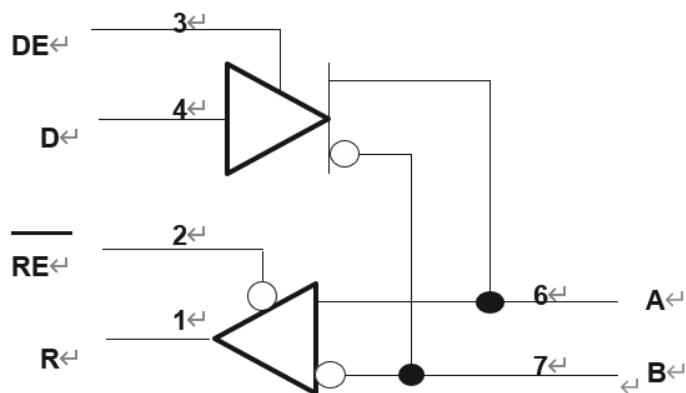


Features

- Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Low-Voltage Differential 30- Ω to 55- Ω Line Drivers and Receivers for Signaling Rates, up to 200 Mbps
- Type-2 Receivers Provide an Offset (100 mV) Threshold to Detect Open-Circuit and Idle-Bus
- Conditions
- -1 V to 3.4 V Common-Mode Voltage Range
- Allows Data Transfer with 2 V of Ground Noise
- Bus Pins High Impedance when Disabled or $VCC \leq 1.5$ V
- Bus-Pin Protection: ± 8 kV HBM model
- -40°C to 105°C Operation Temperature Range

Applications


- Backplane Multipoint Data/Clock Transmission
- Cellular Base Stations
- Network Switches and Routers
- Industrial Control
- Communication Infrastructure

Description

The TPT9H221 is a 3.3-V multipoint-low-voltage differential (M-LVDS) line driver and receiver, which can operate at signaling rates up to 200 Mbps. Driver outputs and receiver inputs are protected against ± 8 -kV ESD strikes without latch-up. The driver output is designed to support multipoint buses presenting loads as low as 30 Ω , and incorporates controlled transition times to allow for stubs off of the backbone transmission line.

The TPT9H221 is a type-2 receiver that detects the bus state with a differential input of 50 mV over a common-mode voltage range from -1 V to 3.4 V. The type-2 receiver includes an offset threshold to provide a known output state under the open-circuit fail-safe and idle-bus fail-safe. The device is characterized for operation from -40°C to 105°C. The device is available as half-duplex in the SOP8 package.

Typical Application Circuit


Table of Contents

Features.....	1
Applications.....	1
Description.....	1
Typical Application Circuit.....	1
Revision History.....	3
Pin Configuration and Functions.....	4
Device Function Tables.....	5
Specifications.....	7
Absolute Maximum Ratings ⁽¹⁾	7
ESD, Electrostatic Discharge Protection.....	7
Thermal Information.....	7
Recommended Operating Conditions.....	7
Electrical Characteristics.....	9
Test Circuits, Configurations and Waveforms.....	12
Application and Implementation.....	17
Tape and Reel Information.....	18
Package Outline Dimensions.....	19
SOP8.....	19
Order Information.....	20
IMPORTANT NOTICE AND DISCLAIMER.....	21

Revision History

Date	Revision	Notes
2018-11-12	Rev.Pre.0	Definition draft.
2019-03-27	Rev.A.0	Released version. Confirmed the spec limit.
2023-07-12	Rev.A.1	Updated the typos in figure 1 in page 11, and updated the package information in page 16&17.
2023-09-01	Rev.A.2	Updated the temperature range: -40°C to 105°C.
2024-12-24	Rev.A.3	Updated to a new datasheet format.

Pin Configuration and Functions

Table 1. Pin Functions

Pin No.	Name	I/O	Description
1	R	Digital O	Receiver output.
2	RE	Digital I	Receiver output enable.
3	DE	Digital I	Driver output enable.
4	D	Digital I	Driver input.
5	GND	GND	Ground.
6	A	Bus I	Noninverting receiver input.
7	B	Bus I	Inverting receiver input.
8	Vcc	Power	Power supply.

Multipoint-LVDS Line Driver and Receiver
Device Function Tables
Table 2. Truth Table Abbreviations

Abbreviation	Description
H	High level
L	Low level
X	Don't care
I	Indeterminate
Z	High impedance (off)
NC	Disconnected

Table 3. Driver

Input	Enable	Outputs	
		A	B
L	H	L	H
H	H	H	L
OPEN	H	L	H
X	OPEN	Z	Z
X	L	Z	Z

H = high level, L = low level, Z = high impedance, X = Don't care, ? = indeterminate

Table 4. Type-2 Receiver

Inputs		Output	
$V_{ID} = V_A - V_B$		RE	
$V_{ID} \geq 150$ mV		L	
50 mV $< V_{ID} < 150$ mV		L	
$V_{ID} \leq 50$ mV		L	
X		H	
X		OPEN	
Open Circuit		L	

