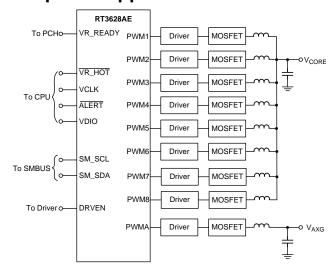


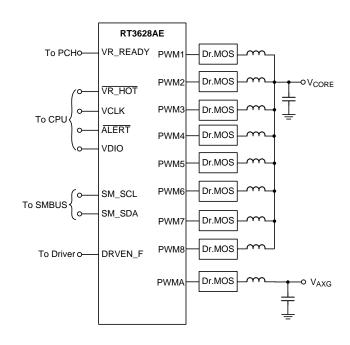
Dual Channel PWM Controller with I²C Interface Control for IMVP9.1 CPU Core Power Supply

General Description

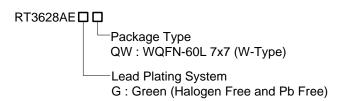
The RT3628AE is a synchronous buck controller which supports 2 output rails and can fully meet Intel IMVP9.1 requirements. The RT3628AE adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning). Based on the G-NAVPTM topology, the RT3628AE features a new generation of quick response mechanism (Adaptive Quick Response, AQR) to optimize AVP performance during load transient and reduce output capacitors. The RT3628AE integrates a high accuracy ADC for platform and function settings, such as ICCMAX, switching frequency, over-current threshold and AQR trigger level. The RT3628AE provides VR Ready and thermal indicators. It also features complete fault protection functions, including over-voltage (OV), under-voltage (UV), over-current (OC) and under-voltage lockout (UVLO). The RT3628AE supports several functions which can be set by I²C interface, like thermal balance adjustment, dynamic load line, voltage offset setting, fix VID setting, protection report, protection disable and Current/PSYS/Temperature report.

Applications


- IMVP9.1 Intel Core/AXG Supply
- Desktop and Notebook Computer
- AVP Step-Down Converter


Features

- Intel IMVP9.1 Compliant
- 8/7/6/5/4 Phase (CORE VR) + 1 Phase (AXG VR)
 PWM Controller
- G-NAVPTM (Green Native Adaptive Voltage Positioning) Topology
- 0.5% DAC Accuracy
- Differential Remote Voltage Sensing
- Built-in ADC for Platform Programming and Reporting
- Accurate Current Balance
- Diode Emulation Mode at Light Load Condition
- Fast Transient Response : Adaptive Quick Response (AQR)
- VR Ready Indicator
- OVP, OCP, UVP with Flag
- . Switching Frequency Setting
- Slew Rate Setting
- DVID Enhancement
- Acoustic Noise Suppression
- Zero Load-line
- Rail Disable
- Standard I²C Protocol Interface
 - ▶ Thermal Balance Adjustment
 - **▶** Dynamic Load Line Setting
 - ▶ Voltage Offset Setting
 - ► Fixed VID Setting
 - ▶ Protection Report and Protection Disable
 - ► Current/PSYS/Temperature Report
- Soldering Good Detection
- Small 60-Lead WQFN Package



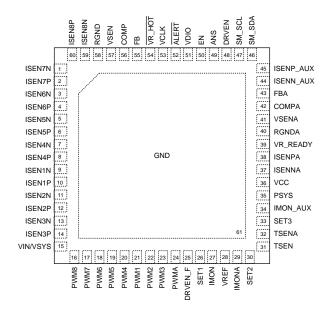
Simplified Application Circuit

Ordering Information

Note:

Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.


Marking Information

RT3628AEGQW: Product Number YMDNN: Date Code

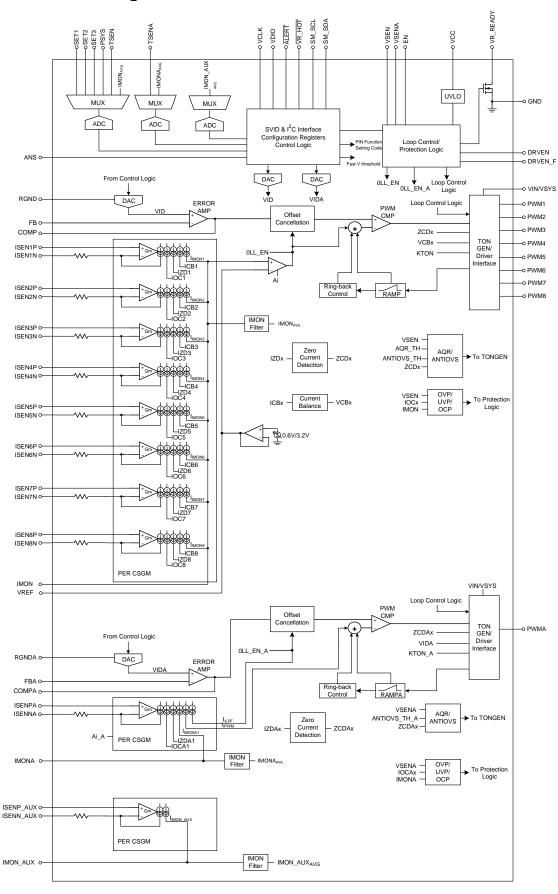
Pin Configuration

(TOP VIEW)

WQFN-60L7x7

Functional Pin Description

Pin No.	Pin Name	Pin Function
9, 11, 13, 7, 5, 3, 1, 59	ISEN[1:8]N	Negative inputs of current-sense amplifier of multi-phase CORE rail VR channel 1, 2, 3, 4, 5, 6, 7 and 8.
10, 12, 14, 8, 6, 4, 2, 60	ISEN[1:8]P	Positive inputs of current-sense amplifier of multi-phase CORE rail VR channel 1, 2, 3, 4, 5, 6, 7 and 8.
15	VIN/VSYS	Input voltage pin. Connect a low pass filter which time constant is at the switching frequency to this pin for setting on-time.
21, 22, 23, 20, 19, 18, 17, 16	PWM[1:8]	PWM output for CORE rail VR channel 1, 2, 3, 4, 5, 6, 7 and 8. The tri-state window = 1.6V to 2.2V.
24	PWMA	PWM output for AXG rail VR. The tri-state window = 1.6V to 2.2V.
25	DRVEN_F	External driver mode control and the output high level is VCC. As received PS4 command, this pin is in floating state. For discrete power MOSFET driver application, connecting $100k\Omega$ resister to GND is required.
26	SET1	Function setting for DVID slew rate, I ² C address, CORE rail on-time (switch frequency), VR_HOT assertion during DVID current limiting, and AUX rail ICCMAX. Connect the SET1 to 5V and turn on the EN pin, if the soldering is good, both rails outputs are VBOOT.
27	IMON	CORE rail VR current monitor output for controller. This pin outputs a current proportional to the output current.
28	VREF	Voltage source output. During Controller internal setting period, it outputs 3.2V. In normal operation, it outputs 0.6V to offset IMON, IMONA and IMON_AUX signal. While controller shuts down or sets all rail in PS4, voltage source shuts down. An exact $0.47\mu F$ capacitor and 3.9Ω resistor from this pin to GND are required for stability.
29	IMONA	AXG rail VR current monitor output for controller. This pin outputs a current proportional to the output current.
30	SET2	Function setting for CORE rail adaptive ramp trigger level, ICCMAX of AXG rail, dual phases function and AXG rail on-time (switch frequency).
31	TSEN	Thermal sense input for CORE rail. Function setting for CORE rail ZCD threshold, CORE and AXG rail current gain (Ai).
32	TSENA	Thermal sense input for AXG rail. Function setting for CORE and AXG rail sum-OC threshold, AXG rail ZCD threshold and CORE rail adaptive quick response threshold.
33	SET3	Function setting for CORE and AXG rail DAC step, CORE rail ICCMAX, CORE and AXG rail VBOOT (boot voltage depends on SET3 VID table setting), and AXG rail adaptive ramp trigger level.
34	IMON_AUX	AUX rail VR current monitor output for controller. This pin outputs a current proportional to the output current.
35	PSYS	System input power monitor. Place the PSYS resistor as close to the IC as possible. The input power domain (SVID Address 0x0Dh) rail can be disabled by pulling the voltage at the PSYS pin > (VCC – 0.5V). RT3628AE will reject any commands to the input power domain rail. If the platform doesn't support PSYS function, It is recommended to connect PSYS pin to GND to avoid affecting system performance.
36	VCC	Controller power supply. Connect this pin to 5V and place an RC filter, R = 1Ω and C = 2.2μ F. The decoupling capacitor should be placed as close to PWM controller as possible. The R is recommended as 0603 size.


Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

Pin No.	Pin Name	Pin Function
37	ISENNA	Negative inputs of current-sense amplifier of AXG rail VR.
38	ISENPA	Positive inputs of current-sense amplifier of AXG rail VR.
39	VR_READY	VR ready indicator.
40	RGNDA	Return ground for AXG rail VR. This pin is the negative node of the differential remote sense.
41	VSENA	AXG rail VR voltage sense input. This pin is connected to the terminal of AXG rail VR output voltage.
42	СОМРА	AXG rail VR error amplifier output pin.
43	FBA	Negative input of the error amplifier. This pin is for AXG rail VR output voltage feedback to controller.
44	ISENN_AUX	Negative inputs of current-sense amplifier of AUX rail VR.
45	ISENP_AUX	Positive inputs of current-sense amplifier of AUX rail VR.
46	SM_SDA	Data line for the I ² C interface.
47	SM_SCL	Clock input for the I ² C interface.
48	DRVEN	External driver mode control and the output high level is VCC. As the PS4 command is received, this pin is in low state.
49	ANS	Acoustic noise suppression function setting. When pulling to VCC, this function can be enabled. This pin is not allowed to be floating.
50	EN	Controller enable pin. A logic high signal enables the controller. Don't drive this pin voltage higher than $V_{CC}-1.2V$ at any time.
51	VDIO	VR and CPU data transmission interface.
52	ALERT	SVID alert. (Active low)
53	VCLK	Synchronous clock from the CPU.
54	VR_HOT	Thermal monitor output. (Active low).
55	FB	Negative input of the error amplifier. This pin is for CORE rail VR output voltage feedback to controller.
56	COMP	CORE rail VR error amplifier output pin.
57	VSEN	CORE rail VR voltage sense input. This pin is connected to the terminal of CORE rail VR output voltage.
58	RGND	Return ground for CORE rail VR. This pin is the negative node of the differential remote sense.
61 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND with enough VIA numbers for maximum power dissipation.

Functional Block Diagram

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Operation

G-NAVPTM Control Mode

The RT3628AE adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology. It is derived from current mode constant on-time control with finite DC gain of error amplifier and DC offset cancellation. The topology can achieve easy load-line design and provide high DC accuracy and fast transient response. When the sensed current signal reaches the sensed voltage signal, the RT3628AE generates a PWM pulse to achieve loop modulation. The left part of Figure 1 shows the basic G-NAVPTM behavior waveforms. The COMP signal is the sensed voltage, that is inverted and amplified signal of output voltage. While current loading is increasing, referring to the right part of Figure 1, the CCOMP rises due to output voltage droop. Then, the rising COMP forces PWM to turn-on earlier and closer. While inductor current reaches loading current, the COMP enters another steady state of higher voltage and the corresponding output voltage is in the steady state of lower voltage. The loadline, voltage drooping which is proportional to loading current, is achieved.

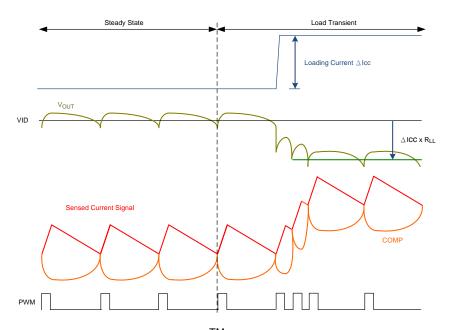


Figure 1. G-NAVPTM Behavior Waveform

I²C and SVID Interface/Control **Logic/Configuration Registers**

The SVID Interface receives or transmits SVID signal with CPU. The I²C Interface receives or transmits I²C signal with SMBus. The control logic executes command (Read/Write registers, SetVID, SetPS) and sends related signals to control VR. The configuration registers include function setting registers and CPU required registers.

IMON Filter

The IMON Filter is used to average current signal by analog low-pass filter. It outputs IMON_{AVG}, IMONAAVG and IMON_AUXAVG to the MUX of ADC for current reporting.

MUX and ADC

The MUX supports the inputs for SET1, SET2, SET3, TSEN, TSENA , PSYS, IMONAVG, IMONAVG and IMON_AUXAVG. The ADC converts these analog signals to digital codes for reporting or function settings.

UVLO

The UVLO Detects the VCC voltage. As VCC exceeds the threshold, the controller issues POR = high and waits EN. After both POR and for EN are ready, the controller is enabled.

Loop Control/Protection Logic

It controls power-on/off sequence, protections, power state transition and PWM sequence.

DAC

The DAC generates a reference VID voltage according to the VID code sent by Control Logic. According to SetVID command, Control Logic dynamically changes VID voltage to the target voltage with required slew rate.

ERROR AMP

The ERROR AMP inverts and amplifies the difference between output voltage and VID with externally set finite DC gain. The output signal is COMP for PWM triggers.

PER CSGM

The PER CSGM senses per-phase inductor current. The outputs are used for loop response, current balance, zero current detection, current reporting and over-current protection.

SUM CSGM

The SUM CSGM senses total inductor current with RIMON gain adjustment. SUM CSGM output current ratio can also be set by PIN-SETTING(Ai/Ai_A). It helps wide application range of DCR and load-line. SUM CSGM output is used for PWM trigger.

RAMP

The RAMP helps loop stability and transient response.

PWM CMP

The PWM comparator compares COMP signal and sum current signal based on RAMP to trigger PWM.

Offset Cancellation

The offset cancellation cancels the current signal/comp voltage ripple issue to control output voltage accuracy.

Current Balance

Per-phase current sense signal is compared with sensed average current. The comparison result adjusts each phase PWM width to optimize current and thermal balance.

Zero Current Detection

The Zero Current Detection detects whether each phase current crosses zero current. The result is used for DEM power saving and overshoot reduction (anti-overshoot function).

AQR/ANTIOVS

The AQR is a new generation of quick response mechanism (Adaptive Quick Response, AQR) which detects loading rising edge and allows all PWMs to turn on. The PWM pulse width triggered by AQR is adaptive to loading level. The AQR trigger level can be set by PIN-SETTING. ANTIOVS can help overshoot reduction which detects loading falling edge and forces all PWMs in tri-state until the zero current is detected.

TONGEN/Driver Interface

The PWM comparator output signal triggers TONGEN to generate PWM pulse. The PWM sequence is controlled by Loop Control. The PWM pulse width is determined by frequency setting, current balance output and Adaptive Quick Response (AQR) settings. Once AQR is triggered, VR allows all PWMs to turn on at the same time. Driver interface provides high/low/tri-state to drive external driver. In power saving mode, driver interface force PWM in tri-state to turn off high-side and low-side power MOSFETs according to zero current detection output. In addition, the PWM state is controlled by protection logic. Different protections force required PWM state.

OVP/UVP/OCP

Over-voltage protection / under-voltage protection / over-current protection.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Absolute Maximum Ratings (Note 1)

• VIN/VSYS to GND	0.3V to 28V
• VCC to GND	0.3V to 6.5V
• RGND to GND	0.3V to 0.3V
• Other Pins	0.3V to 6.8V
 Power Dissipation, P_D @ T_A = 25°C 	
WQFN-60L 7x7	3.92W
Package Thermal Resistance (Note 2)	
WQFN-60L 7x7, θ JA	25.5°C/W
WQFN-60L 7x7, θ JC	6.5°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 4)	
VIN/VSYS to GND	4.5V to 24V
Supply Input Voltage, VCC	4.75V to 5.25V
Junction Temperature Range	10°C to 105°C

Electrical Characteristics

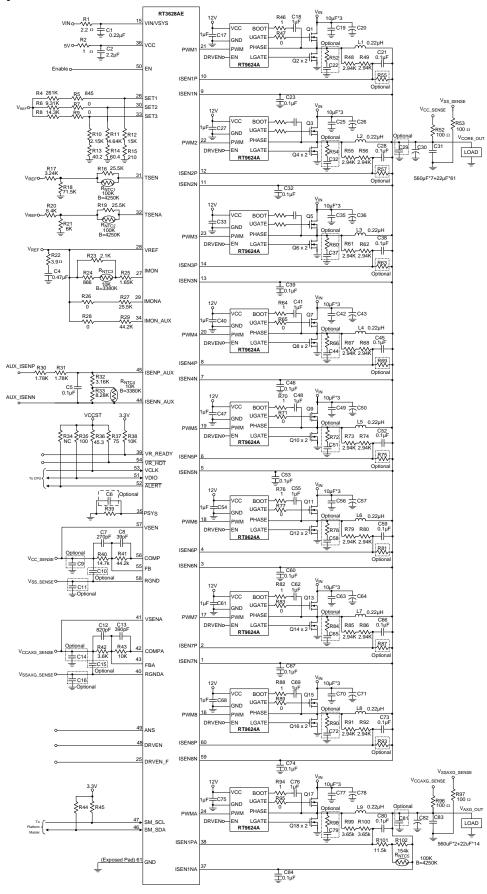
 $(VCC = 5V, typical values are referenced to T_J = 25^{\circ}C, Min and Max values are referenced to T_J from <math>-10^{\circ}C$ to $105^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Symbol Test Conditions		Тур	Max	Unit	
Supply Input							
Controller Supply Current	Ivcc	VCC = 5V, EN = H, no switching		13		mA	
Controller Supply Current under PS4 all call	IVCC_PS4	VCC = 5V, EN = H, PS4 all call		85		μΑ	
VR Shutdown Current	Ishdn	VCC = 5V, EN = L			15	μΑ	
Per Phase Current Sense An	nplifier						
Recommended Input Voltage Range for High Accuracy	VIN_PCS	Recommend Input Voltage Range for High Accuracy	-10		80	mV	
Current Sense Gain	GAIN_PCS		0.97	1	1.03	V/V	
Current Sense Resistor	R _{INT}			1		kΩ	
TON Setting							
ON-Time Setting	Ton	VIN = 12V, VID = 1.8V, freq. = 350kHz		428		ns	

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Protections			•				
VCC POR		V _{POR}				4.45	V
VCC Under-Voltage Lockout (UVLO)		Vuvlo				4.3	V
Over-Voltage P	roduction	V _{ROVP}	Respect to VID voltage VID > 1V	VID + 300	VID + 350	VID + 400	mV
Triresnoid		V _{AOVP}	VID ≤ 1V	1.325	1.35	1.375	V
\ / - It	for DAC = VID1	VPRE-OVP	Active while VRON recycle or PS4 exit and	2.42	2.45	2.48	V
Threshold	for DAC = VID2	TREOVI	until PWM turn-on	2.62	2.65	2.68	V
Debounce Time	of all OVP	DT _{OVP}			0.5		μS
Under Voltage I Threshold (UVF		V _U VP	Active while VID settle and non-DACOFF	-700	-650	-600	mV
Debounce Time	of UVP	DT _{UVP}			3		μS
EN and VR_RE	ADY						
VR Enable Thre	eshold	V _{IH} _EN		0.7			V
VR Disable Thre	eshold	VIL_EN				0.3	V
Leakage Current of EN		ILEAK_EN		-1		1	μΑ
Output Voltage Low of VR_READY		Vol_vr_ready	I _{VR_READY} = 10mA		1	0.13	V
Acoustic Noise	e Suppression	(ANS)					
ANS Enable Th	reshold	V _{TH} _H_ANS	VCC-V _{ANS} < 0.5V, ANS is enabled			0.5	V
ANS Disable Th	nreshold	V _{TH_L_} ANS	VCC-V _{ANS} > 1V, ANS is disabled	1			V
Serial VID and	VR_HOT						
SVID VCLK / VI High Threshold	•	VIH_SVID		0.65			V
SVID VCLK / VI Threshold	DIO Logic Low	VIL_SVID				0.45	V
Leakage Currer VDIO / ALERT		ILEAK_SVID	$ VDIO = H, \overline{ALERT} = H, \\ \overline{VR_HOT} = H $	-1	1	1	μΑ
		Vol_vdio	I _{VDIO} = 10mA				
Output Voltage		Vol_alert	I _{ALERT} = 10mA	0.04		0.13	V
ALEKI/ VR_F	ALERT/ VR_HOT		$I_{\overline{VR}_{HOT}} = 10\text{mA}$				
I ² C Interface		ı		1			
SM_SCL / SM_ High Threshold		V _{IH} _I2C		1			V
SM_SCL / SM_ Low Threshold	SDA Logic	VIL_I2C				0.6	V
Leakage Currer / SM_SDA	nt of SM_SCL	I _{LEAK_I2C}	SM_SDA = H	-1		1	μΑ

