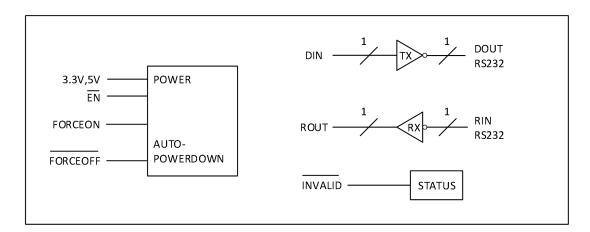


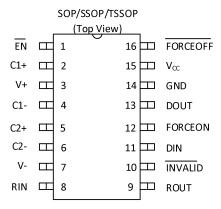
1 FEATURES


- True RS-232 Operation from Vcc = +3.0V to +5.5V
- 1μA Supply Current Achieved with AutoShutdown
- Guaranteed 250kbps Data Rate
- Automatic power-down feature automatically disables drivers for power savings
- Software control option for shutdown
- Meets or exceeds the requirements of TIA/EIA-232-F and ITU V.28 standards
- Enhanced ESD specifications: ±15kV Human Body Model ±15kV IEC61000-4-2 Air Discharge ±8kV IEC61000-4-2 Contact Discharge

2 APPLICATIONS

- Notebook, Subnotebook, and Palmtop Computers
- Cellular Phones
- Battery-Powered Equipment
- Handheld Equipment
- Peripherals
- Printers

3 DESCRIPTION


The GM3221E is 3V/5.5V powered communications interfaces with automatic shutdown/wake up features, high data rate capabilities, and enhanced electrostatic discharge (ESD) protection . Transmitter output and receiver input are protected to ±15kV using IEC 1000-4-2 Air Gap Discharge, to ±8kV using IEC 1000-4-2 Contact Discharge, and to ±15kV using the Human Body Model. The GM3221E device consists of one line driver, one line receiver with dedicated enable pin. It saves power without changes to the existing BIOS or operating system by entering low-power shutdown mode when the RS-232 cable is disconnected, or when the transmitters of the connected peripherals are off.The transceivers have a proprietary low-dropout transmitter output stage, delivering true RS-232 performance from a +3.0V to +5.5V supply with a dual charge pump. The charge pump requires only four small 0.1µF capacitors for operation from a +3.3V supply. Each device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.

Simplified Circuit Diagram

4 Pin Configuration and Functions

Pin		.	Description
Name	No.	Туре	Description
C1+	2	-	Positive terminal of the voltage-doubler charge-pump capacitor
C2+	5	-	Positive terminal of the voltage-doubler charge-pump capacitor
C1-	4	-	Negative terminal of the voltage-doubler charge-pump capacitor
C2-	6	-	Negative terminal of the voltage-doubler charge-pump capacitor
DIN	11	I	TTL/CMOS driver input
DOUT	13	0	RS-232 driver output
EN	1	I	Low input enables receiver ROUT output. High input sets ROUT to high impedance.
FORCEOFF	16	1	Auto Powerdown Control input (Refer to Truth Table)
FORCEON	12	ı	Auto Powerdown Control input (Refer to Truth Table)
GND	14	-	Ground
INVALID	10	0	Invalid output pin. Output low when all RIN inputs are unpowered.
RIN	8	ı	RS-232 receiver input
ROUT	9	0	TTL/CMOS Receiver Output
Vcc	15	-	3V to 5.5V supply voltage
V+	3	0	5.5V supply generated by the charge pump
V-	7	0	-5.5V supply generated by the charge pump

5 Specifications

5.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)(1)

Parameter	De	scription	MIN	MAX	UNIT	
Vcc	Supply Voltage range ⁽²⁾		-0.3	6	V	
V+	Positive output supply volta	ge range ⁽²⁾	-0.3	7	V	
V-	Negative output supply volt	age range ⁽²⁾	0.3	-7	V	
V+ - V-	Output supply voltage diffe	rence ⁽²⁾		13	V	
V	la accidence accidence	Driver (FORCEOFF , FORCEON)	-0.3	6	V	
V_{l}	Input voltage range	Receiver	-25	25		
	Outrot valtage region	Driver	-13.2	13.2		
V_0	Output voitage range	Output voltage range Receiver (INVALID)		Vcc+0.3	V	
TJ	Junction Temperature			150	°C	
T _{stg}	Storage temperature range	Storage temperature range		150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

