

Real Time Clock Module

YSN8563

Manufacture Part Number	Description					
YSN8563MS	-40~85 ,SOP-8,External 32K Crystal(Recommended Use:YST310S)					
YSN8563M	-40~85 ,MSOP-8,External 32K Crystal(Recommended Use:YST310S)					

SHENZHEN YANGXING TECHNOLOGY CO., LTD.

Address: 19th Floor, 1st Huide Building, Mintang Rd No.385, Longhua District, Shenzhen, China

Email: sales@yxcxtal.com Whatsapp: +86 181 2376 0094 Phone: +86 181 2376 0094

Revision History

Version	Change Contents	Prepared by	Revised Date
V1.0	First Issued	Cynthia. H	2023.3.18
V1.1	Change format	Brynn. Z	2024.10.12

Contents

1	reature	es		5
2	Applic	ations.		5
		-		
		Ü	m	
5		_	mation	
			ng	
_			escription	
6	6.1	CLKC	escriptionDUT Output	8
	6.2	Regist	ter Organization	9
	6.3	Contro	ol registers	9
		6.3.1	Register Control_status_1	9
		6.3.2	Register Control_status_2.	10
		6	5.3.2.1 Interrupt output.	11
	6.4	Time a	and Date Registers	12
		6.4.1	Register VL_seconds.	12
		6	5.4.1.1 Voltage-low Detector and Clock Monitor	12
		6.4.2	Register Minutes.	13
		6.4.3	Register Hours.	13
		6.4.4	Register Days.	13
		6.4.5	Register Weekdays.	13
		6.4.6	Register Century_months	14
		6.4.7	Register Years.	15
	6.5	Setting	g and Reading The Time	15
	6.6	Alarm	Registers	16
		6.6.1	Register Minute_alarm	16
		6.6.2	Register Hour_alarm	17
		6.6.3	Register Day_alarm.	17
		6.6.4	Register Weekday_alarm	17
		6.6.5	Alarm Flag.	18
	6.7	Regist	ter CLKOUT_control and Clock Output	19
	6.8	Timer	Function.	19
		6.8.1	Register Timer_control	19
		6.8.2	Register Timer.	
	6.9	EXT_	CLK Test Mode	
			Operation Example:	
	6.10		P Bit Function	
		6.11 R	Reset	22

7	Charac	cteristics of The I2C-bus.	22
	7.1	Bit Transfer.	23
	7.2	START and STOP Conditions.	23
	7.3	System Configuration.	23
	7.4	Acknowledge	24
	7.5	I2C-bus Protocol.	25
		7.5.1 Addressing	25
		7.5.2 Clock and Calend ar READ or WRITE Cycles	25
8	Intern	al Circuitry	27
9	Limiti	ing Values	27
10	Static	Characteristics	28
11	Dynai	mic Characteristics	29
12	Situat	tion of application	30
13	Packa	ge Outline	31
14	Order	ring Information	33

1 Features

- Provides year, month, day, weekday, hours, minutes, and seconds based on a32.768 kHz quartz crystal
- Century flag
- Clock operating voltage: 1.0 V to 5.5 V at room temperature
- Low backup current; typical $0.25\mu A$ at $V_{DD}=3.0V$ and Tamb = $25^{\circ}C$
- 400 kHz two-wire I₂C-bus interface (at V_{DD} = 1.8 V to 5.5V)
- Programmable clock output for peripheral devices (32.768 kHz, 1.024 kHz, 32 Hz, and 1 Hz)
- Alarm and timer functions
- Integrated oscillator capacitor
- Internal Power-On Reset (POR)
- I²C-bus slave address: readA3h and writeA2h
- Open-drain interrupt pin

2 Applications

- Mobile telephones
- Portable instruments
- Electronic metering
- Battery powered products

3 Description

The YSN8563 is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. A programmable clock output, interrupt output, and voltage-low detector are also provided.

All addresses and data are transferred serially via a two-line bidirectional I2C-bus. Maximum bus speed is 400 kbit/s. The register address is incremented automatically after each written or read data byte.

4 Block Diagram

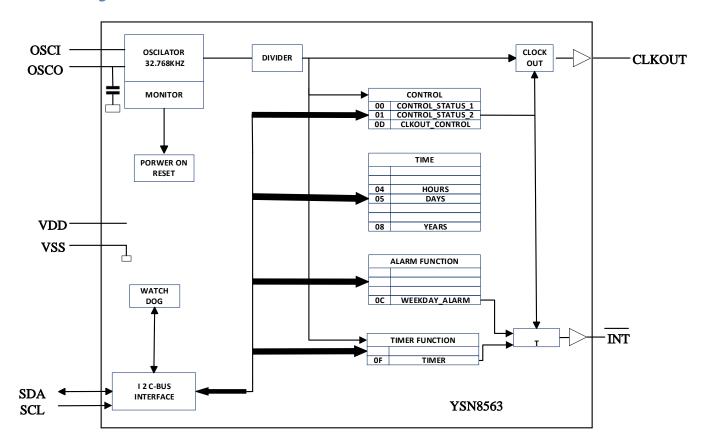


Figure 1. Block diagram of YSN8563

5 Pinning Information

5.1 Pinning

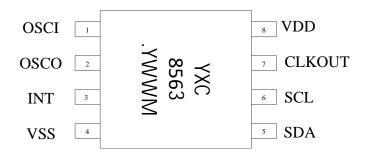


Figure 2. Pin configuration for YSN8563

5.2 Pin Description

Table 1. Pin description

SYMBOL	PI	N	DESCRIPTION
SIMBOL	MSOP8	SOP8	
OSCI	1	1	oscillator input
OSCO	2	2	oscillator output
INT	3	3	interrupt output (open-drain; active LOW)
Vss	4	4	ground
SDA	5	5	serial data input and output
SCL	6	6	serial clock input
CLKOUT	7	7	clock output, open-drain
V_{DD}	8	8	supply voltage
n.c.	-		not connected; do not connect and do not use as feed

^[1] The die paddle (exposed pad) is wired to $V_{\,SS}$ but should not be electrically connected.

6 Functional Description

The YSN8563 contains sixteen 8-bit registers with an auto-incrementing register address, an on-chip 32.768 kHz oscillator with one integrated capacitor, a frequency divider which provides the source clock for the Real-Time Clock (R TC) and calender, a programmable clock output, a timer, an alarm, a voltage-low detector, and a 400 kHz I2C-bus interface.

All 16 registers are designed as addressable 8-bit parallel registers although not all bits are implemented. The first two registers (memory address 00h and 01h) are used as control and/or status registers. The memory addresses 02h through 08h are used as counters for the clock function (seconds up to years counters). Address locations 09h through 0Ch contain alarm registers which define the conditions for an alarm.

Address 0Dh controls the CLKOUT output frequency. 0Eh and 0Fh are the Timer_control and Timer registers, respectively.

The Seconds, Minutes, Hours, Days, Months, Years as well as the Minute_alarm, Hour_alarm, and Day_alarm registers are all coded in Binary Coded Decimal (BCD) format.

When one of the RTC registers is written or read, the contents of all time counters are frozen. Therefore, faulty writing or r eading of the clock and calendar during a carry condition is prevented.

6.1 CLKOUT Output

A programmable square wave is available at the CLKOUT pin. Operation is controlled by the register CLKOUT_control at address 0Dh. Frequencies of 32.768 kHz (default),1.024 kHz, 32 Hz, and 1 Hz can be generated for use as a system clock, micr ocontroller clock, input to a charge pump, or for calibration of the oscillator. CLKOUT is an open-drain output and enabled at p ower-on. If disabled it becomes high-impedance.

6.2 Register Organization

Table 2. Formatted registers overview

ADDDEGG	REGISTER NAME					BIT			
ADDRESS	REGISTER NAIVIE	7	6	5	4	3	2	1	0
Control and st	atus registers								
00h	Control_status_1	TEST1	N	STOP	N	TESTC	N	N	N
01h	Control_status_2	N	N	N	TI_TP	AF	TF	AIE	TIE
Time and date	registers								
02h	VL			Sl	ECONDS(0 t	o 59)			
03h	Sh Minutes x MINUTES(0 to 59)								
04h	Hours	X	X	x HOURS(0 to 23)					
05h	Days	X	X	DAYS(1 to31)					
06h	Weekdays	X	X	X	x	X	WE	EKDAYS (0	to 6)
07h	Century_months	C	X	X		M	ONTHS(1 to	12)	
08h	Years	YEARS(0 to 99)							
Alarm register	S								
09h	Minute_alarm	AE_M MINUTE_ALARM (0 to59)							
0Ah	Hour_alarm	AE_H	x			HOUR_AL	ARM (0 to 2	3)	
0Bh	Day_alarm	AE_D	X			DAY_ALA	ARM(1 to 31)	
0Ch	Weekday_alarm	AE_W	X	X	x	X	WEEKD	AY_ALARN	M(0 to 6)
CLKOUT con	trol register								
0Dh	CLKOUT_control	FE	x	x	x	X	X	FD[1:0]
Timer registers	8								
0Eh	Timer_control	TE	X	X	x	X	X	TD[1:0]
0Fh	Timer				TIM	IER[7:0]			

Bit positions labelled as x are not relevant. Bit positions labelled with N should always be written with logic 0; if read they coul d be either logic 0 or logic 1. After reset, all registers are set according to Table 2.

6.3 Control registers

6.3.1 Register Control_status_1

Table 3. Control_status_1 -control and status register 1 (address 00h) bit description

BIT	SYMBO	VALUE	DESCRIPTION
7	TEST1	default0	normal mode, must be set to logic 0 during normal operations
,	1ESI1	1	EXT_CLK test mode
6	N	0[1]	unused
5	STOP	default0	RTC source clock runs

		1	all RTC divider chain flip-flops are asynchronously set to logic 0; the RTCclock is stopped (CLKOUT at 32.768 kHz is still available)
4	N	0[1]	unused
2	TESTC	0	Power-On Reset (POR) override facility is disabled; set to logic 0 for normal operation
3		default1	Power-On Reset (POR) override may be enabled
2 to 0	N	000[1]	unused

^[1]Bits labeled as N should always be written with logic 0.