Table 5. Type-2 Receiver Input Threshold Test Voltages

Applied Voltage		Differential Input Voltages	Common Mode Input Voltage	Receiver Output ⁽¹⁾
V_{IA}	V_{IB}	V_{ID}	V_{IC}	
2.400	0.000	2.400	1.200	H
0.000	2.400	-2.400	1.200	L
3.800	3.650	0.150	3.725	H
3.800	3.750	0.050	3.775	L
-1.250	-1.400	0.150	-1.325	H

Multipoint-LVDS Line Driver and Receiver

-1.350	-1.400	0.050	-1.375	L
--------	--------	-------	--------	---

(1) H = high level, L = low level, output state assumes receiver is enabled (RE = L)

Multipoint-LVDS Line Driver and Receiver

Specifications

Absolute Maximum Ratings (1)

Parameter		Min	Max	Unit
	V _{CC} to GND	-0.5	4	V
	Voltage at Logic Pin: D, DE, \overline{RE} , R	-0.3	4	V
	Voltage at Bus Pin: A, B	-1.8	4	V
T _J	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-40	105	°C
T _{STG}	Storage Temperature Range	-65	150	°C
T _L	Lead Temperature (Soldering, 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) This data is taken with the JEDEC low effective thermal conductivity test board.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , Bus Pin	8	kV
		ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , All Pins Except Bus Pin	4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θ _{JA}	θ _{JC}	Unit
SOP8	130		°C/W

(1) θ_{JA} = 130 °C/W is typical value of SOP8 provided by package assembly house.

Recommended Operating Conditions

Parameter		Min	Typ	Max	Unit
V _{CC}	Supply Voltage	3	3.3	3.6	V
V _{IH}	High-Level Input Voltage	2		V _{CC}	V
V _{IL}	Low-Level Input Voltage	GND		0.8	V
	Voltage at any Bus Terminal V _A , V _B	-1.4		3.8	V

Multipoint-LVDS Line Driver and Receiver

Parameter		Min	Typ	Max	Unit
V _{ID}	Magnitude of Differential Input Voltage	0.05		VCC	V
T _A	Operating Free-Air Temperature	-40		105	°C

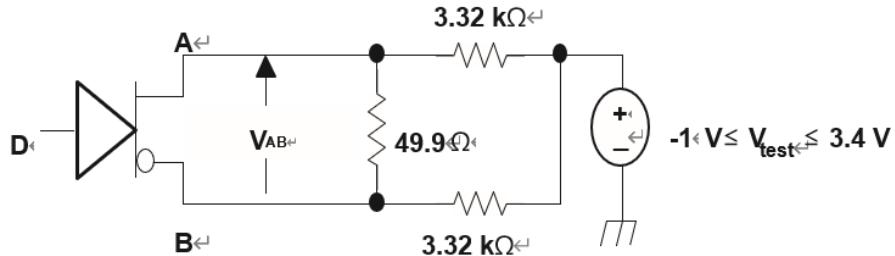
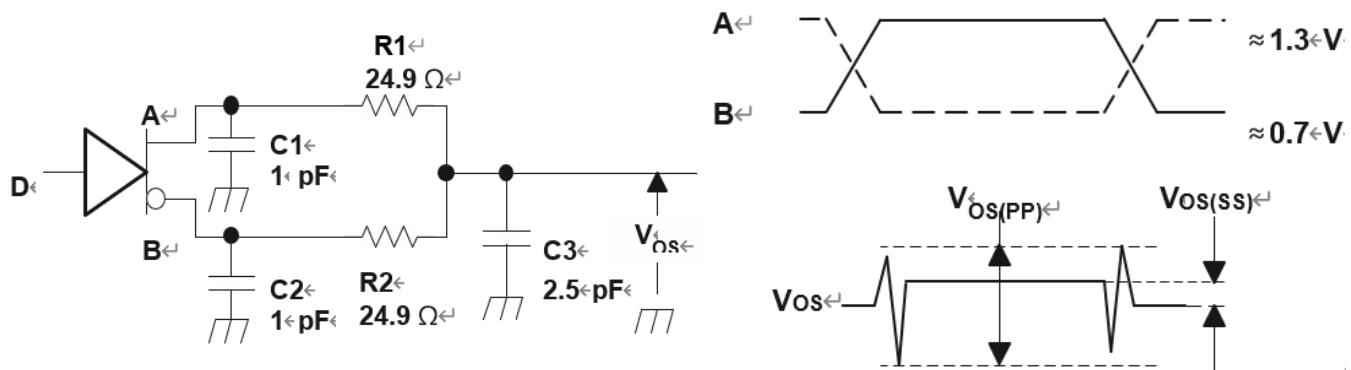
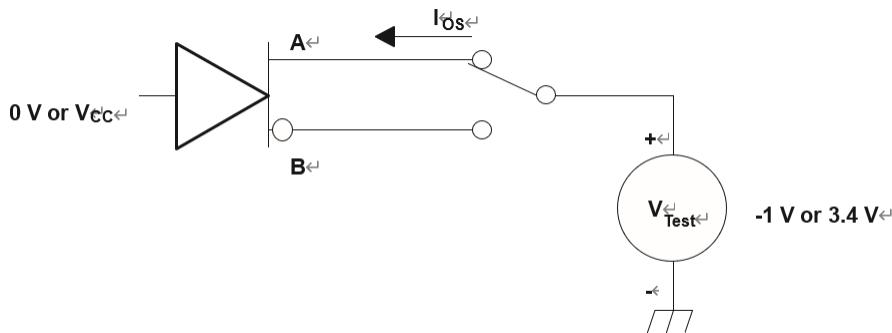
Multipoint-LVDS Line Driver and Receiver
Electrical Characteristics

All test conditions: $V_{CC} = 3.0\text{ V}$ to 3.6 V , $T_A = -40^\circ\text{C}$ to 105°C , unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Power Supply						
V_{CC}	Supply Voltage		3.0		3.6	V
I_{CC} Supply Current	Drive Only	RE and DE at V_{CC} , $R_L = 50\ \Omega$, all others open		13	22	mA
	Both Disabled	RE at V_{CC} , DE at 0 V, $R_L = \text{No Load}$, all others open		2	4	mA
	Both Enabled	RE at 0 V, DE at V_{CC} , $R_L = 50\ \Omega$, all others open		15	24	mA
	Receiver Only	RE at 0 V, DE at 0 V, $R_L = 50\ \Omega$, all others open		4	13	mA
I_A	Receiver or Transceiver with Driver Disabled Input Current	$V_A = 3.8\text{ V}$, $V_B = 1.2\text{ V}$	0		32	μA
		$V_A = 0\text{ V}$ or 2.4 V , $V_B = 1.2\text{ V}$	-20		20	μA
		$V_A = -1.4\text{ V}$, $V_B = 1.2\text{ V}$	-32		0	μA
I_B	Receiver or Transceiver with Driver Disabled Input Current	$V_B = 3.8\text{ V}$, $V_A = 1.2\text{ V}$	0		32	μA
		$V_B = 0\text{ V}$ or 2.4 V , $V_A = 1.2\text{ V}$	-20		20	μA
		$V_B = -1.4\text{ V}$, $V_A = 1.2\text{ V}$	-32		0	μA
I_{AB}	Receiver or Transceiver with Driver Disabled Differential Input Current ($I_A - I_B$)	$V_A = V_B$, $1.4 \leq V_A \leq 3.8\text{ V}$	-4		4	μA
$I_{A(OFF)}$	Receiver or Transceiver Power-off Input Current	$V_A = 3.8\text{ V}$, $V_B = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	0		32	μA
		$V_A = 0\text{ V}$ or 2.4 V , $V_B = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	-20		20	μA
		$V_A = -1.4\text{ V}$, $V_B = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	-32		0	μA
$I_{B(OFF)}$	Receiver or Transceiver Power-off Input Current	$V_B = 3.8\text{ V}$, $V_A = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	0		32	μA
		$V_B = 0\text{ V}$ or 2.4 V , $V_A = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	-20		20	μA
		$V_B = -1.4\text{ V}$, $V_A = 1.2\text{ V}$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$	-32		0	μA
$I_{AB(OFF)}$	Receiver Input or Transceiver Power-off Differential Input Current ($I_A - I_B$)	$V_A = V_B$, $0\text{ V} \leq V_{CC} \leq 1.5\text{ V}$, $-1.4 \leq V_A \leq 3.8\text{ V}$	-4		4	μA
Driver Electrical Characteristics						
$ V_{AB} $	Differential Output Voltage Magnitude	See Figure 1	480		650	mV
$\Delta V_{AB} $	Change in Differential Output Voltage Magnitude Between Logic States		-50		50	mV

Multipoint-LVDS Line Driver and Receiver

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{OS(ss)}$	Steady-State Common-Mode Output Voltage	See Figure 2	0.8		1.2	V
$\Delta V_{OS(ss)}$	Change in Steady-State Common-Mode Output Voltage Between Logic States		-50		50	mV
$V_{OS(PP)}$	Peak-to-Peak Common-Mode Output Voltage				150	mV
$V_A(OC)$	Maximum Steady-State Open-Circuit Output Voltage	See Figure 6	0		VCC	V
$V_B(OC)$	Maximum Steady-State Open-Circuit Output Voltage		0		VCC	V
$V_{P(H)}$	Voltage Overshoot, Low-to-High Level Output	See Figure 4			1.2 V_{SS}	V
$V_{P(L)}$	Voltage Overshoot, High-to-Low Level Output		-0.2 V_{SS}			V
I_{IH}	High-Level Input Current (D, DE)	$V_{IH} = 2$ V	0		10	μ A
I_{IL}	Low-Level Input Current (D, DE)	$V_{IL} = 0.8$ V	0		10	μ A
$ I_{OS} $	Differential Short-Circuit Output Current Magnitude	See Figure 3			75	mA
I_{OZ}	High-Impedance State Output Current (Driver Only)	$-1.4 \leq V_A \text{ or } V_B \leq 3.8$ V, other output = 1.2 V	-32		32	μ A




