



### **Dual Precision Monostable Multivibrator**

# CD4538 Logic

#### 1 Introduction

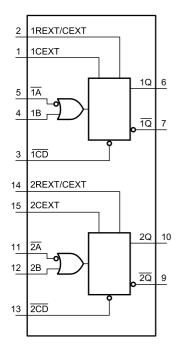
The CD4538 is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has an active LOW trigger/retrigger input (/nA), an active HIGH trigger/retrigger input (nB), an overriding active LOW direct reset input (/nCD), an output (nQ) and its complement (/nQ), and two pins (nREXT/CEXT, and nCEXT, always connected to ground) for connecting the external timing components CEXT and REXT. Typical pulse width variation over the specified temperature range is ±0.2%.

The multivibrator may be triggered by either the positive or the negative edges of the input pulse and will produce an accurate output pulse with a pulse width range of 10us to infinity. The duration and accuracy of the output pulse are determined by the external timing components C<sub>EXT</sub> and R<sub>EXT</sub>. The output pulse width (tw) is equal to R<sub>EXTX</sub>C<sub>EXT</sub>. The linear design techniques in LOCMOS (Local Oxide CMOS) guarantee precise control of the output pulse width. A LOW level at /nCD terminates the output pulse immediately.

It operates over a recommended  $V_{DD}$  power supply range of 3V to 12V referenced to  $V_{SS}$  (usually ground). Unused inputs must be connected to  $V_{DD}$ ,  $V_{SS}$ , or another input.

### 2 Available Packages

| PART NUMBER | PACKAGE |
|-------------|---------|
| CD4538      | SOP16   |
| GD4536      | TSSOP16 |


Note: For all available packages, please refer to the part Orderable Information.

#### 3 Features

- Wide supply voltage range from 3V to 12V
- Tolerant of slow trigger rise and fall times
- Fully static operation
- 5V and 10V parametric ratings
- Standardized symmetrical output characteristics
- Specified from -40°C to +125°C

### 4 Applications

- Pulse delay and timing
- Pulse shaping



Function block diagram



# 5 Orderable Information

| DEVICE    | PACKAGE | OP TEMP   | ECO PLAN     | MSL              | PACKING OPTION                     | SORT   |
|-----------|---------|-----------|--------------|------------------|------------------------------------|--------|
| CD4538AEN | SOP16   | -40~125°C | RoHS & Green | Level 3<br>168HR | Tape and Reel<br>4000 Units / Reel | Active |
| CD4538BEN | TSSOP16 | -40~125°C | RoHS & Green | Level 3<br>168HR | Tape and Reel<br>5000 Units / Reel | Active |

Note:

ECO PLAN: For the RoHS and Green certification standards of this product, please refer to the official report provided by JSCJ.

**MSL:** Moisture Sensitivity Level. Determined according to JEDEC industry standard classification.

**SORT:** Specifically defined as follows: Active: Recommended for new products;

Customized: Products manufactured to meet the specific needs of customers;

Preview: The device has been released and has not been fully mass produced. The sample may or may not be available;

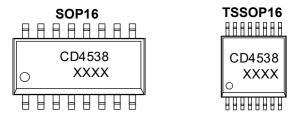
NoRD: It is not recommended to use the device for new design. The device is only produced for the needs of existing customers;

Obsolete: The device has been discontinued.

