

RS485 Transceivers

Feature

• Fail-safe circuitry

• Low power consumption

• Up to 256 transceivers can be attached to the bus

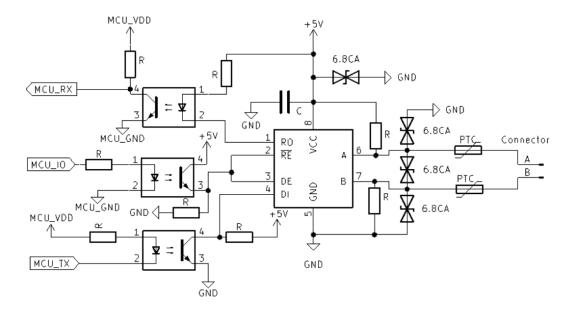
Maximum transmission rate: 10Mbps(Vcc=5V)

• ESD: ≥ ±15kV

Available in DIP-8 SOP-8 MSOP-8 and DFN-8 packages

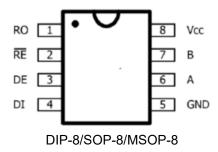
Ordering Information

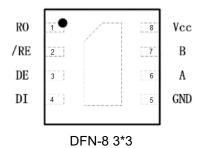
DEVICE	Package Type	MARKING	Packing	Packing Qty
HGSP3485EIN	DIP-8	SP3485	TUBE	2000pcs/box
HGSP3485EIM/TR	SOP-8	SP3485	REEL	2500pcs/reel
HGSP3485EIMM/TR	MSOP-8	3485	REEL	3000pcs/reel
HGSP3485EIDQ3/TR	DFN-8 3*3	3485	REEL	5000pcs/reel


General Description

The HGSP3485 is high-speed transceivers for RS-485 communication, which contain one driver and one receiver. The HGSP3485 feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The HGSP3485 driver slew rates are not limited, making transmit speeds up to 10Mbps possible. And this device has a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.

Applications


- RS-485 Communications
- Level Translators
- Security Equipment
- Industrial Control Equipment
- Watt-hour meter


Typical application circuit

Pin Assignment

Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output, When RE is low and if A - B ≥ -50mV, RO will be high; if A - B ≤ -200mV, RO will be low.
2	/RE	Receiver Output Enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high.
5	GND	Ground
6	Α	Noninverting Receiver Input and Noninverting Driver Output
7	В	Inverting Receiver Input and Inverting Driver Output
8	VCC	Positive Supply

Function Tables

Transmitting

	INPUTS		OUTPUTS			
/RE	DE	DI	A	В		
X	1	1	1	0		
X	1	0	0	1		
0	0	X	High-Z	High-Z		
1	0	X	Shutdown			

Receiving

	INPUTS	OUTPUT	
/RE	DE	A-B	RO
0	X	≥-0.05V	1
0	X	≤-0.2V	0
0	X	Open/shorted	1
1	1	Х	High-Z
1	0	Х	Shutdown

Absolute Maximum Ratings

(TA=25°C)

CONDITION	SYMBOL	VALUE	UNITS
Supply Voltage	Vcc	+7	V
Operating voltage (1)		+3 ~ +5.5	V
Control Input Voltage	/RE, DE	-0.3 ~ Vcc+0.3	V
Driver Input Voltage	DI	-0.3 ~ Vcc+0.3	V
Driver Output Voltage	A,B	±13	V
Receiver Input Voltage	A,B	±13	V
Receiver Output Voltage	RO	-0.3 ~ Vcc+0.3	V
Operating Temperature ⁽²⁾	T _{OPR}	-40 ~ +105	$^{\circ}$ C
Storage Temperature	T _{STG}	-65 ~ +150	$^{\circ}$
Lead Temperature (10s)	TL	+260	$^{\circ}$ C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Note1: Recommended operating voltage is 5V, but can be compatible with 3V. If using a 3V or 3.3V supply voltage, please reduce the transmission rate.

Note2:Operating temperature range: -40°C to +125°C. This product is designed for industrial grade applications. For automotive grade versions compliant with AEC-Q100, please conduct internal screening per the standard or contact our sales team for availability.

