

N-Channel Enhancement Mode MOSFET

Features

- $R_{DS(ON)}$ @ $10V < 7.5 m\Omega(Typ. 5 m\Omega)$
- \bullet I_D = 90A
- Fast Switching Speed
- Reliable and Rugged
- ROHS Compliant & Halogen-Free
- 100% UIS and Rg Tested

BV _{DSS} ,T _A =25°C	R _{DS(ON)} ,typ@10V	$I_D,T_A=25$ °C
100	$5 \mathrm{m}\Omega$	90A

PDFN5x6-8L

Applications

- Power Management in DC/DC Converters
- USB Power Delivery(USB PD)

Absolute Maximum Ratings(T_J=25°C,unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		$ m V_{DSS}$	100	V
Gate-Source Voltage		$V_{ m GSS}$	±20	V
Cantinuana Pusin Comment	T _C =25°C	Ţ	90	
Continuous Drain Current	T _C =100°C	I_{D}	62	A
Pulse Drain Current Tested	T _C =25°C	I_{DM}	360	A
N : B B: : :	T _C =25°C	P_{D}	89	W
Maximum Power Dissipation	T _C =100°C		36	W
Maximum Junction Temperature		T_{J}	150	°C
Storage Temperature Range		T_{STG}	-55~+150	°C
Avalanche Current, Single Pulse ⁽²⁾	L=0.1mH	I_{AS}	41	A
Avalanche Energy, Single Pulse ⁽²⁾	L=0.1mH	Eas	84	mJ

Thermal Characteristics

Parameter	Symbol	Limit	Unit
Thermal Resistance-Junction to Case	$R_{ m J heta C}$	1.4	°C/W
Thermal Resistance-Junction to Ambient ⁽³⁾	$R_{J\theta A}$	50	°C/W

Note(1):Max. Current is limited by binding wire

Note(2):UIS tested and pulse width are limited by maximum junction temperature 150°C

Note(3):Surface Mounted on 1in² FR-4 board with 1oz

REV08.2 1/6

Electrical Characteristics(T_A=25°C,unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _{DS} =250μA	100			V	
Zero Gate Voltage Drain Current	I_{DSS}	V _{DS} =80V,V _{GS} =0V			1	μΑ	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$	2	3	4	V	
Gate Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V			±100	nA	
Drain-Source On-state Resistance ⁽⁴⁾	R _{DS(ON)}	V _{GS} =10V,I _{DS} =20A		5	7.5	mΩ	
Forward Trans conductance	gfs	V _{DS} =5V,I _{DS} =10A		21.8		S	
Dynamic Characteristics							
Gate Resistance	R _G	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.5		Ω	
Input Capacitance	C _{ISS}			2867		pF	
Output Capacitance	Coss	$V_{GS}=0V, V_{DS}=50V,$ f=1MHz		920			
Reverse Transfer Capacitance	C _{RSS}			57			
Turn-on Delay Time	t _{d(ON)}			14.3		nS	
Turn-on Rise Time	t_r	$V_{GS}=10V, V_{DS}=25V,$		4.3			
Turn-off Delay Time	t _{d(OFF)}	ID=1A,R _G =3 Ω		32.1			
Turn-on Fall Time	t_{f}			90.7			
Total Gate Charge	Qg	V _{GS} =6V,V _{DS} =50V, I _D =20A		35			
Total Gate Charge	Qg			53.1		nC	
Gate-Source Charge	Q_{gs}	$V_{GS}=10V, V_{DS}=50V, I_{D}=20A$		15.8			
Gate-Drain Charge	Q_{gd}			15.1			
Source-Drain Characteristics							
Diode Forward Voltage ⁽⁵⁾	V_{SD}	I _{SD} =2A,V _{GS} =0V		0.7	1.1	V	
Reverse Recovery Time	t _{rr}	$I_F=10A, V_R=50V,$		47.6		nS	
Reverse Recovery Charge	Qrr	$d_{IF}/dt=100A/\mu s$		66.6		nC	

Note(4):Pulse test(pulse width≤300us, duty cycle≤2%)

Note(5):Guaranteed by design, not subject to production testing

REV08.2 2/6

Typical Characteristics

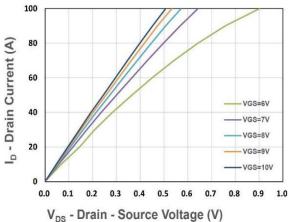
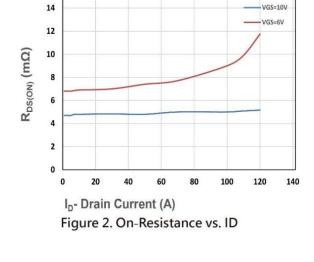