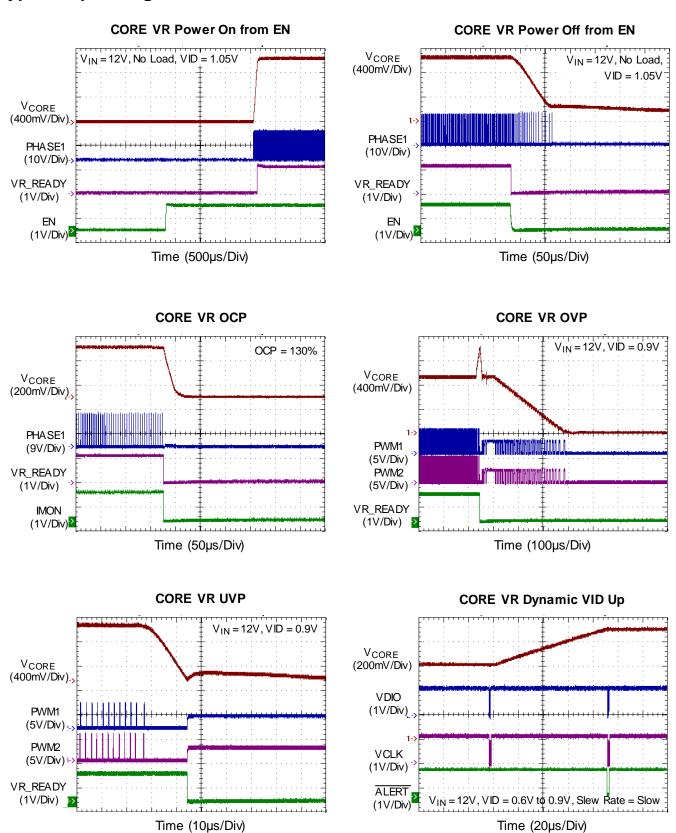
Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Active Low Voltage of SM_SDA	V _{SM_SDA}	I _{SM_SDA} = 10mA	0.04		0.13	V
SCL Clock Rate	f _{SCL}				400	kHz
Hold Time (Repeated) Start Condition. After this Period, the First Clock Pulse is Generated	thd;sta		0.6			μS
Low Period of the SCL Clock	t _{LOW}		1.3			μS
High Period of the SCL Clock	thigh		0.6			μS
Set-Up Time for a Repeated START Condition	t _{SU;STA}		0.6			μS
Data Hold Time	t _{HD;DAT}		0		0.9	μS
Data Set-Up Time	t _{SU;DAT}		100			μS
Set-Up Time for STOP Condition	tsu;sto		0.6			μS
Bus Free Time Between a STOP and START Condition	t _{BUF}		1.3			μS
Rising Time of both SDA and SCL Signals	t _R		20		300	μS
Falling Time of both SDA and SCL Signals	t _F		20		300	μS
DIMON			•			
	dvimon iccmax	VIMON – VREF = 0.4V ; VREF = 0.6V		255		Decimal
Digital IMON Set	dvimona iccmax	VIMONA – VREF = 0.4V ; VREF = 0.6V		255		Decimal
	dvimon_aux iccmax	VIMON_AUX - VREF =1.6V; VREF = 0.6V		255		Decimal
Thermal Monitor						
TSEN Voltage Threshold to Pull Low $\overline{\text{VR_HOT}}$ (Asserts $\overline{\text{VR_HOT}}$)	VTSEN_VR_HOT_L	Within the range, VR_HOT = L. (R 1% variation is considered)		0.600	0.620	V
TSEN Voltage Threshold to Pull High VR_HOT (De-Asserts VR_HOT)	VTSEN_VR_HOT_H	Within the range, VR_HOT = H (R 1% variation is considered)	0.608	0.628	0.649	V
TSEN Rises to Pull Low ALERT	VTSEN_ Status_H	ALERT = L	0.608	0.628	0.649	V
TSEN Down to Pull Low ALERT	VTSEN_ Status_L	ALERT = L	0.637	0.658	0.680	V
I _{TSEN}	1	1		1		
Current Source from TSEN	I _{TSEN}	V _{TSEN} = 1.6V	78.8	80	81.2	μА

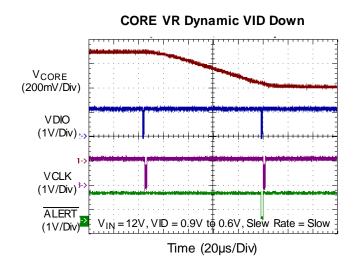


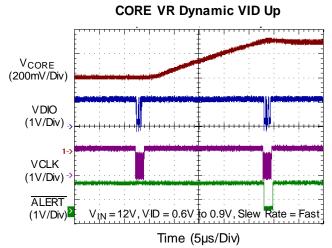
Parameter	Symbol Test Conditions		Min	Тур	Max	Unit	
PSYS							
Digital IMON Reporting Code for PMAX	D _{PSYS_PMAX}	V _{PSYS} = 1.6V		255		Decimal	
VSYS							
\(\O\)\(\O\)	Vova zu	As V _{IN} = 24V		255		Dooimal	
VSYS Input Voltage	Vsys_th	As V _{IN} = 12V		128		Decimal	
PWM Driving Capability							
PWM Source Resistance	RPWM_SRC			30		Ω	
PWM Sink Resistance	RPWM_SNK			10		Ω	
osc							
Oscillator Frequency 20kHz			-5		5	%	
V _{REF}							
VREF Voltage	Vvref	Normal operation	0.59	0.6	0.61	V	

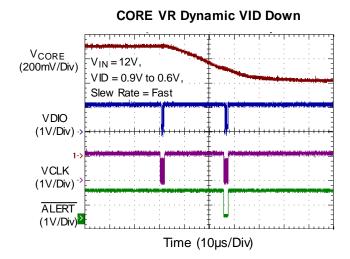
- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}\text{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

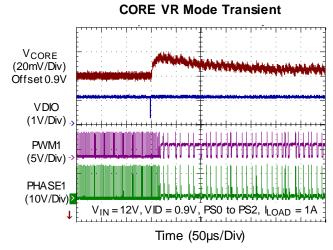


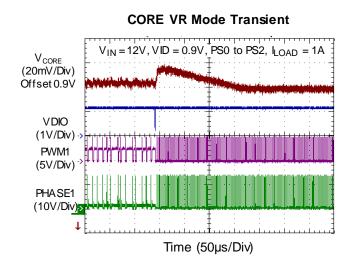
Typical Application Circuit

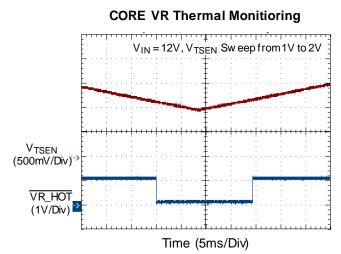


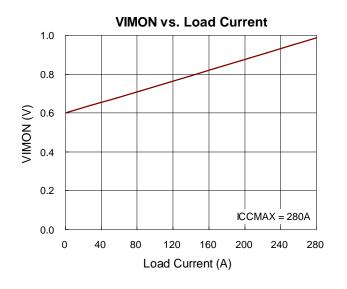

Typical Operating Characteristics

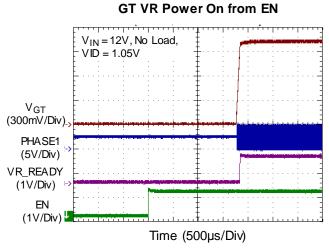


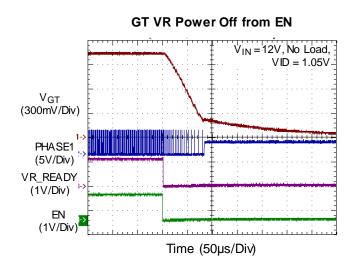

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

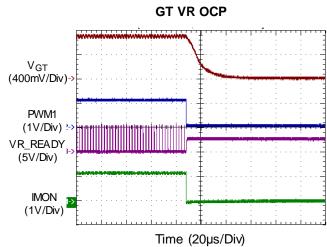


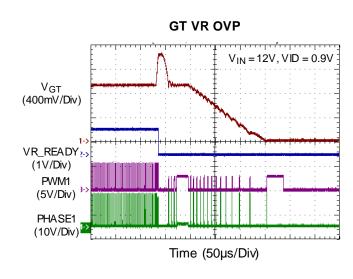


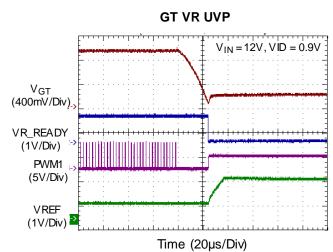


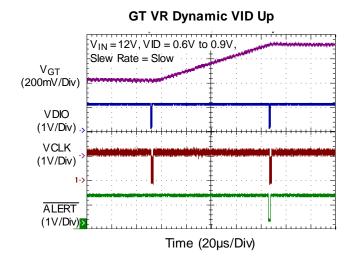


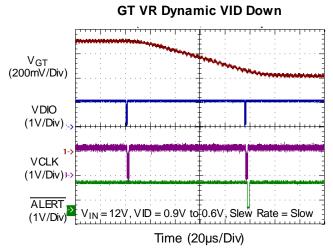


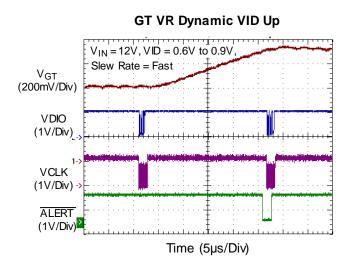


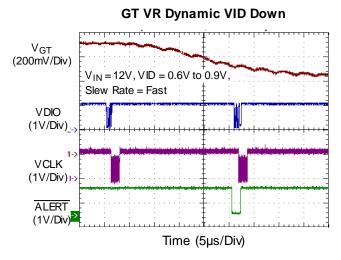


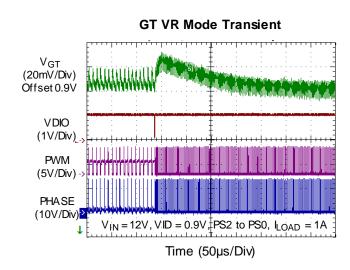


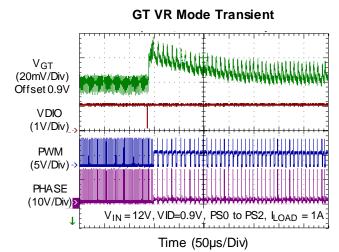


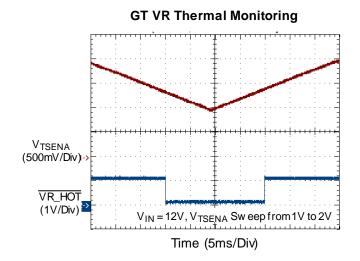


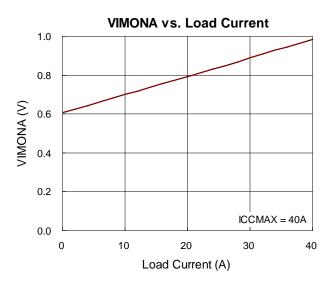



Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation









Application Information

The RT3628AE includes two voltage rails: an 8/7/6/5/4 phase synchronous buck controller, the CORE VR and a 1 phase synchronous buck controller. **AXG** VR. designed the to meet Intel IMVP9.1compatible CPUs specification with a serial SVID control interface. The controller uses an ADC to implement all kinds of settings to save total pin number for easy use and increasing PCB space utilization. The RT3628AE is used in desktop computers or notebook computers.

Power-ON Sequence

In order to confirm sufficient power supply for proper operation, the VR triggers UVLO if VCC voltage drops below 4.3V (max). The UVLO protection shuts down controller and forces high-side MOSFET and low-side

MOSFET off. When VCC > 4.45, the RT3628AE issues POR=high and waits for EN signal. After POR = high and EN > 0.7V, the controller powers on (Chip Enable = H) and starts VR internal settings, which include internal circuit offset correction and function (PIN-SETTING). Users multi-functions through SETx, TSEN and TSENA pins. Figure 2 shows the typical timing of controller power-on. The pull-high power of EN pin is recommended as 1.05V, the same power as SVID interface. That can ensure the SVID power is ready while EN=H. Driver power (PVCC) is strongly suggested to be ready after VCC. This can prevent current flow back to VCC from PVCC through PWMx pin or DRVEN pin.

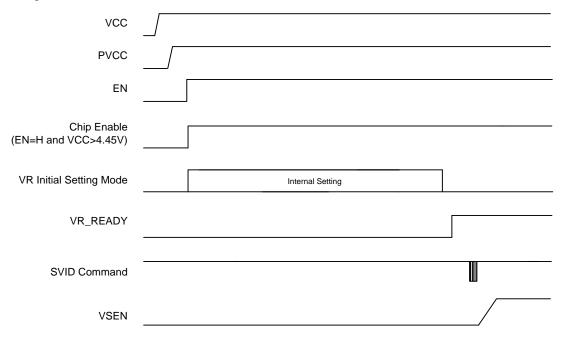


Figure 2. Typical Timing of Controller Power-ON

Maximum Active Phases Number Setting

The number of active phases is determined by the ISENxP voltages. The detection is only active and latched at Chip Enable rising edge (EN = H and VCC > 4.45V). While Voltage at ISENxP > (VCC - 0.5V), maximum active phase number is (x-1). For example, pulling ISEN8P to VCC programs a 7-phase operation, while pulling ISEN8P and ISEN7P to VCC programs a

6-phase operation. The unused ISENxN pins are recommended to connect to VCC and the unused PWM pins can be floating. Figure 3 is a 7-phase operation voltage example, the pull-up ISEN8P/ISEN8N should be connected together with VCC of RT3628AE and the pull-up resistor should be 10kΩ.

DS3628AE-00

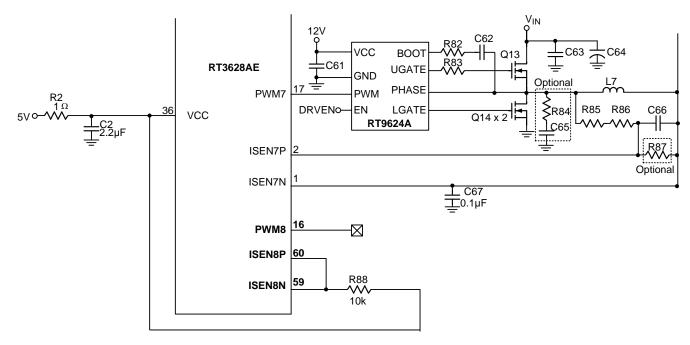


Figure 3. 7-Phase Operation Setting

Rail Disable

Pulling ISEN1P > (VCC – 0.5V) to programs CORE rail disabled. The unused ISENxN pins are recommended to connect to VCC and the unused PWM pins can be floating. Pulling ISENPA > (VCC – 0.5V) to programs AXG rail disabled. The unused ISENNA pins are recommended to connect to VCC and the unused PWMA pins can be floating. Pulling the PSYS pin to VCC programs input power domain rail disable. The RT3628AE will reject any commands to the input power domain rail. The unused ISENP_AUX pin and ISENN_AUX pin are recommended to connect to GND.

Acoustic Noise Suppression

The RT3628AE supports acoustic noise suppression function for reducing acoustic noise induced by piezoelectric effect from MLCC. As output voltage transition occurs, especially in dynamic VID, the vibrating MLCC produces acoustic noise if the vibrating frequency falls into audible band and the noise level is related to the output voltage transition amplitude $\Delta V.$ Therefore, the RT3628AE adapts acoustic noise suppression function which is enabled by pulling ANS pin to VCC to reduce ΔV when SetVID down and SetVID Decay down in DEM mode.

PIN-SETTING Mechanism

The RT3628AE provides multiple parameters for platform setting and BOM optimization. These parameters can be set through SETx and TSEN pins. The RT3628AE adopts two-step PIN-SETTING mechanism to maximize IC pin utilization. Figure 4 illustrates this operating mechanism for SETx.

The Vdivider and V_{IXR} can be represented as follows:

$$\begin{aligned} &V_{divider} = \frac{R2}{R1 + R2} \times 3.2V \\ &V_{IXR} = \frac{R2}{R1 + R2} \times 3.2V + 80\mu A \times \frac{R1 \times R2}{R1 + R2} \end{aligned}$$

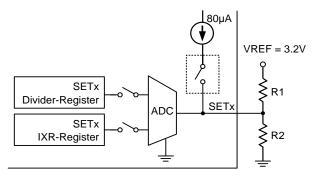


Figure 4. Operating Mechanism for SETx

The Divider-Register and the IXR-Register set the specified functions. All setting functions are summarized in Table 1.

Table 1. Summary of Pin Setting Functions

Pin	Register	Function Setting	y of Pin Setting Ful Symbol	Description
	Divider Register[4]	DVID Fast slew rate	DVID fast_SR[4]	DVID fast_SR[4] = 0 : Fast_S DVID fast_SR[4] = 1 : Fast_P
	Divider Register[3]	I ² C Address setting	I2C_ADDR[3]	I2C_ADDR[3] = 0 : 0x20h I2C_ADDR[3] = 1 : 0x21h
SET1	Divider Register[2:0]	CORE VR TON width setting (Switching frequency)	KTON[2:0]	According to required frequency, select adaptive KTON parameter.
	IXR Register[4]	VR_HOT assertion during DVID current limit	VR_HOT _DVID[4]	$\frac{\overline{VR_HOT}_DVID[4] = 0, Disable}{VR_HOT_DVID[4] = 1, Enable}$
	IXR Register[3:1]	AUX VR ICCMAX	ICCMAX_AUX[3:1]	According to Platform, set AUX VR's corrsponding ICCMAX
	Divider Register[4:3]	CORE VR Adaptive RAMP(AR) Trigger level in PS1	AR_TH[4:3]	AR for loop response speed-up of loading rising edge, set trigger level in PS1.
	Divider Register[2:0]	AXG VR ICCMAX	ICCMAX_A[2:0]	According to Platform, set AXG VR's corrsponding ICCMAX
SET2	IXR Register[4]	Dual phases function	Dual_Phases[4]	Dual_Phases[4] = 0 : Each PWM output drives one phase. Dual_Phases[4] = 1 : Each PWM output drives two phases.
	IXR AXG VR TON width setting (switching frequency)		KTON_A[3:1]	According to required frequency, select adaptive KTON_A parameter.
	Divider Register[4]	Selectable VID table	VIDT[4]	VIDT[4] = 0 : VID1 (0V ~ 1.52V) VIDT[4] = 1 : VID2 (0V ~ 2.74V)
	Divider Register[3:0]	Core VR ICCMAX	ICCMAX[3:0]	According to Platform, set CORE VR's corresponding ICCMAX
SET3	IXR Register[4]	Setting VBOOT of CORE rail	VBOOT[4]	VBOOT[4] = 0 : 0V VBOOT[4] = 1 : non-zero
	IXR Register[3]	Setting VBOOT of AXG rail	VBOOT_A[3]	VBOOT_A[3] = 0 : 0V VBOOT_A[3] = 1 : non-zero
	IXR Register[2:1]	AXG VR Adaptive RAMP(AR) Trigger level	AR_TH_A[2:1]	AR for loop response speed-up of loading rising edge, set trigger level.
	Divider Register[5]	CORE VR Zero Current Detection Threshold	ZCD_TH[5]	Detect whether each phase current crosses zero current. Set trigger level.
TSEN	Divider Register[4:3]	AXG VR Current Gain	Ai_A[4:3]	Current gain setting
	Divider Register[2:1]	CORE VR Current Gain	Ai[2:1]	Current gain setting
	Divider Register[5]	Core & AXG VR sum OCP ratio	SUM_OC[5]	SUM_OC[5] = 0 : 130% x ICCMAX SUM_OC[5] = 1 : 150% x ICCMAX
TSENA	Divider Register[4]	AXG VR Zero Current Detection Threshold	ZCD_TH_A[4]	Detect whether each phase current crosses zero current. Set trigger level.
	Divider Register[3:1]	CORE VR Adaptive Quick Response(AQR) trigger level	AQR_TH[3:1]	AQR for loop response speed-up of loading rising edge. Set trigger level.

Referring to PIN-SETTING tables Table 2 to 6, users can search corresponding Vdivider or V_{IXR} according to the desired function setting combinations. Then SETx external resistors can be calculated as follows:

$$R1 = \frac{3.2V \times V_{IXR}}{80\mu A \times V_{divider}}$$

$$R1 \times V_{...}$$

Richtek provides a Microsoft Excel-based design tool to calculate the desired PIN-SETTING resisters.

The TSEN and TSENA pin also have function settings except for thermal monitoring function. It only utilizes divider part of PIN-SETTING mechanism. The detailed operation is described in Thermal Monitoring and Indicator section.

Table 2. SET1 Pin Setting for DVID Fast SR, I2C ADDR, KTON, VR_HOT_DVID and ICCMAX_AUX

V _{divider_SET1} (mV)	DVID Fast SR	I2C ADDR	KTON	V _{IXR_SET1} (mV)	VR_HOT_DVID	ICCMAX_AUX
25			0.50	50		25A
75			0.60	150		30A
125	Past_S (mv) (mv) (N_not_bulk) 0.50			35A		
175	Fast_S	0001-	0.80	350	Disable	40A
225		UX∠UN	0.90	450	Disable	45A
275			1.00	550		50A
325			1.10	650		55A
375	Foot C		1.20	750		60A
425	Fast_S		0.50	850		25A
475			0.60	950]	30A
525			0.70	1050]	35A
575		0041	0.80	1150	Enable	40A
625		UXZIN	0.90	1250		45A
675			1.00	1350		50A
725			1.10	1450		55A
775			1.20	1550		60A
825			0.50	50		25A
875			0.60	150		30A
925			0.70	250		35A
975		0v20h	0.80	350	Diaghla	40A
1025		UXZUN	0.90	450	Disable	45A
1075			1.00	550		50A
1125			1.10	650		55A
1175	Foot D		1.20	750	<u> </u>	60A
1225	rasi_P		0.50	850		25A
1275			0.60	950]	30A
1325			0.70	1050		35A
1375		0,045	0.80	1150	Fachie	40A
1425		0x21h	0.90	1250	Enable	45A
1475			1.00	1350		50A
1525			1.10	1450]	55A
1575			1.20	1550		60A

Table 3. SET2 Pin Setting for AR_TH, ICCMAX_A, Dual Phases Function and KTON_A

V _{divider_SET2} (mV)	AR_TH	ICCMAX_A	SSOCP_A	V _{IXR_SET2} (mV)	Dual Phases	KTON_A
25		22A	ICCMAV*2	50		0.82
75		26A	ICCMAX*3	150		0.91
125		30A	1008487/40.5	250		1.00
175	475 \/	34A ICCMAX*2.5	350	D'artite	1.09	
225	175mV	38A	1001441/*0	450	Disable	1.18
275		42A	ICCMAX*2	550		1.27
325		46A	10000000	650		1.36
375		50A	ICCMAX*1.6	750		1.55
425		22A	ICCNANV*O	850		0.82
475		26A	ICCMAX*3	950		0.91
525		30A	ICCMAX*2.5	1050		1.00
575	150mV	34A	ICCIVIAX 2.5	1150	Enoble	1.09
625		38A	ICCMAX*2	1250	Enable	1.18
675		42A	ICCIVIAX 2	1350		1.27
725		46A	ICCMAX*1.6	1450		1.36
775		50A		1550		1.55
825		22A	ICCMAX*3	50		0.82
875		26A 150		0.91		
925		30A	ICCMAX*2.5	250		1.00
975	125mV	34A	TOOMAX 2.5	350	Disable	1.09
1025	1231114	38A	ICCMAX*2	450	Disable	1.18
1075		42A	IOOWAX 2	550		1.27
1125		46A	ICCMAX*1.6	650		1.36
1175		50A	TOOMAX 1.0	750		1.55
1225		22A	ICCMAX*3	850		0.82
1275		26A	ICCIVIAX 3	950		0.91
1325		30A	ICCMAX*2.5	1050		1.00
1375	Disable	34A	ICCIVIAN 2.5	1150	Enable	1.09
1425	Disable	38A	ICCM^ V*2	1250	Enable	1.18
1475		42A	ICCMAX*2	1350		1.27
1525		46A	10014414	1450		1.36
1575		50A	ICCMAX*1.6	1550		1.55

Table 4. SET3 Pin Setting for VBOOT, VBOOT_A and AR_TH_A

V _{IXR_SET3} (mV)	vвоот	VBOOT_A	AR_TH_A
50			Disable
150		0.0V	125mV
250		0.00	175mV
350	0.01/		225mV
450	0.0V		Disable
550		non-zero	125mV
650			175mV
750			225mV
850			Disable
950		0.0V	125mV
1050		0.00	175mV
1150	non 70ro		225mV
1250	non-zero		Disable
1350		non zoro	125mV
1450		non-zero	175mV
1550			225mV

Table 5. SET3 Pin Setting for VIDT and ICCMAX

ICCMAX										
V _{divider_} SET3 (mV)	VIDT	Each	83[4] = 0 Each PWM output drives one phase. 83[4] = 1 Each PWM output drives two phases.					SSOCP		
		4 phase	5 phase	6 phase	7 phase	8 phase	8 phase	10/12/14/16 phase		
25		93A	134A	170A	206A	232A	232A	233A		
75		100A	140A	176A	212A	238A	238A	240A	ICCMAX*2.5	
125		107A	146A	182A	218A	244A	244A	247A	1001/17/7 2.5	
175		114A	152A	188A	224A	250A	250A	254A		
225		121A	158A	194A	230A	256A	256A	260A		
275		128A	164A	200A	236A	262A	262A	268A	ICCMANY*2 25	
325		135A	170A	206A	242A	268A	268A	274A	ICCMAX*2.25	
375	VID1	142A	176A	212A	248A	274A	274A	282A		
425	וטויי	149A	182A	218A	254A	280A	280A	288A		
475		156A	188A	224A	260A	286A	286A	296A	ICCMAX*2	
525		163A	194A	230A	266A	292A	292A	302A		
575		170A	200A	236A	272A	298A	298A	310A		
625		177A	206A	242A	278A	304A	304A	316A		
675		184A	212A	248A	284A	310A	310A	324A	ICCMAX*1.75	
725		191A	218A	254A	290A	316A	316A	330A	ICCIVIAX 1.75	
775		198A	224A	260A	296A	322A	322A	338A		
825		93A	134A	170A	206A	232A	232A	233A		
875		100A	140A	176A	212A	238A	238A	240A	ICCMAX*2.5	
925		107A	146A	182A	218A	244A	244A	247A	ICCIVIAX 2.5	
975		114A	152A	188A	224A	250A	250A	254A		
1025		121A	158A	194A	230A	256A	256A	260A		
1075		128A	164A	200A	236A	262A	262A	268A	ICCMAY*2.25	
1125		135A	170A	206A	242A	268A	268A	274A	ICCMAX*2.25	
1175	VIDO	142A	176A	212A	248A	274A	274A	282A		
1225	VID2	149A	182A	218A	254A	280A	280A	288A		
1275		156A	188A	224A	260A	286A	286A	296A	ICCNAAV*0	
1325		163A	194A	230A	266A	292A	292A	302A	ICCMAX*2	
1375		170A	200A	236A	272A	298A	298A	310A		
1425		177A	206A	242A	278A	304A	304A	316A		
1475		184A	212A	248A	284A	310A	310A	324A	ICCMAV*4 75	
1525		191A	218A	254A	290A	316A	316A	330A	ICCMAX*1.75	
1575		198A	224A	260A	296A	322A	322A	338A		

Table 6. TSEN Pin Setting for ZCD_TH, Ai_A and Ai

V _{TSEN} (mV)	ZCD_TH	Ai_A	Ai
50			0.25
150		0.75	0.50
250		0.73	0.75
350			1.00
450			0.25
550		1.13	0.50
650		1.10	0.75
750	0.417mV		1.00
850			0.25
950		1.50	0.50
1050		1.50	0.75
1150			1.00
1250			0.25
1350		1.88	0.50
1450		1.00	0.75
1550			1.00
1650			0.25
1750		0.75	0.50
1850		0.73	0.75
1950			1.00
2050			0.25
2150		1 12	0.50
2250		1.13	0.75
2350			1.00
2450	0.208mV		0.25
2550		4.50	0.50
2650		1.50	0.75
2750			1.00
2850			0.25
2950		4.00	0.50
3050		1.88	0.75
3150			1.00

Table 7. TSENA Pin Setting for SUM_OC, ZCD_TH_A and AQR_TH

V _{TSENA} (mV)	SUM_OC	ZCD_TH_A	AQR_TH
50			240mV
150			400mV
250			560mV
350		0.063mV	800mV
450		0.003111	880mV
550			1040mV
650			1200mV
750	130%		Disable
850			240mV
950			400mV
1050			560mV
1150		0.188mV	800mV
1250		0.1001117	880mV
1350			1040mV
1450			1200mV
1550			Disable
1650			240mV
1750			400mV
1850			560mV
1950		0.063mV	800mV
2050		0.003111	880mV
2150			1040mV
2250			1200mV
2350	4500/		Disable
2450	150%		240mV
2550			400mV
2650			560mV
2750		0.188mV	800mV
2850		U. IOOIIIV	880mV
2950			1040mV
3050			1200mV
3150			Disable

Thermal Monitoring and Indicator

TSEN pin processes two functions of PIN-SETTING (function setting) and thermal monitoring. After power on, TSEN has three operation modes: PIN-SETTING, Pre-Thermal Sense and Thermal Sense Mode. The corresponding function blocks of the three modes are shown in Figure 5. In PIN-SETTING Mode, the TSEN pin voltage = 3.2V x R2 / (R1+R2) with VREF = 3.2V and is coded by ADC and stored in PIN-SETTING register. In Pre-Thermal Sense Mode, the TSEN pin voltage = 0.6V x R2 / (R1+R2) with VREF = 0.6V and is coded and stored in Pre-Thermal Register. This part helps Thermal Sense Mode calculation. In Thermal Sense Mode, the TSEN pin voltage = $0.6V \times R2 / (R1+R2) + 80\mu A \times$ [(R1//R2)+R3] with VREF = 0.6V and is coded. Subtracting Pre-Thermal Register code, the result is stored in Thermal Register (The corresponding TSEN voltage = $80uA \times [(R1//R2)+R3]$ which is defined as Thermal Voltage. The R3 is the NTC thermistor network to sense temperature.) The NTC thermistor is recommended to be placed near the MOSFET, the hottest area in the PCB. Higher temperature causes smaller R3 and lower TSEN. According to NTC thermistor temperature curve, design Thermal Voltage vs Temperature with proper R3 network to meet Table 8. The $R_{NTC} = 100k\Omega$ with Beta = 4250 is recommended. The 100°C Thermal Voltage = 80µA x $[(R1//R2)+R3(100^{\circ}C)] = 0.6V$ must be meet. The controller processes the TSEN pin voltage to report temperature zone register. While the TSEN pin voltage is less than 0.6V, the VR_HOT is pulled low. The Thermal Register data is update every 75us and the averaging interval is 600 µs. The resistance accuracy of TSEN network is recommended to be less than 1% error.

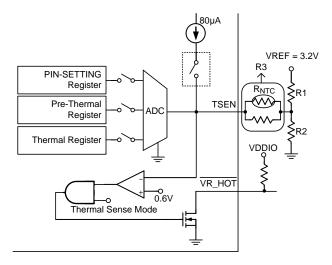


Figure 5. Multi-Function Pin Setting Mechanism for TSEN

Table 8. Thermal Zone and Detection Encoding with $R_{NTC} = 100k\Omega$, Beta = 4250K

Temperature	Thermal Voltage 80uA x [(R1//R2)+R3]	Temperature Zone Register
100°C	0.600V	FFh
97°C	0.628V	7Fh
94°C	0.658V	3Fh
91°C	0.690V	1Fh
88°C	0.725V	0Fh
85°C	0.761V	07h
82°C	0.800V	03h
75°C	0.900V	01h

System Input Power Monitoring (PSYS)

The RT3628AE provides PSYS function to monitor total platform system power and report to the CPU via SVID interface. The PSYS function can be illustrated as in Figure 6. PSYS meter measures system input current and outputs a proportional current signal I_{PSYS}. The R_{PSYS} is designed for the PSYS voltage = 1.6V with maximum I_{PSYS} for 100% system input power. 1.6V is a full-scale analog signal for FFh digitized code.

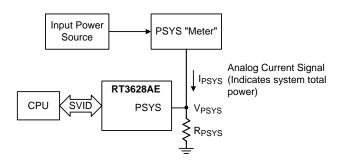


Figure 6. PSYS Function Block Diagram

System Input Voltage Monitoring (VSYS)

The RT3628AE provides optional VSYS function to monitor system input voltage. The threshold can be set through SVID interface and FFh digitized code indicates for 24V input voltage (24V/255 per code). As if input voltage lower than critical threshold, controller will assertion $\overline{\text{VR}_{-}\text{HOT}}$.

Zero Load-line

The RT3628AE also can support enable zero loadline function. When zero loadline function is enabled, the output voltage is determined only by VID and does not vary with the loading current like loadline system behavior. The RT3628AE adopts a new feature, i.e. AC-droop, to effectively suppress load transient ring back and to control overshoot for zero loadline application. Figure 7 shows the condition without AC-droop control. The output voltage without AC-droop control has extra ring back $\Delta V2$ due to C area charge. Figure 8 shows the condition with AC-droop control. While loading occurs, the controller changes VID target to short-term voltage target temporarily. Short-term voltage target is related to transient loading current ΔICC and can be represented as following:

Short_Term_Voltage_Target= VID-∆I_{CC}×R_{II}

The setting method of R_{LL} is the same as load-line system. The short-term voltage target reverts to VID target slowly after a period of time. The short-term voltage target can help inductor current not to exceed loading current too much and then the ring back Δ V2 can be suppressed. The overshoot amplitude is reduced to only Δ V3.

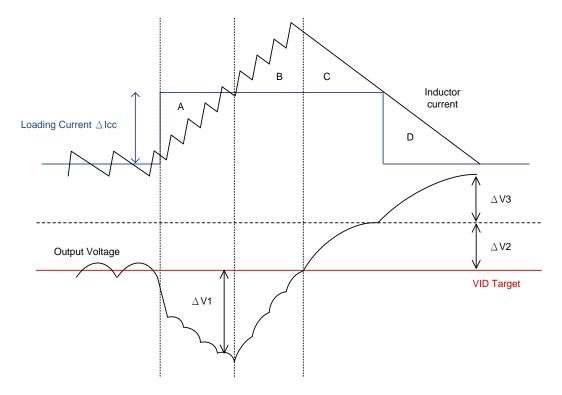


Figure 7. Zero Load-line without AC-droop Control

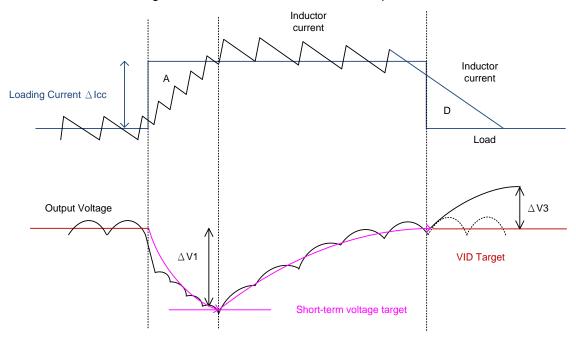


Figure 8. Zero Loadline with AC-droop Control

PS4 Quiescent Current

To achieve PS4 power consumption requirement for notebook, the I²C function can be disable to save more power consumption by tying SM_SCL and SM_SDA to GND. The judgment mechanism is illustrated in Figure 9. The RT3628AE disables I²C I/O if SM_SCL and

SM_SDA remain low state within 2.2ms after asserting VR_READY, and does not enable I²C I/O even SM_SCL and SM_SDA are pulled high after 2.2ms. Note: For I²C application, the SM_SCL & SM_SDA pull high voltage must be ready before asserting VR_READY, otherwise, the I²C function is disabled.

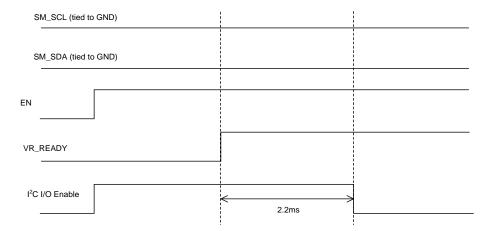


Figure 9. Disable I²C Function Judgment Mechanism

Soft-Start OC Protection (SSOCP)

The RT3628AE supports soft-start OC protection (SSOCP) to prevent output terminal short-circuit during soft-start period. During soft-start + 60µs period, the RT3628AE will sense IMON voltage to prevent large current damage power MOSFET. Once SSOCP is triggered, controller will de-assert VR_READY and latch PWM in tri-state to turn off high-side and low-side power MOSFET. SSOCP threshold depends on ICCMAX value that can be referenced in Table 3 and Table 5.

CORE VR

Per Phase Current Sense

To achieve higher efficiency, the RT3628AE adopts inductor DCR current sensing to get each phase current signal, as illustrated in Figure 10. An external low-pass filter R_{X1} and C_X , reconstructs the current signal. The low-pass filter time constant $R_{X1} \times C_X$ should match time constant $\frac{L_X}{DCR}$ of Inductance and DCR. It's necessary to fine tune RX1 and CX for transient performance and current reporting. If RC network time constant matches inductor time constant

 $\frac{L_X}{DCR}$, an ideal load transient waveform can be designed. If RC network time constant is larger than inductor time constant $\frac{L_X}{DCR}$, VCORE waveform has a sluggish droop during load transient. If RC network is smaller than inductor time constant $\frac{L_X}{DCR}$, VCORE waveform sags to create an undershooting to fail the specification and mis-trigger over-current protections (sum OCP). Figure 11 shows the output waveforms according to the RC network time constant.

The R_{X1} is highly recommended as two 0603 size resistors in series to enhance the I_{OUT} reporting accuracy. The C_X is suggested to be $0.1\mu F$ X7R/0603 for low de-rating value at high frequency.

$$I_{CS,PERx} = \frac{V_{CSIN}}{R_{INT.}} = \frac{I_{Lx} \times DCR}{R_{INT.}}$$

The R_{X2} is optional for prevent V_{CSIN} exceeding current sense amplifier input range. The time constant of $(R_{X1}//R_{X2})$ x C_X should match $\frac{L_X}{DCR}$.

$$I_{\text{CS,PERx}} = \frac{V_{\text{CSIN}}}{R_{\text{INT.}}} = \frac{I_{\text{Lx}} \times \text{DCR}}{R_{\text{INT.}}} \times \frac{R_{\text{X2}}}{R_{\text{X1}} + R_{\text{X2}}}$$

The current signal ICS, PERx is mirrored for load-line control/current reporting, current balance and zero

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

current. The mirrored current to IMON pin is 1.25 time of $I_{CS,PER}$

$$(I_{IMON} = A_{MIRROR} \times I_{CS,PERx}, A_{MIRROR} = 1.25)$$

The current sense lines must be routed as differential pair from the inductor to the controller on the same layer.

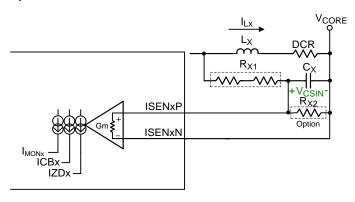
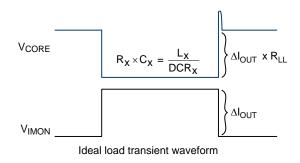
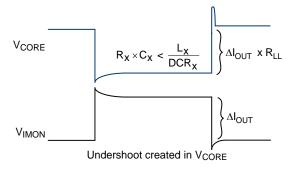




Figure 10. Inductor DCR Current Sensing Method

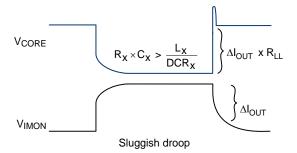


Figure 11. All Kinds of RC Network Time Constant

Total Current Sense/ICCMAX Setting/Current Monitoring

To compensate DCR positive temperature coefficient, conventional current sense method needs an NTC resistor for per phase current loop. The RT3628AE adopts a patented total current sense method that requires only one NTC resistor for thermal compensation. The NTC resistor is designed within IMON resistor network on IMON pin. It is suggested to be placed near the inductor of the first phase. Figure 12 shows the configuration. All phase current signals are gathered to IMON pin and converted to a voltage signal VIMON by RIMON, EQ based on VREF pin. The VREF pin provides 0.6V voltage source (as presented as V_{VREF}) while normal operation. The relationship between V_{IMON} and inductor current I_{Lx} is:

$$V_{IMON} \text{-} V_{VREF} \text{=} (I_{L1} \text{+} I_{L2} \text{+} I_{L3} \text{+} I_{L4} \text{+} I_{L5} \text{+} I_{L6} \text{+} I_{L7} \text{+} I_{L8}) \times \frac{DCR}{R_{INT.}}$$

×1.25×R_{IMON.EQ}

 V_{IMON} - V_{VRFF} is proportional to output current. V_{IMON}-V_{VREE} is used for output current reporting and load-line loop-control and Sum over-current protection. For the former, V_{IMON}-V_{VRFF} is averaged by analog low-pass filter and then outputs to 8-bit ADC. The digitized reporting value is scaled such that FFh = ICCMAX. The RT3628AE provides several ICCMAX selections through PIN-SETTING of ICCMAX[3:0]. The setting value determines Intel ICCMAX register value. R_{IMON FO} should be designed according to ICCMAX value, that is $V_{IMON} - V_{VREF} = 0.4$ while $(I_{L1} + I_{L2} + I_{L3})$ $+ I_{L4} + I_{L5} + I_{L6} + I_{L7} + I_{L8}) = ICCMAX = ICCMAX$ register. For load-line loop-control, V_{IMON}-V_{VRFF} is scaled by Ai, that can be selected by PIN-SETTING of Ai[2:1]. The detailed application is described in the load-line setting section.

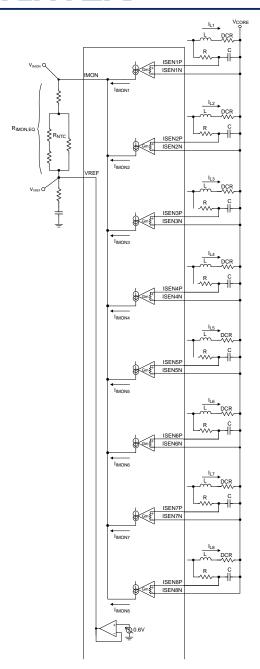


Figure 12. Total Current Sense Method

Load-line Setting (R_{LL})

An output voltage load-line (Adaptive Voltage Positioning) is specified in CPU VR for power saving and output capacitance reduction. The characteristic of load-line is that the output voltage decreases by an amount which is proportional to the increasing loading current. The slope between output voltage and loading current (R_{LL}) is shown in Figure 13. Figure 14 shows how the voltage and current loop parameters of RT3628AE to achieve load-line. The detailed equation is described as following:

$$R_{LL} = \frac{Current \ Loop \ Gain}{Voltage \ Loop \ Gain} = \frac{DCR}{R_{INT.}} \times R_{IMON,EQ} \times \frac{A_i}{\frac{R_{EA2}}{R_{EA4}}} \times \frac{15}{4}$$

Ai is current gain. $\frac{R_{EA2}}{R_{EA1}}$ is ERROR AMP gain and is suggested within 2.5~3.5 for better transient response. RLL can be programmed by Ai and $\frac{R_{EA2}}{R_{EA1}}$. Ai can be selected by PIN-SETTING of Ai[2:1] as listed in Table 9.

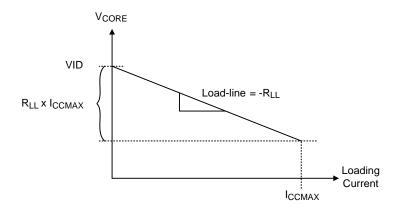


Figure 13. Load-Line (Droop)

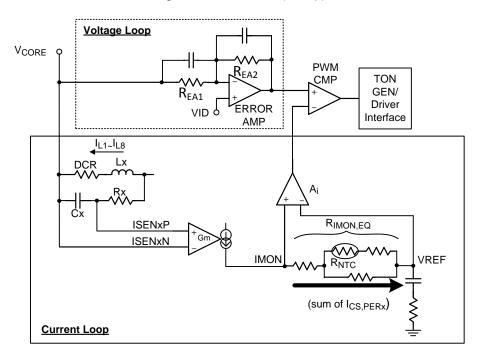


Figure 14. Voltage Loop and Current Loop for Load-line

Table 9. PIN-SETTING of Ai[2:1]

Ai[2:1]	Current Gain Setting
00	0.25
01	0.50
10	0.75
11	1.00

34

Dynamic VID (DVID) Compensation

During DVID transition, an extra current is required to charge output capacitor for increasing voltage. The charging current approximates to the product of the DVID slew rate and output capacitance. For droop system, the extra charging current induces extra voltage droop so that the output voltage cannot reach the target within the specified time. The extra voltage drop approximates to DVID Slew Rate x Output Capacitance x R_{LL} (R_{LL} is the load-line slope, Ω). This phenomenon is called droop effect. How charging current affects loop is illustrated in Figure 15. The RT3628AE provides one DVID compensation function as shown in Figure 16. An internal current IDVID_LIFT sinks internally from FB pin to generate DVID compensation I_{DVID LIFT}×R_{EA1}. The I_{DVID_LIFT} for fast DVID SR is $5\mu A$ for Core rail, $20\mu A$ for AXG rail. For different scale of DVID SR, the IDVID_LIFT is internally adjusted. Compensating magnitude can also be adjusted by R_{EA1}. When DAC output reaches the target (ALERT issue timing), inductor current is still high and needs a time to settle down to the DC loading current. In the settling time, the falling down current keeps charging output capacitance (The magnitude is related with inductor, capacitance and VID). Thus DVID compensation current can be less than DVID Slew Rate x Output Capacitance (Capacitance degeneration should be considered). While output capacitance is so larger that DVID compensation cannot cover, adding resistor and capacitance from FB to GND also can provide similar function. The ERROR AMP compensation (resistance and capacitance network among VSEN, FB and COMP) also affects DVID behavior. The final setting should be based on actual measurement.

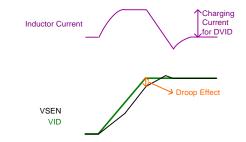


Figure 15. Droop Effect in VID Transition

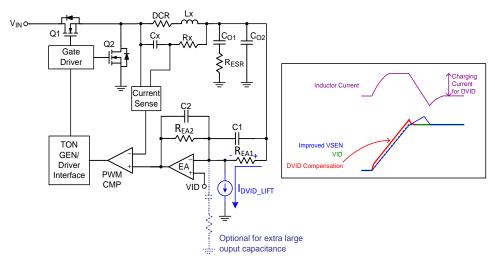


Figure 16. DVID Compensation

35

Compensator Design

The RT3628AE doesn't need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in the G-NAVPTM topology to fine tune ACLL performance. The one pole and one zero compensator is shown in Figure 17. For IMVP9.1 ACLL specification, it is recommended to adjust compensator according to load transient ring back level. Refer to the design tool for default compensator values.

Figure 17. Type I Compensator

Differential Remote Sense Setting

The VR provides differential remote-sense inputs to eliminate the effects of voltage drops along the PC board traces, CPU internal power routes and socket contacts. The CPU contains on-die sense pins, VCC SENSE and VSS_SENSE. The connection is shown in Figure 18. The VID voltage (DAC) is referenced to RGND to provide accurate voltage at remote CPU side. While CPU is not mounted on the system, two resistors of typical 100Ω are required to provide output voltage feedback.

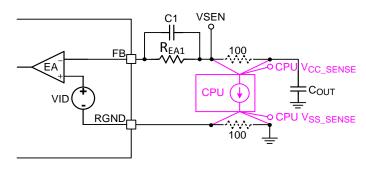


Figure 18. Remote Sensing Circuit

Switching Frequency Setting

The G-NAVPTM (Green Native AVP) topology is one kind of current-mode constant on-time control. It generates an adaptive TON (PWM) with input voltage (VIN) for better line regulation. The TON is also adaptive to VID voltage to achieve constant frequency concept. The constant switching frequency operation makes the thermal estimation easy. The RT3628AE provides a parameter setting of k_{TON} to design TON width. The kton is set by PIN-SETTING of KTON[2:0]. The related setting table is listed in Table 10.

The equations of TON are listed as below:

VID>0.9V,

$$T_{ON} = 2u \times \frac{VID}{k_{TON} \times V_{IN}}$$

VID≤0.9V,

$$T_{ON} = 2u \times \frac{0.9V}{k_{TON} \times V_{IN}}$$

Table 10. PIN-SETTING of KTON

KTON[2:0]	k _{TON}
000	0.50
001	0.60
010	0.70
011	0.80
100	0.90
101	1.00
110	1.10
111	1.20

The switching frequency can be derived from T_{ON} as shown below. The losses in the main power stage and driver characteristics are considered.

$$Freq = \frac{VID + \frac{I_{CC}}{N} \times (DCR + \frac{R_{ONLS,max}}{n_{LS}} - N \times R_{LL})}{\left[V_{IN} + \frac{I_{CC}}{N} \times \left(\frac{R_{ONLS,max}}{n_{LS}} - \frac{R_{ONHS,max}}{n_{HS}}\right)\right] \times \left(T_{ON} - T_{D} + T_{ON, VAR}\right) + \frac{I_{CC}}{N} \times \frac{R_{ONLS,max}}{n_{LS}} \times T_{D}}$$

VID: VID voltage
V_{IN}: input voltage
I_{CC}: loading current
N: total phase number

 $R_{\text{ON}_{\text{HS},\text{max}}}\!\!:$ maximum equivalent of the high-side $R_{\text{DS}(\text{ON})}$

n_{HS}: number of high-side MOSFETs

 $R_{\text{ON}_{\text{LS},\text{max}}}\!\!:$ maximum equivalent of the low-side $R_{\text{DS}(\text{ON})}$

n_{LS}: number of low-side MOSFETs.

T_D: summation of the high-side MOSFET delay time and rising time

T_{ON, VAR}: on-time variation value

DCR: inductor DCR

 R_{LL} : load-line setting (Ω)

Adaptive Quick Response (AQR)

The RT3628AE provides Adaptive Quick Response (AQR) to optimize transient response. The mechanism concept is illustrated in Figure 19. Controller detects output voltage drop slew rate. While the slew rate exceeds the AQR threshold, all PWMs turn on until output voltage slew rate significantly slows down. The output voltage slew rate transition also indicates that inductor current almost reaches the loading current. Under such mechanism, AQR PWM width is adaptive to variable loading step. The RT3628AE provides various AQR threshold through PIN-SETTING of AQR_TH[3:1]. The following equation can initially decide the AQR starting trigger threshold. Smaller threshold indicates larger AQR PWM. Note that the threshold should be larger than steady-state output voltage ripple falling slew rate and also the overshoot falling slew rate to avoid triggering AQR abnormally.

AQR Starting Trigger Threshold =
$$-4\mu \times \frac{\text{dVSEN}}{\text{dt}}$$

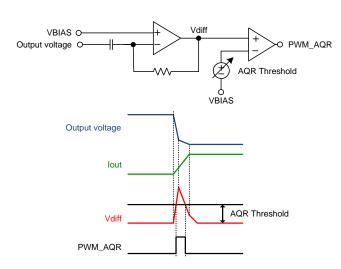


Figure 19. Adaptive Quick Response Mechanism

Table 11.	PIN-SETT	ING of	AQR	TH
-----------	-----------------	--------	-----	----

AQR_TH[3:1]	AQR Starting Trigger Threshold (mV)
000	240
001	400
010	560
011	800
100	880
101	1040
110	1200
111	Disable

Anti-overshoot (ANTI-OVS)

The RT3628AE provides Anti-overshoot function to suppress output voltage overshoot. Controller detects overshoot by signals relating to output voltage. The overshoot trigger level can be adjusted by I2C Reg0x7C[2:0]. The main detecting signal comes from COMP. However, COMP varies with compensation. Initial trigger level setting can be based on the following equation:

$$\triangle COMP \times \frac{4}{3} = \triangle VSEN \times \frac{R_{EA2}}{R_{EA1}} \times \frac{4}{3} > ANTI-OVS$$
 Threshold

The final setting depends on the actual Error AMP compensator design and measurement.

While overshoot exceeds the trigger level setting, all PWMs keep in tri-state until the zero current is detected or VSEN back to normal level. Turning off LGs forces positive current flow through body diode to cause diode forward voltage drop. The extra forward voltage can speed up inductor current discharge and decrease overshoot.

ACLL Performance Enhancement

The RT3628AE provides undershoot suppression function to improve undershoot by applying a positive offset at loading edge. Controller detects COMP signal and compares it with steady state. While VCOMP variation exceeds a threshold, an additional positive offset is added to the output voltage. The threshold can be set through PIN-SETTING AR_TH[4:3], as listed in Table 12. The smaller index indicates that the detection is triggered easily. Figure 20 shows undershoot suppression behavior in PS1.

For different platform, the optimized setting is different. The final setting must be based on actual measurement.

Table 12. PIN-SETTING of Undershoot Suppression

AR_TH[4:3]	Adaptive RAMP Trigger Level (mV)
00	175
01	150
10	125
11	Disable

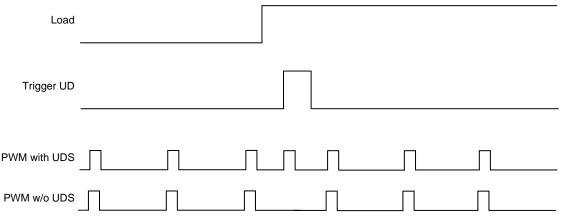


Figure 20. Undershoot Suppression Behavior in PS1

Over-current Protection (OCP)

The RT3628AE has sum OCP mechanisms and the threshold of sum OCP for PS0 is defined as

$$I_{SUM_OC,PS0} = K_{SOCP} \times VIMON_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMON.EO}} \times \frac{1}{1.25}$$

The PS1/2/3 sum OCP threshold is defined as

$$I_{SUM_OC,nonPS0} = \frac{1}{3} \times VIMON_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMONFO}} \times \frac{1}{1.25}; \text{ when } 110A \leq ICCMAX < 145A$$

$$I_{SUM_OC,nonPS0} = \frac{1}{4} \times VIMON_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMON.EO}} \times \frac{1}{1.25}; \text{ when } 145A \leq ICCMAX < 215A$$

$$I_{SUM_OC,nonPS0} = \frac{1}{5} \times VIMON_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMON.EQ}} \times \frac{1}{1.25}; \text{ when } 215A \leq ICCMAX \leq 300A$$

While R_{IMON.EQ} is designed exactly for

May 2021

DS3628AE-00

$$VIMON_{ICCMAX} = ICCMAX register valuex \frac{DCR}{R_{INT.}} \times 1.25 \times R_{IMON,EQ}$$

ICCMAX register value = ICCMAX, and VIMONICCMAX = 0.4V.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

The KSOCP is sum OCP ratio which value is 0.6~1.6 and it is set by Pin Setting Function of TSENA & I2C register 0x73h[2:0]. The sum OCP threshold can be I_{SUM OC,PS0}=K_{SOCP}×ICCMAX $I_{SUM_OC,nonPS0} = \frac{1}{\kappa} \times ICCMAX$. Note that the modification of ICCMAX register value cannot change sum OCP threshold. While inductor current above sum OCP

threshold lasts 20µs / 40µs (set by I2C register 0x73h[7].) controller de-asserts VR READY and latches PWM in tri-state to turn off high-side and low-side power MOSFETs. Sum OCP is masked during DVID period and 80µs after VID settles. They are also masked while VID = 0V condition.

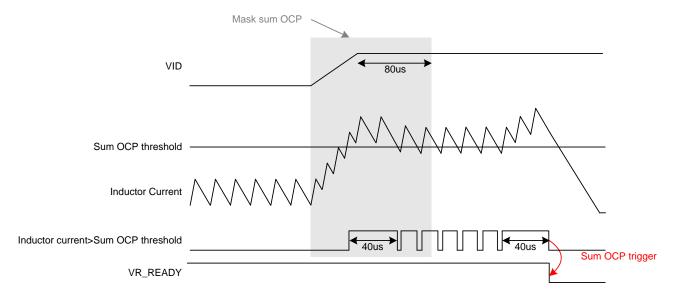


Figure 21. SUM OC Protection Mechanism

Over-Voltage Protection (OVP)

The OVP threshold is linked to VID. The classification table is illustrated in Table 13. While VID = 0V, in case of VR internal setting mode, DACOFF or PS4, OVP is masked. When VID ramps up from VID = 0V till the first PWM after VID settles, the OVP threshold is 2.45V or 2.65V which depends on VID table to allow not-fully-discharged VSEN. Otherwise, the OVP threshold is relative to VID and equals to VID+350mV with minimum limit = 1.35V. While VID ≤ 1.0V, the OVP threshold is limited at 1.35V.

The OV protection mechanism is illustrated in Figure 22. When OVP is triggered with 0.5µs filter time, controller de-asserts VR READY and forces all PWMs low to turn on low-side power MOSFETs. The PWM remains low until the output voltage is pulled down below VID. After 60us from OVP trigger, VID starts to ramp down to 0V with slow slew rate. During the period, PWM is not allowed to turn on. Controller controls PWM to be low or tri-state to pull down the output voltage along with VID

Table 13. Summary of Over Voltage Protection

VID Condition	OVP Threshold	Example	Protection Flag	Protection Action	Protection Reset
VID=0 (EN=L or VR internal setting mode or DACOFF or PS4)	OVP is masked.				
DVID up period from 0V to 1st PWM pulse after VID settles	Threshold is set by 0x75h. Default is 2.45V or 2.65V which depends on VID table.		VREF=1V	VR_READY latched low. The output voltage is pulled down to below SSOVP-0.35V and then ramps down to 0V.	VCC/EN Toggle
DVID period from non-zero VID	VID+350mV if VID > 1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V. VID = 0.9V, OVP threshold = 1.35V.		VR_READY latched low. The output voltage	
VID≠0	VID+350mV if VID >1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V. VID = 0.9V, OVP threshold = 1.35V.		is pulled down to below VID and then ramps down to 0V.	

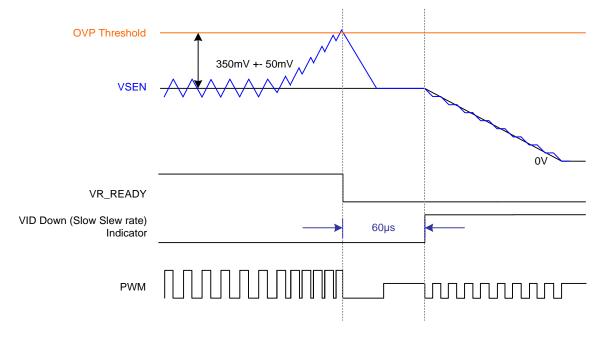


Figure 22. Over Voltage Protection Mechanism

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

DS3628AE-00 May 2021 www.richtek.com

Under Voltage Protection

When the output voltage is lower than VID-650mV with 3µs filter time, the UVP is triggered and all PWMs are in tri-state to turn off high-side and low-side power MOSFETs. The UVP is masked during DVID period and 80us after VID settles. The mechanism is illustrated in Figure 23.

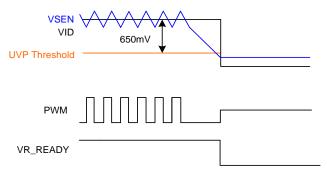


Figure 23. Under Voltage Mechanism

All protections are reset only by VCC/EN toggle. The UVP and OCP protections are listed in Table 14. Note that the real filter time also depends on the magnitude of detected signal. The signal magnitude will affect analog comparator's overdrive voltage and output slew rate. For user friendly operation, the RT3628AE provides protection flag to promptly determine which kind of protections is triggered. As protection happens, VREF is pulled to 1V/1.5625V/2V for OVP/UVP/SUM OCP respectively.

Table 14. Summary of UVP and OCP Protection

Protectio n Type	Protection Threshold	Protection Flag	Protection Action	DVID mask time	Protectio n Reset
Sum OCP for PS0	$I_{SUM_OC,PS0} = K_{SOCP} \times VIMON_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMON,EQ}}$	VREF=2V	DWM tri-state	DVID + 80us	VCC/EN Toggle
Sum OCP for non PS0	$I_{SUM_OC,nonPS0} = \frac{1}{K} \times VIMON \underset{ICCMAX}{\times} \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMON,EQ}}$	VREF=2V	PWM tri-state, VR_READY latched low		
UVP	VID-650mV	VREF=1.5625 V			

AXG VR

Per Phase Current Sense

To achieve higher efficiency, the RT3628AE adopts inductor DCR current sensing to get each phase current signal, as illustrated in Figure 24. An external low-pass filter RAX1, RAX2_eq and CAX reconstructs the current signal. Where RAX2 is necessary for DCR temperature compensation. The time constant of (Rax1//Rax2) x Cax should match $\frac{L_{AX}}{DCR}.$ If RC network time constant matches inductor time constant, an ideal load transient waveform can be designed. If RC network time constant is larger than inductor time constant, VCORE waveform has a sluggish droop during load transient. If RC network is smaller than inductor time constant, VCORE waveform sags to create an undershooting to fail the specification and mis-trigger over-current protections (sum OCP). Figure 25 shows the output waveforms according to the RC network time constant.

$$I_{CSA,PERx} = \frac{V_{CSIN}}{R_{INT.}} = \frac{I_{LAx} \times DCR}{R_{INT.}} \times \frac{R_{AX2_eq}}{R_{AX1} + R_{AX2_eq}}$$

The current signal I_{CSA,PERx} is mirrored for load-line control/current reporting, current balance, and zero current detection. The mirrored current to IMONA pin is 1.25 time of I_{CSA,PER}

$$(I_{IMONA} = A_{MIRROR} \times I_{CSA,PERx}, A_{MIRROR} = 1.25)$$

The current sense lines must be routed as differential pair from the inductor to the controller on the same layer.

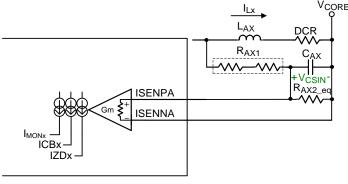
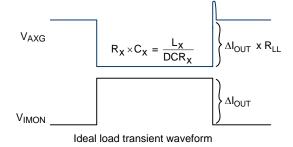
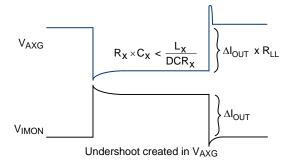




Figure 24. Inductor DCR Current Sensing Method

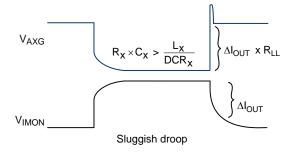


Figure 25. All Kinds of RC Network Time Constant

Total Current Sense/ICCMAX Setting/Current Monitoring

To compensate DCR positive temperature coefficient, conventional current sense method needs an NTC resistor for per phase current loop. The NTC resistor is designed within DCR current sense network. It is suggested to be placed near the inductor of the first phase. Figure 26 shows the configuration. Current signals are gathered to IMONA pin and converted to a voltage signal VIMONA by RIMONA based on VREF pin. VREF pin provides 0.6V voltage source (as presented as VVREF) while normal operation. The relationship between VIMONA and inductor current ILAX is:

$$V_{IMONA}-V_{VREF}=(I_{LA1}) \times \frac{DCR}{R_{INT.}} \times \frac{R_{AX2_eq}}{R_{AX1}+R_{AX2_eq}} \times 1.25 \times R_{IMONA}$$

 V_{IMONA} - V_{VREF} is proportional to output current. V_{IMONA} - V_{VREF} is used for output current reporting and

load-line loop-control. V_{IMONA}-V_{VREF} is averaged by analog low-pass filter and then outputs to 8-bit ADC. The digitized reporting value is scaled such that FFh = ICCMAX. The RT3628AE provides several ICCMAX selections through PIN-SETTING of ICCMAX_A[2:0].

The setting value determines Intel ICCMAX register value. The R_{IMONA} should be designed according to ICCMAX register value, that is V_{IMONA} - $V_{VREF} = 0.4V$ while $I_{LA1} = ICCMAX$ register value.

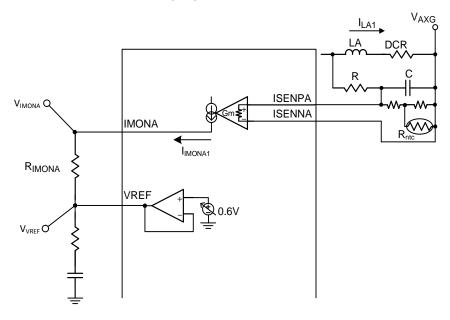


Figure 26. Total Current Sense Method

Load-line Setting (R_{LL})

An output voltage load-line (Adaptive Voltage Positioning) is specified in CPU VR for power saving and output capacitance reduction. The characteristic of load-line is that the output voltage decreases by an amount which is proportional to the increasing loading current, i.e. the slope between output voltage and loading current (R_{LL}) is shown in Figure 27. Figure 28 shows how the voltage and current loop parameters of RT3628AE to achieve load-line. The detailed equation is described as below:

$$R_{LL} = \frac{Current\ Loop\ Gain}{Voltage\ Loop\ Gain} = \frac{DCR}{R_{INT}} \times \frac{R_{EQ}}{R_{X1} + R_{EQ}} \times \frac{A_{i_A}}{\frac{RA_{EA2}}{RA_{FA1}}} \times 20$$

Ai_A is current gain, $\frac{RA_{EA2}}{RA_{EA1}}$ is ERROR AMP gain and

suggested within 2.5~3.5 for better transient response.

 R_{LL} can be programmed by Ai_A and $\frac{RA_{EA2}}{RA_{FA1}}$. Ai_A can

be selected by PIN-SETTING of Ai_A [4:3] as listed in Table 15.

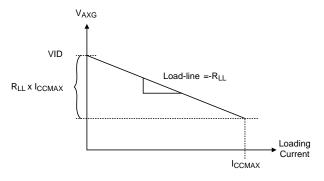


Figure 27. Load-Line (Droop)

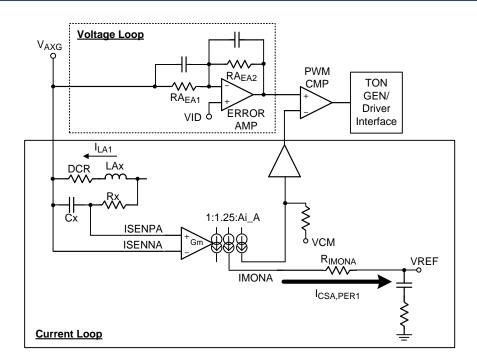


Figure 28. Voltage Loop and Current Loop for Loadline

Table 15. PIN-SETTING of Ai_A[4:3]

Ai_A[4:3]	Current Gain Setting
00	0.75
01	1.13
10	1.5
11	1.88

Compensator Design

The RT3628AE doesn't need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in the G-NAVPTM topology to fine tune ACLL performance. The one pole and one zero compensator is shown in Figure 29. For IMVP9.1 ACLL specification, it is recommended to adjust compensator according to load transient ring back level. Refer to the design tool for default compensator values.

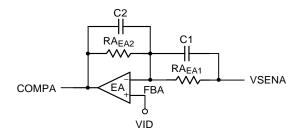


Figure 29. Type I Compensator

Differential Remote Sense Setting

The VR provides differential remote-sense inputs to eliminate the effects of voltage drops along the PC board traces, CPU internal power routes and socket contacts. The CPU contains on-die sense pins, VCCAXG_SENSE and VSSAXG_SENSE. The related connection is shown in Figure 30. The VID voltage (DAC) is referred to RGNDA to provide accurate voltage at remote CPU side. While CPU is not mounted on the system, two resistors of typical 100Ω are required to provide output voltage feedback.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

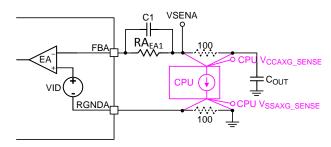


Figure 30. Remote Sensing Circuit

Switching Frequency Setting

The G-NAVPTM (Green Native AVP) topology is one kind of current-mode constant on-time control. It generates an adaptive Ton (PWM) with input voltage (VIN) for better line regulation. The ToN is also adaptive to VID voltage. The adaptive Ton is based on constant current ripple concept for better output voltage ripple size control. The adaptive Ton is based on constant frequency concept for better efficiency performance. Figure 31 is the conceptual chart showing the relationships between switching frequency vs VID and current ripple vs VID. The RT3628AE provides a parameter setting of kton_a to design Ton width. The kton A is set by PIN-SETTING of KTON A[3:1]. The related setting table is listed in Table 16.

The equations of ToN with different VID table setting are listed as below (kton_A should be referred to Table 16)

For VID1:

 $VID \ge 0.9V$,

$$T_{ON}$$
=2.206 μ × $\frac{VID}{k_{TON A}$ ×(V_{IN} -0.9 V)}+15ns

0.3V < VID < 0.9V

$$T_{ON}$$
=1.9854 μ × $\frac{1}{k_{TON,A}$ × $(V_{IN}$ -VID)}+15ns

 $VID \leq 0.3V$,

$$T_{ON}=1.9854\mu \times \frac{1}{k_{TON-A}\times (V_{IN}-0.3V)} + 15 \text{ns}$$

For VID2:

VID ≥ 1.8V.

$$T_{ON}$$
=2.206 μ × $\frac{VID}{k_{TON A}$ × $(V_{IN}$ -1.8 $V)}$ +15ns

0.3V < VID < 1.8V

$$T_{ON}$$
=1.9854 μ x $\frac{2}{k_{TON_A}x(V_{IN}$ -VID)}+15ns

 $VID \leq 0.3V$

$$T_{ON}$$
=1.9854 μ × $\frac{2}{k_{TON~A}$ × $(V_{IN}$ -0.3 $V)}$ +15ns

Table 16. PIN-SETTING of KTON_A

KTON_A[3:1]	k TON_A
000	0.82
001	0.91
010	1.00
011	1.09
100	1.18
101	1.27
110	1.36
111	1.55

The switching frequency can be derived from T_{ON} as shown as below. The losses in the main power stage and driver characteristics are considered.

$$Freq = \frac{VID + \frac{I_{CC}}{N} \times (DCR + \frac{R_{ONLS,max}}{n_{LS}} - N \times R_{LL})}{\left[V_{IN} + \frac{I_{CC}}{N} \times \left(\frac{R_{ON_{LS,max}}}{n_{LS}} - \frac{R_{ON_{HS,max}}}{n_{HS}}\right)\right] \times \left(T_{ON} - T_D + T_{ON, VAR}\right) + \frac{I_{CC}}{N} \times \frac{R_{ON_{LS,max}}}{n_{LS}} \times T_D}$$

VID: VID voltage

V_{IN}: input voltage

I_{CC}: loading current

N: total phase number

 $R_{\text{ON}_{\text{HS},\text{max}}}\!\!:$ maximum equivalent of the high-side RDS(ON)

n_{HS}: number of high-side MOSFETs

 $R_{\text{ON}_{\text{LS,max}}}$: maximum equivalent of the low-side RDS(ON)

n_{LS}: number of low-side MOSFETs.

T_D: summation of the high-side MOSFET delay time and rising time

T_{ON, VAR}: on-time variation value

DCR: inductor DCR

 R_{LL} : loadline setting (Ω).

Although TON is designed for constant frequency target while VID ≥ 0.9V, the actual frequency is still impacted by main power stage's loss and driver dead time. The switching frequency rises as loading current increases. It's recommend to design the switching frequency based on the optimized efficiency and thermal performance at thermal design current (ICCTDC). For example, at ICC = ICCTDC, VID = 0.9V and VIN = 12V, the switching frequency is 400kHz in S-Line application. Then substitute these values into equations to get TON and relative k_{TON A}. Richtek provides a Microsoft Excel-based design tool to help design kton A setting for the desired switching frequency at TDC.

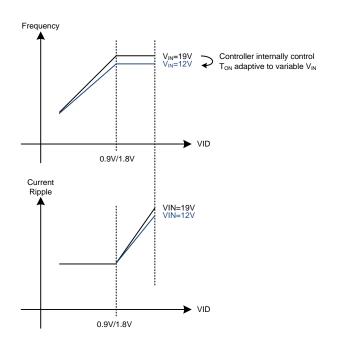


Figure 31. Switching Frequency and Current with Different VID

Anti-overshoot (ANTI-OVS)

The RT3628AE provides Anti-overshoot function to depress output voltage overshoot. Controller detects overshoot by signals relating to output voltage. The overshoot trigger level can be adjusted by I2C Reg0x7C[5:3]. The main detecting signal comes from

COMPA. However, COMPA varies with compensation. Initial trigger level setting can be based on the following equation:

$$\triangle COMPA \times \frac{4}{3} = \triangle VSENA \times \frac{RA_{EA2}}{RA_{EA1}} \times \frac{4}{3}$$

>Antiovershoot Threshold of I2C Reg0x7C[5:3]

The final setting depends on the actual Error AMP compensator design and measurement.

While overshoot exceeds the setting trigger level, all PWMs keep in tri-state until the zero current is detected or VSENA back to normal level. Turning off LGs forces positive current flow through body diode to cause diode forward voltage. The extra forward voltage can speed up inductor current discharge and decrease overshoot.

ACLL Performance Enhancement

The RT3628AE provides undershoot suppression function to improve undershoot by applying a positive offset at loading edge. Controller detects COMPA signal and compares it with steady state. While VCOMPA variation exceeds a threshold, an additional positive offset will be applied to the output voltage. The threshold can be set through PIN-SETTING AR_TH_A[2:1], as listed in Table 17. The smaller index indicates the easier detection being triggered. The positive offset is related to the compensation. Figure 32 show undershoot suppression behavior. For different platform, the optimized setting is different. The final setting must be based on actual measurement.

Table 17. PIN-SETTING of Undershoot Suppression

AR_TH_A[2:1]	Adaptive RAMP Trigger level (mV)
00	Disable
01	125
00	175
01	225

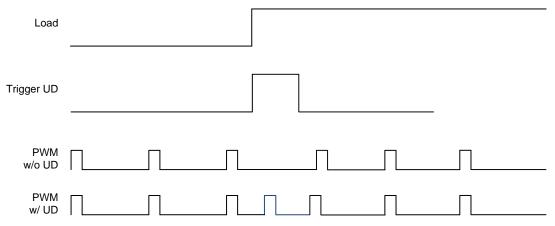


Figure 32. Undershoot Suppression Behavior in PS0/PS1

Over-current Protection (OCP)

The RT3628AE has sum OCP mechanisms.

Sum OCP

The threshold of sum OCP for PS0 is defined as

$$I_{SUM_OC_A,PS0} = K_{SOCPA} \times VIMONA_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{1.25} \times \frac{1}{R_{IMONA}}$$

PS1/2/3 sum OCP is defined as

$$I_{SUM_OC_A,nonPS0} = K_{SOCPA} \times VIMONA_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{1.25} \times \frac{1}{R_{IMONA}}$$

While R_{IMONA,EQ} is designed exactly for

VIMONA_{ICCMAX}=ICCMAX register value
$$\times \frac{DCR}{R_{INT.}} \times 1.25 \times R_{IMONA}$$
,

ICCMAX register value=ICCMAX, and VIMONA_{ICCMAX}=0.4V

The KSOCPA is sum OCP ratio whose value is $0.6\sim1.6$ and it is set by Pin Setting Function of TSENA & I2C register 0x73h[5:3]. Sum OCP threshold can be simplified as $I_{SUM_OC_A,PS0}=K_{SOCPA}\times ICCMAX$. Note that the modification of ICCMAX register value cannot change sum OCP threshold. While inductor current above sum OCP threshold lasts $20\mu s$ / $40\mu s$ (set by I2C register 0x73h[6].), controller de-asserts VR_READY and latches PWM in tri-state to turn off high-side and low-side power MOSFETs.

Sum OCP is masked during DVID period and 80us after VID settles. They are also masked while VID = 0V condition.

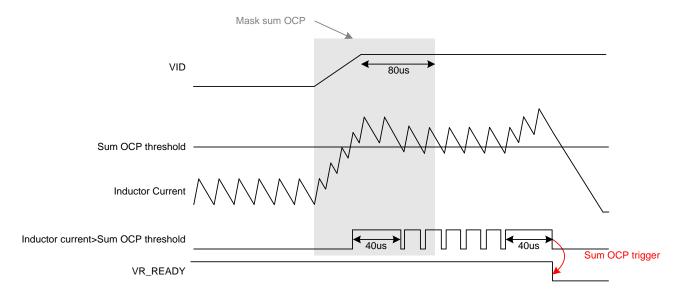


Figure 33. SUM OC Protection Mechanism

Over-Voltage Protection (OVP)

The OVP threshold is linked with to VID. The classification table is illustrated in Table 18. While VID = 0V, in case of VR internal setting mode, DACOFF or PS4, OVP is masked. When VID ramps up from VID = OV till the first PWM after VID settles, the OVP threshold is 2.45V or 2.65V which depends on VID table to allow not-fully-discharged VSEN. Otherwise, the OVP threshold is relative to VID and equals to VID+350mV with minimum limit = 1.35V. While VID ≤ 1V, the OVP threshold is limited at 1.35V.

The OV protection mechanism is illustrated in Figure 34. When OVP is triggered with 0.5 µs filter time, controller de-asserts VR READY and forces all PWMs low to turn on low-side power MOSFETs. The PWM remains low until the output voltage is pulled down below VID. After 60µs from OVP trigger, VID starts to ramp down to 0V with slow slew rate. During the period, the PWM is not allowed to turn on. Controller controls the PWM to be low or tri-state to pull down the output voltage along with VID.

Table 18. Summary of Over Voltage Protection

VID Condition	OVP Threshold	Example	Protection Flag	Protection Action	Protection Reset
VID=0 (EN=L or VR internal setting mode or DACOFF or PS4)	OVP is masked.				
DVID up period from 0V to 1st PWM pulse after VID settles	Threshold is set by 0x75h. Default is 2.45V or 2.65V which depends on VID table.		VREF=1V	VR_READY latched low. The output voltage is pulled down to below SSOVP-0.35V and then ramps down to 0V.	VCC/EN Toggle
DVID period from non-zero VID	VID+350mV if VID > 1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V. VID = 0.9V, OVP threshold = 1.35V.		VR_READY latched low. The output voltage	
VID≠0	VID+350mV if VID >1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V. VID = 0.9V, OVP threshold = 1.35V.		is pulled down to below VID and then ramps down to 0V.	

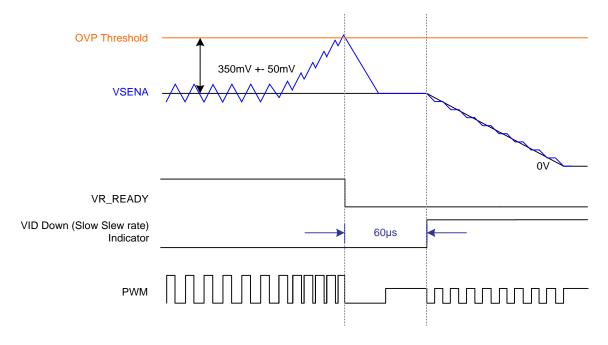


Figure 34. Over Voltage Protection Mechanism

Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

DS3628AE-00 May 2021 www.richtek.com

Under-Voltage Protection

When the output voltage is lower than VID-650mV with 3µs filter time, the UVP is triggered and all PWMs are in tri-state to turn off high-side and low-side power MOSFETs. The UVP is masked during DVID period and 80us after VID settles. The mechanism is illustrated in Figure 35.

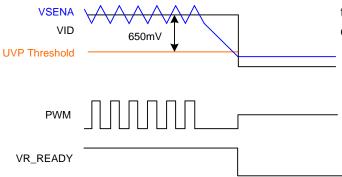


Figure 35. Under Voltage Mechanism

All protections are reset only by VCC/EN toggle. The UVP and OCP protections are listed in Table 19. Note that the real filter time also depends on the magnitude of detected signal. The signal magnitude will affect analog comparator's overdrive voltage and output slew rate. For user friendly operation, the RT3628AE provides protection flag to promptly determine which kind of protections is triggered. As protection happens, VREF is pulled to 1V/1.5625V/2V for OVP/UVP/SUM OCP respectively.

Table 19. Summary of UVP and OCP Protection

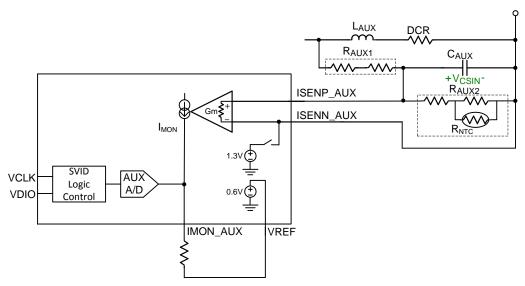
Protection Type	Protection Threshold	Protection Flag	Protection Action	DVID mask time	Protecti on Reset
Sum OCP for PS0	$I_{SUM_OC_A,PS0} = K_{SOCPA} \times VIMONA_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMONA}}$	VREF=2V			
Sum OCP for non PS0	$I_{SUM_OC_A,nonPS0} = K_{SOCPA} \times VIMONA_{ICCMAX} \times \frac{R_{INT.}}{DCR} \times \frac{1}{R_{IMONA}}$	VREF=2V	PWM tri-state, VR_READY latched low	DVID+ 80μs	VCC/EN Toggle
UVP	VID-650mV	VREF=1.5625 V			

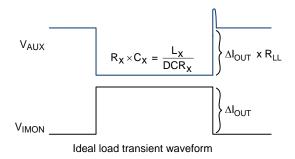
Current Reporting of AUX

Current Sense

AUX rail support DCR and Smart Power Stage (SPS) current sensing report. Figure X1 shows the DCR application diagram. As illustrated in Figure 36, an external low-pass filter R_{AUX1} , R_{AUX2} and C_{AUX} reconstruct the current signal, where R_{AX2} is necessary for DCR temperature compensation. The low-pass filter time constant $(R_{AUX1}/\!/R_{AUX2}) \times C_{AUX}$

should match time constant $\frac{L_{AUX}}{DCR}$ of inductance and DCR. If RC network time constant matched inductor time constant, an ideal load transient waveform can be designed. If RC network time constant is larger than inductor time constant, V_{AUX} waveform has a sluggish droop during load transient. If RC network is smaller than inductor time constant, V_{AUX} waveform sags to create an undershooting to fail the specification.




Figure 36. AUX Rail use DCR Current Sense

$$I_{CSA,PERx} = \frac{V_{CSIN}}{R_{INT.}} = \frac{I_{LAx} \times DCR}{R_{INT.}} \times \frac{R_{AUX2}}{R_{AUX1} + R_{AUX2}}$$

The current signal Icsa,Perx is mirrored for current reporting. The mirrored current to IMON_AUX pin is 1.25 time of Icsa,Per

 $(I_{IMONA} = A_{MIRROR} \times I_{CSA.PERx}, A_{MIRROR} = 1.25)$

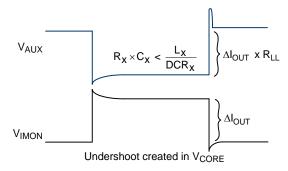


Figure 37. All Kinds of RC Network Time Constant

Total Current Sense/ICCMAX Setting/Current Monitoring

To compensate DCR positive temperature coefficient, conventional current sense method needs an NTC resistor for per phase current loop. The NTC resistor is designed within DCR current sense network. It is suggested to be placed near the inductor of the first phase. Current signals are gathered to IMON AUX pin and converted to a voltage signal VIMON_AUX by

RIMON AUX based on VREF pin. The VREF pin provides 0.6V voltage source (as presented as VVREF) while normal operation. The relationship between VIMONA and inductor current IL_AUX is:

$$V_{IMON_AUX}-V_{VREF}=(I_{L_AUX})\times\frac{DCR}{R_{INT.}}\times\frac{R_{AUX2}}{R_{AUX1}+R_{AUX2}}$$

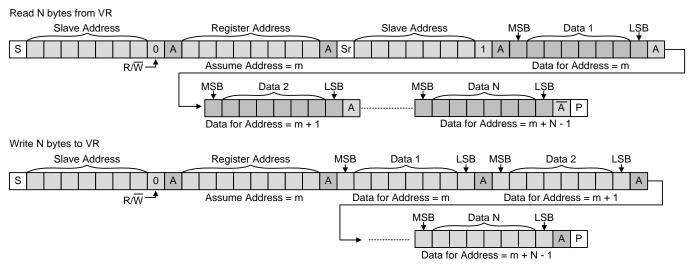
×1.25×R_{IMON AUX}

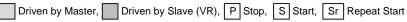
V_{IMON AUX}-V_{VREF} is proportional to output current. V_{IMON AUX}-V_{VREF} is used for output current reporting. V_{IMON AUX}-V_{VREF} is averaged by analog low-pass filter and then outputs to 8-bit ADC. The digitized reporting value is scaled such that FFh = ICCMAX, and the ICCMAX is set by SET1, $R_{IMON\ AUX}$ can be designed through above equation, where VIMON AUX - VVREF = 1.6V while $I_{L AUX} = ICCMAX$ register value.

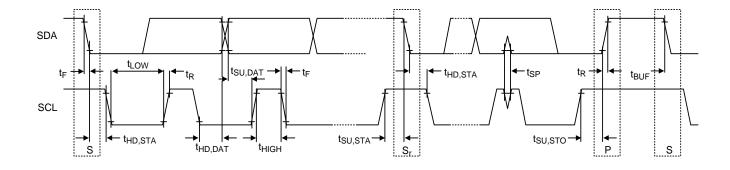
Figure 38 shows the SPS(current type) application diagram. While ISENP_AUX is connected to 5V, ISENN_AUX will by pass a 1.3V reference voltage for SPS, and the SPS output current is directly injected to the IMON_AUX pin. The relationship between VIMONA and inductor current IL AUX is:

$$V_{IMON_AUX}\text{-}V_{REFIN}\text{=}(I_{L_AUX})\text{xSPS_gain}\text{x}R_{IMON_AUX}$$

Figure 38. AUX Rail Use SPS Current Sense




I²C Interface


The I^2C slave address = 0x20h or 0x21h by SET1 pin setting.