Driver Switching Characteristics

t_{PLH}	Propagation Delay Time, Low-to-High-Level Output ⁽¹⁾	See Figure 4		2.8		ns
t_{PHL}	Propagation Delay Time, High-to-Low-Level Output ⁽¹⁾			3.2		ns
t_r	Differential Output Signal Rise Time ⁽¹⁾			1.6		ns
t_f	Differential Output Signal Fall Time ⁽¹⁾			1.8		ns
$t_{sk(p)}$	Pulse Skew ($ t_{PHL} - t_{PLH} $) ⁽¹⁾			433		ps
$t_{jit(per)}$	Period Jitter, rms (1 Standard Deviation) ⁽¹⁾	100-MHz clock input ⁽⁴⁾		1		ps
t_{PHZ}	Disable Time, High-Level-to-High-Impedance Output ⁽¹⁾	See Figure 5		4.5		ns
t_{PLZ}	Disable Time, Low-Level-to-High-Impedance Output ⁽¹⁾			3.2		ns
t_{PZH}	Enable Time, High-Impedance-to-High-Level Output ⁽¹⁾			3.2		ns
t_{PZL}	Enable Time, High-Impedance-to-Low-Level Output ⁽¹⁾			5.0		ns

Multipoint-LVDS Line Driver and Receiver

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Receiver Electrical Characteristics						
V_{IT+}	Positive-Going Differential Input Voltage Threshold	See Figure 8 and Table 2 and Table 3			150	mV
V_{IT-}	Negative-Going Differential Input Voltage Threshold		50			mV
V_{HYS}	Differential Input Voltage Hysteresis, $(V_{IT+} - V_{IT})$ ⁽¹⁾			0		mV
V_{OH}	High-Level Output Voltage	$I_{OH} = -8 \text{ mA}$	2.4			V
V_{OL}	Low-Level Output Voltage	$I_{OL} = 8 \text{ mA}$			0.4	V
I_{IH}	High-Level Input Current (RE)	$V_{IH} = 2 \text{ V}$	-10		0	μA
I_{IL}	Low-Level Input Current (RE)	$V_{IL} = 0.8 \text{ V}$	-10		0	μA
C_A or C_B	Input Capacitance ⁽¹⁾	$V_I = 0.4 \sin(30E6\pi t) + 0.5 \text{ V}$ ⁽²⁾ , other input at 1.2 V		7		pF
C_{AB}	Differential Input Capacitance ⁽¹⁾	$V_{AB} = 0.4 \sin(30E6\pi t) \text{ V}$ ⁽²⁾		7		pF
$C_{A/B}$	Input Capacitance Balance, (C_A / C_B) ⁽¹⁾		0.99		1.01	
Receiver Switching Characteristics						
t_{pLH}	Propagation Delay Time, Low-to-High-Level Output ⁽¹⁾	$C_L = 15 \text{ pF}$, See Figure 10	2	4	6	ns
t_{pHL}	Propagation Delay Time, High-to-Low-Level Output ⁽¹⁾		2	4	6	ns
t_r	Output Signal Rise Time			0.9	2.3	ns
t_f	Output Signal Fall Time			0.8	2.3	ns
$t_{sk(p)}$	Pulse Skew ($ t_{pHL} - t_{pLH} $) ⁽¹⁾		100			ps
$t_{jit(per)}$	Period Jitter, rms (1 Standard Deviation) ⁽¹⁾	100-MHz clock input ⁽⁴⁾		1		ps
t_{pHZ}	Disable Time, High-Level-to-High-Impedance Output ⁽¹⁾	See Figure 10		4.5		ns
t_{pLZ}	Disable Time, Low-Level-to-High-Impedance Output ⁽¹⁾			3.5		ns
t_{pZH}	Enable Time, High-Impedance-to-High-Level Output ⁽¹⁾			7.5		ns
t_{pZL}	Enable Time, High-Impedance-to-Low-Level Output ⁽¹⁾			3.5		ns

(1) The test data based on bench test and design simulation, can NOT test in production.