Figure 1. Output Characteristics

10 2 3 4 5 6 7 8 9 10

V_{GS} - Gate - Source Voltage (V) Figure 3. On-Resistance vs. VGS

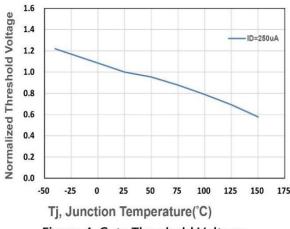


Figure 4. Gate Threshold Voltage

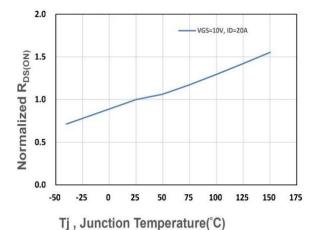
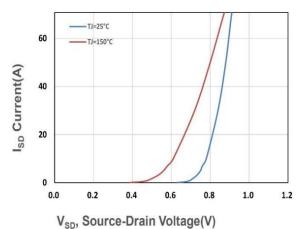
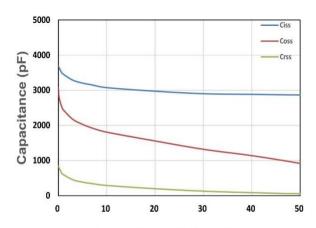
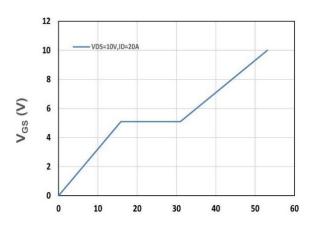


Figure 5. Drain-Source On Resistance


Figure 6. Source-Drain Diode Forward

REV08.2

V_{DS} - Drain - Source Voltage (V) Figure 7. Capacitance

Qg, Total Gate Charge (nC) Figure 8. Gate Charge Characteristics

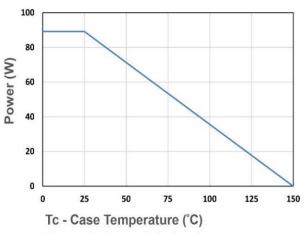


Figure 9. Power Dissipation

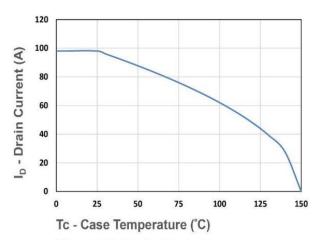


Figure 10. Drain Current

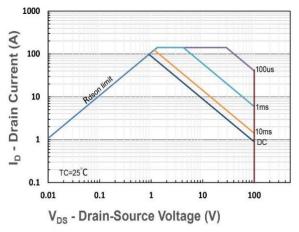
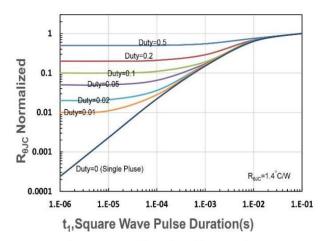
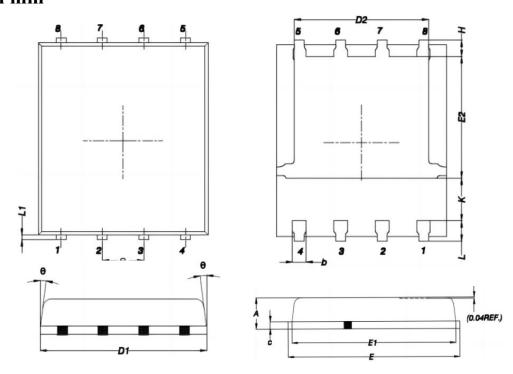


Figure 11. Safe Operating Area




Figure 12. Reuc Transient Thermal Impedance

Package Information

PDFN5x6-8L

Dimensions in mm

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MAX	MIN	MAX N		
Α	1.200	0.850	0.047	0.031	
b	0.510	0.300	0.020	0.012	
С	0.300	0.200	0.012	0.008	
D1	5.400	4.800	0.212	0.189	
D2	4.310	3.610	0.170	0.142	
E	6.300	5.850	0.248	0.230	
E1	5.960	5.450	0.235	0.215	
E2	3.920	3.300	0.154	0.130	
е	1.27BSC		0.05BSC		
Н	0.650	0.380	0.026	0.015	
K		1.100		0.043	
L	0.710	0.380	0.028	0.015	
L1	0.250	0.050	0.009	0.002	
θ	12°	0°	12°	0°	

REV08.2 5 / 6

Shikues Disclaimer

1. Accuracy of Information and Right to Modify

The information provided in this document is for reference only. Shikues reserves the right to make changes to this document and to the specifications of the products described herein at any time, without prior notice, for the purpose of improving reliability, function, design, or for any other reason. It is the customer's responsibility to obtain and verify the latest product information and specifications before making any final design, procurement, or usage decisions.

2.No Warranty

Shikues makes no express or implied warranties, representations, or guarantees regarding the suitability of its products for any particular purpose.

Shikues assumes no liability for any assistance provided or for the design of customer products. All products are supplied "as is."

3.Intended Use and Limitation of Liability

The products described in this document are intended for use in general-purpose electronic devices. They are neither designed nor tested nor authorized for use in transportation equipment or applications requiring high reliability. Unless expressly authorized in writing by Shikues, these products must not be used as critical components in life-support systems or any applications where failure could directly pose a risk to human life (including, but not limited to, medical devices, transportation systems, aerospace equipment, nuclear facilities, and safety-critical systems).

Shikues assumes no responsibility or liability for any consequences arising from the use of its products in unauthorized or unintended applications.

Neither Shikues nor its representatives shall be held liable for any resulting damages.

4.Intellectual Property

This document does not grant any express or implied license—whether by estoppel, implication, or otherwise—to use any intellectual property rights of Shikues.

REV08.2 6 / 6