This I²C does not have a stretch function.

The I^2C interface supports standard slave mode (100 kbps), and fast mode (400kbps). The write or read bit stream (N>1) is shown below:

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Register Map

Register Address	NAME	Туре	Register Reset
0x00h	CBG1_CORE	RW	0x04h
0x01h	CBG2_CORE	RW	0x04h
0x02h	CBG3_CORE	RW	0x04h
0x03h	CBG4_CORE	RW	0x04h
0x04h	CBG5_CORE	RW	0x04h
0x05h	CBG6_CORE	RW	0x04h
0x06h	CBC7_CORE	RW	0x04h
0x07h	CBC8_CORE	RW	0x04h
0x22h	LL_SEL_CORE	RW	0x07h
0x23h	VOFS_CORE	RW	0x00h
0x24h	EN_VFIX_CORE	RW	0x00h
0x25h	VFIX_LSB_CORE	RW	0x83h(VID1) 0xA1h(VID2))
0x26h	VFIX_MSB_CORE	RW	0x00h
0x27h	EN_PRT_CORE	RW	
0x28h	PRT_FLAG_CORE	R	0x00h
0x2Ah	FORCE_PS0_CORE	RW	0x00h
0x30h	ILOAD_RPT_CORE	R	
0x31h	PSYS_RPT	R	
0x32h	TEMP_RPT_CORE	R	
0x42h	LL_SEL_AXG	RW	0x07h
0x43h	VOFS_AXG	RW	0x00h
0x44h	EN_VFIX_AXG	RW	0x00h
0x45h	VFIX_LSB_AXG	RW	0x83h(VID1) 0xA1h(VID2)
0x46h	VFIX_MSB_AXG	RW	0x00h
0x47h	EN_PRT_AXG	RW	
0x48h	PRT_FLAG_AXG	R	0x00h
0x4Ah	FORCE_PS0_AXG	RW	0x00h
0x50h	CORE_ACLL_MISC1	RW	0x06h
0x51h	CORE_ACLL_ MISC2	RW	0xE3h
0x52h	CORE_ACLL_ MISC3	RW	0x5Bh
0x53h	CORE_ACLL_ MISC4	RW	0x91h
0x54h	CORE_ACLL_ MISC5	RW	0xCAh
0x55h	CORE_ACLL_ MISC6	RW	0x1Fh
0x60h	AXG _ACLL_MISC1	RW	0x1Fh
0x61h	AXG _ACLL_MISC2	RW	0x79h
0x62h	AXG _ACLL_MISC3	RW	0xC7
0x63h	AXG _ACLL_MISC4	RW	0x11h
0x70h	ILOAD_RPT_AXG	R	
0x72h	TEMP_RPT_AXG	R	
0x73h	SUMOCP_DLY	RW	0xF6h
0x75h	OVP_SS	RW	0x00h

Register Address	NAME	Туре	Register Reset
0x76h	WDR	RW	0x00h
0x77h	WDR_ST	R	
0x78h	ILOAD_RPT_Ratio	RW	0x00h
0x79h	ILOAD_RPT_AUX	R	
0x7Ah	CORE_ZCD_TH	RW	
0x7Bh	AXG_ZCD_TH	RW	
0x7Ch	ANTIOVS_TH	RW	0x3Fh
0x80h	MISC1	RW	
0x81h	FASTV_VRHOT_ICCMAX_AUX	RW	
0x82h	AR_TH_CORE_ICCMAX_AXG	RW	
0x83h	EN_DBLR_KTON_AXG	RW	
0x84h	DAC_SEL_ICCMAX	RW	
0x85h	MISC2	RW	
0x86h	MISC3	RW	
0x87h	SUMOCP_ZCD_TH_AXG	RW	

Register	Register Address: 0x00h											
Descripti	i on : Adjustm	ent phase1	current bala	ance gain of	CORE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					CBG1_	CORE						
Reset Va	Reset Value 0x04h											
Read/Write R R R R RW RW RW								RW				
Bits	Name			Description	on							
[7:3]	Reserve	d		Reserved	bits							
				[2:0] = 000	0 : 69.2%, [2	2:0] = 001 : 7	76.9%,					
[2:0]	CBG			[2:0] = 010	0 : 84.6%, [2	[2:0] = 011:9	92.3%,					
[2.0]	CBC	[2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%,										
				[2:0] = 110): 115.38%,	[2:0] = 111	: 123.08%					

Register Ac	Register Address: 0x01h											
Description	ı: Adjustm	ent phase2	current bala	ance gain of	CORE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					CBG2_	CORE						
Reset Value												
Read/Write	I/Write R R R R RW RW RW											
Bits	Name			Description	on							
[7:3]	Reserve	d		Reserved	bits							
[2:0]	CBG		[2:0] = 000 : 69.2%, [2:0] = 001 : 76.9%, [2:0] = 010 : 84.6%, [2:0] = 011 : 92.3%, [2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%, [2:0] = 110 : 115.38%, [2:0] = 111 : 123.08%									

Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

Register	Register Address: 0x02h											
Descript	i on : Adjustm	ent phase3	current bala	ance gain of	CORE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	CBG3_CORE											
Reset Va	Reset Value 0x04h											
Read/Write R R R R RW RW RV								RW				
Bits	Name			Description	on							
[7:3]	Reserve	ed		Reserved	bits							
[2:0]	CBG				0 : 69.2%, [2 0 : 84.6%, [2							
[2.0]	СВО) : 100% (de) : 115.38%,	,		7.69%,				

Register A	ddress: 0	x03h								
Descriptio	n : Adjustm	ent phase4	current bala	ance gain of	CORE rail.					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					CBG4_	CORE				
Reset Valu	Reset Value 0x04h									
Read/Write R R R R RW RW RV							RW			
Bits	Name			Description	on					
[7:3]	Reserve	d		Reserved	bits					
				[2:0] = 000): 69.2%, [2	2:0] = 001 : 7	76.9%,			
[2:0]	CBG): 84.6%, <mark>[</mark> 2	-				
[2.0]	CDG		[2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%,							
				[2:0] = 110): 115.38%,	[2:0] = 111	: 123.08%			

Register Address: 0x04h											
Descriptio	n : Adjustm	ent phase5	current bala	ance gain of	CORE rail.						
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					CBG5_	CORE					
Reset Valu											
Read/Write R R R R RW RW RW									RW		
Bits	Name			Description	on						
[7:3]	Reserve	d		Reserved	bits						
				[2:0] = 000	0 : 69.2%, [2	2:0] = 001 : 1	76.9%,				
[2:0]	CBG			[2:0] = 010	0 : 84.6%, [2	[2:0] = 011:9	92.3%,				
[2.0]	CDG		[2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%,								
				[2:0] = 110): 115.38%,	[2:0] = 111	: 123.08%				

Register	r Address : 0:	x05h									
Descript	tion: Adjustm	ent phase6	current bala	ance gain of	CORE rail.						
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					CBG6_	CORE					
Reset Va	alue 0x04h										
Read/W	Read/Write R R R R RW RW RV								RW		
Bits	Name			Description	on						
[7:3]	Reserve	ed		Reserved	bits						
[2:0]	CBG	[2:0] = 000 : 69.2%, [2:0] = 001 : 76.9%, [2:0] = 010 : 84.6%, [2:0] = 011 : 92.3%, [2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%, [2:0] = 110 : 115.38%, [2:0] = 111 : 123.08%									

Register Address: 0x06h Description: Adjustment phase7 current balance gain of CORE rail.											
Bits	ion. Aujustin	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name				l	CBG77	_CORE	l		l		
Reset Va	set Value 0x04h										
Read/Write R R R R RW RW F							RW				
Bits	Name			Description	on						
[7:3]	Reserve	d		Reserved	bits						
					0 : 69.2%, [2	-					
[2:0]	CBG	CBG [2:0] = 010 : 84.6%, [2:0] = 011 : 92.3%,									
1			[2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%, [2:0] = 110 : 115.38%, [2:0] = 111 : 123.08%								
				[[2.0] = 110	7.115.30%,	[Z.U] = 111	. 123.00%				

Register A	Register Address: 0x07h											
Description	n : Adjustm	ent phase8	current bala	ance gain of	CORE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					CBG8_	CORE						
Reset Valu												
Read/Write	/Write R R R R R RW RW RW											
Bits	Name			Description	on							
[7:3]	Reserve	d		Reserved	bits							
				[2:0] = 000): 69.2%, [2	2:0] = 001 : 7	76.9%,					
[2:0]	CBG				0 : 84.6%, [2							
[2.0]	CDC		[2:0] = 100 : 100% (default), [2:0] = 101 : 107.69%,									
				[2:0] = 110): 115.38% <u>,</u>	[2:0] = 111	: 123.08%					

DS3628AE-00 May 2021 www.richtek.com

Register Address: 0x22h Description: Selection load-line of CORE rail.												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			LL_SEL_CORE									
Reset Va	set Value 0x07h											
Read/Write R R R R RW RW								RW				
Bits	Name			Descripti	on							
[7:3]	Reserve	ed		Reserved	bits							
[2:0]	SEL_LL	[2:0] = 000 : 0% (0m\Omega LL), [2:0] = 001 : 12.5%, [2:0] = 010 : 25%, [2:0] = 011 : 37.5%, [2:0] = 100 : 50%, [2:0] = 101 : 62.5%, [2:0] = 110 : 75%, [2:0] = 111 : 100%(default)										

Register Address: 0x23h

Description: Setting offset voltage of CORE rail. For VID1 the final voltage limiting range 0.25V ~ 2.17V. (i.e. 0.25V ≤ VID setting ± SVID offset voltage ± I²C offset voltage ≤ 2.17V) For VID2 the final voltage limiting range 0.2V~3.04V. The offset slew rate is 1/2 of the fast slew rate. While setting voltage offset, the VR should return to power state PS0. After VSEN settles at the target offset voltage, the power state(PS) goes back to the original PS. If CPU sends SetPS1/2/3 command, the controller follows PS and the voltage offset still exists. If CPU sends SetVID off code command (VID setting ± SVID offset voltage ± I2C offset voltage), the controller sets output voltage

το υν.	UV.									
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					VOFS	CORE				
Reset Value	Э				0x0	00h				
Read/Write		RW	RW	RW						
Bits Name Description										
[7:0]	OFS			[7]: sign k [6:0]: 5m\ [e.g.] 00000001 00000011	V/step (DAC = current V = current V	of two's comp C_SEL=0) or VID + (1 x VII VID + (3 x VII ID - (1 x VID	10mV/step D step) D steps)	(DAC_SEL	=1)	

Register Address: 0x24h												
Description: Enable/Disable fixed VID mode of CORE rail.												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	EN_VFIX_CORE											
Reset Value 0x00h												
Read/Write	9	R	R	R	R	R	R	R	RW			
Bits	Name			Descripti	on							
[7:1]	Reserve	d		Reserved								
[0]	EN_VFIX [0] = 0 : Disable Fixed VID Mode [0] = 1 : Enable Fixed VID Mode											

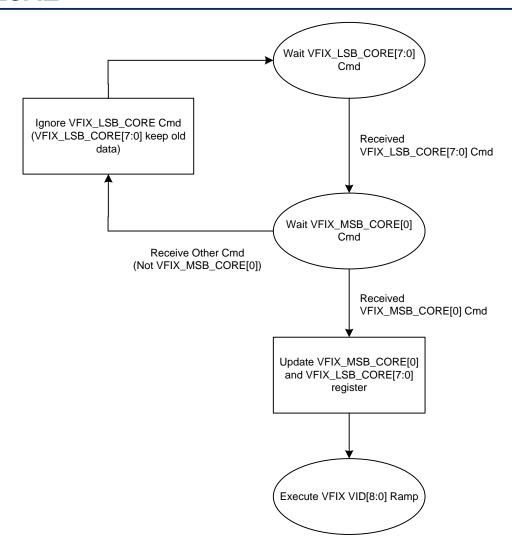
www.richtek.com

Register Address: 0x25h

Description: 9 bit fixed VID (Reg. 0x26h + Reg. 0x25h). Set voltage in fixed VID mode of CORE rail. In fixed VID mode, VR skips SetVID/SetPS command. (VR has no actions but still asserts ALERT immediately after receiving SetVID command, while the VR output voltage stays at the fixed VID.) While Fixed VID is enabled, VR doesn't act for I²C voltage offset as well. After disabling fixed VID mode, VID returns to the last SetVID target and last power state. When entering/exiting fixed VID mode, VID slew rate is 1/2 of the fast slew rate.

Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					VFIX_LS	B_CORE					
Reset Value	9			0:	x83h(VID1);	0xA1h(VID	2)				
Read/Write		RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Name		Description								
[7:0]	VFIX_LS	SB		(VFIX_MS DAC_SEL [0]+VFIX_ 2.17V. DAC_SEL	fixed VID m SB [0]=00h + =0, Voltage LSB[7:0]) x =1, Voltage LSB[7:0]) x	- VFIX_LSB of fixed VIE 5mV, (VID1 of fixed VIE	[7:0]=00h) 0 mode = 0.:), voltage ra 0 mode = 0.	245V + (VFI ange from 0. 19V + (VFIX	X_MSB 25V to C_MSB		

Register Address: 0x26h


Description: 9 bit fixed VID (Reg. 0x26h + Reg. 0x25h). Set voltage in fixed VID mode of CORE rail. In fixed VID mode, VR skips SetVID/SetPS command. (VR has no actions but still asserts ALERT immediately after receiving SetVID command, while the VR output voltage stays at the fixed VID.) While Fixed VID is enabled, VR doesn't act for I²C voltage offset as well. After disabling fixed VID mode, VID returns to the last SetVID target and last power state. When entering/exiting fixed VID mode, VID slew rate is 1/2 of the fast slew rate.

Bits		Bit7	2 2 2 2 2									
Name					VFIX_MS	B_CORE						
Reset Value)				0x0	00h						
Read/Write		R	R	R	R	R	R	R	RW			
Bits	Name		Description									
[7:1]	Reserve	d	Reserved									
[0]	VFIX_M	SB		(VFIX_MS DAC_SEL [0]+VFIX_ 2.17V. DAC_SEL	fixed VID m SB [0]=00h + =0, Voltage LSB[7:0]) x =1, Voltage LSB[7:0]) x	VFIX_LSB of fixed VIE 5mV, (VID1 of fixed VIE	[7:0]=00h) 0 mode = 0.:), voltage ra 0 mode = 0.	245V + (VF ange from 0. 19V + (VFI)	IX_MSB .25V to C_MSB			

DS3628AE-00 May 2021

www.richtek.com

Register	egister Address: 0x27h										
Descripti	on: Enable/	Disable prot	tection funct	tion of CORE	E rail.						
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					EN_PR1	_CORE					
Reset Val	ue				-	-					
Read/Wri	te	R	RW	R	R	RW	RW	RW	RW		
Bits	Name			Description	on						
[7]	Reserve	ed		Reserved	Reserved						
[6]	EN_Non	n-PS0_OC_	SUM	[6] = 0 : Disable PS1/2/3 sum OC protection [6] = 1 : Enable PS1/2/3 sum OC protection (default)							
[5:4]	Reserve	ed		Reserved			,	,			
[3]	EN_OC_	_SUM			sable sum (nable sum (•					
[2]	EN_NV				sable NV pr nable NV pr		fault)				
[1]	EN_UV			[1] = 0 : Disable UV protection [1] = 1 : Enable UV protection (default)							
[0]	EN_OV [0] = 0 : Disable OV protection [0] = 1 : Enable OV protection (default)										

Register	Register Address: 0x28h										
Descripti	i on : Protection	on indicator	of CORE r	ail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					PRT_FLA	AG_CORE					
Reset Va	lue		0x00h								
Read/Wri	ite	R	R R R R R R								
Bits	Name		Description								
[7:4]	Reserve	d		Reserved							
[3]	OC SUN	Л		[3] = 0 : No occurrence sum OCP							
					ccurrence s	sum OCP					
[2]	Reserve	d		Reserved							
[1]	UV				o occurrenc						
ניו	OV			[1] = 1 : O	ccurrence L	JVP					
[0]	OV			[0] = 0 : No occurrence OVP							
[0]				[0] = 1 : Occurrence OVP							

Registe	r Address: 02	x2Ah										
•	tion: Enable/			tion of COR	E rail, and the	ne rail still op	perates in F	S0 when th	е			
SetPS1/	2/3 command	l is received	l.									
Bits		Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
Name			Force_PS0_CORE									
Reset Va	alue				0x0	00h						
Read/W	rite	R	R	R	R	R	R	R	RW			
Bits	Name			Descripti	on							
[7:1]	Reserve	d	Reserved bits									
[0] Force_PS0				[0] = 0 : Disable [0] = 1 : Enable (Fixed in PS0)								

DS3628AE-00 May 2021 www.richtek.com

_	Register Address: 0x30h											
Description: Output current reporting of CORE rail.												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			ILOAD_RPT_CORE									
Reset Value	;				-	-						
Read/Write		R	R	R	R	R	R	R	R			
Bits	Name		Description									
[7:0]	ILOAD_I	RPT	PT Output current reporting of CORE rail.									

Register Ac	er Address: 0x31h											
Description	Description: PSYS reporting.											
Bits		Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
Name			PSYS_RPT									
Reset Value	е				-	-						
Read/Write		R	R	R	R	R	R	R	R			
Bits	Name		Description									
[7:0]	PSYS_R	RPT	PT PSYS reporting.									

Register Ad	idress : 0>	(32h											
Description	Description: Temperature reporting of CORE rail												
Bits		Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name			TEMP_RPT_CORE										
Reset Value	•				-	-							
Read/Write		R	R	R	R	R	R	R	R				
Bits	Name		Description										
[7:0]	TEMP_F	RPT	$V_{\text{THERMAL}} = \text{TEMP}_{\text{RPT}[7:0]} \times 6.25 \text{mV}$										

Table 20. $V_{THERMAL}$ vs Temperature (based on the R_{NTC} = 100k/Beta = 4250K)

Temperature (°C)	V _{THERMAL} (V)						
61	1.133	81	0.814	101	0.591	121	0.453
62	1.116	82	0.800	102	0.582	122	0.447
63	1.098	83	0.787	103	0.574	123	0.442
64	1.080	84	0.774	104	0.566	124	0.437
65	1.063	85	0.761	105	0.558	125	0.432
66	1.046	86	0.749	106	0.550	126	0.428
67	1.029	87	0.737	107	0.542	127	0.423
68	1.012	88	0.725	108	0.534	128	0.419
69	0.995	89	0.713	109	0.527	129	0.414
70	0.979	90	0.702	110	0.520	130	0.410
71	0.963	91	0.690	111	0.513		
72	0.947	92	0.679	112	0.506		
73	0.931	93	0.669	113	0.500		
74	0.916	94	0.658	114	0.493		
75	0.900	95	0.648	115	0.487		
76	0.885	96	0.638	116	0.481		
77	0.871	97	0.628	117	0.475		
78	0.856	98	0.618	118	0.469		
79	0.842	99	0.609	119	0.463		
80	0.828	100	0.600	120	0.458		

DS3628AE-00 May 2021 www.richtek.com

Register	Register Address: 0x42h											
Descripti	on: Selectio	n load-line	of AXG rail.									
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					LL_SE	L_AXG						
Reset Val												
Read/Write R R R R R RW RW							RW					
Bits	Name			Descripti	Description							
[7:3]	Reserve	d		Reserved	bits							
				[2:0] = 00	0 : 0% (0mΩ	ΣLL), [2:0] =	: 001 : 12.59	%,				
[2:0]	[2:0] SEL_LL [2:0] = 010 : 25%, [2:0] = 011 : 37.5%,											
[2.0]		[2:0] = 100 : 50%, [2:0] = 101 : 62.5%,										
			[2:0] = 100 : 30%, [2:0] = 101 : 02:3%, [2:0] = 110 : 75%, [2:0] = 111 : 100%(default)									

Register Address: 0x43h Description: Set offset voltage of AXG rail. For VID1 the final voltage limiting range 0.25V ~ 2.17V. (i.e. 0.25V ≤ VID setting \pm SVID offset voltage \pm I²C offset voltage \leq 2.17V) For VID2 the final voltage limiting range 0.2V~3.04V. The offset slew rate is 1/2 of the fast slew rate. While setting voltage offset, the VR should return to power state PS0. After VSEN settles at the target offset voltage, the power state(PS) goes back to the original PS. If CPU sends SetPS1/2/3 command, the controller follows PS and the voltage offset still exists. If CPU sends SetVID off code command (VID setting ± SVID offset voltage ± I2C offset voltage), the controller sets output voltage to 0V

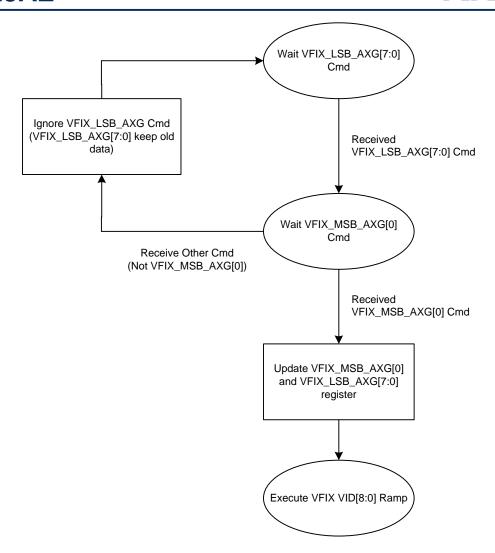
10 0 v.	OV.											
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			VOFS_AXG									
Reset Value	е	0x00h										
Read/Write RW RW RW RW RW RW								RW				
Bits	Name											
[7:0]	OFS			[7] : sign t [6:0] : 5m\ [e.g.] 00000001	<pre>//step(DAC</pre>	f two's comp _SEL=0) or 'ID + (1 x VII ID + (3 x VII D - (1 x VID	10mV/step(D step) D steps)	DAC_SEL=	1)			

