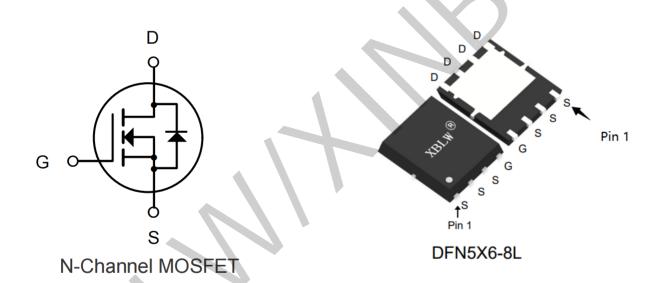


Product Specification

SM6442D1RL

N-Channel Enhancement Mode MOSFET

Descriptions


The SM6442D1RL uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

Features

- $V_{DS} = 40V, I_D = 70A$
- ightharpoonup R_{DS(ON)} <8.5m Ω @ V_{GS}= 10V

Applications

- Battery protection
- Load switch
- Uninterruptible power supply

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
SM6442D1RL	DFN5X6-8L	SM6442D1RL	Tape	5000Pcs/Reel

Absolute Maximum Ratings ($T_c=25~^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
lo@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V¹	70	А
l o@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V¹	44	Α
I DM	Pulsed Drain Current ²	280	A
EAS	Single Pulse Avalanche Energy³	76	mJ
P □@ Tc=25°C	Total Power Dissipation⁴	72.3	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
ReJA	Thermal Resistance Junction-ambient (Steady State) ¹	62	°C/W
Resc	Thermal Resistance Junction-Case ¹	1,73	°C/W

Electrical Characteristics (Ta=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40			V	
Rds(ON)	Static Drain-Source On- Resistance ²	Vgs=10V , Ip=10A		6.5	8.5		
		Vgs=4.5V , Ip=5A		10	15	mΩ	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.0	1.7	3	V	
loss	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	40	
		V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	uA	
Igss	Gate-Source Leakage Current	Vgs= ±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	VDS=10V , ID=5A	-	13		S	
Q_g	Total Gate Charge (4.5V)			20		nC	
Qgs	Gate-Source Charge	VDS=20V , VGS=10V , ID=10A	-	2.8			
Qgd	Gate-Drain Charge		-	5.1			
Td(on)	Turn-On Delay Time			13.2			
Tr	Rise Time	VDD=15V , VGS=10V	\ <u></u>	2.2			
T _{d(off)}	Turn-Off Delay Time	R _G =3.3 Ω I _D =1A		72		ns	
Tf	Fall Time			4.5		1	
Ciss	Input Capacitance			1278			
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		135		pF	
Crss	Reverse Transfer Capacitance			87			
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			70	Α	
VsD	Diode Forward Voltage ²	Vgs=0V , Is=1A , TJ=25°C			1	V	

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2% .
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =47A .
- 4.The power dissipation is limited by 150 $\!\!\!\!\!^{\,\circ}$ junction temperature .
- 5.The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.

Typical Characteristics

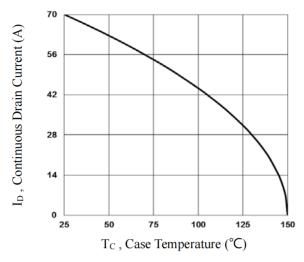
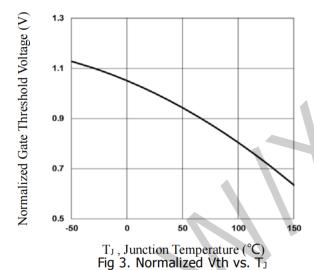



