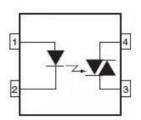


PHOTOCOUPLER

Product features


- Halogens Free(Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)
- Peak breakdown voltage

EXM305X: 600V

- High isolation voltage between inputs and output (Viso=3750 V rms)
- Compact dual-in-line package
- Pb free and RoHS compliant
- Compliance with EU REACH

Schematic

PinConfiguration

- 1. Anode
- 2. Cathode
- 3. Termina
- 4. Termina

Product Description

- The EXM305X series are optically isolated triac driver devices.
- These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac.
- It is designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations.

Product Applications

- Solenoid/valve controls
- Temperature controls
- Motor controls
- Static AC power switch
- Interfacing microprocessors to 115 to 240Vac peripherals
- Incandescent lamp dimmers
- Lamp ballasts

Ordering Information

Part Number	Package	Packing quantity
EXM305X	SOP4	3000 / Reel

Electrical-Optical characteristics

Absolute Maximum Ratings(Ta=25°C)

	Parameter	Symbol	Rated Value	Unit
	Forward current	I _F	60	mA
	Reverse voltage	V _R	6	V
Input	Power dissipation		100	mW
	Derating factor (above Ta = 85°C)	P _D	-	mW /°C
Output	Off-state Output Terminal Voltage	V_{DRM}	600	V
	Peak Repetitive Surge Current (pw=100µs,120pps)	I _{TSM}	1	Α
	On-State RMS Current	IT _(RMS)	70	mA(RMS)
	Power dissipation	Б	300	mW
	Derating factor (above Ta = 85°C)	P _c	-	mW /°C
Total Consum	otal Consume Power		200	mW
Isolation Volta	age(1*)	V _{iso}	3750	Vrms
Operating temperature		T _{OPR}	-40 to +110	°C
Storage temperature		T _{STG}	-55 to +150	°C
Soldering temperature(2*)		T _{SOL}	260	℃

Notes:

^{1*} AC for 1 minute, R.H.= 40 ~ 60% R.H.In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

^{2*} Soldering time is 10 seconds

Electrical Characteristics(Ta=25°C unless specified otherwise)

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
In put	Forward voltage	V _F	-	1.2	1.5	V	I _F =10mA
	Reverse current	I _R	-	-	10	μΑ	V _R =6V
Out put	Peak Blocking Current	I _{DRM}	-	-	100	nA	V_{DRM} = Rated V_{DRM} I_F = 0 mA
	Peak On-state Voltage	V _{ТМ}	-	-	2.5	V	I _{TM} =100 mA peak, I _F =Rated I _{FT}
	Critical Rate of Rise off- state Voltage	dv/dt	1000	-	-	V/µs	V _{PEAK} =Rated V _{DRM} , I _F =0mA

Transfer Characteristics level table (Ta=25°C unless specified otherwise)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Condition
	EXM3052		-	-	10		
LED Trigger Current	EXM3053	I _{FT}	-	-	5	mA	Main terminal Voltage=3V
	EXM3054		-	-	3		3
Holding Current		Ін	-	3	5	mA	
Turn-on time		Ton	-	-	100	μs	$V_D = 6V, I_F = 20mA, R_L = 100\Omega$

Characteristic Curves

Figure 1. Forward Current VS Forward Voltage

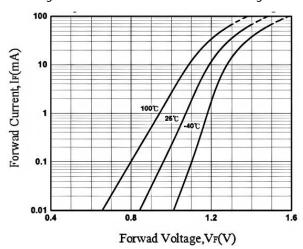
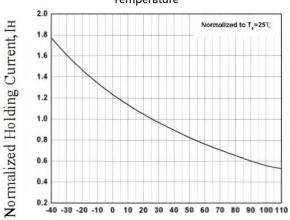



Figure 3. Normalized Holding Current vs Ambient Temperature

Ambient Temperature, TA (°C)

