

3-Terminal 1.5A Negative Voltage Regulator

Features

- Output current in excess of 1.5A
- -5,-12V output voltages available
- Internal Thermal overload protection
- Short circuit protection
- Output transistor SOA protection

Description

The SK79XX series of three-terminal negative regulators are available in TO-220/TO-252 package, and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe operating area protection, making it essentially indestructible.

Pin Confi	guration(TO	-220&TO-252)
Pin NO.	Pin Name	Function
1	GND	GND pin
2	VIN	Input voltage pin
3	VOUT	Output voltage pin
123	0-220	TO-252

Package

Part.NO.	Package
SK7905AU	TO-220
SK7912AU	TO-220
SK7905U	TO-252
SK7912U	TO-252

Absolute Maximum Ratings

Parameter	Value	Unit
Input Voltage	-35	V
Thermal resistance junction-air	65	°C/W
Thermal resistance junction-cases	5	°C/W
Operating Temperature	0~125	°C
Storage Temperature Range	-65~150	°C

Note:

- 1. Thermal resistance test board Size: 76.2mmX114.3mmX1.6mm(1S0P);JEDEC standard: JESD51-3, JESD51-7.
 - 2. Assume no ambient airflow

SK7905AU/ SK7905U Electrical Characteristics

(Refer to test circuits, $0 < T_J < 125$ °C, $I_O = 500$ mA, $V_I = -10$ V, $C_I = 2.2 \mu$ F, $C_O = 1 \mu$ F, unless otherwise specified)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		T _J =25°C	-4.8	-5.0	-5.2	V
Vo	Output Voltage	5mA <i<sub>0<1A, P₀<15W V_I=-7V to -20V</i<sub>	-4.75	-5.0	-5.25	V
43 7	Line Decoulation (Nata)	T_{J} =25°C, V_{I} =-7V to -25V		35	100	mV
$\Delta V_{ m LINE}$	Line Regulation(Note)	T_{J} =25°C, V_{I} =-8V to -12V		8	50	mV
ΔV _{LOAD} I	I and Describe on Oliver	T _J =25°C,I _O =5mA to 1.5A		10	100	mV
	Load Regulation(Note)	T _J =25°C,I _O =250mA to 750mA		3	50	mV
I_q	Quiescent Current	T _J =25°C		3	6	mA
	0-1	I _O =5mA to 1A		0.05	0.5	mA
$\Delta ext{I}_{ ext{q}}$	Quiescent current change	V _I =-8V to -25V		0.1	0.8	mA
$\Delta V_{O}/\Delta T$	Temperature coefficient of VD	I _O =5mA		0.5		mV/°C
$V_{\rm N}$	Output noise voltage	f=10Hz to 100KHz,T _A =25°C		40		μV
PSRR	Ripple rejection	f=120Hz,ΔV _I =10V	54	60		dB
V _D	Dropout voltage	I ₀ =1A,T _J =25°C		2		V
I _{SC}	Short Circuit Current	V _I =-35V,T _J =25°C		10		mA

Note: Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

SK7912AU/ SK7912U Electrical Characteristics

(Refer to test circuits, $0 < T_J < 125$ °C, $I_O = 500$ mA, $V_I = -19$ V, $C_I = 2.2 \mu$ F, $C_O = 1 \mu$ F, unless otherwise specified)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vo		T _J =25°C	-11.5	-12	-12.5	V
	Output Voltage	5mA <i<sub>0<1A, P₀<15W V_I=-7V to -20V</i<sub>	-11.4	-12	-12.6	V
$\Delta V_{ m LINE}$	Line Regulation(Note)	T_{J} =25°C, V_{I} =-14.5V to -30V		12	240	mV
		T_{J} =25°C, V_{I} =-16V to -22V		6	120	mV
ΔV_{LOAD}	Land Damilation (Nota)	T _J =25°C,I _O =5mA to 1.5A		12	240	mV
	Load Regulation(Note)	T _J =25°C,I _O =250mA to750mA		4	120	mV

REV.8.3 2/6

SK79 Series

I_q	Quiescent Current	T _J =25°C		3	6	mA
ΔI_q	Ovigagent exament change	I ₀ =5mA to 1A		0.05	0.5	mA
	Quiescent current change	V _I =-14.5V to -30V		0.1	1	mA
$\Delta V_{O}/\Delta T$	Temperature coefficient of VD	I _O =5mA		1.2		mV/°C
$V_{\rm N}$	Output noise voltage	f=10Hz to 100KHz,T _A =25°C		200		μV
PSRR	Ripple rejection	f=120Hz,ΔV _I =10V	54	60		dB
V _D	Dropout voltage	I _O =1A,T _J =25°C		2		V
Isc	Short Circuit Current	V _I =-35V,T _J =25°C		10		mA

Note: Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used

Typical Application

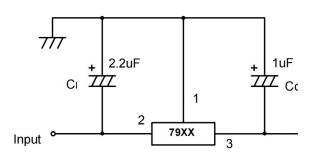


Fig.1 Negative fixed output regulator

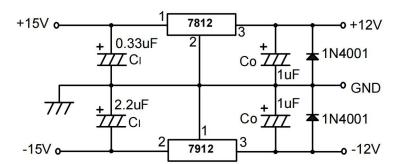
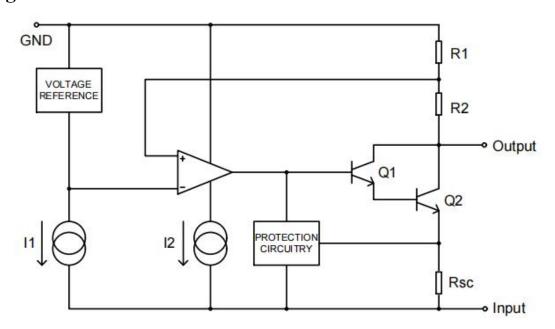
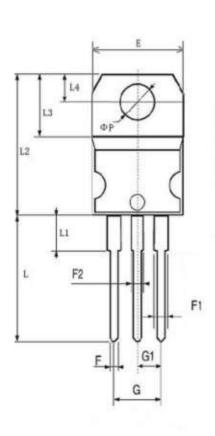



Fig.2 Split power supply(±12V/1A)

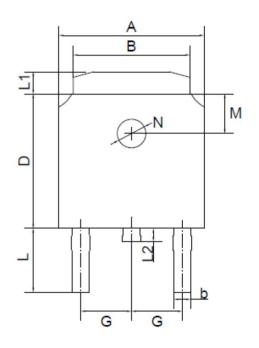
Block Diagram

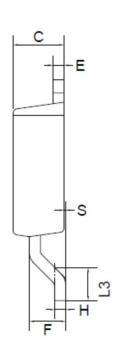

REV.8.3 3/6

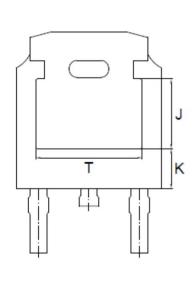
Package Information

TO-220

Dimensions in mm


符号 Symbol	最小值 Min	典型值 Typ	最大值 Max
A	4.4		4.6
С	1.2		1. 32
C1	0.38		0. 55
D	2.4		2.65
Е	9.85		10.85
F	0.6		0.85
F1	1.22		1.4
F2	1.22		1.4
G	4.93	5. 08	5. 23
G1	2.39	2.54	2.69
L	13.1		13.9
L1	3.75		4. 75
L2	15. 25		15. 75
L3	6.25		6. 75
L4	2.65		2.85
Фр	3.75	3.84	3. 95


REV.8.3 4/6



TO-252

Dimensions in mm

TO-252(D-PAK) mechanical data

UN	IIT	Α	В	b	С	D	E	F	G	Н	L	L1	L2	L3	S	М	N	J	K	T
mm	max	6.7	5.5	0.8	2.5	6.3	0.6	1.8	2.29	0.55	3.1	1.2	1.0	1.75	0.1	1.8	1.3	3.16	1.80	4.83
mm	min	6.3	5.1	0.3	2.1	5.9	0.4	1.3	TYPICAL	0.45	2.7	0.8	0.6	1.40	0.0	TYPICAL	TYPICAL	ref.	ref.	ref.
mil	max	264	217	31	98	248	24	71	90	22	122	47	39	69	4	71	51	124	71	190
mil	min	248	201	12	83	232	16	51	TYPICAL	18	106	31	24	55	0	TYPICAL	TYPICAL	ref.	ref.	ref.

REV.8.3 5/6

Shikues Disclaimer

1. Accuracy of Information and Right to Modify

The information provided in this document is for reference only. Shikues reserves the right to make changes to this document and to the specifications of the products described herein at any time, without prior notice, for the purpose of improving reliability, function, design, or for any other reason. It is the customer's responsibility to obtain and verify the latest product information and specifications before making any final design, procurement, or usage decisions.

2.No Warranty

Shikues makes no express or implied warranties, representations, or guarantees regarding the suitability of its products for any particular purpose.

Shikues assumes no liability for any assistance provided or for the design of customer products. All products are supplied "as is."

3.Intended Use and Limitation of Liability

The products described in this document are intended for use in general-purpose electronic devices. They are neither designed nor tested nor authorized for use in transportation equipment or applications requiring high reliability. Unless expressly authorized in writing by Shikues, these products must not be used as critical components in life-support systems or any applications where failure could directly pose a risk to human life (including, but not limited to, medical devices, transportation systems, aerospace equipment, nuclear facilities, and safety-critical systems).

Shikues assumes no responsibility or liability for any consequences arising from the use of its products in unauthorized or unintended applications.

Neither Shikues nor its representatives shall be held liable for any resulting damages.

4.Intellectual Property

This document does not grant any express or implied license—whether by estoppel, implication, or otherwise—to use any intellectual property rights of Shikues.

REV.8.3 6 / 6