# 6 Pin Configuration and Marking Information

# **6.1 Pin Configuration**




Figure 6-1 Pin configuration

#### 6.2 Pin Function

| F   | PIN         | I/O <sup>(1)</sup> | DESCRIPTION                                                |  |  |  |
|-----|-------------|--------------------|------------------------------------------------------------|--|--|--|
| No. | NAME        | 1/0(*)             | DESCRIPTION                                                |  |  |  |
| 1   | 1CEXT       | -                  | External capacitor connection (always connected to ground) |  |  |  |
| 2   | 1REXT/CEXT  | -                  | External capacitor/resistor connection                     |  |  |  |
| 3   | 1CD         | I                  | Direct reset input (active LOW)                            |  |  |  |
| 4   | 1B          | I                  | Input (LOW-to-HIGH triggered)                              |  |  |  |
| 5   | 1A          | I                  | Input (HIGH-to-LOW triggered)                              |  |  |  |
| 6   | 1Q          | 0                  | Output                                                     |  |  |  |
| 7   | 1Q          | 0                  | Complementary output (active LOW)                          |  |  |  |
| 8   | VSS         | G                  | Ground (0V)                                                |  |  |  |
| 9   | 2Q          | 0                  | Complementary output (active LOW)                          |  |  |  |
| 10  | 2Q          | 0                  | Output                                                     |  |  |  |
| 11  | 2Ā          | I                  | Input (HIGH-to-LOW triggered)                              |  |  |  |
| 12  | 2B          | I                  | Input (LOW-to-HIGH triggered)                              |  |  |  |
| 13  | 2CD         | I                  | Clear direct input (active LOW)                            |  |  |  |
| 14  | 2REXT/ CEXT | -                  | External capacitor/resistor connection                     |  |  |  |
| 15  | 2CEXT       | -                  | External capacitor connection (always connected to ground) |  |  |  |
| 16  | VDD         | Р                  | Supply voltage                                             |  |  |  |

(1) I-Input, O-Output, P-Power, G-Ground

# 6.3 Marking Information



XXXX: Code, indicates weekly record information.

# 7 Specifications

# 7.1 Absolute Maximum Ratings

Voltages are referenced to Vss (ground=0V), unless otherwise specified.

| SYMBOL           | PARAMETER               | CONDITIONS            |               | MIN. | MAX.                 | UNIT |
|------------------|-------------------------|-----------------------|---------------|------|----------------------|------|
| V <sub>DD</sub>  | Supply voltage          | -                     |               | -0.5 | +14                  | V    |
| lıĸ              | DC input current        | Any or                | Any one input |      | ±10                  | mA   |
| Vı               | Input voltage           | All inputs            |               | -0.5 | V <sub>DD</sub> +0.5 | V    |
| T <sub>stg</sub> | Storage temperature     |                       | -             | -65  | +150                 | °C   |
| P <sub>tot</sub> | Total power dissipation |                       | -             | -    | 500                  | mW   |
| Р                | Device dissipation      | Per output transistor |               | -    | 100                  | mW   |
| TL               | Soldering temperature   | 10s                   | SOP/TSSOP     | -    | 260                  | °C   |

**Note:** Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

# 7.2 Recommended Operating Conditions

| SYMBOL           | PARAMETER           | CONDITIONS  | MIN. | TYP. | MAX. | UNIT |
|------------------|---------------------|-------------|------|------|------|------|
| V <sub>DD</sub>  | Supply voltage      | -           | 3    | -    | 12   | V    |
| T <sub>amb</sub> | Ambient temperature | In free air | -40  | -    | +125 | °C   |

# 7.3 ESD Ratings

| SYMBOL        | ESD RATINGS             |                                       | VALUE | UNIT |
|---------------|-------------------------|---------------------------------------|-------|------|
| $V_{ESD-HBM}$ | Electrostatic discharge | Human body model (HBM) <sup>(1)</sup> | ±1500 | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.



# 7.4 Electrical Characteristics

# 7.4.1 DC Characteristics 1

 $T_{\text{amb}}$ =25°C, voltages are referenced to  $V_{\text{SS}}$  (ground=0V), unless otherwise specified.

| CVMDOL          | DADAMETED                  |                                 | CONDITIONS         |                     | Т    | amb=25° | С    | UNIT |
|-----------------|----------------------------|---------------------------------|--------------------|---------------------|------|---------|------|------|
| SYMBOL          | PARAMETER                  | I <sub>0</sub>  (uA)            | V <sub>O</sub> (V) | V <sub>DD</sub> (V) | MIN. | TYP.    | MAX. | UNII |
| 1               | Cumply ourrant             | Active                          | e state            | 5                   | -    | 55      | -    | uA   |
| I <sub>DD</sub> | Supply current             | V <sub>I</sub> =V <sub>SS</sub> | or V <sub>DD</sub> | 10                  | -    | 150     | -    | uA   |
| L               | LOW level output ourrent   | -                               | 0.4                | 5                   | 0.5  | -       | -    | mA   |
| loL             | LOW-level output current   | -                               | 0.5                | 10                  | 1.3  | -       | -    | mA   |
|                 |                            | -                               | 2.5                | 5                   | -    | -       | -1.4 | mA   |
| Іон             | HIGH-level output current  | -                               | 4.6                | 5                   | -    | -       | -0.5 | mA   |
|                 |                            | -                               | 9.5                | 10                  | -    | -       | -1.3 | mA   |
| Vol             | LOW level output voltage   | <1                              | -                  | 5                   | -    | -       | 0.05 | V    |
| VOL             | LOW-level output voltage   | <1                              | -                  | 10                  | -    | -       | 0.05 | V    |
|                 | LUCI Llevel entent veltere | <1                              | -                  | 5                   | 4.95 | -       | -    | V    |
| Vон             | HIGH-level output voltage  | <1                              | -                  | 10                  | 9.95 | -       | -    | V    |
| VIL             | LOW level input valtage    | <1                              | -                  | 5                   | -    | -       | 1.5  | V    |
| VIL             | LOW-level input voltage    | <1                              | -                  | 10                  | -    | -       | 3    | V    |
| V               | LICH level input veltage   | <1                              | -                  | 5                   | 3.5  | -       | -    | V    |
| V <sub>IH</sub> | HIGH-level input voltage   | <1                              | -                  | 10                  | 7    | -       | -    | V    |
| I.              | Input leakage              | nA                              | , nB               | 12                  | -    | -       | ±1.0 | uA   |
| l <sub>l</sub>  | current                    | nREXT                           | T/CEXT             | 12                  | -    | -       | ±1.0 | uA   |



# 7.4.2 DC Characteristics 2

 $T_{amb}$ =-40°C to +125°C, voltages are referenced to  $V_{SS}$  (ground=0V), unless otherwise specified.

| SYMBOL          | MBOL PARAMETER            |                      | CONDITIONS         | 3                   | T <sub>amb</sub> = | -40°C | T <sub>amb</sub> = | +85°C | T <sub>amb</sub> =+ | -125°C | UNIT |
|-----------------|---------------------------|----------------------|--------------------|---------------------|--------------------|-------|--------------------|-------|---------------------|--------|------|
| STWIBUL         | PARAWETER                 | I <sub>0</sub>  (uA) | V <sub>O</sub> (V) | V <sub>DD</sub> (V) | MIN.               | MAX.  | MIN.               | MAX.  | MIN.                | MAX.   | UNII |
| 1               | LOW-level output          | -                    | 0.4                | 5                   | 0.64               | -     | 0.36               | -     | 0.36                | -      | mA   |
| loL             | current                   | -                    | 0.5                | 10                  | 1.6                | -     | 0.9                | -     | 0.9                 | -      | mA   |
|                 |                           | -                    | 2.5                | 5                   | -                  | -1.7  | -                  | -1.1  | -                   | -1.1   | mA   |
| Іон             | HIGH-level output current | -                    | 4.6                | 5                   | -                  | -0.64 | -                  | -0.36 | -                   | -0.36  | mA   |
|                 |                           | -                    | 9.5                | 10                  | -                  | -1.6  | -                  | -0.9  | -                   | -0.9   | mA   |
| Vol             | LOW-level output          | <1                   | -                  | 5                   | -                  | 0.05  | -                  | 0.05  | -                   | 0.05   | V    |
| VOL             | voltage                   | <1                   | -                  | 10                  | -                  | 0.05  | -                  | 0.05  | -                   | 0.05   | V    |
| V <sub>OH</sub> | HIGH-level output         | <1                   | -                  | 5                   | 4.95               | -     | 4.95               | -     | 4.95                | 1      | V    |
| VOH             | voltage                   | <1                   | -                  | 10                  | 9.95               | -     | 9.95               | -     | 9.95                | -      | V    |
| VIL             | LOW-level input           | <1                   | -                  | 5                   | -                  | 1.5   | -                  | 1.5   | -                   | 1.5    | V    |
| VIL             | voltage                   | <1                   | -                  | 10                  | -                  | 3.0   | -                  | 3.0   | -                   | 3.0    | V    |
| VIH             | HIGH-level input          | <1                   | -                  | 5                   | 3.5                | -     | 3.5                | -     | 3.5                 | -      | V    |
| VIH             | voltage                   | <1                   | -                  | 10                  | 7.0                | -     | 7.0                | -     | 7.0                 | -      | V    |
| 1.              | Input lookage ourrest     | nA,                  | nB                 | 12                  | -                  | ±0.1  | -                  | ±1.0  | -                   | ±1.0   | uA   |
| l <sub>I</sub>  | Input leakage current     | nREXT                | /CEXT              | 12                  | -                  | ±1.0  | -                  | ±1.0  | -                   | ±1.0   | uA   |

# 7.4.3 AC Characteristics

 $T_{\text{amb}}$ =25°C,  $V_{\text{SS}}$ =0V, unless otherwise specified.

| SYMBOL             | PARAMETER         | CONDITI              | ONS                  | MIN. | TYP. | MAX. | UNIT |
|--------------------|-------------------|----------------------|----------------------|------|------|------|------|
|                    |                   | _<br>nA or nB to nQ; | V <sub>DD</sub> =5V  | -    | 220  | 440  | ns   |
|                    | HIGH to LOW       | See Figure 8-4       | V <sub>DD</sub> =10V | -    | 85   | 190  | ns   |
| t <sub>PHL</sub>   | propagation delay | nCD to nQ;           | V <sub>DD</sub> =5V  | -    | 125  | 250  | ns   |
|                    |                   | See Figure 8-4       | V <sub>DD</sub> =10V | -    | 55   | 110  | ns   |
|                    |                   | nA or nB to nQ;      | V <sub>DD</sub> =5V  | -    | 200  | 460  | ns   |
|                    | LOW to HIGH       | See Figure 8-4       | V <sub>DD</sub> =10V | -    | 90   | 180  | ns   |
| t <sub>PLH</sub>   | propagation delay | nCD to nQ;           | V <sub>DD</sub> =5V  | -    | 125  | 250  | ns   |
|                    |                   | See Figure 8-4       | V <sub>DD</sub> =10V | -    | 55   | 110  | ns   |
| 4                  | Transition time   | Coo Figure 0.4       | V <sub>DD</sub> =5V  | -    | 60   | 120  | ns   |
| t <sub>t</sub>     | Transition time   | See Figure 8-4       | V <sub>DD</sub> =10V | -    | 30   | 60   | ns   |
| 4                  | December time     | nCD to nA or nB;     | V <sub>DD</sub> =5V  | -    | 20   | 40   | ns   |
| t <sub>rec</sub>   | Recovery time     | See Figure 8-5       | V <sub>DD</sub> =10V | -    | 10   | 20   | ns   |
| 4                  | Detrierantina     | nQ, nQ to nA, nB;    | V <sub>DD</sub> =5V  | 0    | -    | -    | ns   |
| t <sub>rtrig</sub> | Retrigger time    | See Figure 8-5       | V <sub>DD</sub> =10V | 0    | -    | -    | ns   |
| t <sub>W</sub>     | Pulse width       | nA LOW;              | V <sub>DD</sub> =5V  | 90   |      | -    | ns   |