Figure 5. LED Current Required trigger vs LED Pulse Width

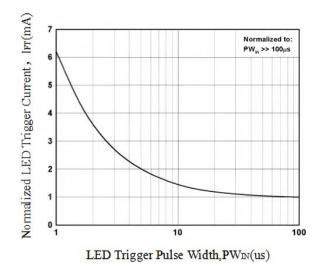


Figure 2. On-State Characteristics

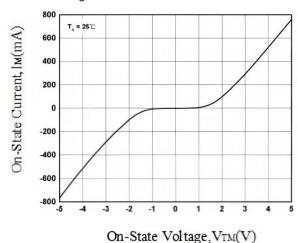


Figure 4. Leakage Current vs Ambient Temperature

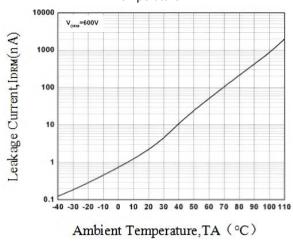


Figure 6. Normalized LED Trigger Current vs Ambient Temperature

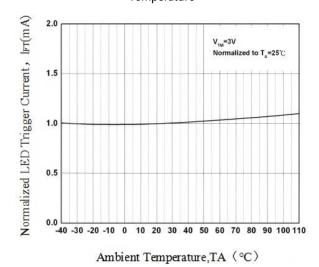


Figure 7. Off-State Output Terminal Voltage vs Ambient Temperature

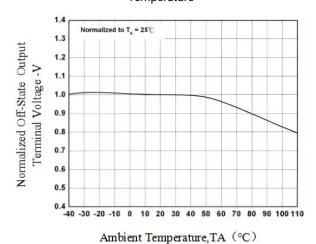
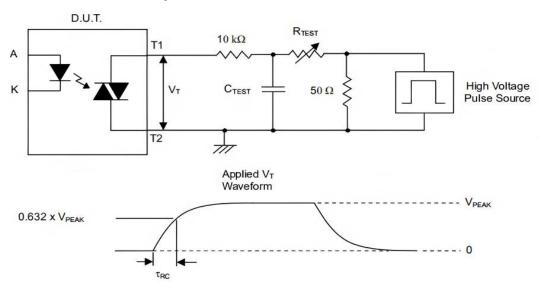
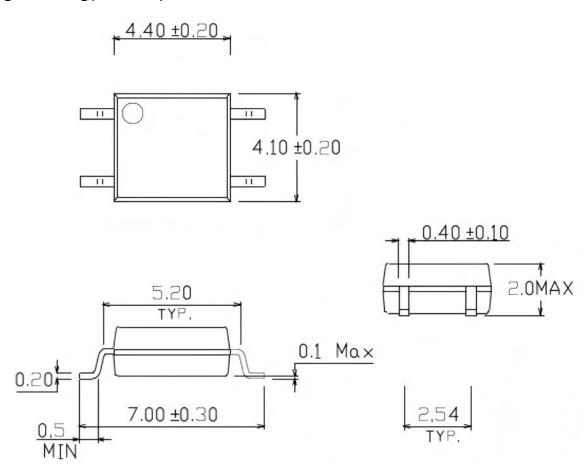



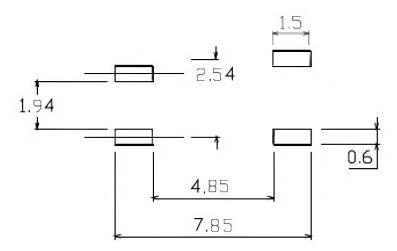
Figure 8. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required VPEAK value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform VT is monitored using a x100 scope probe. By varying RTEST, the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, TRC is recorded and the dv/dt calculated.


 $dv/dt=0.632*V_{PEAK}/\tau RC$

For example, V_{PEAK} = 600 V for EXM305X series. The dv/dt value is calculated as follows: $dv/dt = 0.632*400/\tau RC$


V1.0 5 / 7

Package Drawing(Unit:mm)

Surface patch type PIN foot pad layout

Legal Disclaimer

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Existar Technologies reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Existar Technologies or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Existar Technologies in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Existar Technologies or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory.