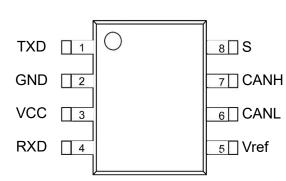
TJA1050T-CM-HX CAN Bus Transceiver

General Description

The TJA1050T-CM-HX serves as the interface between the Controller Area Network(CAN) protocol controller and the physical bus. It is designed for hi gh-speed applications, specifically in passenger cars, supporting speeds o f up to 1 MBaud. This device enables differential transmission to the bus and differential reception to the CAN controller.

SOP-8


Features

- High speed (up to 1 MBaud)
- Silent mode
- Transceiver in unpowered state disengages from the bus (zero load)
- Differential receiver with high common-mode range for ElectroMagnetic Immunity (EMI)
- At least 110 nodes can be connected
- Transmit Data (TXD) dominant time-out function
- Bus pins protected against transients in automotive environments
- Thermally protected

Applications

- Industrial control automation
- Automotive electronics
- Point-to-point and point-to-multipoint communications
- Intelligent instrumentation
- Building automation systems
- Security systems
- Road traffic control automation
- Level converte

PIN CONFIGURATIONS AND FUNCTIONS

	Pin Descriptio					
Pin	n Name Description					
1	TXD	transmit data input				
2	GND	ground supply				
3	VCC	supply voltage				
4	RXD	receive dataoutput;readsoutdata from the bus lines				
5	Vref	Reference Voltage Output				
6	CANL	LOW-level CAN bus line				
7	CANH	HIGH-level CAN busline				
8	S	High speed and mute mode selection, low level for high speed				

Version 1.1 - 1 - Date: Oct. 2023

Absolute Maximum Rating						
SYMBOL	PARAMETER	MIN	MAX	UNIT		
VCC	Supply voltage range	4.75	5.25	V		
TXD, RXD, STB, Vref	MCU Side Port	-0.3	VCC+0.3	V		
CANL, CANH	Bus-side port voltage	-60	+60	V		
Vtr	Pin 6, 7 Transient Voltage	-200	+200	V		
	storage temperature	-55	150	°		
	ambient temperature	-40	125	℃		
	Welding temperature range	-	300	°C		

SPECIFICATIONS

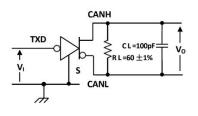
(VCC=5V±10%, Temp=TMIN~TMAX, typical values at VCC=+5V, Temp=25°C, unless otherwise noted)

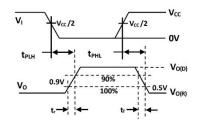
Bus Trans	smitter DC Character					
SYMBOL	PARAMETER	TESTCONDITIONS	MIN	MAX	UNIT	SYMB
VOH(D)	CANH output voltage (dominant)	VI=0V, STB=0V, RL=60Ω	2.9	3.4	4.5	
VOL(D)	CANL output voltage (dominant)	F1、2	0.8		1.5	
VO(R)	Bus Output Differential Voltage(implicit)	VI=3V, STB=0V, RL=60Ω, F1、2	2	2.5	3	V
VOD(D)	Bus Output Differential Voltage (dominant)	VI=0V,STB=0V,RL=60Ω,F1、2	1.5		3	V
VOD(R)	Bus Output Differential Voltage	VI=3V, S=0V, F1、 2	-0.012		0.012	V
- ()	(implicit)	VI=3V, STB=0V, NO LOAD	-0. 5		0.05	V
Vdom(TX)sym	dominant output voltage symmetry	Vdom(TX)sym=VCC- VCANH	-400		400	mV
VTXsym	Output Voltage Symmetry	VTXsym= VCANH + VCANL	0.9VC		1.1VC	V
VOC	Common mode output voltage	STB=0V, F8	2	2.5	3	V
△VOC	Explicit and implicit common mode output voltage difference	3		30		mV
IOS	Short-circuit output current	CANH=-12V,	-105	-72		mA
VIL	Low Level Input			0.36	1	
los	Short-circuit output current Hidden output	CANH=-12V, CANL=open, F 11	-1	0.5		
I _{O(R)}	current	CANH=12V, CANL=open, F 11		71	105	
IO(R)	current	-27V <canh<32v 0<vcc<5.25v<="" td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></canh<32v>	-2.0		2.5	mA
Bus Trans	smitter Switch Characteristic					
tPLH	Transmission delay (low to high)	STB=0V, F4	25	65	120	ns
tPHL	Transmission delay (high to low)		25	45	90	ns
tr	Differential output rise delay time			25		ns
tf	Differential output fall delay time			50		ns
tEN	Enable time from listen mode to dominant	F 7			1	μs
tdom	Explicit timeout	F 10	300	450	700	μs
tBUS	Bus wake-up time		0.7		5	μs