|                           | Minimum width;<br>See Figure 8-5                                    | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30             | -              | -              | ns             |
|---------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|
|                           | nB HIGH;                                                            | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50             | -              | -              | ns             |
|                           | See Figure 8-5                                                      | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24             | -              | ı              | ns             |
|                           | nCD LOW;                                                            | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55             | -              | ı              | ns             |
|                           | Minimum width;<br>See Figure 8-5                                    | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25             | -              | ı              | ns             |
|                           | nQ or nQ;                                                           | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218            | -              | 242            | us             |
|                           | $R_{EXT}$ =100kΩ; $C_{EXT}$ =2nF; See Figure 8-5                    | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 213            | -              | 235            | us             |
|                           | nQ or nQ;                                                           | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3           | -              | 11.3           | ms             |
|                           | R <sub>EXT</sub> =100kΩ; C <sub>EXT</sub> =0.1uF;<br>See Figure 8-5 | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2           | -              | 11.2           | ms             |
|                           | nQ or nQ;                                                           | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.01           | -              | 1.11           | S              |
|                           | Rext=100kΩ; Cext=10uF;<br>See Figure 8-5                            | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99           | -              | 1.09           | S              |
|                           | nQ or nQ variation over                                             | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -              | ±0.2           | ı              | %              |
|                           | temperature range; See Figure 8-6                                   | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -              | ±0.2           | -              | %              |
| Pulse width variation     |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -              | ±1.5           | -              | %              |
|                           | nQ or nQ variation<br>between monostables in                        | V <sub>DD</sub> =5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -              | ±1             | -              | %              |
|                           | $R_{EXT}$ =100k $\Omega$ ;<br>$C_{EXT}$ =2nF to 10uF                | V <sub>DD</sub> =10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -              | ±1             | -              | %              |
| External timing resistor  | -                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5              |                | -              | kΩ             |
| External timing capacitor | -                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000           | -              | No<br>limits   | pF             |
| Input capacitance         |                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _              | 7.5            | pF             |                |
|                           | External timing resistor External timing capacitor                  | See Figure 8-5  nB HIGH; Minimum width; See Figure 8-5  nCD LOW; Minimum width; See Figure 8-5  nQ or nQ; REXT=100kΩ; CEXT=2nF; See Figure 8-5  nQ or nQ; REXT=100kΩ; CEXT=0.1uF; See Figure 8-5  nQ or nQ; REXT=100kΩ; CEXT=10uF; See Figure 8-5  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-6  nQ or nQ variation over temperature range; See Figure 8-7  See Figure 8-7  NEXT=100kΩ; | See Figure 8-5 | See Figure 8-5 | See Figure 8-5 | See Figure 8-5 |

#### Note:

- (1)  $t_t$  is the same as  $t_{TLH}$  and  $t_{THL}$ .
- (2) The maximum permissible resistance R<sub>EXT</sub>, which holds the specified accuracy of t<sub>W</sub> (nQ, nQ output), depends on the leakage current of the capacitor C<sub>EXT</sub> and the leakage current of the CD4538.

CD4538

### 8 Detailed Description

#### 8.1 Overview

The CD4538 is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has an active LOW trigger/retrigger input (/nA), an active HIGH trigger/retrigger input (nB), an overriding active LOW direct reset input (/nCD), an output (nQ) and its complement (/nQ), and two pins (nREXT/CEXT, and nCEXT, always connected to ground) for connecting the external timing components  $C_{\text{EXT}}$  and  $R_{\text{EXT}}$ . Typical pulse width variation over the specified temperature range is  $\pm 0.2\%$ .