DC Electrical Characteristics

V_{CC}=5.0V, TA=25℃

PARAMETER	SYMBOL	со	NDITIONS	MIN	TYP	MAX	UNITS
Differential Driver	V _{OD1}				_	V _{CC}	V
Output (no load)	V OD1			-	_	V CC	V
Differential Driver Output	V _{OD2}			1.5	-	-	V
Change in Magnitude of Differential Output Voltage	ΔV_OD	R=2	7Ω, Figure 1	-	_	0.2	V
Driver Common-Mode Output Voltage	Voc					3.0	V
Change in Magnitude of Common-Mode Voltage (2)	ΔV _{oc}			-	-	0.2	V
Input High Voltage	V _{IH}	D	2.0	-	-	V	
Input Low Voltage	VIL	D	E, DI, /RE	-	_	0.8	V
DI Input Hysteresis	V _{HYS}	-		-	100	-	mV
D: 1 (0 1 (1 1 1 D)		VIN=12V	DE=0V,	-	-	250	uA
Driver Input Current (A And B)	I _{IN1}	VIN=-7V	Vcc=5.0V	-150	-	-	uA
Driver Short-Circuit Output Current (3)	I _{OSD}	A and	A and B Short-Circuit			100	mA
Receiver Differential Threshold Voltage	V _{TH}	-7\	/≤V _{CM} ≤12V	-200	-125	-20	mV
Receiver Input Hysteresis	△V _{TH}			-	40	-	mV
Receiver Output High Voltage	V _{OH}	ı	O=-8mA	V _{CC} -1	-	-	V
Receiver Output Low Voltage	V _{OL}		IO=8mA	-	-	0.4	V
Three-State Output Current at Receiver	lozr		Vo=1V	-1	-	1	μA
Receiver Input Resistance	R _{IN}	-7\	/≤V _{CM} ≤12V	96	-	-	ΚΩ
Receiver Output Short-Circuit Current	I _{OSR}	0V≤V _{RO} ≤V _{CC}		±7	-	±100	mA
Supply Current	Icc	DE=V _{CC}			630	1200	μA
		DE=GND	/RE=DI=V _{CC} /GND	-	600	1200	μΑ
Supply Current in Shutdown Mode	I _{SHDN}		ND, /RE=V _{CC} , =V _{CC} /GND	-	_	3	μΑ

DC Electrical Characteristics

Vcc=3.0V, TA=25℃

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Differential Driver	V					\/	V
Output (no load)	V _{OD1}			-	-	V _{CC}	V
Differential Driver Output	V _{OD2}			0.9	-	-	V
Change in Magnitude of Differential Output Voltage	ΔV_{OD}	R=27	-	-	0.2	V	
Driver Common-Mode Output Voltage	Voc		1.0	-	3.0	V	
Change in Magnitude of Common-Mode Voltage (2)	ΔV _{oc}			-	-	0.2	V
Input High Voltage	V _{IH}	DE	, DI, /RE	1.5	-	-	V
Input Low Voltage	V _{IL}	DE	, DI, /RE	-	-	0.6	V
DI Input Hysteresis	V _{HYS}	-		-	100	-	mV
		VIN=12V	DE=0V,	-	-	150	uA
Driver Input Current (A And B)	I _{IN1}	VIN=-7V	Vcc=3V	-150	-	-	uA
Driver Short-Circuit Output Current (3)	I _{OSD}	A and B	Short-Circuit	-100	-	100	mA
Receiver Differential Threshold Voltage	V _{TH}	-7V≤	≤V _{CM} ≤12V	-150	-	150	mV
Receiver Input Hysteresis	△V _{TH}			-	40	-	mV
Receiver Output High Voltage	Vон	IC)=-8mA	Vcc-1	-	-	V
Receiver Output Low Voltage	V _{OL}	IC	D=8mA	-	-	0.6	V
Three-State Output Current at Receiver	I _{OZR}	\	/o=1V	-1	-	1	μA
Receiver Input Resistance	R _{IN}	-7V≤	≤V _{CM} ≤12V	96	-	-	ΚΩ
Receiver Output Short-Circuit Current	losa	0V≤	0V≤V _{RO} ≤V _{CC}		-	±100	mA
Supply Current	Icc	DE=V _{CC}			-	1000 1000	μA μA
Supply Current in Shutdown Mode	I _{SHDN}	DE=GN	ID, /RE=Vcc, Vcc/GND	-	-	3	μА