Version 1.1 - 2 - Date: Oct. 2023

	eiver DC Paramete					
SYMBOL	PARAMETER	TESTCONDITIONS	MIN	MAX	UNIT	SYMBO
	Positive Input Threshold	S=0V		800	900	mV
VIT-	Negative Input Threshold		500	650		
VHYS	Comparator Threshold Hysteresis		100	125		
Vон	High Level Output Voltage	IO=-2mA	4	4.6		V
Vol	Low Level Output Voltage	IO=2mA		0.2	0.4	V
I(OFF)	Bus input current at power down	CANH or CANL=5V, Other pin=0V		165	125	μА
Cı	CANH, CANL input capacitance to			13		pF
C _{ID}	CANH, CANL Differential Input			5		pF
Rın	CANH, CANL Input Resistance	TXD=3V,	15	30	40	ΚΩ
Rid	CANH, CANL Differential Input	STB=0V	30		80	ΚΩ
RImatch	RI(CANH), RIN(CANL) mismatches	CANH=CANL	-3%		3%	
Vсом	Common mode voltage range		-12		12	V
Bus Rece	eiver Switching Characteris					
tPLH	Propagation delay (low to high)	STB=0V or VCC	60	100	130	ns
tPHL	Propagation delay (high to low)		45	70	90	ns
tr	RXD signal rise time			8		ns
tf	RXD signal fall time			8		ns
Device S	witching Character					
Γd(LOOP1)	Loop delay 1, driver input to receiver output, implicit to explicit	STB=0V	90		190	ns
Td(LOOP2)	Loop Delay 2, Driver Input to Receiver Output, Explicit to Implicit		90		190	ns
Over-tem	perature protectio		SO			
Tj(sd)	Over temperature shutdown		155	165	180	°C
XD Pin C	Characteristi					
IIH(TXD)	TXD port high level input current	VI=VCC	-2		2	μA
IIL(TXD)	TXD Port Low Level Input Current	VI=0	-50		-10	μA
IO(off)	Current in TXD when VCC=0V	VCC=0V,			1	μA
VIH	Input High LowerLimit		2		VCC+0.	V
VIL	Input Low Limit		-0.3		0.8	V
TXDO	TXD Port Dangle Voltage			Н		logic
	eference voltage output					1-9
Vref	Reference Output Voltage	-50uA <l₀<50ua< td=""><td>0.4Vcc</td><td></td><td>0.6Vcc</td><td>V</td></l₀<50ua<>	0.4Vcc		0.6Vcc	V
	nsumption characteristic					
ICC	Silent Mode Power Consumption	S=VCC, VI=VCC		6	10	μA
	Dominant power consumption	VI=0V, S=0V LOAD=60Ω		50	70	mA
	Implicit power consumption	VI=VCC, S=0V NO LOAD		6	10	mA

Version 1.1 - 3 - Date: Oct. 2023


ZHHXDZ 珠海海芯电子有限公司


www.haixindianzi.com

Menu (1)H=high; L=low; X=no care							
Table 1 CAN Transceiver Truth							
VCC	TXD(1)	STB(1)	CANH ⁽¹⁾	CANL ⁽¹⁾	BUS STATE	RXD(1)	
4.5V~5.5V	L	L(or float)	Н	L	dominant	L	
4.5V~5.5V	H (or float)	Х	0.5VCC	0.5VCC	implicit	Н	
4.5V~5.5V	Х	Н	0.5VCC	0.5VCC	implicit	<u>H</u>	
0 <vcc<4.5v< td=""><td>X</td><td>Х</td><td>0V<vcanh<vcc< td=""><td>0V<vcanl<vcc< td=""><td>implicit</td><td>Х</td></vcanl<vcc<></td></vcanh<vcc<></td></vcc<4.5v<>	X	Х	0V <vcanh<vcc< td=""><td>0V<vcanl<vcc< td=""><td>implicit</td><td>Х</td></vcanl<vcc<></td></vcanh<vcc<>	0V <vcanl<vcc< td=""><td>implicit</td><td>Х</td></vcanl<vcc<>	implicit	Х	