		Parameter		Limit	Unit
		HBM (Human Body Model),per	DOUT,RIN	±3000	
V _(ESD) Electrostatic discharge	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	Other Pins	±15000	V	
v (ESD)	Licenostatic discharge	Charged-device model (CDM), per JESD22-C101 ⁽²⁾	IEDEC specification	±1500	

5.3 Recommended Operating Conditions

See Figure 7⁽¹⁾

Parameter	Description	n		MIN	NOM	MAX	UNIT
\/	Cumply Malkage manage		Vcc=3.3V	3	3.3	3.6	V
Vcc	Supply Voltage range	Vcc=5V	4.5	5	5.5	V	
	Driver and control high-level input	DIN,	Vcc=3.3V	2			
V _{IH}	voltage FORCEOFF FORCEON		Vcc=5V	2.4		5.5	٧
V_{IL}	Driver and control low-level input voltage	DIN,FORCEON	,EN,FORCEOFF			0.8	٧
Vı	Driver and control input voltage DIN,FORCEON, EN, FORCEOFF		0		5.5	٧	
Vı	Receiver input voltage			-25		25	٧
T _A	Operating free-air temperature			-40		85	°C

⁽¹⁾ Test conditions are C1–C4 = 0.1μ F at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = 0.047μ F, C2–C4 = 0.33μ F at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

- 3 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

⁽²⁾ All voltages are with respect to network GND.

5.4 Thermal Information

Davamatav	THERMAL MACTRIC	SSOP	TSSOP	LINIT
Parameter	THERMAL METRIC	16 PINS	16 PINS	UNIT
$R_{\theta JA}$	R _{0JA} Junction-to-ambient thermal resistance		110.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.9	41.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	57.6	57.2	°C/W
ψл	Junction-to-top characterization parameter	14.1	4.2	°C/W
ψյв	Junction-to-board characterization parameter	56.8	56.6	°C/W

5.5 Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 7)

	Parameter		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEON, EN, FORCEOFF			±0.01	±1	μΑ
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON at Vcc		0.3	1	mA
Icc	Supply current (T _A = 25°C)	Powered off	No load, FORCEOFF at GND		1	10	μΑ
100	(1 _A = 25 C)	Auto-powerdown enabled	No load, FORCEOFF at Vcc, FORCEON at GND,All R _{IN} are open or grounded,All D _{IN} are grounded		1	10	μΑ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

5.6 Driver Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 7)

	Parameter	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All D_{OUT} at RL = $3k\Omega$ to GND, D_{IN} =GND	5	5.4		V
V _{OL}	Low-level output voltage	All D_{OUT} at RL = $3k\Omega$ to GND, $D_{IN}=V_{CC}$		-5.4	-5	V
I _{IH}	High-level input current	V _I = Vcc		±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND		±0.01	±1	μΑ
1	Short-circuit output	$Vcc = 3.6V, V_0 = 0V$		±30	±60	mΛ
los	current ⁽³⁾	$Vcc = 5.5V, V_0 = 0V$		±30	±60	mA
ro	Output resistance	Vcc, V+, and V $-$ = 0V, V $_0$ = $\pm 2V$	300	10M		Ω
	Output lookage current	$\overline{\text{FORCEOFF}}$ = GND, V_0 = ±12V, Vcc = 3V to 3.6V			±25	
I _{off}	Output leakage current	$\overline{\text{FORCEOFF}}$ = GND, V_0 = ±12V, V_{CC} = 4.5V to 5.5V			±25	μΑ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3V \pm 0.3V$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5.V \pm 0.5V$.

- 4 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

⁽²⁾ All typical values are at Vcc = 3.3V or Vcc = 5V, and $T_A = 25$ °C.

