

Product Specification

XBL2594

1.5A 150KHz 40V PWM Buck DC/DC Converter

Descriptions

The XBL2594 regulator is monolithic integrated circuit ideally suited for easy and convenient design of a step—down switching regulator(buck converter). It is capable of driving a 1.5A load with excellentline and load regulation. This device is available in adjustable outputversion. It is internally compensated to minimize the number of external components to simplify the power supply design. Since XBL2594 converter is a switch—mode ower supply, itsefficiency is significantly higher in comparison with popular three—terminal linear regulators, especially with higher input voltages. The XBL2594 operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators.

Available in a standard SOP8 Surface Mount packages. The other features include a guaranteed $\pm 4\%$ tolerance on outputvoltage with in specified input voltages and output load conditions, and 15% on the oscillator frequency. External shutdown is included, featuring 50 μ A (typical) standby current. Self protection features include switch cycle-by-cycle current limit for the output switch, as well as thermal shutdown for complete protection under fault conditions.

Features

- Adjustable Output Voltage Range 1.23V-37V
- > 3.3V,5V,12V, and adjustable versions
- Guaranteed 1.5A Output Load CurrentWide
- Input Voltage Range up to 40 V
- 150 kHz Fixed Frequency Internal Oscillator
- > TTL Shutdown Capability Low Power Standby Mode, typ 50 μA
- > Thermal Shutdown and Current Limit Protection
- Internal Loop Compensation
- > These are Pb-Free Devices

Applications

- Simple High-Efficiency Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converter (Buck-Boost)
- Negative Step-Up Converters
- Power Supply for Battery Chargers

SOP-8

Figure 1. Package Types of XBL2594

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBL2594M-3.3	SOP-8	XBL2594M-3.3	Tape	4000Pcs/Reel
XBL2594M-5.0	SOP-8	XBL2594M-5.0	Tape	4000Pcs/Reel
XBL2594M-12	SOP-8	XBL2594M-3.3	Таре	4000Pcs/Reel
XBL2594M-ADJ	SOP-8	XBL2594M-ADJ	Tape	4000Pcs/Reel

Pin Configurations

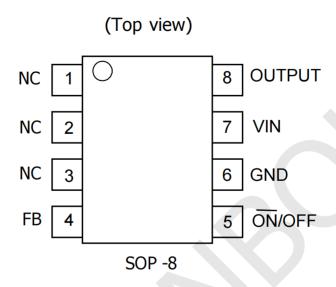


Figure 2 Pin Configuration of XBL2594 (Top View)

Pin Description

Pin Number	Pin Name	Description
1/2/3	NC	Not Connected
4	FB	This pin is the direct input of the error amplifier and the resistor network R2, R1 is connected externally toallow programming of the output voltage.
5	ON/OFF	Allows the switching regulator circuit to be shut down using logic levels, thus dropping the total input supply current to approximately 50 μ A. The threshold voltage is typical. 1.6 V. Applying a voltage above this value (up to VIN) shuts the regulator off. If the voltage applied to this pin is lower than 1.6 V or if this pin is left open,the regulator will be in the "on" condition.
6	GND	Circuit ground pin. See the information about the printed circuit board layout.
7	VIN	Positive input supply for XBL2594 step-down switching regulator. In order to minimize voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass capacitor must be present
8	ОИТРИТ	Emitter of the internal switch. The saturation voltage Vsat of the output switch is typically 1 V. It should be kept in mind that PCB area connected to this pin should be kept to a minimum in order to minimize coupling to sensitive circuitry