Test Circuits, Configurations and Waveforms

Figure 1. Differential Output Voltage Test Circuit

Figure 2. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Figure 3. Driver Short-Circuit Test Circuit


Multipoint-LVDS Line Driver and Receiver

Figure 4. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

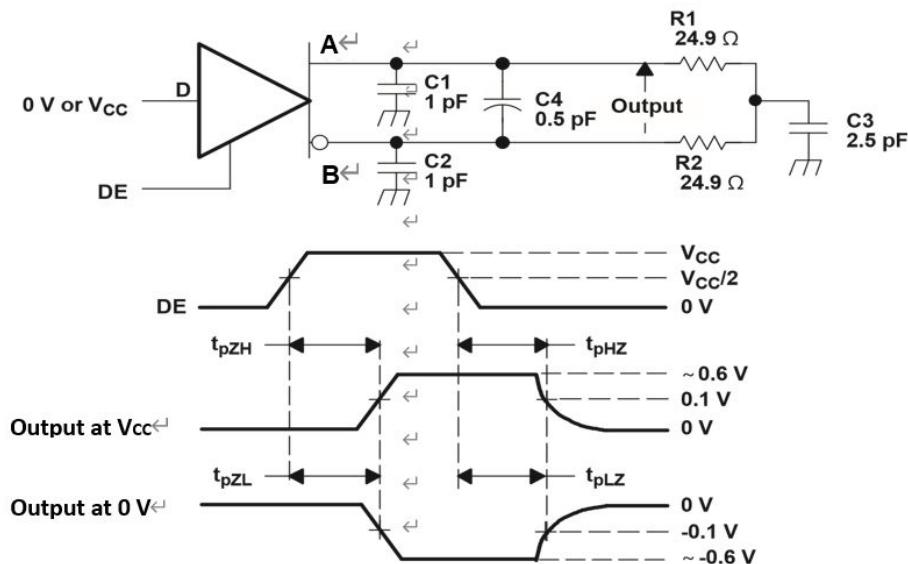
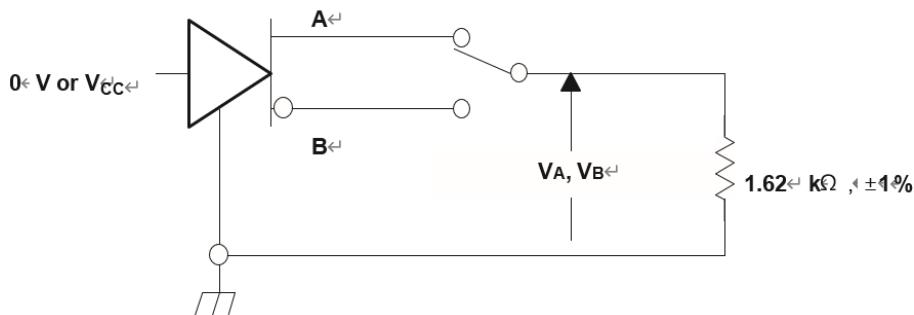
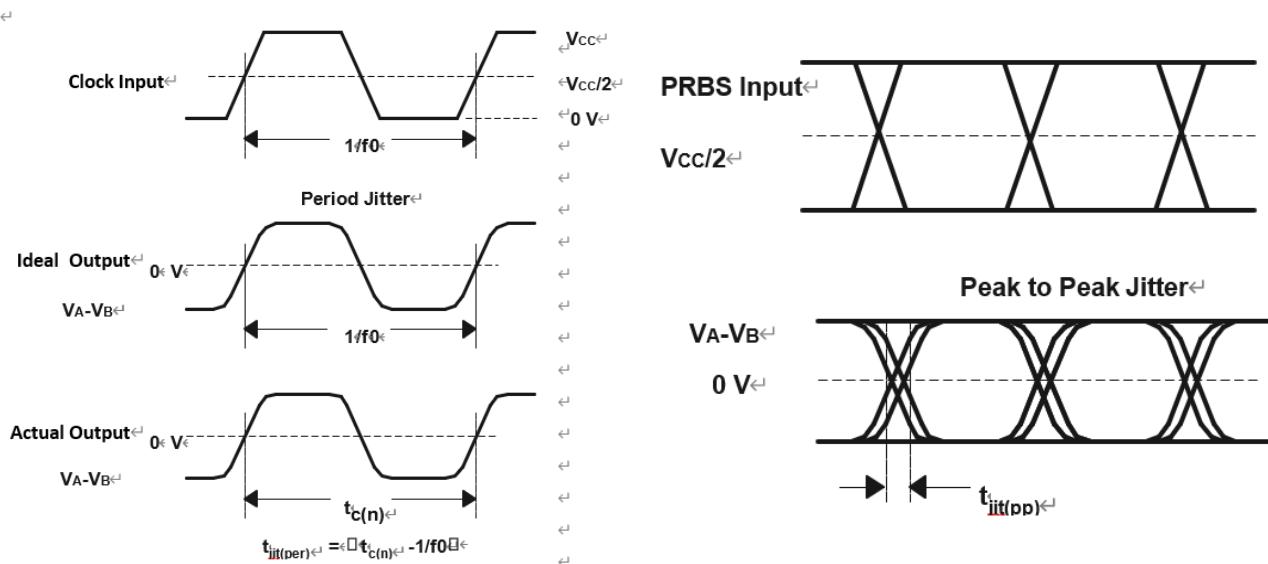