Switching Characteristics

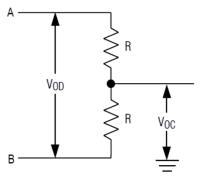
Vcc=5.0V, TA=25℃

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Rise or Fall Time	t _R , t _F		-	30	-	ns
Driver Input to Output	t _{PLH} , t _{PHL}	Figure 3 and 5, R_{DIFF} =54 Ω	ı	30	60	ns
Driver Output Skew T _{DPLH} - T _{DPHL}	t _{skew}	C _{L1} =C _{L2} =100pF	-	-	20	ns
Driver Enable time	t _{LZ} , t _{HZ}	Figure 4 and 6, C _L =100pF (Receiver enabled)	1	-	70	ns
Driver Enable time	t _{LZ(SHDN)} , t _{HZ(SHDN)}	Figure 4 and 6, C _L =100pF (Receiver disabled)	-	1400	3000	ns
Driver disable time	t _{LZ} ,t _{ZL}	Figure 4 and 6, C _L =100pF	-	-	70	ns
Maximum Data Rate	F _{MAX}		10	-	-	Mbps
Receiver Rise or Fall Time	t _R , t _F		-	20	-	ns
Receiver propagation delay time	t _{PLH} , t _{PHL}	Figure 7	1	90	250	ns
T _{RPLH} —T _{RPHL} Differential Receiver Skew	t _{skD}		1	30	-	ns
Receiver enable time	t_{ZL}, t_{ZH}	Figure 2 and 8, C _{RL} =15pF (Driver enabled)	1	30	70	ns
Receiver enable time	tzl(shdn), tzh(shdn)	Figure 2 and 8, C _{RL} =15pF (Driver disabled)	· - 1400		3000	ns
Receiver disable time	t _{LZ} , t _{HZ}	Figure 2 and 8,C _{RL} =15pF	-	30	70	ns
Time to Shutdown	t _{SHDN}		-	200	600	ns

Switching Characteristics

Vcc=3.0V, TA=25℃

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Rise or Fall Time	t _R , t _F		-	30	-	ns
Driver Input to Output	t _{PLH} , t _{PHL}	Figure 3 and 5, R_{DIFF} =54 Ω	-	30	60	ns
Driver Output Skew TDPLH - TDPHL	t _{skew}	C _{L1} =C _{L2} =100pF	-	-	20	ns
Driver Enable time	tLZ, tHZ	Figure 4 and 6, C _L =100pF (Receiver enabled)	-	-	70	ns
Driver Enable time	t _{LZ(SHDN)} , t _{HZ(SHDN)}	Figure 4 and 6, C _L =100pF (Receiver disabled)	-	1600	3000	ns
Driver disable time	t _{LZ} ,t _{ZL}	Figure 4 and 6, C _L =100pF	-	-	70	ns
Maximum Data Rate	F _{MAX}		10	-	-	Mbps
Receiver Rise or Fall Time	t _R , t _F		-	20	-	ns
Receiver propagation delay time	t _{PLH} , t _{PHL}	Figure 7	-	90	250	ns
T _{RPLH} —T _{RPHL} Differential Receiver Skew	t _{skD}		-	30	-	ns
Receiver enable time	tzl, tzн	Figure 2 and 8, C _{RL} =15pF (Driver enabled)	- 25		70	ns
Receiver enable time	t _{ZL(SHDN)} , t _{ZH(SHDN)}	Figure 2 and 8, C _{RL} =15pF - 1600 (Driver disabled)		3000	ns	
Receiver disable time	t _{LZ} , t _{HZ}	Figure 2 and 8, C _{RL} =15pF	-	30	70	ns
Time to Shutdown	t _{SHDN}		-	230	800	ns


Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted

Note 2: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Note 3: Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.