6.3.2 Register Control_status_2

Table 4. Control_status_2 -control and status register 2 (address 01h) bit description

BIT	SYMBO	VALUE	DESCRIPTION		
7 to5	N	000[1]	unused		
		default0	INT is active when TF is active (subject to the status of TIE)		
4	TI_TP	1	INT pulses active according to Table 4(subject to the status of TIE); Remark: note that if AF and AIE are active then INT will be permanently active		
			read: alarm flag inactive		
2	A.F.	default0	write: alarm flag is cleared		
3	AF	1	read: alarm flag active		
		1	write: alarm flag remains unchanged		
		default0	read: alarm flag inactive		
2	TF		write: alarm flag is cleared		
2		1F	1	read: alarm flag active	
		1	write: alarm flag remains unchanged		
	A TE	default0	alarm interrupt disabled		
1	AIE	1	alarm interrupt enabled		
0	THE	default0	timer interrupt disabled		
0	TIE	1	timer interrupt enabled		

^[1] Bits labeled as N should always be written with logic 0.

6.3.2.1 Interrupt output

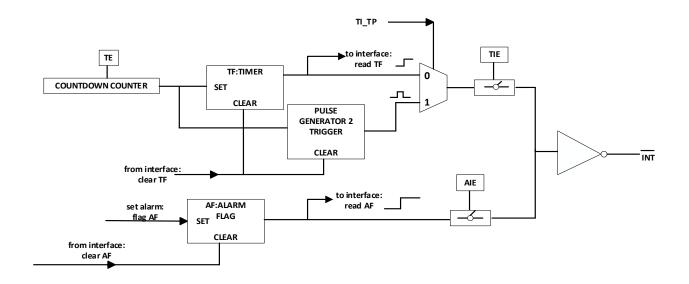


Figure 3. Interrupt scheme

Bits TF and AF: When an alarm occurs, AF is set to logic 1. Similarly, at the end of a timer countdown, TF is set to logic 1. These bits maintain their value until overwritten using the interface. If both timer and alarm interrupts are required in the applic ation, the source of the interrupt can be determined by reading these bits. To prevent one flag being overwritten while clearing a nother, a logic AND is performed during a write access.

Bits TIE and AIE: These bits activate or deactivate the generation of an interrupt when TF or AF is asserted, respectively. The interrupt is the logical OR of these two conditions when both AIE and TIE are set.

Countdown timer interrupts: The pulse generator for the countdown timer interrupt uses an internal clock and is dependent on the selected source clock for the countdown timer and on the countdown value n. As a consequence, the width of the interrup t pulse varies.

Table 5. \overline{INT} operation (bit $TI_TP = 1)_{[1]}$

SOLIDCEOLOGY(II-)	INT PERIOD(s)				
SOURCECLOCK(Hz)	$n = 1^{(2)}$	n > 1 ^[2]			
4096	1/8192	1/4096			
64	1/128	1/64			
1	1/64	1/64			
1/60	1/64	1/64			

[1]TF and INT become active simultaneously.

[2]n = loaded countdown value. Timer stops when n = 0.

6.4 Time and Date Registers

The majority of the registers are coded in the BCD format to simplify application use.

6.4.1 Register VL_seconds

Table 6. VL_seconds -seconds and clock integrity status register (address 02h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	VL	0	-	clock integrity is guaranteed
/	VL	1 (Start-up value)	-	integrity of the clock information is not guaranteed
6 to 4	SECONDS	0 to 5	ten's place	actual seconds coded in BCD format, see Table 7
3 to 0	SECONDS	0 to 9	unit place	actual seconds coded in BCD format, see Table /

Table 7. Seconds coded in BCD format

SECONDSVALUE	UPPER-DIGIT(ten's place)			SECONDSVALUE UPPER-DIGIT(ten's place)				DIGIT(u	nit place)	
(decimal)	BIT 6	BIT 5	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1			
00	0	0	0	0	0	0	0			
01	0	0	0	0	0	0	1			
02	0	0	0	0	0	1	0			
:	:	:	:	:	:	:	:			
09	0	0	0	1	0	0	1			
10	0	0	1	0	0	0	0			
:	:	:	:	:	:	:	:			
58	1	0	1	1	0	0	0			
59	1	0	1	1	0	0	1			

6.4.1.1 Voltage-low Detector and Clock Monitor

The YSN8563 has an on-chip voltage-low detector (see Figure 4). When VDDdrops below V_{low} , bit VL in the VL_seconds r egister is set to indicate that the integrity of the clock information is no longer guaranteed. The VL flag can only be cleared by u sing the interface.

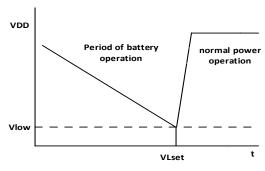


Figure 4. Voltage-low detection

The VL flag is intended to detect the situation when VDD is decreasing slowly, for example under battery operation. Shoul d the oscillator stop or VDD reach Vlow before power isre-asserted, then the VL flag is set. This will indicate that the time may be corrupted.

6.4.2 Register Minutes

Table 8. Minutes -minutes register (address 03h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	-	-	-	unused
6 to 4	MINUTES	0 to 5	ten's place	actual minutes coded in BCD format
3 to 0	MINUTES	0 to 9	unit place	actual minutes coded in BCD format

6.4.3 Register Hours

Table 9. Hours -hours register (address 04h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7 to 6	-	ı	-	unused
5 to 4	HOLIDG	0 to 2	ten's place	and the same and the DCD former
3 to 0	HOURS	0 to 9	unit place	actual hours coded in BCD format

6.4.4 Register Days

Table 10. Days -days register (address 05h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7 to 6	-	-	-	unused
5 to 4	DAVCo	0 to 3	ten's place	actual day and die DCD format
3 to 0	DAYS[1]	0 to 9	unit place	actual day coded in BCD format

^[1] The YSN8563 compensates for leap years by adding a 29th day to February if the year counter contains a value which i s exactly divisible by 4, including the year 00.