⁽³⁾ Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

5.7 Receiver Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 7)

	Parameter	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1mA	Vcc - 0.6	Vcc - 0.1		٧
V_{OL}	Low-level output voltage	I _{OH} = 1.6mA		0.1	0.4	٧
V	Positive-going input	Vcc = 3.3 V		1.4	2.4	V
V _{IT+}	threshold voltage	Vcc = 5 V		1.7	2.4	V
V	Negative-going input	Vcc = 3.3 V	0.6	1.1		V
V _{IT} -	threshold voltage	Vcc = 5 V	0.8	1.3		V
V_{hys}	Input hysteresis (V _{IT+} –V _{IT-})			0.4		٧
l _{off}	Output leakage current (except ROUT2B)	FORCEOFF =0V		±0.03	±10	μΑ
ri	Input resistance	V _I = ±3 V or ±25V	3	6	8	ΚΩ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3V \pm 0.3 V$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5V \pm 0.5V$.

5.8 Auto-Powerdown Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 7)

(000 1.80	Parameter	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEOFF = V _{CC}			2.7	V
V _{IT-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEOFF = V _{CC}	-2.7			V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF =V _{CC}	-0.3		0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1$ mA, FORCEON = GND, FORCEOFF = V_{CC}	Vcc-0.6			V
V _{OL}	INVALID low-level output voltage	$I_{OL} = 1.6$ mA, FORCEON = GND, FORCEOFF = V_{CC}			0.4	V

5.9 Driver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 7)

Parameter		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$C_L = 1000 \text{pF,One D}_{\text{OUT}} \text{ sv}$ $R_L = 3 \text{k}\Omega.\text{See Figure 1}$	vitching,	125	250		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150pF to 2500pF, R _I Figure 2	$C_L = 150$ pF to 2500pF, $R_L = 3$ k Ω to 7k Ω ,See		100		ns
C.D.	Slew rate, transition region	$Vcc = 3.3 \text{ V,R}_L = 3k\Omega \text{ to}$	C _L = 150pF to 1000pF	6		30	.,,
SR _(tr)	(see <u>Figure 1</u>)	7kΩ	C _L = 150pF to 2500pF	4		30	V/µs

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = 3.3 V + 0.3 V; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

⁽²⁾ All typical values are at Vcc = 3.3V or Vcc = 5V, and $T_A = 25$ °C.

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

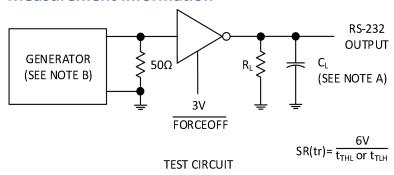
⁽³⁾ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

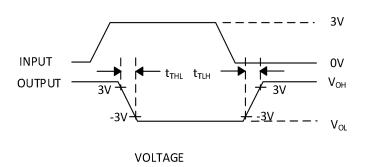
5.10 Receiver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 7)

	Parameter	TEST CONDITIONS	MIN	TYP ⁽²⁾	MIN	UNIT
t _{PLH}	Propagation delay time, low to high level output	C _L = 150pF, See <u>Figure 3</u>		30		ns
t _{PHL}	Propagation delay time, high to low level output	C _L = 150pF, See <u>Figure 3</u>		30		ns
t _{en}	Output enable time	$C_L = 150$ pF, $R_L = 3$ k Ω , See Figure 4		200		ns
t _{dis}	Output disable time	$C_L = 150 \text{pF}, R_L = 3 \text{k}\Omega, \text{See Figure 4}$		200		ns
t _{sk(p)}	Puse skew ⁽³⁾	t _{sk(p)} Puse skew ⁽³⁾ See <u>Figure 3</u>		10		ns

- (1) Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3V \pm 0.3V$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5V \pm 0.5V$.
- (2) All typical values are at Vcc = 3.3V or Vcc = 5V, and $T_A = 25$ °C.
- (3) Pulse skew is defined as $|t_{PLH} t_{PHL}|$ of each channel of the same device.

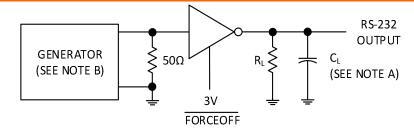

5.11 Auto-Powerdown Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	Parameter	MIN	TYP ⁽¹⁾	MAX	UNIT
t_{valid}	Propagation delay time, low- to high-level output		1		μs
t _{invalid}	Propagation delay time, high- to low-level output		30		μs
t _{en}	Supply enable time		100		μs

(1) All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

6 Parameter Measurement Information


A. CL includes probe and jig capacitance

B. The pulse generator has the following characteristics: PRR = 250kbit/s, $Z_0 = 50 \Omega$, 50 % duty cycle, tr \leq 10ns, tf \leq 10ns.

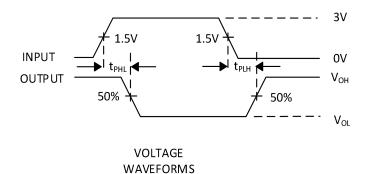
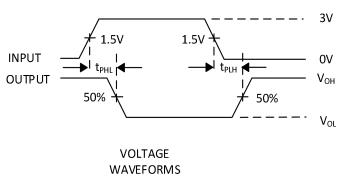

WAVEFORMS

Figure 1. Driver Slew Rate

TEST CIRCUIT

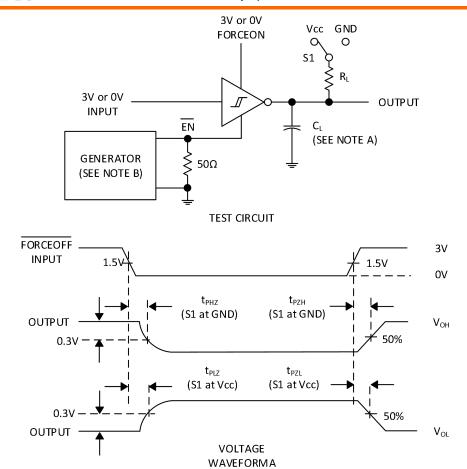

A. CL includes probe and jig capacitance

B. The pulse generator has the following characteristics: PRR = 250kbit/s, $Z_0 = 50 \Omega$, 50 % duty cycle, tr \leq 10ns, tf \leq 10ns.

3V or 0V **FORCEON** OUTPUT **GENERATOR** 50Ω (SEE NOTE B) (SEE NOTE A) 3V FORCEOFF

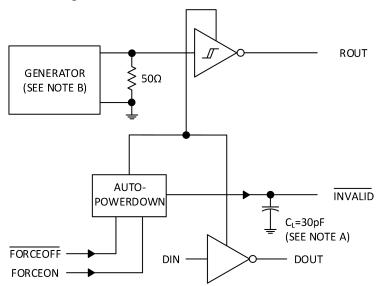
Figure 2. Driver Pulse Skew

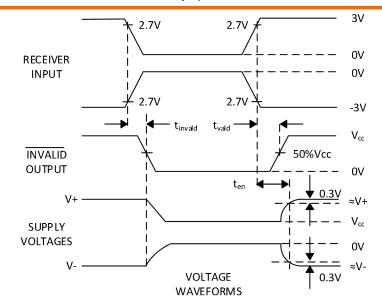
TEST CIRCUIT



A. CL includes probe and jig capacitance

B. The pulse generator has the following characteristics: PRR = 250kbit/s, ZO = 50 Ω , 50 % duty cycle, tr \leq 10ns.


Figure 3. Receiver Propagation Delay Times



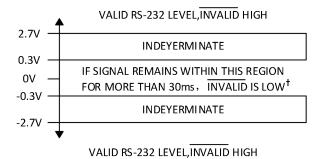

- A. CL includes probe and jig capacitance
- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50 % duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 4. Receiver Enable and Disable Times

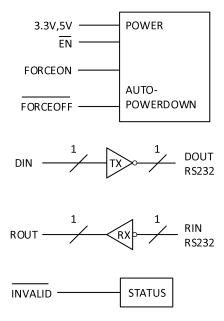
† AUTO-POWERDOEN DISABLES DRIVERS AND REDUCES SUPPLY CURRENT TO 1uA

- A. CL includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 5kbit/s, ZO = 50Ω , 50 % duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.

Figure 5. INVALID Propagation Delay Times and Driver Enabling Time

7 Detailed Description

7.1 Overview


The GM3221E device is a one-driver and one-receiver RS-232 interface device. All RS-232 inputs and outputs are protected to ±15kV using the Human Body Model. The charge pump requires only four small 0.1µF capacitors for operation from a 3.3V supply. The GM3221E is capable of running at data rates up to 250kbps, while maintaining RS-232-compliant output levels.