Figure 5. Driver Enable and Disable Time Circuit and Definitions

Multipoint-LVDS Line Driver and Receiver

Figure 6. Maximum Steady State Output Voltage

Figure 7. Driver Jitter Measurement Waveforms

Figure 8. Receiver Voltage and Current Definitions

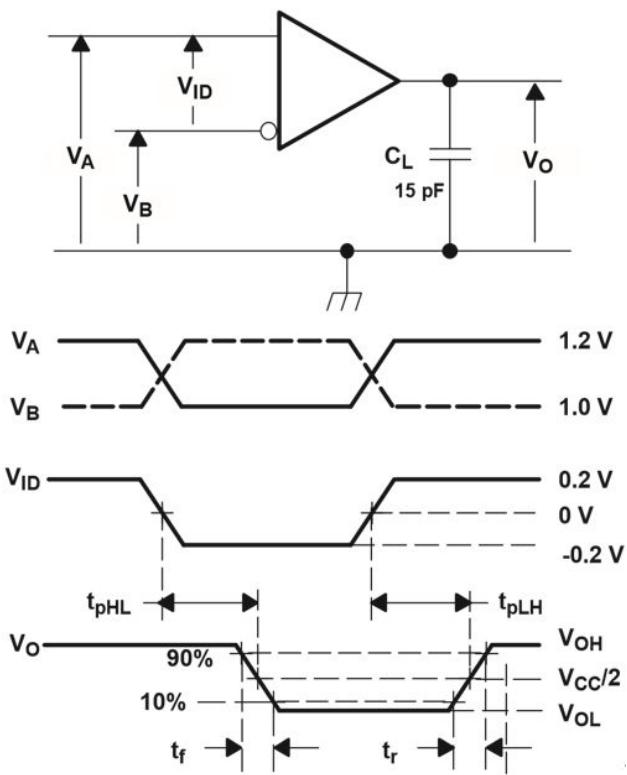