6.4.5 Register Weekdays

Table 11. Weekdays -weekdays register (address 06h) bit description

BIT	SYMBOL	VALUE	DESCRIPTION
7 to 3	-	-	unused
2 to 0	WEEKDAYS	0 to 6	actual weekday values, see Table 12

Table 12. Weekday assignments

DAY[1]		BIT	
	2	1	0
Sunday	0	0	0
Monday	0	0	1
Tuesday	0	1	0
Wednesday	0	1	1
Thursday	1	0	0
Friday	1	0	1
Saturday	1	1	0

^[1] Definition may be re-assigned by the user.

6.4.6 Register Century_months

Table 13. Century_months -century flag and months register (address 07h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	Cm	0[2]	1	indicates the century is x
/	C[1]	1	-	indicates the century is x+1
6 to 5	-	-	-	unused
4	MONTHE	0 to 1	ten's place	and a second and a DCD formers are Table 14
3 to 0	MONTHS	0 to 9	unit place	actual month coded in BCD format, see Table 14

^[1]This bit may be re-assigned by the user.

Table 14. Month assignments in BCD format

MONTH	UPPER-DIGIT(ten's place)		DIGIT(u	nit place)	
MONTH	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
January	0	0	0	0	1
February	0	0	0	1	0
March	0	0	0	1	1
April	0	0	1	0	0
May	0	0	1	0	1
June	0	0	1	1	0
July	0	0	1	1	1
August	0	1	0	0	0
September	0	1	0	0	1
October	1	0	0	0	0
November	1	0	0	0	1
December	1	0	0	1	0

^[2] This bit is toggled when the register Years overflows from 99 to 00.

6.4.7 Register Years

Table 15. Years -years register (08h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7 to 4	YEARS	0 to 9	ten's place	actual year acided in DCD formative
3 to 0	IEARS	0 to 9	unit place	actual year coded in BCD format[1]

[1] When the register Years overflows from 99 to 00, the century bit C in the register Century_months is toggled.

6.5 Setting and Reading The Time

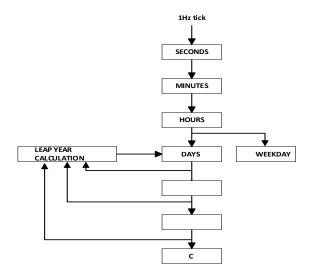


Figure 5. Data flow for the time function

Shows the data flow and data dependencies starting from the 1 Hz clock tick.

During read/write operations, the time counting circuits (memory locations 02h through 08h) are blocked.

This preventsfaulty reading of the clock and calendar during a carry conditionand incrementing the time registers, during the read cycle.

After this read/write access is completed, the time circuit is released again and any pending request to increment the time counters that occurred during the read access is serviced. A maximum of 1 request can be stored; therefore, all accesses must be completed within 1 second.



Figure 6. Access time for read/write operations

As a consequence of this method, it is very important to make a read or write access in one go, that is, setting or

reading seconds through to years should be made in one single access. Failing to comply with this method could result in the tim e becoming corrupted.

As an example, if the time (seconds through to hours) is set in one access and then in a second access the date is set, it is po ssible that the time may increment between the two accesses. A similar problem exists when reading. A roll over may occur between reads thus giving the minutes from one moment and the hours from the next.

Recommended method for reading the time:

- 1. Send a START condition and the slave address for write (A2h).
- 2. Set the address pointer to 2 (VL_seconds) by sending 02h.
- 3. Send a RESTART condition or STOP followed by START.
- 4. Send the slave address for read (A3h).
- 5. Read VL_seconds.
- 6. Read Minutes.
- 7. Read Hours.
- 8. Read Days.
- 9. Read Weekdays.
- 10. Read Century_months.
- 11. Read Years.
- 12. Send a STOP condition.

6.6 Alarm Registers

6.6.1 Register Minute_alarm

Table 16. Minute_alarm -minute alarm register (address 09h) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	AE M	0	-	minute alarm is enabled
/	7 AE_M	default 1	-	minute alarm is disabled
6 to 4	MINITE ALADM	0 to 5	ten's place	minute alarm information coded in BCD format
3 to 0	MINUTE_ALARM	0 to 9	unit place	minute ararm information coded in BCD format

6.6.2 Register Hour_alarm

Table 17. Hour_alarm -hour alarm register (address 0Ah) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	AE II	0	-	houralarm is enabled
/	AE_H	default 1	-	houralarm is disabled
6	-	-	-	unused
5 to 4	HOUD ALADM	0 to 2	ten'splace	harmala manifestation and all in DCD farmant
3 to 0	HOUR_ALARM	0 to 9	unit place	houralarm information coded in BCD format

6.6.3 Register Day_alarm

Table 18. Day_alarm -day alarm register (address 0Bh) bit description

BIT	SYMBOL	VALUE	PLACE VALUE	DESCRIPTION
7	AE_D	0	1	dayalarm is enabled
		default 1	-	dayalarm is disabled
6	-	-	-	unused
5 to 4	DAY ALADM	0 to 3	ten's place	decolors information and dis DCD format
3 to 0	DAY_ALARM	0 to 9	unit place	dayalarm information coded in BCD format

6.6.4 Register Weekday_alarm

Table 19. Weekday_alarm -weekday alarm register (address 0Ch) bit description

BIT	SYMBOL	VALUE	DESCRIPTION
7	AE W	0	weekday alarm is enabled
,	AE_W	default 1	weekday alarm is disabled
6 to 3	-	-	unused
2 to 0	WEEKDAY_ALARM	0 to 6	weekday alarm information coded in BCD format

6.6.5 Alarm Flag

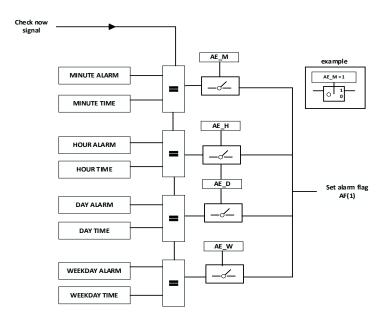


Figure 7. Alarm function block diagram

Only when all enabled alarm settings are matching. It's only on increment to a matched case that the alarm flag is set.

By clearing the alarm enable bit (AE_x) of one or more of the alarm registers, the corresponding alarm condition(s) are active. When an alarm occurs, AF is set to logic 1. The asserted AF can be used to generate an interrupt (INT). TheAF is cleared using the interface.

The registers at addresses 09h through 0Ch contain alarm information. When one or more of these registers is loaded with minute, hour, day or weekday, and its corresponding AE_x is logic 0, then that information is compared with the current minute, hour, day, and weekday. When all enabled comparisons first match, the alarm flag (AF in register Control_2) is set to logic 1.

The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is enabled, the INT pin follows the condition of bit AF. AF will remain set until cleared by the interface. Once AF has been cleared, it will only be set again when the time increments to match the alarm condition once more. Alarm registers which have their AE_x bit at logic 1 are ignored.

6.7 Register CLKOUT_control and Clock Output

Frequencies of 32.768 kHz (default), 1.024 kHz, 32 Hz, and 1 Hz can be generated for use as a system clock, microcontroll er clock, input to a charge pump, or for calibration of the oscillator.

Table 20. CLKOUT_control -CLKOUT control register (address 0Dh) bit description

BIT	SYMBOL	VALUE	DESCRIPTION
7	IDE.	0	the CLKOUT output is inhibited and CLKOUT output is set
7	FE		high-impedance
		default 1	the CLKOUT output is activated
6 to 2	-	-	unused
1 to 0	FD[1:0]		frequency output at pin CLKOUT
		00	32.768kHz
		01	1.024kHz
		10	32Hz
		11	1Hz

6.8 Timer Function

The 8-bit countdown timer at address 0Fh is controlled by the Timer_control register at address 0Eh. The Timer_control register determines one of 4 source clock frequencies for the timer (4.096 Hz, 64 Hz, 1 Hz, or 1/60 Hz), and enables or disables the timer. The timer counts down from a software-loaded 8-bit binary value. At the end of every countdown, the timer sets the timer flag TF. The TF may only be cleared by using the interface. The asserted TF can be used to generate an interrupt on pin INT. The interrupt may be generated as a pulsed signal every countdown period or as a permanently active signal which follows the state of TF. Bit TI_TP is used to control this mode selection. When reading the timer, the current countdown value is returned.

6.8.1 Register Timer_control

Table 21. Timer_control -timer control register (address 0Eh) bit description

BIT	SYMBOL	VALUE	DESCRIPTION
7	TE	0[1]	timeris disabled
/	TE.	1	timeris enabled
6 to 2	-	-	unused
1 to 0	TD[1:0]		timer source clock frequency select[2]
		00	4.096kHz
		01	64Hz
		10 1Hz	
		11[2]	1/60Hz

- [1] Default value.
- [2] These bits determine the source clock for the countdown timer; when not in use, TD[1:0] should be set to 1/60 Hz for pow er saving.

6.8.2 Register Timer

Table 22. Timer -timer value register (address 0Fh) bit description

BIT	SYMBOL	VALUE	DESCRIPTION				
7 to 0	TIMER[7:0]	00h to FFh	countdown period in seconds:				
where n is the countdown value							

Table 23. Timer register bits value range

	BIT							
7 6 5 4 3 2 1 0								
128	64	32	16	8	4	2	1	

The register Timer is an 8-bit binary countdown timer. It is enabled and disabled via the Timer_control register bit TE. The s ource clock for the timer is also selected by the Timer_control register. Other timer properties such as interrupt generation are controlled via the register Control_status_2.

For accurate read back of the count down value, it is recommended to read the register twice and check for consistent r esults, since it is not possible to freeze the countdown timer counter during read back.

6.9 EXT_CLK Test Mode

A test mode is available which allows for on-board testing. In such a mode it is possible to set up test conditions and control the operation of the RTC.

The test mode is entered by setting bit TEST1 in register Control_status_1. Thenpin CLKOUT becomes an input.

The test mode replaces the internal 64 Hz signal with the signal applied to pin CLKOUT. Every 64 positive edges applied to pin CLKOUT will then generate an increment of one second.

The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a maximum period of 1 000 ns. The i nternal 64 Hz clock, now sourced from CLKOUT, is divided down to 1 Hz by a 26 divide chain called a prescaler. The prescaler can be set into a known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0 (STOP must be cleared before the prescaler can operate again).

Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz clock. When entering the test mode, no assumption as to the state of the prescaler can be made.

6.9.1 Operation Example:

- 1. Set EXT_CLK test mode (Control_status_1, bit TEST1 = 1).
- 2. Set STOP (Control_status_1, bit STOP = 1).
- 3. Clear STOP (Control_status_1, bit STOP = 0).
- 4. Set time registers to desired value.
- 5. Apply 64clock pulses to CLKOUT.
- 6. Read time registers to see the first change.
- 7. Apply 64 clock pulses to CLKOUT.
- 8. Read time registers to see the second change.

Repeat steps 7 and 8 for additional increments.

6.10 STOP Bit Function

The function of the STOP bit is to allow for accurate starting of the time circuits. The STOP bit function will cause the uppe r part of the prescaler (F₃to F₁₄) to be held in reset and thus no 1 Hz ticks will be generated (see Figure 8). The time circuits can t hen be set and will not increment until the STOP bit is released (see Figure 9).

The STOP bit function will not affect the output of 32.768 kHz on CLKOUT, but will stop the generation of 1.024 kHz, 32 Hz, and 1 Hz.

The lower threestages of the prescaler (Foand F1 and F3) are not reset; and because the I2C-bus is asynchronous to the crystal oscillator, the accuracy of re-starting the time circuits will be between zero and one 4096 Hz cycle (s ee Figure 9).

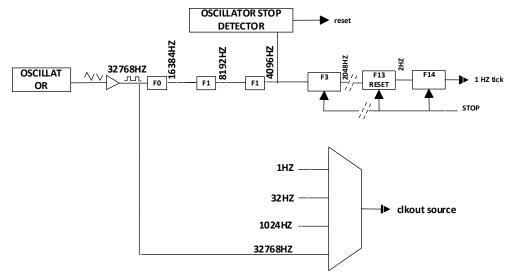


Figure 8. STOP bit functional diagram

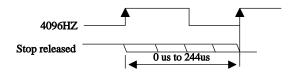


Figure 9. STOP bit release timing

6.11 Reset

The YSN8563 includes an internal reset circuit which is active whenever the oscillator is stopped. In the reset state the I₂C-bus logic is initialized including the address pointer and all registers are set according to Table 25. I₂C-bus communica tion is not possible during reset.

Table 25. Register reset value[1]

ADDDEGG	DEGIGTED MANGE	BIT							
ADDRESS	REGISTER NAME	7	6	5	4	3	2	1	0
00h	Control_status_1	0	0	0	0	1	0	0	0
01h	Control_status_2	0	0	0	0	0	0	0	0
02h	VL_seconds	1	X	X	x	X	X	X	х
03h	Minutes	X	X	X	x	X	X	X	Х
04h	Hours	X	X	X	x	X	X	X	х
05h	Days	X	X	X	x	x	X	X	х
06h	Weekdays	X	X	X	x	x	X	X	х
07h	Century_months	X	X	X	x	x	X	X	х
08h	Years	X	X	X	x	x	X	X	х
09h	Minute_alarm	1	X	X	x	X	X	X	х
0Ah	Hour_alarm	1	X	X	x	x	X	X	х
0Bh	Day_alarm	1	X	x	x	х	X	X	Х
0Ch	Weekday_alarm	1	X	X	x	x	X	X	X
0Dh	CLKOUT_control	1	X	x	х	x	X	0	0
0Eh	Timer_control	0	X	x	x	x	X	1	1
0Fh	Timer	X	X	X	х	x	X	X	Х

^[1]Registers marked x are undefined at power-up and unchanged by subsequent resets.

7 Characteristics of The I₂C-bus

The I₂C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial CLock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

7.1 Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal (see Figure 11).

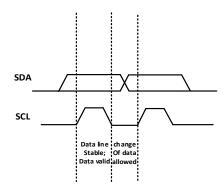


Figure 11. Bit transfer

7.2 START and STOP Conditions

Both data and clock lines remain HIGH when the bus is not busy.

A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition -S.

A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition -P (see Figure 12).

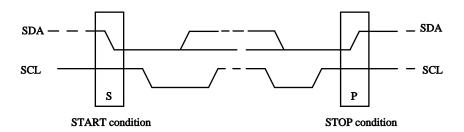


Figure 12. Definition of START and STOP conditions

7.3 System Configuration

A device generating a message is a transmitter; a device receiving a message is a receiver. The device that controls the mes sage is the master; and the devices which are controlled by the master are the slaves (see Figure 13).

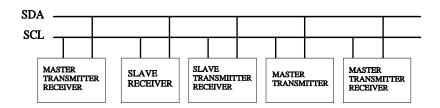


Figure 13. System configuration

7.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver, which is addressed, must generate an acknowledge after the reception of each byte.
- Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration).
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Acknowledgement on the I2C-bus is illustrated in Figure 14.

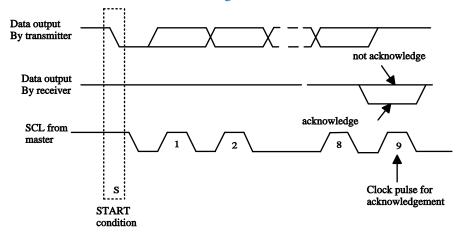


Figure 14. Acknowledgement on the I₂C-bus

7.5 I2C-bus Protocol

7.5.1 Addressing

Before any data is transmitted on the I2C-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure.

The YSN8563 acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line.

Two slave addresses are reserved for the YSN8563:

Read: A3h (10100011)

Write: A2h (10100010)

The YSN8563 slave address is illustrated in Figure 15.

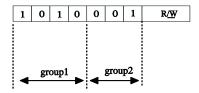


Figure 15. Slave address

7.5.2 Clock and Calendar READ or WRITE Cycles

The I₂C-bus configuration for the different YSN8563 READ and WRITE cycles is shown in Figure 16, Figure 17 and Figure 18. The register address is a 4-bit value that defines which register is to be accessed next. The upper four bits of the register address are not used.

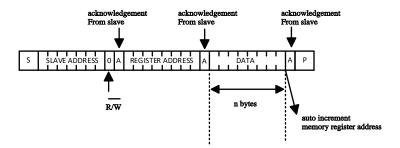


Figure 16. Master transmits to slave receiver (WRITE mode)

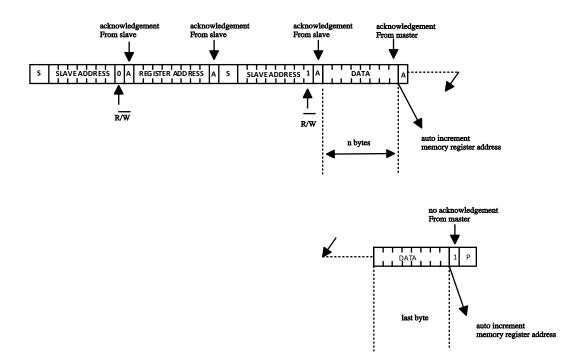


Figure 17. Master reads after setting register address (write register address; READ data)



Figure 18.Master reads slave immediately after first byte (READ mode)

8 Internal Circuitry

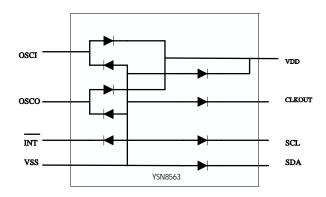


Figure 20. Device diode protection diagram

9 Limiting Values

Table 26. Limiting values

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{DD}	supply voltage		-0.5	+6.5	V
Idd	supply current		+50	+50	mA
VI	input voltage	on pins SCL, SDA, and OSCI	-0.5	+6.5	V
Vo	output voltage	on pins CLKOUT and INT	-0.5	+6.5	V
Iı	input current	at any input	-10	+10	mA
IO	output current	at any output	-10	+10	mA
Ptot	total power dissipation		-	300	mW
Vesd	electrostatic discharge voltage	HBM (MSOP8)	-	±8000	V
Tstg	storage temperature		-65	+150	°C
Tamb	ambient temperature	operating device	-40	+85	°C

10 Static Characteristics

Table 27. Static characteristics

 $V_{DD} = 1.0 \ V \ to \ 5.5 \ V; \ V_{SS} = 0 \ V; \ T_{amb} = -40 \\ \text{\sim} + 85 \quad ; \ f_{osc} = 32.768 \\ Khz \ quartz \ R_s = 30 \ k \quad ; \ C_{L} = 8 \ pF; \\ R_{S} = 10 \ V \ respectively \ respectiv$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Supplies			•	•	•	
		interface inactive; fSCL = 0 Hz; T _{amb} = 25 [1]	1.0	-	5.5	V
V_{DD}	supply voltage	interface active; f _{SCL} = 400 kHz _[1]	1.8	-	5.5	V
supply (stage	clock data integrity; T _{amb} = 25	V_{low}	-	5.5	V	
		interface active				
		$f_{SCL} = 400 \text{ kHz}$	-	-	800	μA
		$f_{SCL} = 100 \text{ kHz}$	-	-	200	μA
		interface inactive(f _{SCL} =0Hz); CLKOUT				
		disabled; $T_{amb} = 25^{\circ}C_{[2]}$				
I_{DD}	supply current	VDD = 5.0 V	-	400	600	nA
		VDD = 3.0 V	-	250	500	nA
		interface inactive (f scl=0 Hz); CLKOUT				
		disabled; T $_{amb} = -40^{\circ}C$ to $+85^{\circ}C_{[2]}$				
		VDD = 5.0 V	-	500	700	nA
		VDD = 3.0 V	-	400	600	nA
Inputs						
$V_{\rm IL}$	LOW-level input voltage		Vss	-	$0.3V_{DD}$	V
V_{IH}	HIGH-level input voltage		0.7V _{DD}	-	V_{DD}	V
I_{LI}	input leakage current	$V_{l} = V_{DD}$ or V_{SS}	-1	0	+1	uA
Ci	input capacitance		-	-	7	pF
Outputs		,	_	l	1	
		output sink current; $V_{OL} = 0.4 \text{ V}$; $V_{DD} = 5 \text{ V}$				
	LOW-level	on pin SDA	3	-	_	mA
I_{OL}	output current	on pin INT	1	_	_	mA
	,	on pin CLKOUT	1	_	_	mA
	output leekees					
I_{LO}	output leakage current	$V_{O} = V_{DD} \text{ or } V_{SS}$	-1	0	+1	uA
Voltage detec	· ·	<u> </u>	1	l		
V _{low}	low voltage	$T_{amb} = 25^{\circ}C$; sets bit VL;	_	0.9	1.0	V
▼ IOW	10 th foliage	1 amb - 25 O, Sets Oit VL,	_	0.7	1.0	v

^[1] For reliable oscillator start-up at power-up: $VDD_{(min)power-up} = V_{DD(min)} + 0.3 \text{ V}.$

