				0.9	V
Low level logic input current	l <u>L</u>	V _{INL} =0.9V	0.5			uA
Logic input high level voltage	V _H		2.1		6.0	V
High level logic input current	I _H	V _{INH} =2.1V			12	uA
Logic input hysteresis voltage	V _(hyst)		0.1	0.3	0.7	V

Winsemi Microelectronics winsemi Microelectronics winsemi Microelectronics winsemi Microelectronics www.winsemi.com Tel : 0755-82506288 6/15 Fax: 0755-82506299 Α0

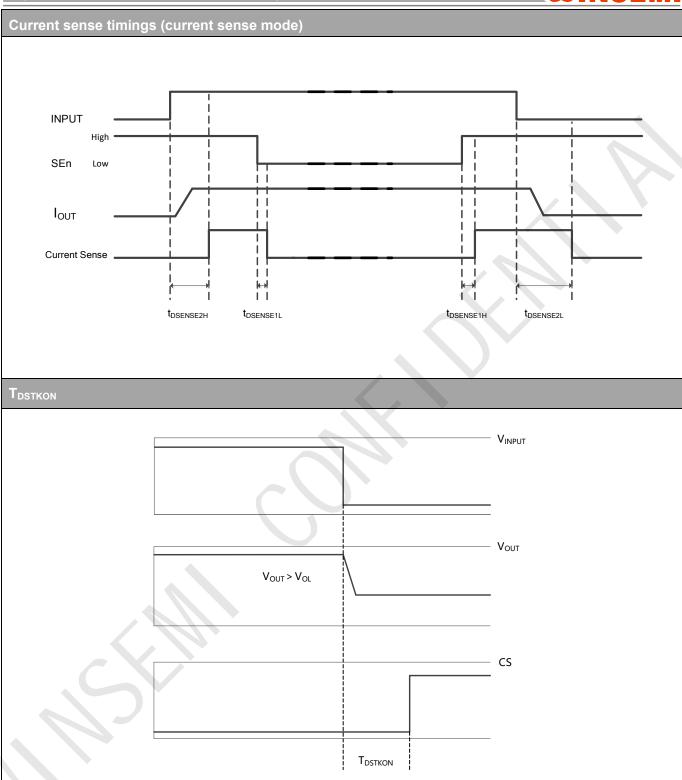
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
		V _{CC} =13V	4	6	10	
DC short circuit current	I _{LIMH}	4.5V < V _{CC} < 16V			10	А
Short circuit current during thermal cycling	I _{LIML}	V _{CC} =13V, T _R < T _j < T _{TSD}		2		
Shutdown temperature	T _{TSD}		150	175	200	°C
Thermal hysteresis	T _{HYST}			20		°C
Dynamic temperature	ΔT_{J_SD}	T _j = -40°C, V _{CC} =13V		60		°C
Current limit thermal hysteresis	T _R			40		$^{\circ}$
	.,	I_{OUT} =1A, L= 6mH, T_j = -40°C	V _{cc} -33			.,
Turn-off output voltage clamp	V_{DEMAG}	I _{OUT} =1A, L= 6mH, T _j =25°C to 150°C	V _{cc} -35	V _{CC} -38	V _{CC} -43	V
Current sense / 7 V < V _{cc} < 18 V	, -40°C < T _j ∙	< 150℃				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
		V _{SEn} =0V, I _{SENSE} =1mA		-15		
Current sense clamp voltage	V _{SENSE_CL}	V _{SEn} =0V, I _{SENSE} = -1mA		7		V
Current sense characteristics						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Uni
I _{OUT} /I _{SENSE}	K ₁	I _{OUT} =0.15A, V _{SEn} =5V	-50%	530	+50%	
I _{OUT} /I _{SENSE}	K ₂	I _{OUT} =0.7A, V _{SEn} =5V	-15%	520	+15%	
I _{OUT} /I _{SENSE}	K ₃	I _{OUT} =1A, V _{SEn} =5V	-10%	520	+10%	
I _{OUT} /I _{SENSE}	K ₄	I _{OUT} =2A, V _{SEn} =5V	-8%	520	+8%	
		CS disabled: V _{SEn} =0V	0		0.5	
0		CS disabled: -1V <v<sub>SENSE<5V</v<sub>	-0.5		3	uA
Current sense leakage current	I _{SENSE0}	CS enabled: V _{SEn} =5V, V _{IN} = 5V, I _{OUT} =0A	0		100	
		CS enabled: V _{SEn} =5V, V _{IN} = 0V, I _{OUT} =0A	0		2	
Output voltage for CS shutdown	V_{OUT_MSD}	V _{SEn} =5V, R _{SENSE} =2.7K, V _{IN} =5V, I _{OUT} =1A		5		V
CS saturation voltage	V _{SENSE_SAT}	$V_{CC}=7V, R_{SENSE}=2.7K, V_{SEn}=5V, V_{IN}=5V,$ $I_{OUT}=2A, T_j=150 \text{ °C}$	5			V
CS saturation current	I _{SENSE_SAT}	$V_{CC}=7V$, $V_{SENSE}=4V$, $V_{IN}=5V$, $V_{SEn}=5V$, $T_i=150^{\circ}C$	4			mA
Output saturation current	I _{OUT_SAT}	$V_{CC}=7V$, $V_{SENSE}=4V$, $V_{IN}=5V$, $V_{SEn}=5V$, $V_{i}=150~{}^{\circ}C$	2.2			Α
OFF-state diagnostic		<u> </u>				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Uni
OFF-state open load voltage detection threshold	V _{OL}	V _{SEn} =5V, V _{IN} =0V	2	3	4	V
OFF-state output sink current	I _{L(off2)}	$V_{IN} = 0 \text{ V}, V_{OUT} = V_{OL}, T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-450	-200	-80	uA
			ĺ			1