Automatic power-down can be disabled when FORCEON and FORCEOFF are high. With automatic power down plus enabled, the device activates automatically when a valid signal is applied to any receiver input. The device can automatically power down the driver to save power when the RIN input is unpowered.

INVALID is high (valid data) if receiver input voltage is greater than 2.7V or less than -2.7V, or has been between -0.3 V and 0.3 V for less than 30µs. INVALID is low (invalid data) if receiver input voltages are between -0.3 V and 0.3 V for more than 30µs.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Power

The power block increases, inverts, and regulates voltage at V+ and V- pins using a charge pump that requires four external capacitors. Auto-power-down feature for driver is controlled by FORCEON and FORCEOFF inputs. Receiver is controlled by EN input. See <u>Table 1</u> and <u>Table 2</u>

When GM3221E is unpowered, it can be safely connected to an active remote RS232 device.

7.3.2 RS232 Driver

One driver interfaces standard logic level to RS232 levels. DIN input must be valid high or low.

7.3.3 RS232 Receiver

One receiver interfaces RS232 levels to standard logic levels. An open input will result in a high output on ROUT. RIN input includes an internal standard RS232 load. A logic high input on the EN pin will shutdown the receiver output.

7.3.3 RS232 Status

The INVALID output goes low when RIN input is unpowered for more than 30µs. The INVALID output goes high when receiver has a valid input. The INVALID output is active when Vcc is powered irregardless of FORCEON and FORCEOFF inputs (see Table 3).

- 10 -

7.4 Device Functional Modes

Table 1 through 3 show the device functional modes.

Table 1.Each Driver

		INPUTS ⁽¹⁾	OUTPUT	DRIVER STATUS	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATOS
Х	Х	L	Χ	Z	Powered off
L	Н	Н	Χ	Н	Normal operation with
Н	Н	Н	Χ	L	auto-powerdown disabled
L	L	Н	Υ	Н	Normal operation with
Н	L	Н	Υ	L	auto-powerdown enabled
L	L	Н	N	Z	Powered off by
Н	L	Н	N	Z	auto-powerdown feature

Table 2.Each Receiver

		INPUTS ⁽¹⁾	OUTPUT	DECENTED STATUS	
RIN	EN	VALID RIN RS-232 LEVEL	ROUT	RECEIVER STATUS	
Х	Н	X	Z	Powered off	
L	L	X	Н		
Н	L	X	L	Normal operation	
OPEN	L	No	Н		

Table 3. INVALID

	INPL	JTS ⁽¹⁾	OUTPUTS	
RIN	RIN FORCEON FORCEOFF EN		INVALID	
L	Х	X	Х	Н
Н	Х	Х	Х	Н
OPEN	Х	Х	Х	L

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

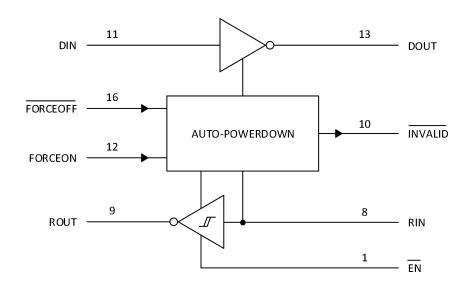
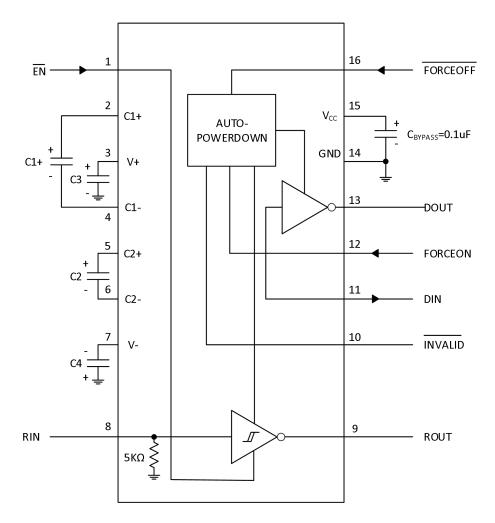


Figure 6. Logic Diagram


8 Applications Information

8.1 Application Information

The GM3221E line driver and receiver is a specialized device for 3V to 5.5V RS-232 communication applications. This application is a generic implementation of this device with all required external components. For proper operation, add capacitors as shown in Figure 7.

8.2 Typical Application

ROUT and DIN connect to UART or general purpose logic lines. FORCEON and FORCEOFF may be connected general purpose logic lines or tied to ground or V_{CC}. INVALID may be connected to a general purpose logic line or left unconnected. RIN and DOUT lines connect to a RS232 connector or cable. DIN, FORCEON, and FORCEOFF inputs must not be left unconnected.

^{†:} C3 can be connected to Vcc or GND

Figure 7. Typical Operating Circuit and Capacitor Values

A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

8.2.1 Design Requirements

For this design example, use the values in <u>Table 4</u>.

- Vcc minimum is 3V and maximum is 5.5V.
- Maximum recommended bit rate is 250kbps.
- Recommend capacitors as shown in Table4.

Table 4.Vcc vs Capacitor Value	ues
--------------------------------	-----

Vcc	C1	C2,C3,and C4
3.3V ± 0.3V	0.1μF	0.1μF
5V ± 0.5V	0.047μF	0.33μF
3V to 5.5V	0.1μF	0.47μF

8.2.2 Detailed Design Procedure

GM3221E has integrated charge-pump that generates positive and negative rails needed for RS-232 signal levels. Main design requirement is that charge-pump capacitor terminals must be connected with recommended capacitor values. Charge-pump rail voltages and device supply pin must be properly bypassed with ceramic capacitors.

- DIN, FORCEOFF and FORCEON inputs must be connected to valid low or high logic levels.
- Select capacitor values based on V_{CC} level for best performance.

9 Power Supply Recommendations

The Vcc voltage must be connected to the same power source used for logic device connected to DIN and ROUT pins. Vcc must be between 3V and 5.5V.

10 Layout

As shown in Layout Example, charge-pump and supply voltage capacitors must be located very close to device pins. Non-polarized ceramic capacitors are recommended. If polarized tantalum or electrolytic capacitors are used, they should be connected as per Typical Operating Circuit and Capacitor Values.

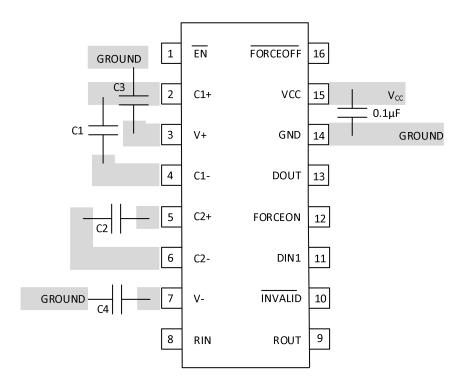
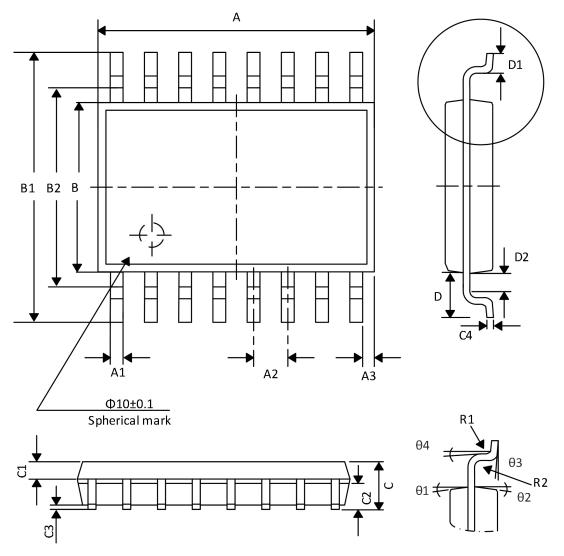
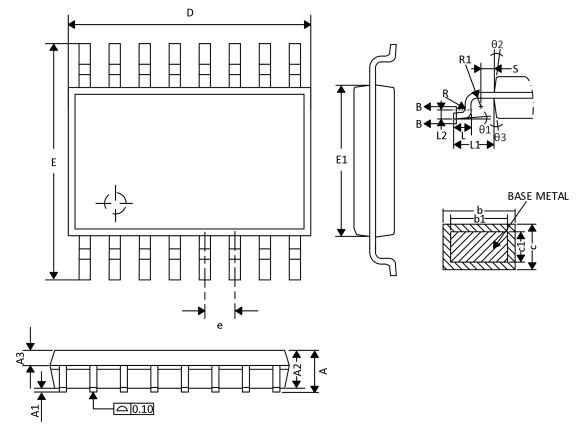
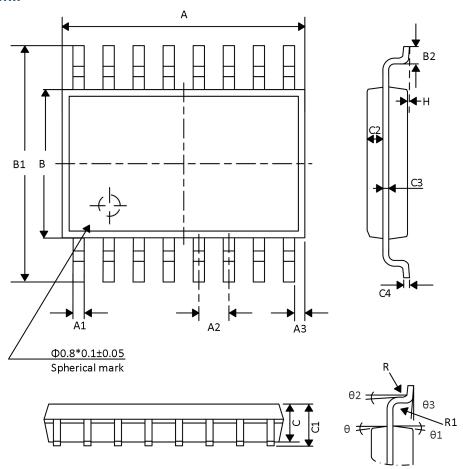