The multivibrator may be triggered by either the positive or the negative edges of the input pulse and will produce an accurate output pulse with a pulse width range of 10us to infinity. The duration and accuracy of the output pulse are determined by the external timing components C<sub>EXT</sub> and R<sub>EXT</sub>. The output pulse width (tw) is equal to R<sub>EXT</sub>XC<sub>EXT</sub>. The linear design techniques in LOCMOS (Local Oxide CMOS) guarantee precise control of the output pulse width. A LOW level at /nCD terminates the output pulse immediately.

It operates over a recommended  $V_{DD}$  power supply range of 3V to 12V referenced to  $V_{SS}$  (usually ground). Unused inputs must be connected to  $V_{DD}$ ,  $V_{SS}$ , or another input.

### 8.2 Functional Block Diagram

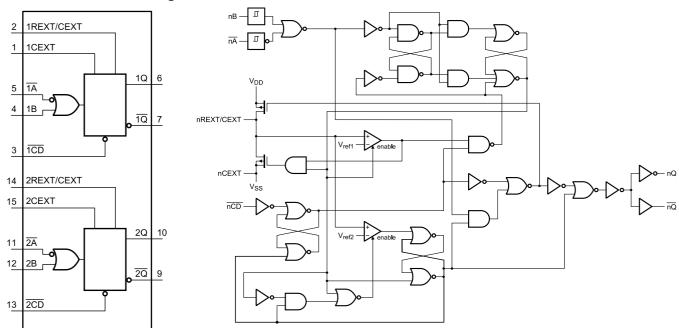
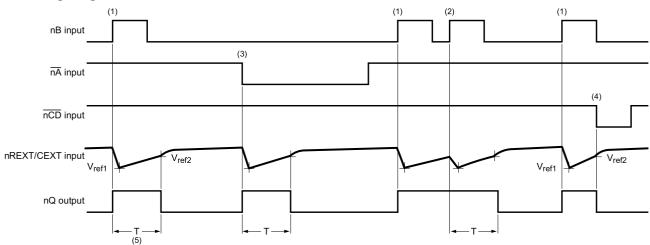



Figure 8-1 Functional diagram

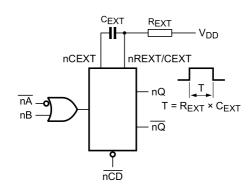
Figure 8-2 Logic diagram (one multivibrator)




#### 8.3 Function Table

|          | INPUT | ОИТ | PUT |    |
|----------|-------|-----|-----|----|
| nA       | nB    | nCD | nQ  | nQ |
| <b>↓</b> | L     | Н   |     |    |
| Н        | 1     | Н   |     |    |
| X        | Х     | L   | L   | Н  |

#### Note:


- (1) H=HIGH voltage level; L=LOW voltage level; X=don't care;
- (2) ↑=positive-going clock transition; ↓=negative-going transition;
- (3)  $\Box$  =one HIGH level output pulse, with the pule width determined by C<sub>EXT</sub> and R<sub>EXT</sub>;
- (4) =one LOW level output pulse, with the pulse width determined by C<sub>EXT</sub> and R<sub>EXT</sub>.

### 8.3.1 Timing Diagram



- (1) Positive edge triggering.
- (2) Positive edge re-triggering (pulse lengthening).
- (3) Negative edge triggering.
- (4) Reset (pulse shortening).
- (5)  $T = REXT \times CEXT$ .

# 8.3.2 Connection Of The External Timing Components REXT And CEXT



# 8.4 Testing Circuit

# 8.4.1 AC Testing Circuit

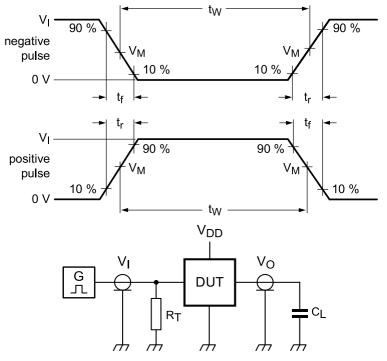



Figure 8-3 Test circuit for switching times

Definitions for test circuit:

**DUT=Device Under Test.** 

C<sub>L</sub>=Load capacitance including jig and probe capacitance.