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : 0755-82506288 Fax: 0755-82506299 A0 7/15

WS7140S Product Description High-side driver with current sense analog feedback for automotive applications

Settling time for valid OFF-state open load diagnostic indication from rising edge of	$t_{D_OL_V}$	$V_{IN}=0V, V_{OUT}=4V, V_{SEn}=0V \text{ to } 5V$			150	us
SEn						
OFF-state diagnostic delay time from	4	V _{SEn} =5V,V _{IN} =0V, V _{OLIT} =0V to 4V		5	30	
rising edge of V_{OUT}	t _{D_VOL}	V _{SEn} =SV,V _{IN} =OV, V _{OUT} =OV to 4V		5	30	us
Fault diagnostic feedback						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense output voltage in fault	M	V _{CC} =13V, R _{SENSE} =1K, V _{IN} =0V,	5.0	6.0	6.6	V
condition	V_{SENSEH}	V _{SEn} = 5V, I _{OUT} =0A, V _{OUT} =4V	5.0	6.0	0.0	V
Current sense output current in fault	I _{SENSEH}	V _{CC} =13V, V _{SENSE} =5V	10	20	30	mA
condition	ISENSEH	VCC-13V, VSENSE -3V	10	20	3.0	ША
Current sense timings						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Parameter Current sense settling time from rising		Test Condition V _{IN} =5V, V _{SEn} =0V to 5V,	Min.	Тур.		
	Symbol t _{DSENSE1H}		Min.	Тур.	Max. 60	Unit us
Current sense settling time from rising	t _{DSENSE1H}	V_{IN} =5V, V_{SEn} =0V to 5V,	Min.		60	us
Current sense settling time from rising edge of SEn		V_{IN} =5V, V_{SEn} =0V to 5V, R_{SENSE} =1K, R_L =13 Ω	Min.	Тур. 5		
Current sense settling time from rising edge of SEn Current sense disable delay time from	t _{DSENSE1H}	$V_{\text{IN}} = 5\text{V}, \text{ V}_{\text{SEn}} = 0\text{V to 5V},$ $R_{\text{SENSE}} = 1\text{K}, \text{ R}_{\text{L}} = 13\Omega$ $V_{\text{IN}} = 5\text{V}, \text{ V}_{\text{SEn}} = 5\text{V to 0V},$	Min.	5	60	us
Current sense settling time from rising edge of SEn Current sense disable delay time from falling edge of SEn	t _{DSENSE1H}	$V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=0\text{V to 5V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=5\text{V to 0V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$	Min.		60	us
Current sense settling time from rising edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising	t _{DSENSE1H}	$V_{\text{IN}}=5\text{V}, \ V_{\text{SEn}}=0\text{V to 5V},$ $R_{\text{SENSE}}=1\text{K}, \ R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, \ V_{\text{SEn}}=5\text{V to 0V},$ $R_{\text{SENSE}}=1\text{K}, \ R_{\text{L}}=13\Omega$ $V_{\text{IN}}=0\text{V to 5V}, \ V_{\text{SEn}}=5\text{ V},$ $R_{\text{SENSE}}=1\text{K}, \ R_{\text{L}}=13\Omega$	Min.	5	60	us
Current sense settling time from rising edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT	t _{DSENSE1H}	$V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=0\text{V to 5V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=5\text{V to 0V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=0\text{V to 5V}, V_{\text{SEn}}=5\text{ V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, \text{V}_{\text{SEn}}=5\text{V}, \text{R}_{\text{SENSE}}=1\text{K},$	Min.	5	60	us
Current sense settling time from rising edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT Current sense settling time from rising	t _{DSENSE1H} t _{DSENSE1L}	$V_{IN}=5V,\ V_{SEn}=0V\ to\ 5V,$ $R_{SENSE}=1K,\ R_L=13\Omega$ $V_{IN}=5V,\ V_{SEn}=5V\ to\ 0V,$ $R_{SENSE}=1K,\ R_L=13\Omega$ $V_{IN}=0V\ to\ 5V,\ V_{SEn}=5\ V,$ $R_{SENSE}=1K,\ R_L=13\Omega$ $V_{IN}=5V,V_{SEn}=5V,R_{SENSE}=1K,$ $I_{SENSE}=90\%\ of\ I_{SENSEMAX},\ R_L=13\Omega$	Min.	5	60 20 150	us us us
Current sense settling time from rising edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT Current sense settling time from rising edge of Iout	t _{DSENSE1H} t _{DSENSE1L}	$V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=0\text{V to 5V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, V_{\text{SEn}}=5\text{V to 0V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=0\text{V to 5V}, V_{\text{SEn}}=5\text{ V},$ $R_{\text{SENSE}}=1\text{K}, R_{\text{L}}=13\Omega$ $V_{\text{IN}}=5\text{V}, \text{V}_{\text{SEn}}=5\text{V}, \text{R}_{\text{SENSE}}=1\text{K},$	Min.	5	60 20 150	us us us

Note6: Except for the special test instructions, all electrical parameters are tested under TA= +25°C. The minimum and maximum specification range of the specifications is guaranteed by the test, and the typical values are guaranteed by the design, test, or statistical analysis.


WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS 8/15 www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0

Switching Status and Timing Relationship Switching time and pulse skew VOUT twon twoff V_{cc} 80%Vcc OFF dVouт/dt **20%V**cc INPUT td(off) td(on) tpLH tpHL

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 9/15 Α0

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 10/15 Α0

Table 2. Truth table

.55									
Mode	Conditions	IN	SEn	OUT	Current sense	Comments			
Standby	All logic INs low	L	L	L	Hi-Z	Low quiescent current consumption			
Normal	Nominal load connected;	L	See Table 3	L	See Table 3				
	T _j < 150℃	Н	See Table 3	Н	See Table 3				
Overload	Overload or short to GND	L	See Table 3	L	See Table 3				
	causing: $T_{j} > T_{TSD} \text{ or }$ $\Delta T_{j} > \Delta T_{j_SD}$	Н		Н	See Table 3	Output cycles with temperature hysteresis			
Undervoltage	V _{CC} <v<sub>USD</v<sub>	Х	X	L	Hi-Z	Re-start when $V_{CC} > V_{USD} + \\ V_{USDhyst} \ (rising)$			
OFF-state diagnostics	Short to V _{CC}	L	See Table 3	Н	See Table 3				
	Open-Load	L	See Table 3	Н	See Table 3	External pull-up			
Negative output voltage	Inductive loads turn-off	L	See Table 3	<0	See Table 3				

Table 3. Current sense output

SEn	MUX Channel	Current sense output				
		Normal	Overload	OFF-state	Negative output	
L		Hi-Z				
Н	Channel diagnostic	$I_{SENSE} = I_{OUT}/K$	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 11/15 High-side driver with current sense analog feedback for automotive applications

Functional Description

Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175° C), it automatically switches off and the diagnostic indication is triggered.

Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

Diode (D_{GND}) in the ground line

A resistor (typ.R_{GND}=4.7K) should be inserted in parallel to D_{GND} if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. WS suggests to insert a resistor (R_{prot} =15K) in line both to prevent the micro-controller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of micro-controller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of micro-controller I/Os.

CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the current mirror of channel output current. The signal are routed through an analog multiplexer which is controlled by mean of SEn pin, according to the address map in CS multiplexer addressing Table.

Current monitor

When current mode is selected in the CS, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 12/15

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

High-side driver with current sense analog feedback for automotive applications

The current delivered by the current sense circuit, I_{SENSE} can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

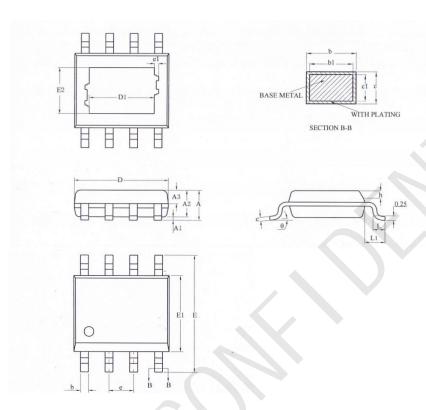
While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations.

Current provided by CS output: ISENSE = IOUT/K

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE}*I_{SENSE} = R_{SENSE}* I_{OUT}/K

Where:

Vsense is voltage measurable on Rsense resistor


 I_{SENSE} is current provided from CS pin in current output mode

WINSEMI MICROELECTRONICS WINSEMI WI

Package Outline

ESOP-8L

SYMBOL	MILLIMETER					
STWIBOL	MIN	NOM	MAX			
Α			1.65			
A1	0.05		0.15			
A2	1.30	1.40	1.50			
А3	0.60	0.65	0.70			
b	0.39		0.47			
b1	0.38	0.41	0.44			
С	0.20		0.24			
c1	0.19	0.20	0.21			
D	4.80	4.90	5.00			
D1	3.10REF					
E	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
E2	2.21REF					
е						
h	0.25		0.50			
L	0.50	0.60	0.80			
L1	1.05REF					
θ	0		8°			

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

Fax: 0755-82506299

WS7140S Product Description

CONTACT

Winsemi Microelectronics Co., Ltd.

ADD: Room 3101-3102, 31F, Building 8A, Shenzhen International Innovation Valley, Nanshan District, Shenzhen,

P.R. China.

Post Code: 518040 Tel: 86-0755-82506288 Fax: 86-0755-82506299 Website: www.winsemi.com

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 15/15