Figure 8. Example Layout


PACKAGE DIMENSION SOP16

DIMENSION SYMBOL	MIN (mm)	MAX (mm)	DIMENSION SYMBOL	MIN (mm)	MAX (mm)
Α	9.80	10.00	C4	0.203	0.233
A1	0.356	0.456	D	1.05	TYP
A2	1.27	TYP	D1	0.40	0.70
A3	0.30	2TYP	D2	0.15	0.25
В	3.85 3.95		R1	0.20TYP	
B1	5.84 6.20		R2	0.20TYP	
B2	5.00TYP		θ1	8°~12	°TYP4
С	1.40 1.60		θ2	8°~12°TYP4	
C1	0.61	0.71	θ3	0°^	'8°
C2	0.54	0.64	θ4	4°~	12°
C3	0.05	0.25			


TSSOP16

DIMENSION	MIN	TYP	MAX	DIMENSION	MIN	TYP	MAX
SYMBOL	(mm)	(mm)	(mm)	SYMBOL	(mm)	(mm)	(mm)
Α	-	-	1.20	е	0.65BSC		
A1	0.05	-	0.15	L	0.45	0.60	0.75
A2	0.90	1.00	1.05	L1	1.00 REF		
A3	0.34	0.44	0.54	L2	0.25 BSC		
b	0.250	-	0.28	R	0.09	-	-
b1	0.20	0.22	0.24	R1	0.09	-	-
С	0.10	-	0.19	S	0.20	-	-
c1	0.10	0.13	0.15	θ1	0	-	8°
D	4.86	4.96	5.06	θ2	10°	12°	14°
E	6.20	6.40	6.06	θ3	10°	12°	14°
E1	4.30	6.40	4.50				

SSOP16-208mil

DIMENSION SYMBOL	MIN (mm)	MAX (mm)	DIMENSION	MIN (mm)	MAX (mm)
Α	6.15	6.25	C3	0.1	152
A1	0.30TYP		C4	0.172	
A2	0.65TYP		Н	0.05	0.15
A3	0.675TYP		θ	12°TYP4	
В	5.25	5.35	θ1	12°TYP4	
B1	7.65	7.95	θ2	10°TYP	
B2	0.60	0.80	θ3	0°~8°	
С	1.70	1.80	R	0.20	TYP
C1	1.75	1.95	R1	0.15	STYP
C2	0.799				

±15kV ESD-Protected, 1µA, 3.0V to 5.5V, 250kbps,RS-232 Transceivers with AutoShutdown

Order Information

Order number	Dockogo	Marking	Operation Temperature	MCI Crada	Ship Quantity	Green
Order number	Package	information	Range	MSL Grade	Ship, Quantity	
GM3221ESA	SOP16	GM3221ESA	-40 to 85°C	3	T&R,2500	Rohs
GM3221ETA	TSSOP16	GM3221ETA	-40 to 85°C	3	T&R,2500	Rohs
GM3221EBA	SSOP16	GM3221EBA	-40 to 85°C	3	T&R,2500	Rohs