Multipoint-LVDS Line Driver and Receiver

Figure 9. Receiver Timing Test Circuit and Waveforms

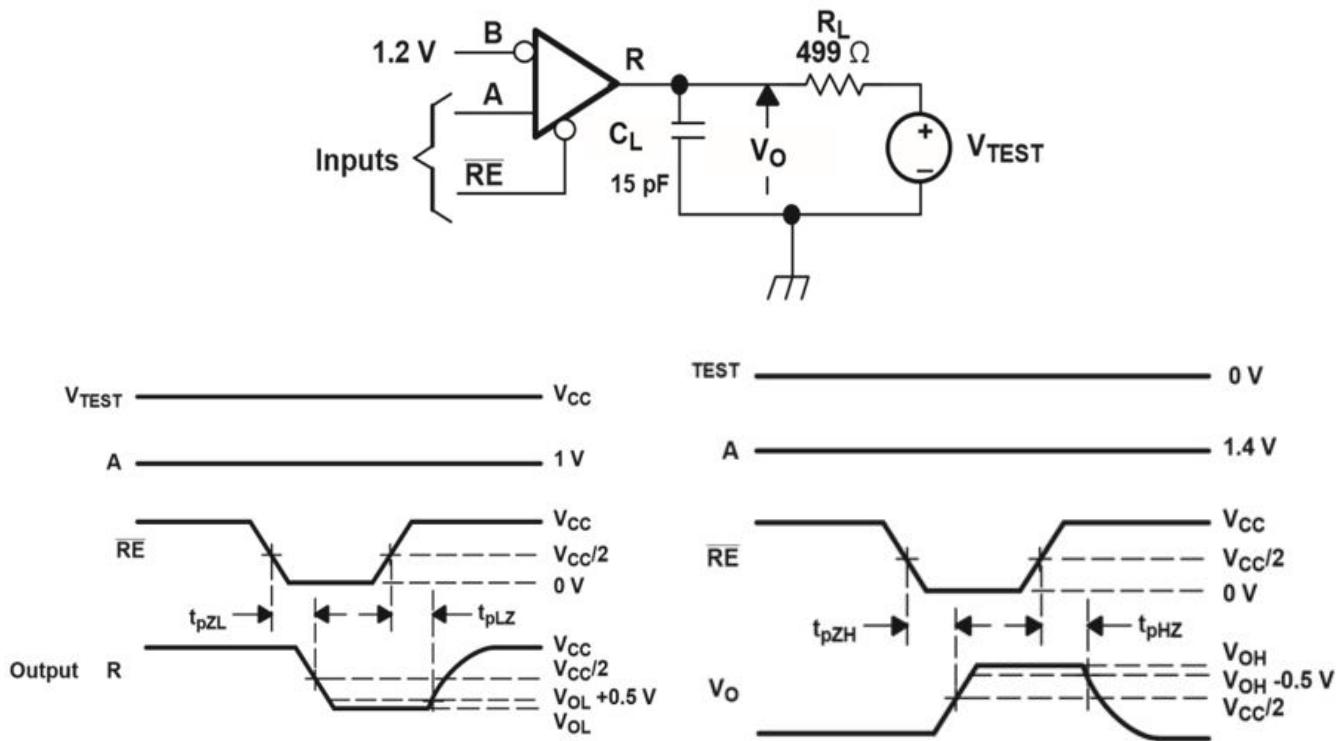
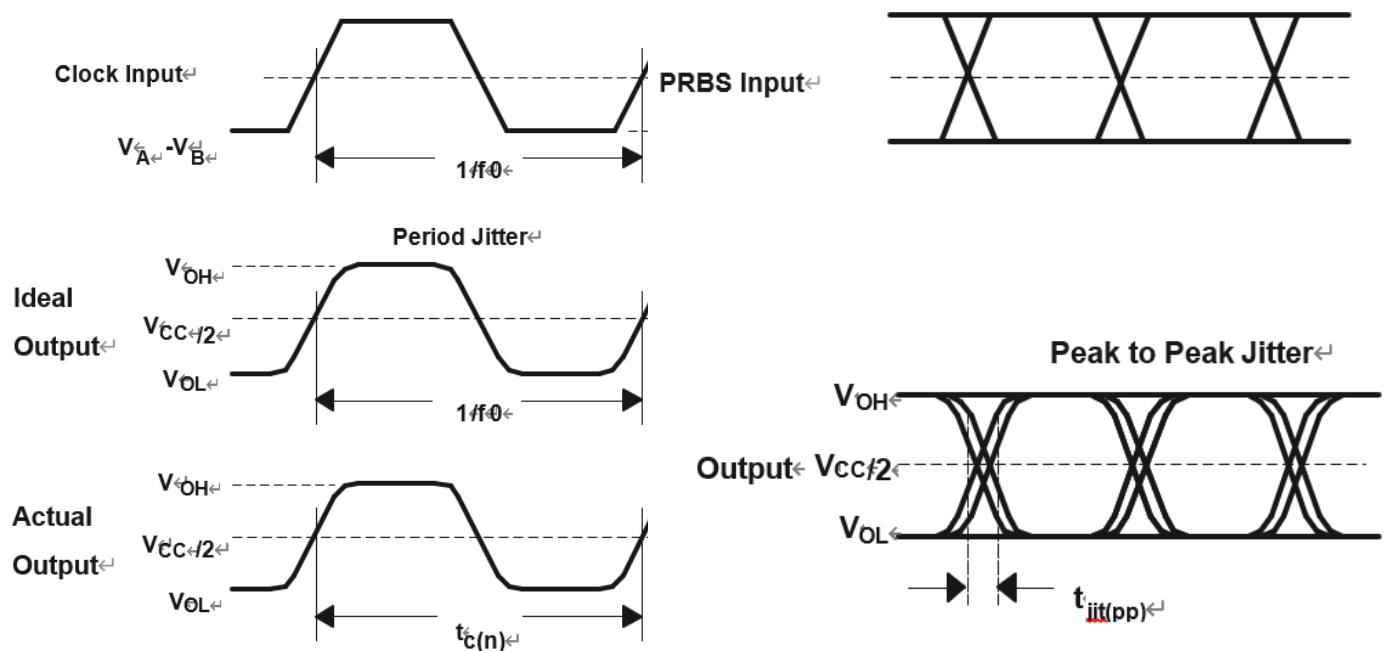
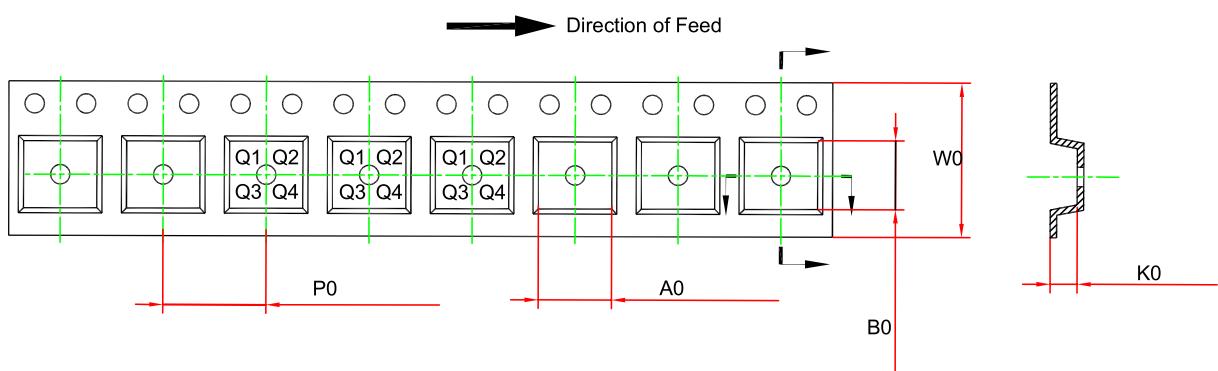
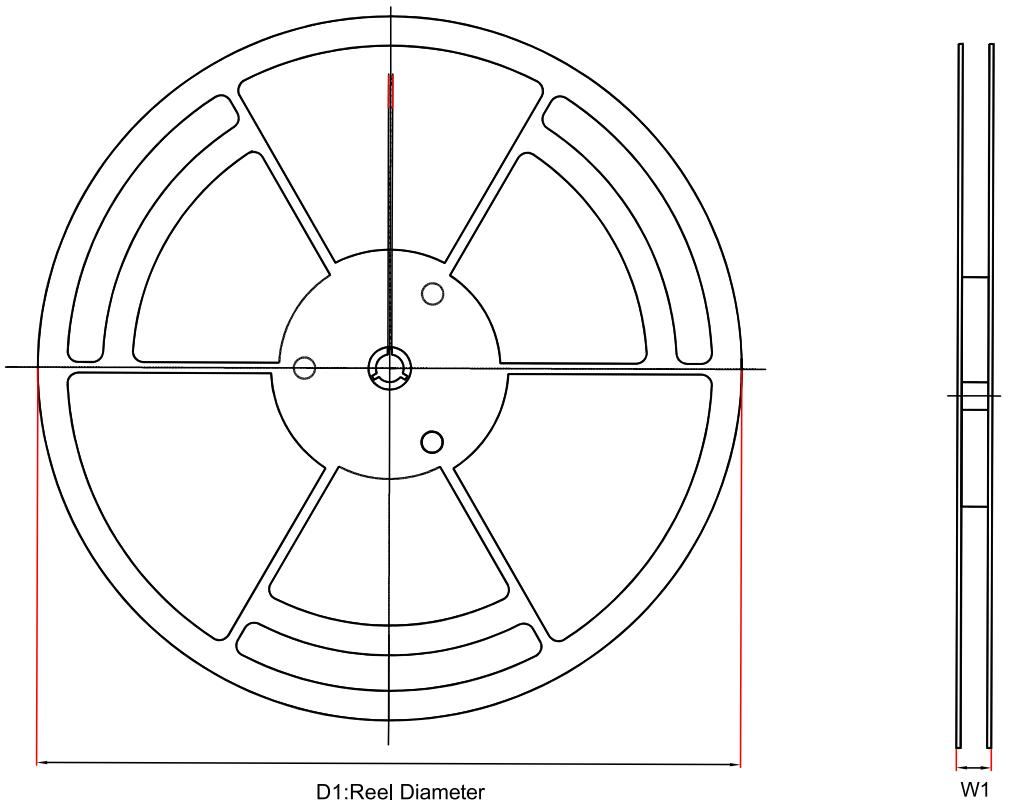



