

Surface Mount Schottky Barrier Rectifier

Reverse Voltage -20V to 200V Forward Current -1.0A

Features

- Metal silicon junction, majority carrier conduction
- For surface mounted applications
- Low power loss, high efficiency
- High forward surge current capability
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

PINNING

PIN	DESCRIPTION			
1	Cathode			
2	Anode			

Top View

Marking Code: SS12 ~ SS120 Simplified outline SMA and symbol

Absolute Maximum Ratings and Electrical characteristics

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz resistive or inductive load, for capacitive load, derate by 20%

Parameter		Symbol	SS 12G	SS 14G	SS 16G	SS 18G	SS 110G	SS 112G	SS 115G	SS 120G	Unit
Maximum Repetitive Peak Reverse Voltage		V_{RRM}	20	40	60	80	100	120	150	200	V
Maximum RMS Voltage		V_{RMS}	14	28	42	56	70	84	105	140	V
Maximum DC Blocking Voltage		V_{DC}	20	40	60	80	100	120	150	200	V
Maximum Average Forward Rectified Current		I _{F(AV)}	1.0							A	
Peak Forward Surge Current,8.3ms Single Half Sine-wave Superimposed On Rated Load(JEDEC method)		I_{FSM}	25							A	
Peak Forward Surge Current,1.0ms Single Half Sine-wave Superimposed On Rated Load(JEDEC method)		I_{FSM}	50							A	
I ² t Rating for fusing (3ms≤8.3ms)		I ² t	2.6							A ² S	
Max Instantaneous Forward Voltage at 1A		V_{F}	0.55 0.70 0.85 0.90				0.90	V			
Maximum DC Reverse Current at Rated DC Reverse Voltage	$T_a = 25$ °C	т	0.3			C	0.2	0.1			mA
	T _a =100°C	I_R	10				5	2			
Typical Junction Capacitance ⁽¹⁾		Cj	55	41	33	3	32	1	9	16	pF
Typical Thermal Resistance ⁽²⁾		$R_{ heta JA}$	100								°C/W
		$R_{ heta JC}$	20								
		$R_{ heta JL}$	25								
Operating Junction Temperature Range		Tj	-55~+125							°C	
Storage Temperature Range		T_{stg}	-55~+150							°C	

(1)Measured at 1MHz and applied reverse voltage of 4V D.C

(2)P.C.B. mounted with 2.0"x2.0"(5×5cm) copper pad areas

REV08.1 1/4

Typical Characteristics

Fig.1 Forward Current Derating Curve

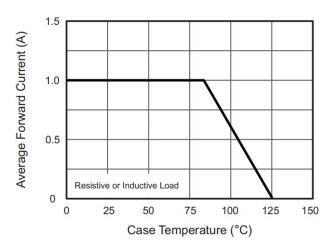


Fig.3 Typical Forward Characteristic

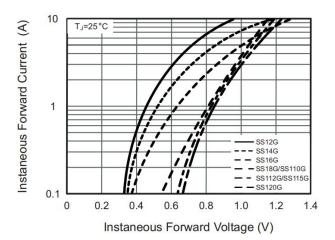


Fig.5 Maximum Non-Repetitive Peak Forward Surge Current

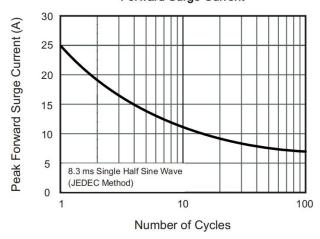


Fig.2 Typical Reverse Characteristics

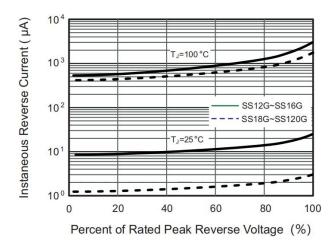
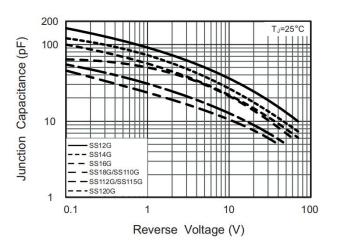
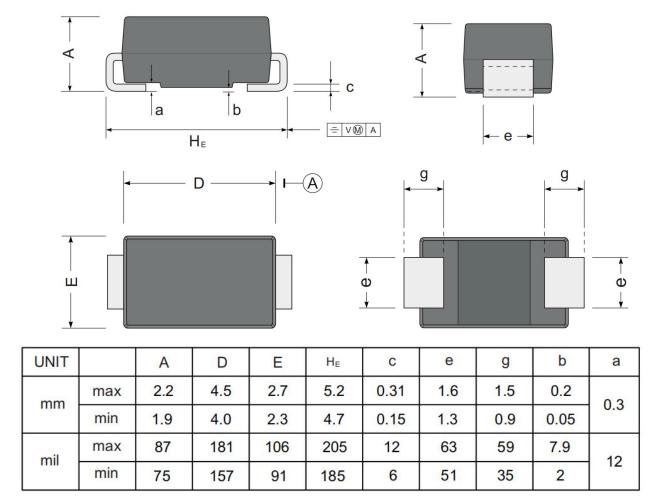
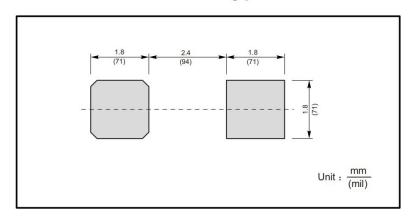



Fig.4 Typical Junction Capacitance


REV08.1 2 / 4


Package Information

SMA

Dimensions in mm

The recommended mounting pad size

Marking

Type number	Marking code					
SS12G	SS12					
SS14G	SS14					
SS16G	SS16					
SS18G	SS18					
SS110G	SS110					
SS112G	SS112					
SS115G	SS115					
SS120G	SS120					

REV08.1 3/4

Shikues Disclaimer

1. Accuracy of Information and Right to Modify

The information provided in this document is for reference only. Shikues reserves the right to make changes to this document and to the specifications of the products described herein at any time, without prior notice, for the purpose of improving reliability, function, design, or for any other reason. It is the customer's responsibility to obtain and verify the latest product information and specifications before making any final design, procurement, or usage decisions.

2.No Warranty

Shikues makes no express or implied warranties, representations, or guarantees regarding the suitability of its products for any particular purpose.

Shikues assumes no liability for any assistance provided or for the design of customer products. All products are supplied "as is."

3.Intended Use and Limitation of Liability

The products described in this document are intended for use in general-purpose electronic devices. They are neither designed nor tested nor authorized for use in transportation equipment or applications requiring high reliability. Unless expressly authorized in writing by Shikues, these products must not be used as critical components in life-support systems or any applications where failure could directly pose a risk to human life (including, but not limited to, medical devices, transportation systems, aerospace equipment, nuclear facilities, and safety-critical systems).

Shikues assumes no responsibility or liability for any consequences arising from the use of its products in unauthorized or unintended applications.

Neither Shikues nor its representatives shall be held liable for any resulting damages.

4.Intellectual Property

This document does not grant any express or implied license—whether by estoppel, implication, or otherwise—to use any intellectual property rights of Shikues.

REV08.1 4 / 4