Function Block

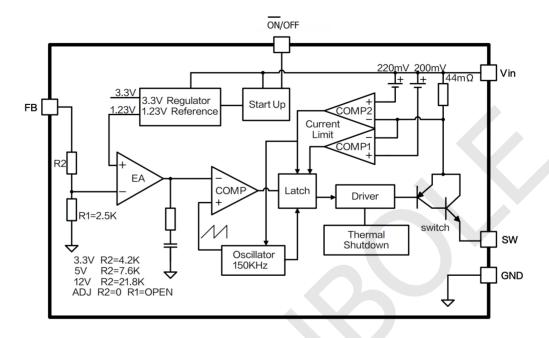


Figure 3 Function Block Diagram of XBL2594

Typical Application Circuit

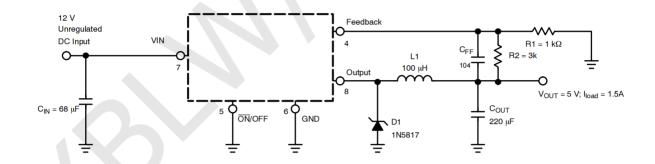


Figure 4. XBL2594-ADJ Typical Application Circuit (VIN=8V~40V, VOUT=5V/1.5A)

Absolute Maximum Ratings

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	-0.3 to 45	V
Feedback Pin Voltage	V _{FB}	-0.3 to VIN	V
Enable Pin Voltage	V _{EN}	-0.3 to VIN	V
Switch Pin Voltage	V _{SW}	-0.3 to VIN	V
Power Dissipation	P _D	Internally limited	mW
Operating Junction Temperature	T ₃	-40~125	oC
Storage Temperature	T _{STG}	-65 to 150	oC.
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	260	oC.
ESD (HBM)		2000	V
MSL		Level3	
Thermal Resistance-Junction to Ambient	ROJA	85	°C / W
Thermal Resistance-Junction to Case	ROJC	45	°C / W

XBL2594M-3.3 Electrical Characteristics

 $T_a = 25$ °C;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System para	ameters test (st circuit figure6				
VOUT	Output	Vin = 8V to 40V	3.168	3.3	3.432	V
V001	Voltage	Iload=0.1A to 1.5A	3.100	3.3	3.432	V
η	Efficiency	Vin=12V ,Vout=3.3V Iout=1.5A	-	78	-	%

XBL2594M-5.0 Electrical Characteristics

 $T_a = 25$ °C;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System para	ameters test	circuit figure7				
VOUT	Output Voltage	Vin = 8V to 40V Iload=0.1A to 1.5A	4.8	5	5.2	V
η	Efficiency	Vin=12V ,Vout=5V , Iout=1.5A	-	83	-	%

XBL2594M-12 Electrical Characteristics

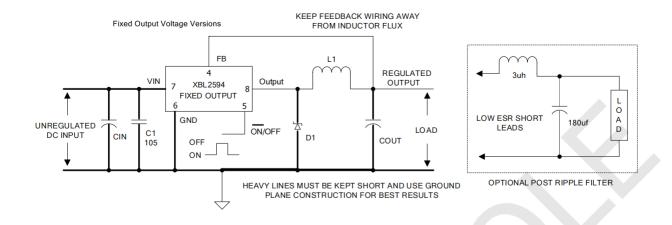
 $T_a = 25$ °C;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System para	meters test	circuit figure8				
VOUT	Output Voltage	Vin = 15V to 40V , Iload=0.1A to 1.5A	11.52	12	12.48	V
η	Efficiency	Vin=25V ,Vout=12V Iout=1.5A	1	85	1	%

XBL2594M-ADJ Electrical Characteristics

 $T_a = 25$ °C;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System parameters test circuit figu		ure9				
VOUT	Output Voltage	Vin = 8V to 40V Iload=0.1A to 1.5A	1.193	1.23	1.267	V
η	Efficiency	Vin=12V ,Vout=5V , Iout=1.5A	-	83	-	%


Electrical Characteristics (DC Parameters)

 $\label{eq:Vin} \begin{tabular}{ll} Vin = 12V for the 3.3V,5V, and Adjustable versions and Vin=24V for the 12V version, GND=0V, Vin \& GND parallel connect a 220uF/50V capacitor; Iout=500mA, T_a = 25°C; the others floating unless otherwise specified. \end{tabular}$

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	V _{in}		4.5		40	V
Shutdown Supply Current	Is	V _{EN} =5V		50	200	uA
Quiescent Supply Current	\mathbf{I}_{q}	V _{EN} =0V,V _{FB} =Vin		4.5	10	mA
Oscillator Frequency	Fosc		127	150	173	Khz
Switch Current Limit	IL	V _{FB} = 0 V		4.0		Α
EN Pin Threshold	V _{EN}	High (Regulator OFF) Low (Regulator ON)		1.4 0.8		V
EN Pin Input Leakage	I _H	V _{EN} =2.5V (OFF)		8	15	uA
Current	IL	V _{EN} =0.5V (ON)		0.5	5	uA
Output Saturation Voltage	V _{CE}	V _{FB} = 0 V I _{out} =2A		1.2	1.5	V
Max. Duty Cycle	D _{MAX}	V _{FB} = 0 V		95		%

Test Circuit and Layout guidelines

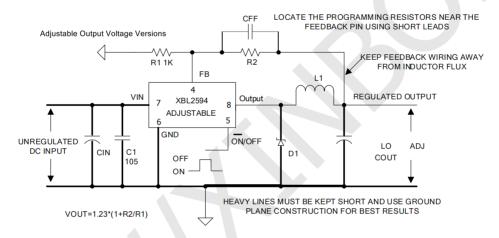


Figure 4. Standard Test Circuits and Layout Guides

Select R1 to be approximately 1K, use a 1% resistor for best stability.

C1 and CFF are optional; in order to increase stability and reduce the input power line noise, C1 must be placed near to PIN1 and PIN3;

For output voltages greater than approximately 10V, an additional capacitor CFF is required.

The compensation capacitor is typically between 100 pf and 33 nf, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltage, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.

CFF=1/(31*1000*R2); This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)

XBL2594 Series Buck Regulator Design Procedure (Fixed Output)

	Condition	<u> </u>	Inductor	Output Capacitor (COUT)				
	Conditions		(L1)	Through Hole	Electrolytic	Surface Mount Tantalum		
Output Voltage (V)	Load Current (A)	Max Input Voltage (V)	Inductance (uH)	Panasonic HFQ Series (uF/V)	Nichicon PL Series (uF/V)	AVX TPS Series (uF/V)	Sprague 595D Series (uF/V)	
		6	22	470/25	470/35	330/6.3	390/6.3	
3.3	2	10	33	330/35	330/35	330/6.3	390/6.3	
		40	47	330/35	270/50	220/10	330/10	
		9	22	470/25	560/16	220/10	330/10	
5	2	20	68	180/35	180/35	100/10	270/10	
		40	68	180/35	180/35	100/10	270/10	
		15	33	330/25	330/25	100/16	180/16	
12	2	20	68	180/25	180/25	100/16	120/20	
		40	150	82/25	82/25	68/20	68/25	

XBL2594 Series Buck Regulator Design Procedure (Adjustable Output)

O. to the	Through	Hole Output Ele	ctrolytic	Surface	Mount Output (Capacitor
Output Voltage (V)	Panasonic HFQ Series (uF/V)	Nichicon PL Series (uF/V)	Feedforward Capacitor	AVX TPS Series (uF/V)	Sprague 595D Series (uF/V)	Feedforward Capacitor
2	820/35	820/35	33nF	330/6.3	470/4	33nF
4	560/35	470/35	10nF	330/6.3	390/6.3	10nF
6	470/25	470/35	3.3nF	220/10	330/10	3.3nF
9	330/25	330/25	1.5nF	100/16	180/16	1.5nF
12	330/25	330/25	1nF	100/16	180/16	1nF
15	220/25	220/35	680pF	68/20	120/20	680pF
24	220/35	150/35	560pF	33/25	33/25	220pF
28	100/50	100/50	390pF	10/35	15/50	220pF

Schottky Diode Selection Table

Current	Surface Mount	Through Hole	VR (The same as system maximum input voltage)					
			20V	30V	40V	50V	60V	
1A		√	1N5817	1N5818	1N5819			
		√	1N5820	1N5821	1N5822			
		√	MBR320	MBR330	MBR340	MBR350	MBR360	
2.4	√		SS32	SS33	SS34	SS35	SS36	
2A	√			30WQ03	30WQ04	30WQ05		
		√		31DQ03	31DQ04	31DQ05		
		√	SR302	SR303	SR304	SR305	SR306	

Typical System Application for 3.3V Version

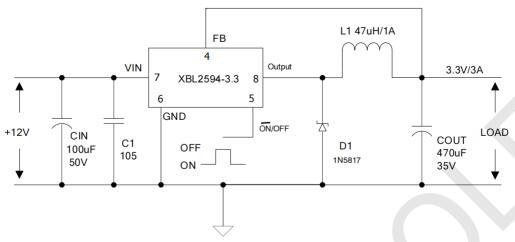


Figure 5. XBL 2594-3.3 System Parameters Test Circuit

Typical System Application for 5V Version

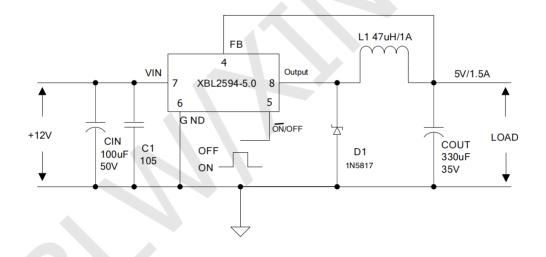


Figure 6. XBL 2594-5.0 System Parameters Test Circuit

Typical System Application for 12V Version

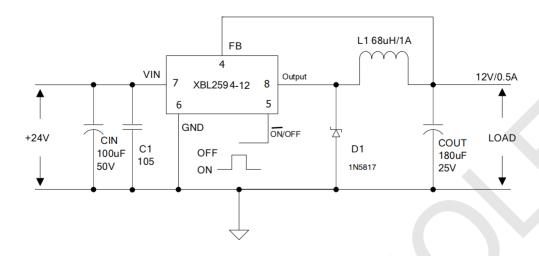
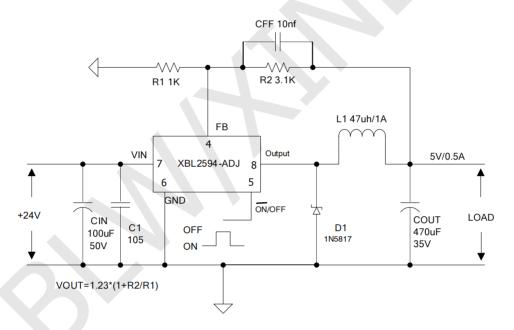
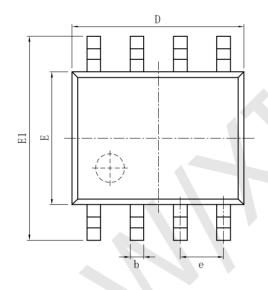
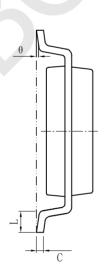


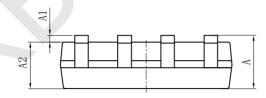
Figure 7. XBL2594-12 System Parameters Test Circuit

Typical System Application for ADJ Version




Figure 8. XBL2594-ADJ System Parameters Test Circuit




Package Information

• SOP-8

Size	Dimensions In	Millimeters	Size	Dimensions	In Inches
Symbol	Min(mm)	Max(mm)	Symbol Symbol	Min(in)	Max(in)
A	1.350	1.750	A	0.053	0.069
A1	0.100	0.250	A1	0.004	0.010
A2	1.350	1.550	A2	0.053	0.061
b	0.330	0.510	b	0.013	0.020
С	0.170	0. 250	С	0.006	0.010
D	4.700	5. 100	D	0. 185	0. 200
Е	3.800	4.000	E	0. 150	0. 157
E1	5.800	6. 200	E1	0. 228	0. 224
е	1. 2	70 (BSC)	e	0.0	50 (BSC)
L	0.400	1.270	L	0.016	0.050
θ	0°	8°	θ	0°	8°

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semiconductor product may malfunction under specified conditions. When using XBLW products for system design and overall manufacturing, the buyer is responsible for complying with safety standards and taking appropriate safety measures to avoid risks that may cause personal injury or property damage.
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.