Test circuit

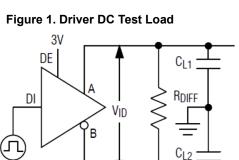


Figure 3. Driver Timing Test Circuit

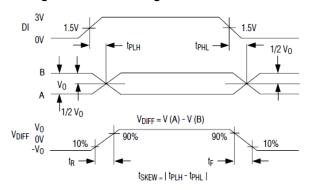


Figure 5. Driver Propagation Delays

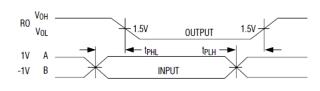


Figure 7. Receiver Propagation Delays

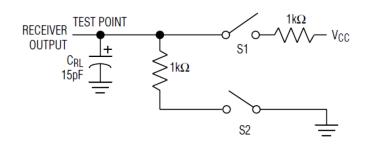


Figure 2. Receiver Enable/Disable Timing Test load

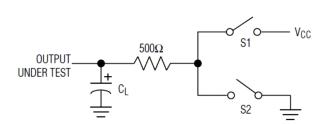


Figure 4. Driver Enable/Disable Timing Test Load

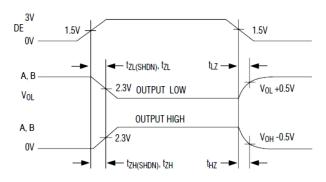


Figure 6. Driver Enable and Disable Times

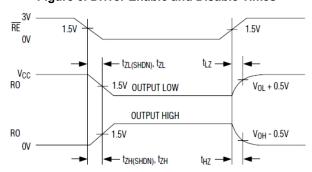
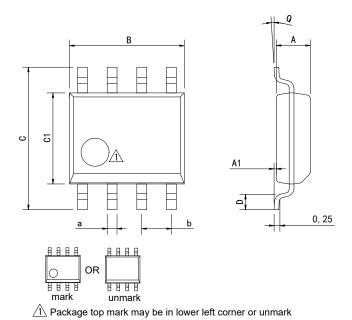
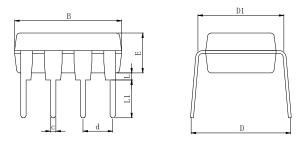
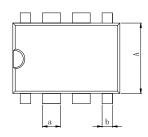



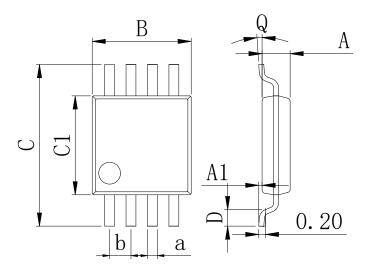
Figure 8. Receiver Enable and Disable Times


Physical Dimensions

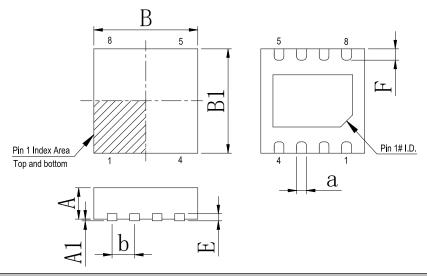

SOP-8

Dimensions In Millimeters(SOP-8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC	

DIP-8



Dimensions In Millimeters(DIP-8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54.000
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC


Physical Dimensions

MSOP-8

Dimensions In Millimeters(MSOP-8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC	
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.65 BSC	

DFN-8 3*3

Dimensions In Millimeters(DFN-8 3*3)									
Symbol:	Α	A1	В	B1	Е	F	а	р	
Min:	0.85	0.00	2.90	2.90	0.20	0.30	0.20	- 0.65 BSC	
Max:	0.95	0.05	3.10	3.10	0.25	0.50	0.34		

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2018-7	New	1-13
V1.1	2025-9	Document Reformatting	1-13

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change products and services offered without prior notice. Customers should obtain the latest relevant information before placing orders and verify that such information is current and complete. Huaguan Semiconductor assumes no responsibility or liability for altered documents.

Customers are responsible for complying with safety standards and implementing safety measures when using Huaguan Semiconductor products in system design and end-product manufacturing. You assume full responsibility for: selecting the appropriate Huaguan Semiconductor products for your application; designing, validating, and testing your application; and ensuring that your application complies with applicable standards and all other safety, security, or other requirements. This is to prevent potential risks that may lead to personal injury or property damage.

Huaguan Semiconductor products are not approved for use in life support, military, aerospace, or other high-risk applications. Huaguan products are neither intended nor warranted for use in such systems or equipment. Any failure or malfunction may lead to personal injury or severe property damage. Such applications are deemed "Unsafe Use." Unsafe Use includes, but is not limited to: surgical and medical equipment, nuclear energy control equipment, aircraft or spacecraft instruments, control or operation of vehicle power, braking, or safety systems, traffic signal instruments, all types of safety devices, and any other applications intended to support or sustain life. Huaguan Semiconductor shall not be liable for consequences resulting from Unsafe Use in these fields. Users must independently evaluate and assume all risks. Any issues, liabilities, or losses arising from the use of products beyond their approved applications shall be solely borne by the user. Users may not claim any compensation from Huaguan Semiconductor based on these terms. If any third party claims against Huaguan Semiconductor due to such Unsafe Use, the user shall compensate Huaguan Semiconductor for all resulting damages and liabilities.

Huaguan Semiconductor provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources for its semiconductor products. However, no guarantee is made that these resources are free from defects, and no express or implied warranties are provided. The use of testing and other quality control techniques is limited to Huaguan Semiconductor's quality assurance scope. Not all parameters of each device are tested.

Huaguan Semiconductor's documentation authorizes you to use these resources only for developing applications related to the products described herein. You are not granted rights to any other intellectual property of Huaguan Semiconductor or any third party. Any other reproduction or display of these resources is strictly prohibited. You shall fully indemnify Huaguan Semiconductor and its agents against any claims, damages, costs, losses, and liabilities arising from your use of these resources. Huaguan Semiconductor shall not be held responsible.