^[2] Timer source clock = 1/60 Hz, level of pins SCL and SDA is $V_{\text{DD}}\,$ or $V_{\text{SS}}.$

11 Dynamic Characteristics

Table 28. Dynamic characteristics

 $V_{DD} = 1.0 \ V \ to \ 5.5 \ V; \ V_{SS} = 0 \ V; \ T_{amb} = -40 \quad to +85 \quad f_{osc} = 32.768 \ kHz; \ quartz \ R_s = 30 \ k \quad ;$

		, 1				
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Quartz crystal	parameters ($f = 32.768 \text{ kHz}$)					
R_S	series resistance		-	30	40	k
C_{L}	load capacitance	external; on pin OSCI OSCO	5	12	20	pF
CLKOUT out	put					
DCLKOUT	duty cycle on pin CLKOUT		-	50	-	%
I ² C-bus timing	g characteristics					
f_{SCL}	SCL clock frequency		-	-	400	kHz
thd;sta	hold time (repeated) START condition		0.6	-	-	μs
t _{SU;STA}	set-up time for a repeated		0.6	-	_	μs
	START condition					
tLow	LOW period of the SCL clock		1.3	-	-	μs
thigh	HIGH period of the SCL clock		0.6	-	-	μs
$t_{\rm r}$	rise time of both SDA and SCL signals					
		standard-mode	-	-	1	μs
		fast-mode	-	-	0.3	μs
t_{f}	fall time of both SDA and SCL signals		-	-	0.3	μs
tbuf	bus free time between a STOP and		1.3	-	-	μs
	START condition					
C_b	capacitive load for each bus line		-	-	400	pF
tsu;dat	data set-up time		100	-	-	ns
thd;dat	data hold time		0	-	-	ns
tsu;sto	set-up time for STOP condition		0.6	-	-	μs
tw(spike)	spike pulse width	on bus	-	-	50	ns
				1	1	<u> </u>

- [1] C_L are the two parallel cap connected to the crystal, should be adjusted with different crystal
- [2] Unspecified for $f_{CLKOUT} = 32.768 \text{ kHz}$.
- [3] All timing values are valid within the operating supply voltage at ambient temperature and referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to $_{VDD}$.
- [4] I₂C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one s econd.

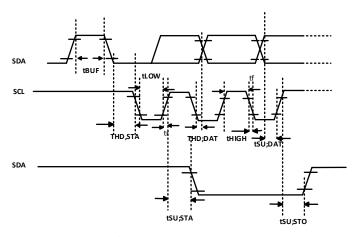
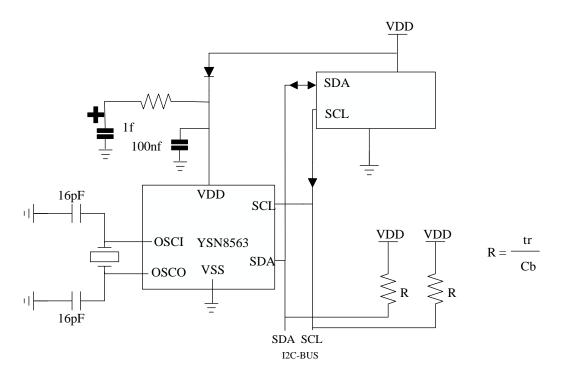
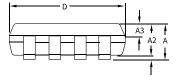
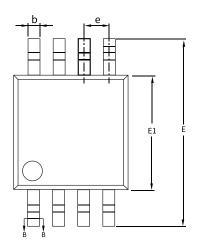
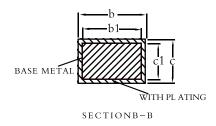


Figure 21. I²C-bus timing waveforms

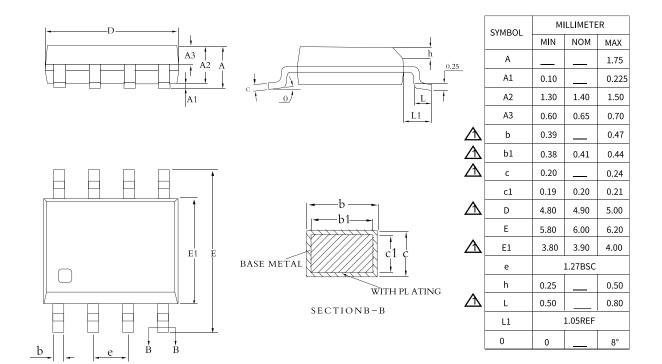
12 Situation of application


Figure 22. Application diagram


13 Package Outline

MSOP-8 MSL3



SYMBOL	М	LLIMETE	R	
STINIBUL	MIN	NOM	MAX	
А			1.10	
A1	0.05		0.15	
A2	0.75	0.85	0.95	
A3	0.30	0.35	0.40	
b	0.28		0.36	
b1	0.27	0.30	0.33	
С	0.15		0.19	
c1	0.14	0.15	0.16	
D	2.90	3.00	3.10	
E	4.70	4.90	5.10	
E1	2.90	3.00	3.10	
е	0.65BSC			
L	0.40		0.70	
L1	0.95REF			
0	0		8°	

SOP8 MSL3

14 Ordering Information

Table 29. Ordering information

Purchase Number	Device	PIN-Package	SPQ	Remarks
YSN8563M	YSN8563	MSOP8	4000	Tape & Reel
YSN8563MS	YSN8563	SOP8	4000	Tape & Reel