Fig 1. Continuous Drain Current vs. T_C

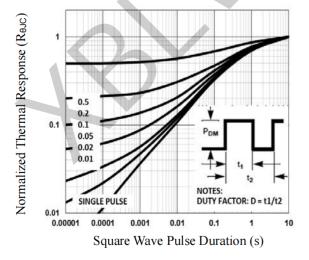


Fig 5. Normalized Transient Impedance

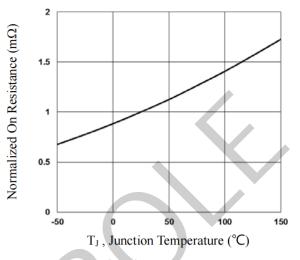
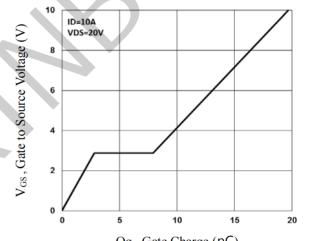



Fig 2. Normalized RDSON vs. T_J

 $\begin{array}{c} \operatorname{Qg},\operatorname{Gate}\operatorname{Charge}\left(nC\right)\\ \text{Fig 4. Gate }\operatorname{Charge}\left(\operatorname{Waveform}\right) \end{array}$

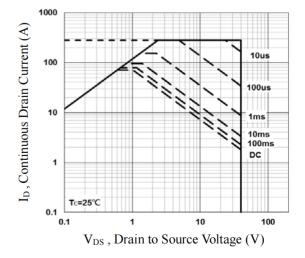


Fig 6. Maximum Safe Operation Area

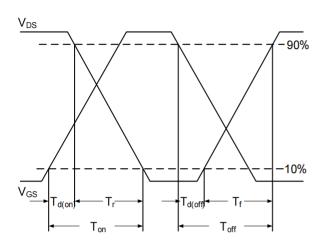
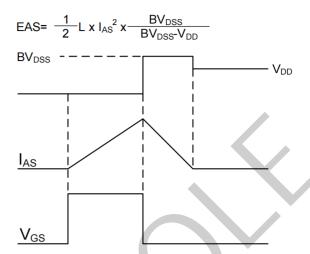
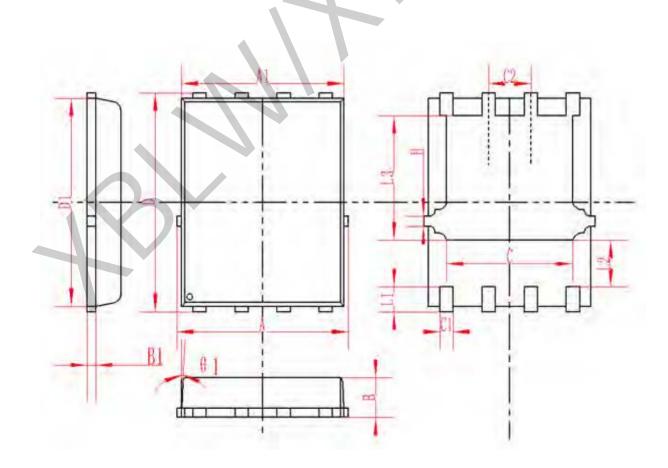


Fig 7. Switching Time Waveform




Fig 8. EAS Waveform

Package Information

DFN5X6-8L

SYMBOL	MM			INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	4.95	5	5.05	0.195	0.197	0.199
A1	4.82	4.9	4.98	0.190	0.193	0.196
D	5.98	6	6.02	0.235	0.236	0.237
D1	5.67	5.75	5.83	0.223	0.226	0.230
В	0.9	0.95	1	0.035	0.037	0.039
B1		0.254REF		0.010REF		
С	3.95	4	4.05	0.156	0.157	0.159
C1	0.35	0.4	0.45	0.014	0.016	0.018
C2		1.27TYP		0.5TYP		
θ1	8°	10°	12°	8°	10°	12°
L1	0.63	0.64	0.65	0.025	0.025	0.026
L2	1.2	1.3	1.4	0.047	0.051	0.055
L3	3.415	3.42	3.425	0.134	0.135	0.135
Н	0.24	0.25	0.26	0.009	0.010	0.010

SM6442D1RL N-Channel Enhancement Mode MOSFET

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semiconductor product may malfunction under specified conditions. When using XBLW products for system design and overall manufacturing, the buyer is responsible for complying with safety standards and taking appropriate safety measures to avoid risks that may cause personal injury or property damage.
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.