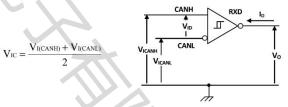
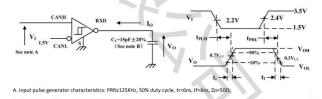
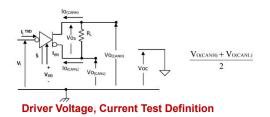
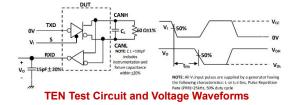

Table 2 Driver Function							
INPUTS	UTS	5 24 4					
TXD(1)	STB(1) CANH ⁽¹⁾		CANL ⁽¹⁾	Bus State			
L	L(or float)	Н	L	Dominate(dominant)			
H (or floa)	X	Z	Z	Recessive(implicit)			
Y		7	7	Pacassiva(implicit)			

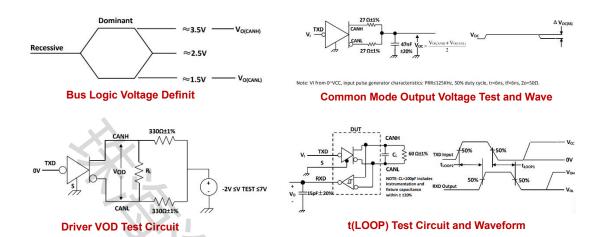
Table 3 Receiver Functio						
VID=CANH-CANL	RXD (1)	Bus State ⁽¹⁾				
VID≥0.9V	L	Dominate(dominant)				
0.5< VID<0.9V						
VID≤0.5V	Н	Recessive (implicit)				
Open	Н	Recessive (implicit)				




Driver Test Circuit and Voltage Waveforms



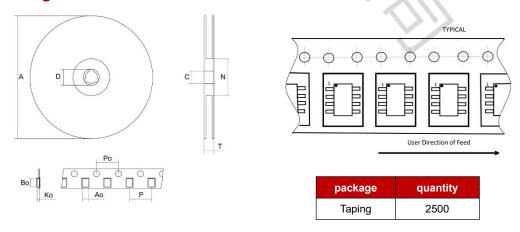
Receiver Voltage and Current Definitions



Receiver test circuit and voltage wave

Version 1.1 - 4 - Date: Oct. 2023

DESCRIPTION


The TJA1050T-CM-HXis a chip that serves as an interface between a CAN protocol controller and the physical bus in various applications such as trucks, buses, cars, and industrial control systems. It is designed to comply with the ISO 11898 standard and can achieve a speed of 1Mbps.

One of the key features of the TJA1050T-CM-HXis its short circuit protection, which prevents the driver circuit from short-circuiting to positive and negative supply voltages. This protection mechanism limits the current flow and safe guards the driver stage from damage.

Additionally, the TJA1050T-CM-HXincorporates an over-temperature protection function. When triggered, this function reduces the current in the driver stage, which helps to lower the chip's temperature. Meanwhile, the rest of the chip continues to function normally.

Another important feature is the built-in TXD dominant timeout timer circuit. This circuit prevents the bus line from being permanently driven to a dominant state, which could block all network communications, in case of a hardware or software failure that keeps the TXD pin low for an extended period. The timer is triggered by a negative edge on the TXD pin, and if the low level duration exceeds the internal timer value, the transmitter is disabled, causing the bus to enter a recessive state. The timer can be reset by a positive edge on the TXD pin.

Packing

Version 1.1 -5 - Date: Oct. 2023

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.1 - 6 - Date: Oct. 2023