Register Ad	Register Address: 0x44h											
Description: Enable/Disable fixed VID mode of AXG rail.												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			EN_VFIX_AXG									
Reset Value	set Value 0x00h											
Read/Write		R	R	R	R	R	R	R	RW			
Bits	Name			Description	on							
[7:1]	Reserve	d	Reserved									
[0]	[0] EN_VFIX [0] = 0 : Disable Fixed VID Mode [0] = 1 : Enable Fixed VID Mode											

Register Address: 0x45h

Description: 9 bit fixed VID (Reg. 0x46h + Reg. 0x45h). Set voltage in fixed VID mode of AXG rail. In fixed VID mode, VR skips SetVID/SetPS command. (VR has no actions but still asserts ALERT immediately after receiving SetVID command, while the VR output voltage stays at the fixed VID.) While Fixed VID is enabled, VR doesn't act for I²C voltage offset as well. After disabling fixed VID mode, VID returns to the last SetVID target and last power state. When entering/exiting fixed VID mode. VID slew rate is 1/2 of the fast slew rate.

otato	ate: When entering externed the mede, wie slow rate to 1/2 of the rate slow rate.									
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					VFIX_LS	SB_AXG				
Reset Value	е			C	x83h(VID1)	; 0xA1(VID2	2)			
Read/Write		RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Name			Description						
[7:0]	VFIX_LS	SB		(VFIX_MS DAC_SEL [0]+VFIX_ 2.17V. DAC_SEL	fixed VID m SB [0]=00h + =0, Voltage LSB[7:0]) x =1, Voltage LSB[7:0]) x	VFIX_LSB of fixed VIE 5mV, (VID1 of fixed VIE	[7:0]=00h) 0 mode = 0.:), voltage ra 0 mode = 0.	245V + (VFI ange from 0. 19V + (VFIX	X_MSB 25V to C_MSB	


Register Address: 0x46h

Description: 9 bit fixed VID (Reg. 0x46h + Reg. 0x45h). Set voltage in fixed VID mode of AXG rail. In fixed VID mode, VR skips SetVID/SetPS command. (VR has no actions but still asserts ALERT immediately after receiving SetVID command, while the VR output voltage stays at the fixed VID.) While Fixed VID is enabled, VR doesn't act for I²C voltage offset as well. After disabling fixed VID mode, VID returns to the last SetVID target and last power state. When entering/exiting fixed VID mode. VID slew rate is 1/2 of the fast slew rate.

state. When entering/exiting fixed VID mode, VID slew rate is 1/2 of the fast slew rate.											
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					VFIX_M	SB_AXG					
Reset Va	lue				0x0	00h					
Read/Wri	Read/Write R R			R	R	R	R	R	RW		
Bits	Name			Descripti	on						
[7:1]	Reserve	ed		Reserved							
[0]	VFIX_M	SB		(VFIX_MS DAC_SEL [0]+VFIX_ 2.17V. DAC_SEL	f fixed VID m SB [0]=00h + =0, Voltage LSB[7:0]) x =1, Voltage LSB[7:0]) x	VFIX_LSB of fixed VIE 5mV, (VID1 of fixed VIE	[7:0]=00h) 0 mode = 0), voltage ra 0 mode = 0.	245V + (VF ange from 0. 19V + (VFI)	IX_MSB 25V to (_MSB		

67

Register	Address: 0x	(47h										
Descript	ion: Enable/l	Disable pro	tection fund	tion of AXG	rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					EN PRT AXG							
Reset Va	llue											
Read/Wr	ite	R	RW	R	R	RW	RW	RW	RW			
Bits	Name			Description	on							
[7]	Reserve	d		Reserved								
[6]	Reserve	d		Reserved								
[5:4]	Reserve	d		Reserved								
[0]	EN OC	CLIM		[3] = 0 : Disable sum OC protection								
[3]	EN_OC_	_30101		[3] = 1 : Enable sum OC protection (default)								
[2]	EN NV			[2] = 0 : Disable NV protection								
[2]	EIN_INV			[2] = 1 : Enable NV protection (default)								
[4]	EN LIV			[1] = 0 : Disable UV protection								
[1]	EN_UV			[1] = 1 : Enable UV protection (default)								
[0]	EN OV	EN_OV			[0] = 0 : Disable OV protection							
[0]	EN_OV				[0] = 1 : Enable OV protection (default)							

Register Address: 0x48h											
Description	: Protecti	on indicator	of AXG rail	•							
Bits	Bits Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					PRT_FLAG_AXG						
Reset Value				0x00h							
Read/Write		R	R	R	R	R	R	R	R		
Bits	Name			Description	on						
[7:4]	Reserve	d		Reserved							
[3]	oc sur	М		[3] = 0 : No occurrence sum OCP							
	00_001			[3] = 1 : Occurrence sum OCP							
[2]	Reserve	d		Reserved							
[4]	[1] UV		[1] = 0 : No occurrence UVP								
[1]	OV			[1] = 1 : Occurrence UVP							
[0]	OV	OV			[0] = 0 : No occurrence OVP						
[0]	Ov			[0] = 1 : Occurrence OVP							

Register A	Address: 0x	κ4Ah									
-	on : Enable/l is received.		e PS0 fund	tion of AXG	rail, and the	rail still ope	rates in PS	0 when the	SetPS1/2/3		
Bits Bit7			Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					Force_PS0_AXG						
Reset Value	ue			0x00h							
Read/Writ	e	R	R	R	R	R	R	R	RW		
Bits	Name			Description							
[7:1]	Reserve	d		Reserved bits							
[0] Force_PS0			[0] = 0 : Disable [0] = 1 : Enable (Fixed in PS0)								

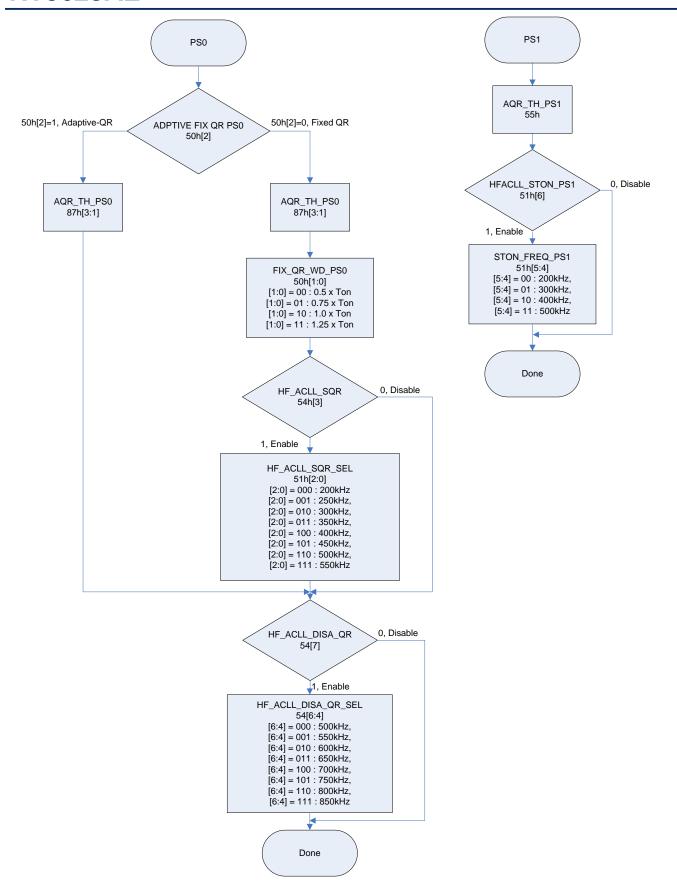
Register	Address: 0	x50h										
Descript	ion: Selection	on kind of Q	R in PS0 o	or PS1 for C	ORE rail, se	etting fixed C	QR width in	PS0 or PS1	for CORE			
rail.		1	1			1	1	1	1			
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					CORE_AC	CLL_MISC1						
Reset Va	alue		0x06h									
Read/Wr	ite	R	RW	RW	RW	R	RW	RW	RW			
Bits	Name			Descripti	Description							
[7]	Reserve	ed		Reserved bit								
[6]	Reserve	ed		Reserved bit								
[5:4]	Reserve	ed		Reserved bit								
[3]	Reserve	ed		Reserved bit								
[2]	ADPTV_	ADPTV_FIX_QR_PS0			Selection kind of QR in PS0 for CORE rail [2] = 0 : Fixed QR [2] = 1 : Adaptive-QR (AQR)							
[1:0]	FIX_QR	_WD_PS0		Setting fixed QR width in PS0 for CORE rail [1:0] = 00 : 0.5 x Ton, [1:0] = 01 : 0.75 x Ton, [1:0] = 10 : 1.0 x Ton, [1:0] = 11 : 1.25 x Ton								

DS3628AE-00 May 2021 www.richtek.com

Register Ac											
Description	: Setting	the extend 1	on width a	nd shrink Ton in PS1 for CORE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					CORE_AC	LL_MISC2					
Reset Value	9			0xE3h							
Read/Write		RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Name			Descript	ion						
				Extend T	on width for	CORE rail					
[7]	EXTD_Ton_WD			[7] = 0 : Disable							
				[7] = 1 : Enable							
		HEACH STON DS4			PWM behavior will shrink Ton and QR while ACLL frequency >						
[6]	HEVCLI				STON_FREQ_PS1[5:4] for CORE rail						
[O]	HFACLL_STON_PS1			[6] = 0 : Disable							
				[6] = 1 : Enable							
				Select the ACLL frequency to start shrinking TON and QR in PS1							
[5:4]	STON_FREQ_PS1			for CORE rail							
[0.4]	01011_1	310N_FREQ_F31			[5:4] = 00 : 200kHz, [5:4] = 01 : 300kHz,						
				[5:4] = 10 : 400kHz, [5:4] = 11 : 500kHz							
				Selection extend Ton width for CORE rail							
[3:2]	SEL_EX	TD_Ton_V	/D	$[3:2] = 00 : 2.66 \times \text{Ton}, [3:2] = 01 : 2.0 \times \text{Ton},$							
				[3:2] = 10 : 1.6 x Ton, [3:2] = 11 : 1.33 x Ton							
	INC_TON_TH			Setting increase Ton threshold for CORE rail							
[1:0]				[1:0] = 00 : 2.4V + 150mV, [1:0] = 01 : 2.4V + 200mV,							
				[1:0] = 10 : 2.4V + 250mV, [1:0] = 11 : 2.4V + 300mV							

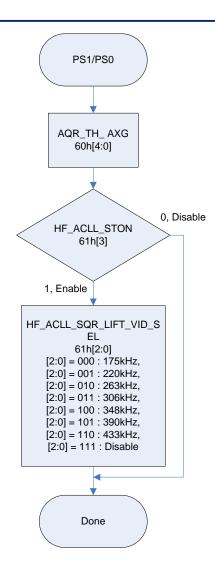
Register Address: 0x52h Description: Set lift VID amount while QR/ RAMP_AUX be triggered for CORE rail. Set lift VID be pulled down time for QR/RAMP_AUX be triggered for CORE rail. Bits Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Name CORE_ACLL MISC3 Reset Value 0x5Bh Read/Write RW RW RW RW RW RW RW RW **Bits** Name Description The QR be triggered will lift VID in PS0 for CORE rail [7] QR_LIFT_VID_PS0 [7] = 0 : Disable [7] = 1 : Enable The QR be triggered will lift VID in PS1 for CORE rail [6] = 0: Disable [6] QR LIFT VID PS1 [6] = 1 : Enable The ADAPTIVE_RAMP be triggered will lift VID in PS0 for CORE ADAPTIVE_RAMP rail [5] _LIFT_VID_PS0 [5] = 0 : Disable [5] = 1 : Enable The ADAPTIVE_RAMP be triggered will lift VID in PS1 for CORE ADAPTIVE_RAMP [4] [4] = 0 : Disable _LIFT_VID_PS1 [4] = 1 : Enable Selection lift VID be pulled down time for QR be triggered [3] QR LIFT FAST DOWN [3] = 0:150us[3] = 1 : 40usSelection lift VID be pulled down time for RAMP AUX be triggered ADAPTIVE RAMP [2] [2] = 0 : 150us_LIFT_FAST_DOWN [2] = 1 : 40usSelection lift VID amount while QR be triggered [1] = 0:5mV[1] QR_LIFT_VID [1] = 1 : 10mVSelection lift VID amount while RAMP AUX be triggered [0] ADAPTIVE_RAMP_LIFT_VID [0] = 0:5mV[0] = 1:10mV

DS3628AE-00 May 2021 www.richtek.com


_	Address: 0x		DAMD ALLY	ho triagers	d in DCO/4	for CODE -	oil			
Descripti Bits	on: Set lift L	PF while QR/ Bit7	RAMP_AUX Bit6	be triggered Bit5	Bit4	Bit3	aıı. Bit2	Bit1	Bit0	
Name		ын	ыю		ORE_ACLI		DILZ	DILI	DILU	
Reset Val	lie			0x91						
Read/Wri		RW	RW	RW RW RW RW RW R						
Bits	Name			Descripti						
[7]	QR_LIFT	_LPF_PS0		The QR be triggered will lift LPF in PS0 for CORE rail [7] = 0 : Disable [7] = 1 : Enable						
[6]	QR_LIFT	_LPF_PS1		The QR be triggered will lift LPF in PS1 for CORE rail [6] = 0 : Disable [6] = 1 : Enable						
[5]	ADAPTIV	/E_RAMP_LII	FT_LPF_PS0	The ADAPTIVE_RAMP be triggered will lift LPF in PS0 for						
[4]	ADAPTIV	/E_RAMP_LII	FT_LPF_PS1	The ADAPTIVE_RAMP be triggered will lift LPF in PS1 for CORE rail [4] = 0 : Disable [4] = 1 : Enable						
[3]	Reserved	d		Reserved bit						
[2]	LF_LIFT_	_LPF_PS0		The QR or RAMP_AUX be triggered will lift LPF 10us in PS0 for CORE rail in PS0 for CORE rail [2] = 0 : Disable [2] = 1 : Enable						
[1]	Reserved	i	Reserved bit							
[0]	LF_LIFT_	_LPF_PS1		The QR or RAMP_AUX be triggered will lift LPF 10us in PS1 CORE rail [0] = 0 : Disable [0] = 1 : Enable						

Register Ac	Register Address: 0x54h										
Description			disable QR	at high frequ	iency ACLL	for CORE r	ail				
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name				CORE_ACLL_MISC5							
Reset Value)				0x0	CAh					
Read/Write		RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Name			Descripti	on						
[7]	HF_ACL	L_DISA_QI	R	HF_ACLL [7] = 0 : D [7] = 1 : E	_DISA_QR_ isable nable	_SEL[6:4] fo	or CORE rail		·		
[6:4]	HF_ACL	.L_DISA_QI	R_SEL	Selection to disable QR frequency at high frequency ACLL for CORE rail [6:4] = 000 : 500kHz, [6:4] = 001 : 550kHz, [6:4] = 010 : 600kHz, [6:4] = 011 : 650kHz, [6:4] = 100 : 700kHz, [6:4] = 101 : 750kHz, [6:4] = 110 : 800kHz, [6:4] = 111 : 850kHz							
[3]	HF_ACL	LL_SQR		To shrink QR at high frequency ACLL, frequency can be set by HF_ACLL_SQR_SEL[2:0] for CORE rail [3] = 0 : Disable [3] = 1 : Enable							
[2:0]	HF_ACL	L_SQR_SE	:L	Selection to shrink QR frequency at high frequency ACLL for CORE rail [2:0] = 000 : 200kHz, [2:0] = 001 : 250kHz, [2:0] = 010 : 300kHz, [2:0] = 011 : 350kHz, [2:0] = 100 : 400kHz, [2:0] = 101 : 450kHz, [2:0] = 110 : 500kHz, [2:0] = 111 : 550kHz							

Register Address: 0x55h												
Description : Selection AQR be triggered threshold in PS1 for CORE rail												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name												
Reset Value 0x1Fh												
Read/Writ	e	R	R	R	RW	RW	RW	RW	RW			
Bits	Name			Descripti	on							
[7:5]	Reserve	d		Reserved	bit							
[4:0]	[4:0] AQR_TH_PS1 Selection AQR be triggered threshold in PS1 for CORE rail AQR_TH_PS1 = [4:0] x 40mV + 40mV; [4:0] = 11111 : Disable											



•													
Register	Register Address: 0x60h												
Descript	t ion : Selection	on AQR be t	riggered thr	eshold for A	XG rail								
Bits													
Name					AXG_ACI	L_MISC1							
Reset Va	alue				0x1	1Fh							
Read/Write R R RW RW RW RW							RW						
Bits	Name			Descripti	Description								
[7:5]	Reserve	ed		Reserved	bit								
				Selection	AQR be trig	gered thresl	nold for AX0	3 rail					
[4:0]	AQR TI	U 4VC		60H[4] = 0, AQR_TH = 240mV+[3:0]*80mV									
[4:0]	AQK_II	n_AAG		60H[4] = 1	I, AQR_TH	= 720 mV + [3]	3:0]*80mV						
			60H[4] = 1, AQR_TH = 720mV+[3:0]*80mV [3:0] = 1110, 1111, AQR_TH = Disable										

Register	Register Address: 0x61h										
Description	on: Selectio	n frequency	to both the sh	nrink Ton o	the disable	QR at high	rfrequency	ACLL for A	XG rail		
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					AXG _ACL	L_MISC2					
Reset Val	ue				0x79	9h					
Read/Wri	te	R	RW	RW	RW	RW	RW	RW	RW		
Bits	Name			Description							
[7]	Reserve	d		Reserved bit							
				Selection to disable QR frequency at high frequency ACLL for							
				AXG rail							
[6:4]	HF_ACL	L_DISA_QR	_SEL		0 : Disable,						
				[6:4] = 011 : 559kHz, [6:4] = 100 : 601kHz, [6:4] = 101 : 642kHz,							
				[6:4] = 110 : 682kHz, [6:4] = 111 : 724kHz							
					Ton at high	frequency A	ACLL for AX	(G rail			
[3]	HF_ACL	L_STON		$[3] = 0 : \Gamma$	Disable						
				[3] = 1 : E	nable						
				Selection	frequency t	o lift VID ar	nd STON at	high freque	ency ACLL		
				for AXG r	ail						
[2:0]	2:0] HF_ACLL_STON_LIFT_VID_SE										
					[2:0] = 011 : 306kHz, [2:0] = 100 : 348kHz, [2:0] = 101 : 390kHz, [2:0] = 110 : 433kHz, [2:0] = 111 : Disable SQR						
				[2:0] = 11	0:433kHz,	[2:0] = 111	: Disable S	QR			

Register Address: 0x62h											
_			_clamp and	floating_ra	mp for AXG	rail					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					AXG _ACL	L_MISC3					
Reset Value	е		<u> </u>		0xC	7h					
Read/Write		RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Name			Description							
[7]	RAMP_A	ADJ_MASK_	_TIME	rail [7] = 0 : 2 [7] = 1 : 4	0us	, - ,	. –				
[6]	ADAPTI	VE_RAMP_	MASK_ADJ	The ADA rail [6] = 0 : D [6] = 1 : E		IP be trigge	red will mas	sk ramp_adj	for AXG		
[5:4]	RAMP_0	CLAMP_TH		Select ramp_clamp threshold for AXG rail [5:4] = 00 : 150mV, [5:4] = 01 : 225mV, [5:4] = 10 : 300mV, [5:4] = 11 : 420mV,							
[3:2]	2] Reserved				Reserved bit						
[1:0]	SEL_FL	RAMP_TH		[1:0] = 00	ating_ramp t : 125mV, [1 : 225mV, [1	:0] = 01 : 17	′5mV,				

Register Address: 0x63h										
_										
Description	n: Set exte	end Ton and	increase To	n threshold	for AXG rail					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					AXG _ACL	L_MISC4				
Reset Value	е				0x1	1h				
Read/WriteRRRRWRWRWRWRW									RW	
Bits	ts Name Description									
[7:5]	Reserve	d		Reserved	bit					
				Extend Ton at ACLL for AXG rail						
[4]	ACLL_E	XTD_TON		[4] = 0 : Disable						
				[4] = 1 : E	nable					
				Select ext	end Ton rati	o at ACLL fo	or AXG rail			
[3:2]	ACLL_E	XTD_TON_	SET	[3:2] = 00	: 2.66 x Ton	1, [3:2] = 01	: 2.00 x Ton	,		
				[3:2] = 10	: 1.60 x Ton	1, [3:2] = 11	1.33 x Ton			
		Setting increase Ton threshold for AXG rail								
[1:0]	INC_TON_TH [1:0] = 00 : 2.4V + 150mV, [1:0] = 01 : 2.4V + 200mV,									
		[1:0] = 00 : 2.4V + 150mV, [1:0] = 01 : 2.4V + 200mV, [1:0] = 10 : 2.4V + 250mV, [1:0] = 11 : 2.4V + 300mV								

Register A	Register Address: 0x70h												
Description: Output current reporting of AXG rail.													
Bits		Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name			ILOAD_RPT_AXG										
Reset Valu	е				-	-							
Read/Write)	R	R	R	R	R	R	R	R				
Bits	Name		Description										
[7:0]	ILOAD_I	RPT	PT Output current reporting of AXG rail.										

Register Ad	gister Address: 0x72h												
Description: Temperature reporting of AXG rail													
Bits		Bit7											
Name			TEMP_RPT_AXG										
Reset Value	;				-	-							
Read/Write		R	R	R	R	R	R	R	R				
Bits	Name		Description										
[7:0]	TEMP_F	RPT	PT V _{THERMALA} = TEMP_RPT[7:0] x 6.25mV										

Table 21. V_{THERMALA} vs Temperature (based on the R_{NTC} = 100k/Beta = 4250K)

Temperature (°C)	V _{THERMALA} (V)						
61	1.133	81	0.814	101	0.591	121	0.453
62	1.116	82	0.800	102	0.582	122	0.447
63	1.098	83	0.787	103	0.574	123	0.442
64	1.080	84	0.774	104	0.566	124	0.437
65	1.063	85	0.761	105	0.558	125	0.432
66	1.046	86	0.749	106	0.550	126	0.428
67	1.029	87	0.737	107	0.542	127	0.423
68	1.012	88	0.725	108	0.534	128	0.419
69	0.995	89	0.713	109	0.527	129	0.414
70	0.979	90	0.702	110	0.520	130	0.410
71	0.963	91	0.690	111	0.513		
72	0.947	92	0.679	112	0.506		
73	0.931	93	0.669	113	0.500		
74	0.916	94	0.658	114	0.493		
75	0.900	95	0.648	115	0.487		
76	0.885	96	0.638	116	0.481		
77	0.871	97	0.628	117	0.475		
78	0.856	98	0.618	118	0.469		
79	0.842	99	0.609	119	0.463		
80	0.828	100	0.600	120	0.458		

_	egister Address: 0x73h escription: Setting sum OCP threshold of CORE/AXG rail and sum OCP delay time of CORE/AXG rail.											
	n: Setting											
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name						C_DLY						
Reset Value			r	0xF6h								
Read/Write		RW	RW	RW RW RW RW RW								
Bits	Name			Description								
[7]	SUMOC	P_DLY_CC	RE	[7] = 0 : 20 [7] = 1 : 40	Ous Ous	e of CORE r						
[6]	SUMOC	P_DLY_AX	G	Sum OCP delay time of AXG rail [6] = 0 : 20us [6] = 1 : 40us								
[5:3]	SUMOC	P_AXG		While Re [5:3] = 000 60%, [5:3] = 111 : 14 While Re [5:3] = 000	g. Addr 0x8 0: 60%, [5:3] = 100: 909 0% g. Addr 0x8 0: 60%, [5:3] = 100: 110	3] = 001 : 60 %, [5:3] = 10	%, [5:3] = 0 11 : 100%, [4 %, [5:3] = 0	5:3] = 110 : 010 : 70%, [8	130%, [5:3] 5:3] = 011 :			
[2:0]	SUMOC	P_CORE		Sum OCF While Re [2:0] = 000 60%, [2:0] = 111 : 14 While Re [2:0] = 000	P threshold g. Addr 0x8 0: 60%, [2:0 = 100: 90° 0% g. Addr 0x8 0: 60%, [2:0 = 100: 110	0] = 001 : 60 %, [2:0] = 10	%, [2:0] = 0 11 : 100%, [2:0] = 0 %, [2:0] = 0	2:0] = 110 : 010 : 70%, [2	130%, [2:0] 2:0] = 011 :			

Register Ad	Register Address: 0x75h										
Description	ı : DVID u <mark>r</mark>	period fror	n 0V to 1 st f	PWM pulse a	after VID se	ttles OVP th	reshold of (CORE/AXG	rail.		
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					OVP	_SS					
Reset Value	е			0x00h(VID1); 0x05h(VID2)							
Read/Write		R	R	R	R	RW	RW	RW	RW		
Bits	Name			Description	escription						
[7:2]	Reserve	d									
[2,2]	OVD C	2.440		[3:2] = 00 :	2.45V(VID1	, .	OVP thresh	old of AXG	rail		
[3:2]	OVP_SS	S_AAG		[3:2] = 10 :		<u>2),</u>					
[1:0]	[3:2] = 11 : 3.05V 1st PWM pulse after VID settles OVP threshold of CORE rail [1:0] = 00 : 2.45V(VID1); OVP_SS_CORE [1:0] = 01 : 2.65V(VID2); [1:0] = 10 : 2.85V; [1:0] = 11 : 3.05V								E rail		

Register	egister Address: 0x76h escription: Enable/Disable watchdog function and setting watchdog-Reset period.										
Descripti	on: Enable/	Disable water	chdog function	on and setti	ng watchdo	g-Reset per	iod.				
Bits		Bit7	Bit6	Bit5 Bit4 Bit3 Bit2 Bit1 B							
Name					WI	DR .					
Reset Va	lue				0x0)0h					
Read/Wri	te	R	R	R	R	R	R	RW	RW		
Bits	Name			Description	on		•				
[7:2]	Reserve	d		Reserved							
[1]	EN_WA	ГСНDOG_R	ESET	[1] = 0 : Di exceed 30 register ke [1] = 1 : Er WDR[0] se setting, all	sable Watch ms, VR I ² Cheps the later hable Watch etting. While I ² C register	interface st est value.) adog-Reset SMBus train except for	(If SMBus to ate maching (Watchdog namission to protection for the second secon	nanging exc	et all sed on eeds the		
[0]	EN_WATCHDOG_RESET [1] = 1 : Enable Watchdog-Reset (Watchdog period is based on WDR[0] setting. While SMBus transmission hanging exceeds the setting, all I ² C register except for protection flag and 0x80h to 0x8Bh, will be reset to the default value. Watchdog-Reset period [0] = 0 : 800ms [0] = 1 : 1600ms										

Register Ac	Register Address: 0x77h											
Description	: Watchd	og-reset sta	tus, being r	eset after SN	MBus read t	his bit or VC	CC recycle.					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			WDR_ST									
Reset Value)											
Read/Write		R	R R R R R R									
Bits	Name			Description)							
[7:1]	Reserve	d		Reserved								
				Watchdog-	Reset Statu	S						
[0]	WATCH!	DOG STAT	116	[0] = 0 : SM	1Bus transm	nission norm	nal					
[0]	VVAICIII	DOG_STAT	_STATUS [0] = 1 : SMBus transmission hanging had ever exceeded									
				watchdog-r	eset period							

Register A	ddress: 0:	x78h									
Description	n: Output	current repo	rting ratio a	djustment of	f CORE/AX	G rail.					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					ILOAD_R	PT_Ratio					
Reset Valu											
Read/Write		R									
Bits	Name		Description								
[7:4]	Reserve	d		Reserved							
				Output cu	rrent repor	ting ratio a	djustment d	of AXG rail			
[3:2]	ILOAD_	RPT_Ratio_	_AXG	[3:2] = 00:	100%, [3:2] = 01 : 87.5	5%,				
				[3:2] = 10 :	75%, [3:2]	= 11 : 50%					
				Output cu	rrent repor	ting ratio a	djustment d	of CORE ra	il		
[1:0]	ILOAD_	DAD_RPT_Ratio_CORE [1:0] = 00 : 100%, [1:0] = 01 : 87.5%,									
				[1:0] = 10:	75%, [1:0]	= 11 : 50%					

Register Address: 0x79h												
Description: Output current reporting of AUX rail.												
Bits												
Name			ILOAD_RPT_AUX									
Reset Valu	е				-	-						
Read/Write		R	R	R	R	R	R	R	R			
Bits	Name		Description									
[7:0]	ILOAD_RPT Output current reporting of AUX rail.											

Register A	Register Address: 0x7Ah										
Description	n: Setting	ZCD thresh	old of COR	tE rail.							
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					ZCD_TF	I_CORE					
Reset Valu	е				-	-					
Read/Write)	R									
Bits	Name		Description								
[7:6]	Reserve	ed	Reserved								
[5:0]	ZCD_T	H_CORE		[5] = 1 : N [4:0]: ([4:0 Ex. ZCD_ ZCD _{th_} CO Ex. ZCD_	RE = (26*0.2 TH_CORE[threshold	33mV 0				

Register Address: 0x7Bh										
Description	n: Setting	ZCD thresh	old of AXG	rail.						
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					ZCD_T	H_AXG				
Reset Valu	е									
Read/Write)	R								
Bits	Name		Description							
[7:6]	Reserve	ed		Reserved						
[5:0]	ZCD_TI	H_AXG		Ex. ZCD_1 ZCD _{th_AXG} Ex. ZCD_1	= (7B[5:0]* TH_AXG[5:0] = (26*0.06; TH_AXG[5:0] G = (50*0.0	0] = 011010 25mV)-1.75 0] = 110010	mV			

Register	Register Address: 0x7Ch									
Descripti	ion: Setting	ANTIOVS t	hreshold of	CORE/AXC	rail.					
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name					ANTIO	VS_TH				
Reset Va	lue				0X:	3Fh				
Read/Wri	ite	R								
Bits	Name		Description							
[7:6]	Reserve	ed		Reserved						
				Setting A	NTIOVS the	reshold of A	AXG rail			
[5:3]	AXG A	NTIOVS TI	4			-		= 010:150		
[5.5]		1411045_11	1	011 : 180r	nV, [5:3] = 1	00 : 210mV	′, [5:3] = 101	: 240mV, [5	5:3] = 110 :	
				Disable, [5:3] = 111 : I	Disable				
				Setting A	NTIOVS the	reshold of (CORE rail			
[2:0]	CORE	ANTIONS:	тш	[2:0] = 000	0 : 180mV, [2:0] = 001:	240mV, [2:0	0] = 010 : 30	00mV, [2:0]	
[2.0]	ORE_ANTIOVS_TH = 011 : 360mV, [2:0] = 100 : 420mV, [2:0] = 101 : 480mV, [2:0] =									
				110 : Disa	ble, [2:0] =	111 : Disabl	е			

Register	Register Address: 0x80h										
Descript	ion: SET1 pi	in setting (V	divider) for D'	VID fast slew	/ rate, I ² C a	ddress and k	KTON (TONS	ET) of COR	E rail.		
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					MIS	SC1					
Reset Va	lue				-						
Read/Wr	ite	R	R	R	RW	RW	RW	RW	RW		
Bits	Name		Description								
[7:5]	Reserve	ed .	Reserved								
[4]	DVID F	oot SD		[4] = 0: fas	st_S						
[4]	טוט_ר:	asi_SR		[4] = 1 : fas	st_P						
				I ² C addres	SS						
[3]	I2C_ADI	DS		[3] = 0 : 0x	20h						
				[3] = 1:0x	21h						
				On-time (ΓΟΝ) K Fac	tor Setting	of CORE ra	ail			
[2:0]	K _{TON}			[2:0] = 000	: 0.50, [2:0]] = 001:0.6	$0, [2:0] = 0^{\circ}$	10 : 0.70, [2:	0] = 011 :		
[2.0]	0.80, [2:0] = 100 : 0.90, [2:0] = 101 : 1.00, [2:0] = 110 : 1.10, [2:0] = 110								0, [2:0] =		
				111 : 1.20							

Register A											
Description	n : SET1 pi	in setting (V	$_{XR}$) for $VR_{}$	_HOT asserti	on during D	VID current	limit and IC	CMAX of V	CCIN_AUX		
rail.											
Bits											
Name				FASTV	_VRHOT_S	EL_ ICCMA	X_AUX				
Reset Valu	Reset Value										
Read/WriteRRRRWRWRWRW								R			
Bits	Name Description										
[7:5]	Reserve	ed		Reserved							
				VR HOT a	assertion du	rina DVID c	urrent limit.				
[4]	VR HOT	ב האום			DVID[4] = 0	•					
[4]	VIX_IIO	טועט_ ו									
	VR_HOT_DVID[4] = 1, Enable										
[3:1]	ICCMAX	(_AUX		ICCMAX_A	AUX = 25A -	FICCMAX_	AUX [3:1] x	5A			
[0]	Reserved Reserved										

Register Address: 0x82h												
-	•	in setting (V _{divider}) for a	daptive ramp	trigger thre	eshold in PS	1 of CORE	rail and ICC	CMAX of			
AXG rail.												
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name			AR_TH_CORE_ICCMAX_AXG									
Reset Va	eset Value											
Read/Wr	ite	R R R RW RW RW RW RV							RW			
Bits	Name			Description	on							
[7:5]	Reserve	ed		Reserved								
				Adaptive	ramp trigg	er threshol	d in PS1 of	CORE rail				
[4:3]	AR_TH			[4:3] = 00	: 175mV, [4	:3] = 01 : 15	0mV,					
- -			[4:3] = 00 : 175mV, [4:3] = 01 : 150mV, [4:3] = 10 : 125mV, [4:3] = 11 : Disable									
[2,0]	ICCNAA?	ν Λ	ICCMAX of AXG rail									
[2:0]	ICCMA)	X_A ICCMAX = 22A + IccMAX_A[2:0] x 4										

Register Ad	Register Address: 0x83h										
Description	: SET2 pi	in setting (V	ixr) for Dua	l Phases Fu	nction of CO	ORE rail and	KTON (TON	SET) of AXO	3 rail.		
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					EN_DBLR_	KTON_AXC	}				
Reset Value)										
Read/Write		R	R	R	RW	RW	RW	RW	R		
Bits	Name		Description								
[7:5]	Reserve	ed	Reserved								
				Dual Phas	es Functio	n					
[4]	Dual_Ph	nases		[4] = 0:	Each PWM	output drive	s one phase).			
				[4] = 1 : E	Each PWM	output drive	s two phase	S.			
						tor Setting					
[3:1]	K _{TON} A			[3:1] = 000	: 0.82, [3:1] = 001:0.9	[0.01]	10 : 1.00, [3:	1] = 011 :		
[3.1]	KION_A			1.09, [3:1]	= 100 : 1.18	$3, [3:1] = 10^{-1}$	1 : 1.27, [3:1	[] = 110:1.3	36, [3:1] =		
			111 : 1.55								
[0]	Reserve	ed									

_	Register Address: 0x84h Description: SET3 pin setting (V _{divider}) for VID table and and IccMAX of CORE rail.											
Description	ı: SET3 pi	n setting (V	_{divider}) for VI	D table and	and IccMAX	of CORE r						
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name					DAC_SEL	_ICCMAX						
Reset Value	•				-	-						
Read/Write		R	R	R	R RW RW RW RW							
Bits	Name			Description	n							
[7:5]	Reserve	d		Reserved								
[4]	VID step DAC_SEL [4] = 0 : VID1 [4] = 1 : VID2											
[3:0]	ICCMAX	ζ		83[4]= 0, E 4 phase or ICCMAX = 5 phase or ICCMAX = 6 phase or ICCMAX = 7 phase or ICCMAX = 8 phase or ICCMAX = 83[4] = 1, 8 phase or ICCMAX = 10/12/14/1	e 93A + IccM peration 134A + Iccl peration 170A + Iccl peration 206A + Iccl peration 232A + Iccl Each PWM	Dutput driven	A 6A 6A 6A 6 S 1es two ph a					

Register Ad	Register Address: 0x85h										
Description	n: SET3 pi	n setting (V	xR) for VBC	OT of CORE	/AXG rail a	nd adaptive	ramp trigge	r threshold	of AXG rail.		
Bits		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					MIS	SC2					
Reset Value	е				-	· -					
Read/Write		R	R	R	RW	RW	RW	RW	R		
Bits	Name			Descriptio	n						
[7:5]	Reserve	d	Reserved								
			VBOOT of CORE rail								
[4]	VBOOT			[4] = 0 : 0V							
				[4] = 1 : no	n-zero						
				VBOOT of	AXG rail						
[3]	VBOOT_	_A		[3] = 0:0V							
				[3] = 1 : no	n-zero						
				Adaptive r	amp trigge	er threshold	of AXG ra	il			
[2:1]	AR_TH_	_A		[2:1] = 00 : Disable, [2:1] = 01 : 125mV,							
				[2:1] = 10:	175mV, [2:	1] = 11 : 225	imV				
[0]	Reserve	erved Reserved									

Register Address: 0x86h											
Description : TSEN pin setting (V _{divider}) for ZCD threshold of CORE rail and Ai gain of CORE/AXG rail											
Bits Bit7 Bit6			Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name				MISC3							
Reset Value	е										
Read/Write		R	R	RW	RW	RW	RW	RW	R		
Bits	Name	Description									
[7:6]	Reserve	d		Reserved							
				ZCD threshold for CORE rail							
[5]	ZCD_TF	1		[5] = 0 : 0.417mV							
				[5] = 1 : 0.208mV							
[4:3] Ai A				Current gain (Ai) of AXG rail							
[4:3]	AI_A			[4:3] = 00 : 0.75, [4:3] = 01 : 1.13, [4:3] = 10 : 1.5, [4:3] = 11 : 1.88							
[2:1]	Ai			Current gain (Ai) of Core rail							
[८.1]				[2:1] = 00 : 0.25, [2:1] = 01 : 0.5, [2:1] = 10 : 0.75, [2:1] = 11 : 1							
[0]	Reserved Reserved										

Register Address: 0x87h												
Description : TSENA pin setting (V _{divider}) for sum OCP ratio of CORE/AXG rail and AQR threshold of CORE rail.												
Bits Bit7 Bit6		Bit5	Bit5 Bit4 Bit3			Bit1	Bit0					
Name				SUMOCP_ZCD_TH_AXG								
Reset Value												
Read/Write		R	R	RW	RW	RW	RW	RW	R			
Bits	Name			Description								
[7:6]	Reserve	ed		Reserved								
				Sum OCP threshold of CORE and AXG rail								
[5]	SUMOC	SUMOCP_CORE_AXG			While Reg. Addr 0x73h[2:0] =110							
				[5] = 0 : 130%, [5] = 1 : 150%								
				Set ZCD threshold for AXG rail								
[4]	ZCD_TF	H_AXG		[4] = 0: 0.063 mV								
				[4] = 1 : 0.188mV								
				AQR Starting Trigger Threshold of CORE rail								
[3:1]	AOD TI	AOD TH			[3:1] = 000 : 240mV, [3:1] = 001 : 400mV, [3:1] = 010 : 560mV, [3:1] =							
	AQR_TH			011 : 800mV, [3:1] = 100 : 880mV, [3:1] = 101 : 1040mV, [3:1] = 110 :								
				1200mV, [3:1] = 111 : Disable								
[0]	Reserve	ed		Reserved								

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX). listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $P_{D(MAX)} = (T_{J(MAX)} - T_{A}) / \theta_{JA}$

where T_{J(MAX)} is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-toambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-60L 7x7 package, the thermal resistance, θ_{JA} , is 25.5°C/W on a standard 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (25.5^{\circ}C/W) = 3.92W$ for a WQFN-60L 7x7 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed T_{J(MAX)} and the thermal resistance, θ_{JA} . The derating curves in Figure 39 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

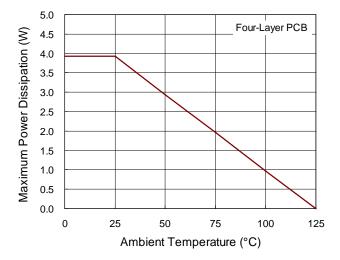
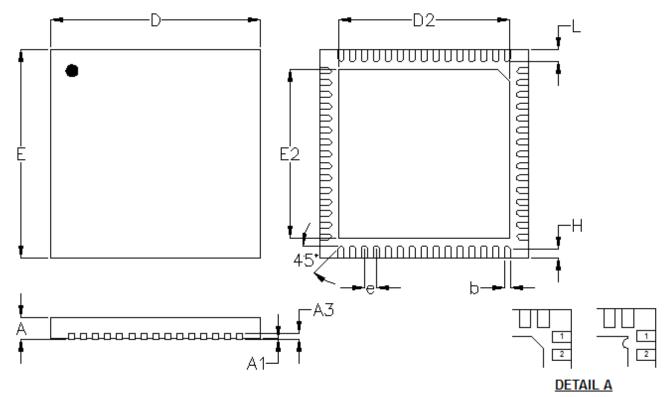
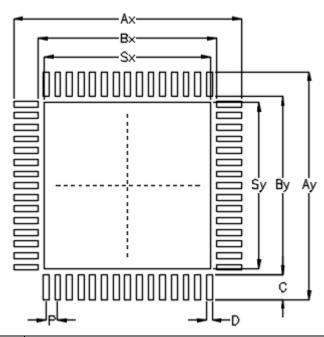



Figure 39. Derating Curve of Maximum Power Dissipation

Outline Dimension

Pin #1 ID and Tie Bar Mark Options


Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Cumbal	Dimensions	n Millimeters	Dimensions In Inches			
Symbol	Min. Max.		Min.	Max.		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
А3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	6.900	7.100	0.272	0.280		
D2	5.650	5.750	0.222	0.226		
E	6.900	7.100	0.272	0.280		
E2	5.650	5.750	0.222	0.226		
е	0.4	100	0.016			
L	0.350	0.450	0.014	0.018		
Н	H 0.250 0		0.010	0.014		

W-Type 60L QFN 7x7 Package

Footprint Information

Package	Number		Footprint Dimension (mm)								
	of Pin	Р	Ax	Ау	Вх	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN7*7-60	60	0.40	7.80	7.80	6.10	6.10	0.85	0.20	5.70	5.70	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.