 $R_T$ =Termination resistance should be equal to the output impedance  $Z_0$  of the pulse generator.

# 8.4.2 AC Testing Waveforms

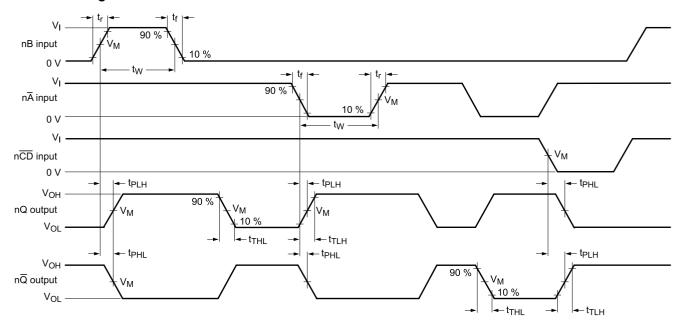



Figure 8-4 Waveforms showing propagation delays

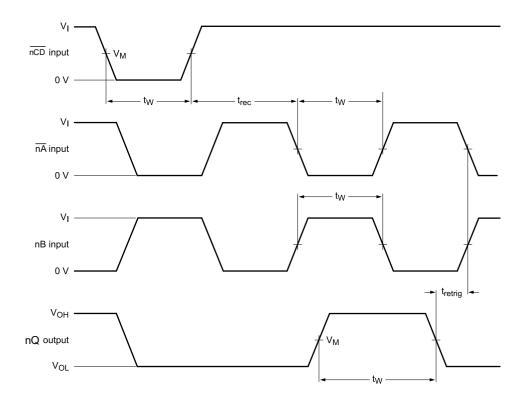
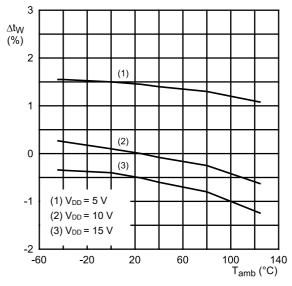
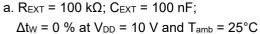
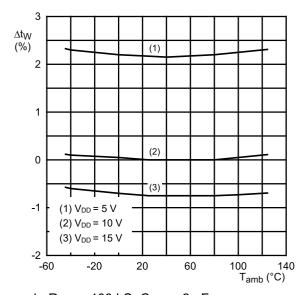
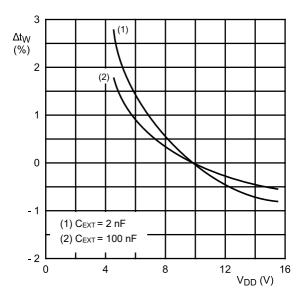






Figure 8-5 Waveforms showing minimum nCD, nA, nB, and nQ pulse widths, recovery and retrigger times








b. R<sub>EXT</sub> = 100 k $\Omega$ ; C<sub>EXT</sub> = 2 nF;  $\Delta t_W$  = 0 % at V<sub>DD</sub> = 10 V and T<sub>amb</sub> = 25°C

Figure 8-6 Typical normalized change in output pulse width as a function of ambient temperature

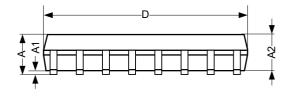


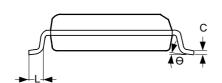
 $T_{amb}$  = 25°C;  $\Delta t_W$  = 0 % at  $V_{DD}$  = 10 V;  $R_{EXT}$  = 100  $k\Omega$ 

Figure 8-7 Typical normalized change in output pulse width as a function of the supply voltage