Figure 10. Receiver Enable/Disable Time Test Circuit and Waveforms

Figure 11. Receiver Jitter Measurement Waveforms

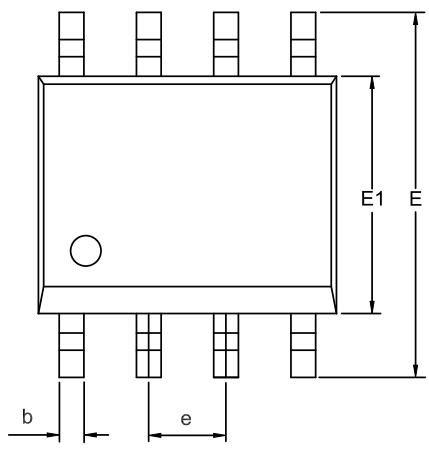
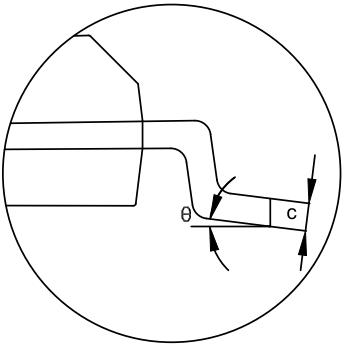
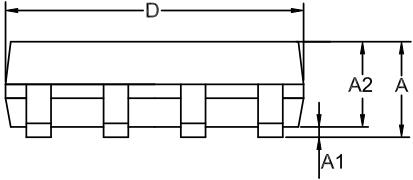
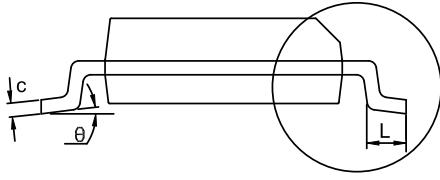



Multipoint-LVDS Line Driver and Receiver

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.





Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm) ⁽¹⁾	B0 (mm) ⁽¹⁾	K0 (mm) ⁽¹⁾	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT9H221L1-SO1R-S	SOP8	330.0	6.5	2.0	12.0	17.6	5.4	8.0	Q1

(1) The value is for reference only. Contact the 3PEAK factory for more information.

Package Outline Dimensions

SOP8

Package Outline Dimensions		SO1(SOP-8-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.550	0.049	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	1.270 BSC		0.050 BSC		
L	0.400	1.000	0.016	0.039	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT9H221L1-SO1R-S	-40 to 105°C	SOP8	T9H221	1	Tape and Reel, 4000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

This page intentionally left blank