#### 8.4.3 Measurement Points

| SUPPLY VOLTAGE | INPUT               | OUTPUT              |
|----------------|---------------------|---------------------|
| $V_{DD}$       | V <sub>M</sub>      | V <sub>M</sub>      |
| 5V to 12V      | 0.5xV <sub>DD</sub> | 0.5xV <sub>DD</sub> |


### 8.4.4 Test Data


| SUPPLY VOLTAGE | INPUT                |                                 | LOAD |
|----------------|----------------------|---------------------------------|------|
| $V_{DD}$       | Vı                   | t <sub>r</sub> , t <sub>f</sub> | CL   |
| 5V to 12V      | $V_{SS}$ or $V_{DD}$ | ≤ 20ns                          | 50pF |

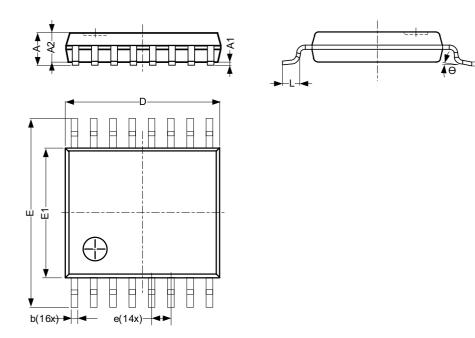
# 9 Mechanical Information

# 9.1 SOP16 Mechanical Information

# 9.1.1 SOP16 Outline Dimensions








| SYMBOL   | Dimensions In Millimeters |      |       |  |
|----------|---------------------------|------|-------|--|
|          | Min.                      | Тур. | Max.  |  |
| Α        | 1.35                      | -    | 1.80  |  |
| A1       | 0.10                      | -    | 0.25  |  |
| A2       | 1.25                      | -    | 1.55  |  |
| b        | 0.33                      | -    | 0.51  |  |
| С        | 0.19                      | -    | 0.25  |  |
| D        | 9.50                      | -    | 10.10 |  |
| Е        | 5.80                      | -    | 6.30  |  |
| E1       | 3.70                      | -    | 4.10  |  |
| е        | 1.27 BSC                  |      |       |  |
| L        | 0.35                      | -    | 0.89  |  |
| θ        | 0°                        | -    | 8°    |  |
| Unit: mm |                           |      |       |  |



# 9.2 TSSOP16 Mechanical Information

# 9.2.1 TSSOP16 Outline Dimensions



| SYMBOL   | Dimensions In Millimeters |      |      |  |
|----------|---------------------------|------|------|--|
|          | Min.                      | Тур. | Max. |  |
| А        | -                         | -    | 1.20 |  |
| A1       | 0.05                      | -    | 0.15 |  |
| A2       | 0.80                      | -    | 1.05 |  |
| b        | 0.19                      | -    | 0.30 |  |
| С        | 0.09                      | -    | 0.20 |  |
| D        | 4.90                      | -    | 5.10 |  |
| E        | 6.20                      | -    | 6.60 |  |
| E1       | 4.30                      | -    | 4.50 |  |
| е        | 0.65 BSC                  |      |      |  |
| L        | 0.45                      | -    | 0.75 |  |
| θ        | 0°                        | -    | 8°   |  |
| Unit: mm |                           |      |      |  |

JSCJ CD4538

# 10 Notes and Revision History

# 10.1 Associated Product Family and Others

To view other products of the same type or IC products of other types, click the official website of JSCJ -- https://www.jscj-elec.com for more details.

#### 10.2 Notes

### **Electrostatic Discharge Caution**



This IC may be damaged by ESD. Relevant personnel shall comply with correct installation and use specifications to avoid ESD damage to the IC. If appropriate measures are not taken to prevent ESD damage, the hazards caused by ESD include but are not limited to degradation of integrated circuit performance or complete damage of integrated circuit. For some precision integrated circuits, a very small parameter change may cause the whole device to be inconsistent with its published specifications.

# **DISCLAIMER**

#### IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD