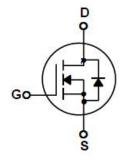


WTM20N65VF/VMP 670V N-Channel MOSFET


Features

- 20A, 670V, RDS(on) = $350m\Omega$ @VGS = 10 V
- Low gate charge (typical 40nC)
- Low Crss (typical 5.7pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

General Description

This Power MOSFET is produced by WPM using its own advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Symbol	Parameter	Value	Units		
VDSS	Drain-Source Voltage	670	V		
	Drain Current - Continuous (TC= 25°C)	20	А		
I _D	- Continuous (TC= 100°C)	13*	Α		
I _{DM}	Drain Current - Pulsed (Note 1)	80*	А		
V_{GSS}	Gate-Source Voltage	± 30	V		
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	403	mJ		
I _{AR}	Avalanche Current (Note 1)	20	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)	66	mJ		
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5	V/ns		
P_{D}	Power Dissipation (TC = 25°C)TO-220F TO-247	35.0	W		
		178	W		
T_{j},T_{stg}	Operating and Storage Temperature Range	-55 to +150	°C		
T _L	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300	°C		

^{*} Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	Value	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	3.47	°C/W
$R_{ heta JS}$	Thermal Resistance, Case-to-Sink Typ.		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	42.2	°C/W

Ver 1.53 www.wpmtek.com

Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Off Characteristics								
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	670			V		
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenc ed to 25°C		0.60		V/°C		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 670 V, V _{GS} = 0 V			1	μΑ		
		V _{DS} = 400 V, TC = 125° C			10	μA		
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA		
I_{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA		
On Characteristics								
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250$ uA	3.0		5.0	V		
R _{DS(On)}	Drain-Source On-state Resistance	V_{GS} =10 V, I_{D} =10 A, T_{J} = 25°C		350	440	mΩ		
g _{FS}	Forward Transconductance	$T_J = 25^{\circ}C$ $V_{DS} = 40 \text{ V}, I_D = 10 \text{ A}$ (Note 4)		18		S		
Dynamic (Characteristics							
C_{iss}	Input Capacitance	.,		2289		pF		
C_{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		277		pF		
C_{rss}	Reverse Transfer Capacitance]		5.7		pF		
Switching	Characteristics							
$t_{\text{d(on)}}$	Turn On Delay Time]		38		ns		
t_r	Rising Time	$V_{DD} = 335 \text{ V, ID} = 20 \text{ A,}$ $R_{G} = 25 \Omega$ (Note 4, 5)		52		ns		
$t_{\text{d(off)}}$	Turn Off Delay Time			87		ns		
t _f	Fall Time			45		ns		
Q_g	Total Gate Charge	V _{DS} = 335 V, ID = 20 A, V _{GS} = 10 V		40		nC		
Q_{gs}	Gate-Source Charge			15		nC		
Q_{gd}	Gate-Drain Charge	(Note 4, 5)		12		nC		
Drain-Sou	urce Diode Characteristics and	Maximum Ratings						
I _S	Maximum Continuous Drain-Source Diode Forward Current				20	A		
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				80	Α		
V _{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _S = 20 A			1.4	V		
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_{S} = 20 \text{ A,}$ $dI_{F} / dt = 100 \text{ A/}\mu\text{s}$		484		ns		
Q_{rr}	Reverse Recovery Charge	Note 4)		6.5	7	μC		

Notes:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L =2.0 mH, IAS = 20A, VDD = 50V, RG = 25Ω , Starting TJ = 25° C
- 3. ISD \leq 20A, di/dt \leq 200A/us, VDD \leq BVDSS, Starting TJ = 25°C
- 4. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2%
- 5. Essentially independent of operating temperature

Typical Characteristics

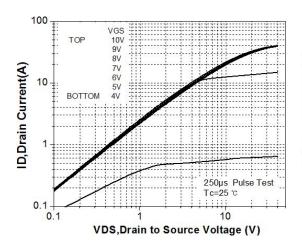
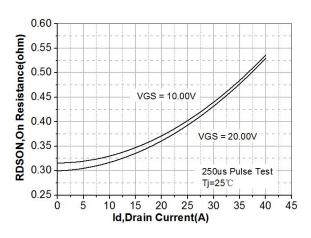



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

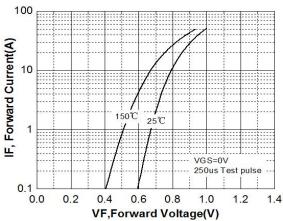
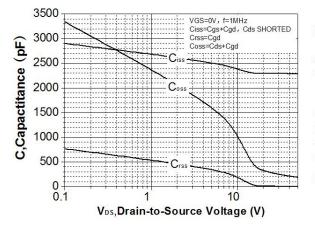



Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

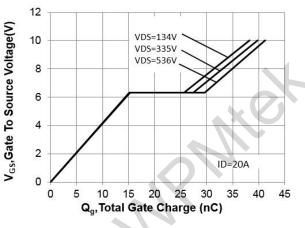
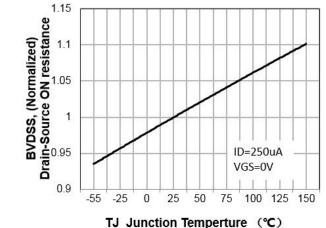
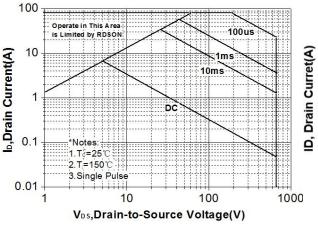



Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics


Typical Characteristics (Continued)

2.2 Drain-Source Breakdown Voltage 2 RDSON, (Normalized) 1.8 1.6 1.4 1.2 8.0 ID=10A VGS=0V 0.6 0.4 -55 -25 25 50 75 100 125 150 TJ Junction Temperture (°C)

Figure 7. Breakdown Voltage Variation vs Temperature

Figure 8. On-Resistance Variation vs Temperature

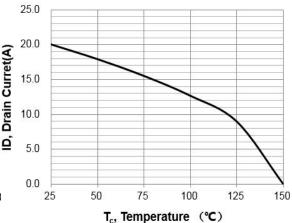
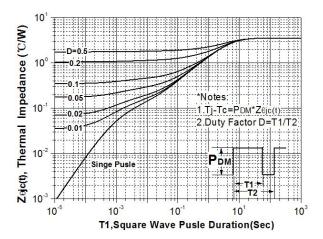
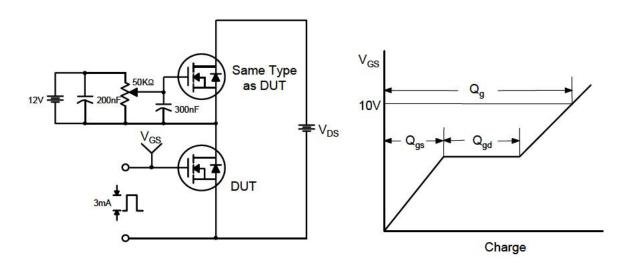
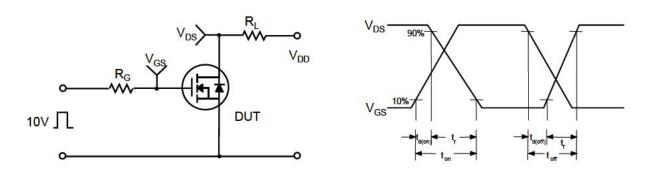
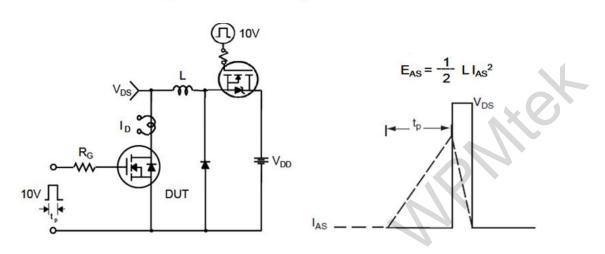


Figure 9. Maximum Safe Operating Area

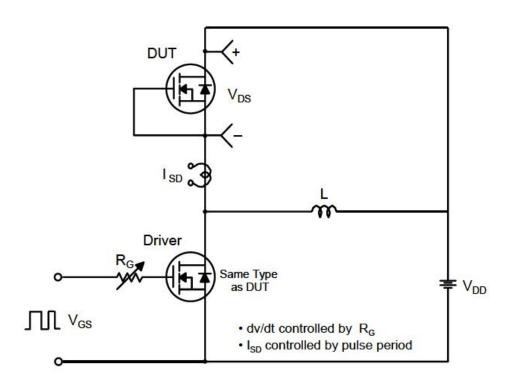
Figure 10. Maximum Drain Current vs Case Temperature

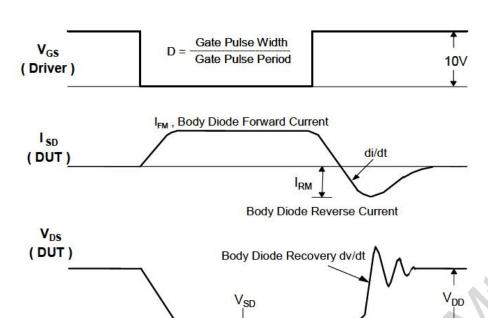




Figure 11. Transient Thermal Response Curve

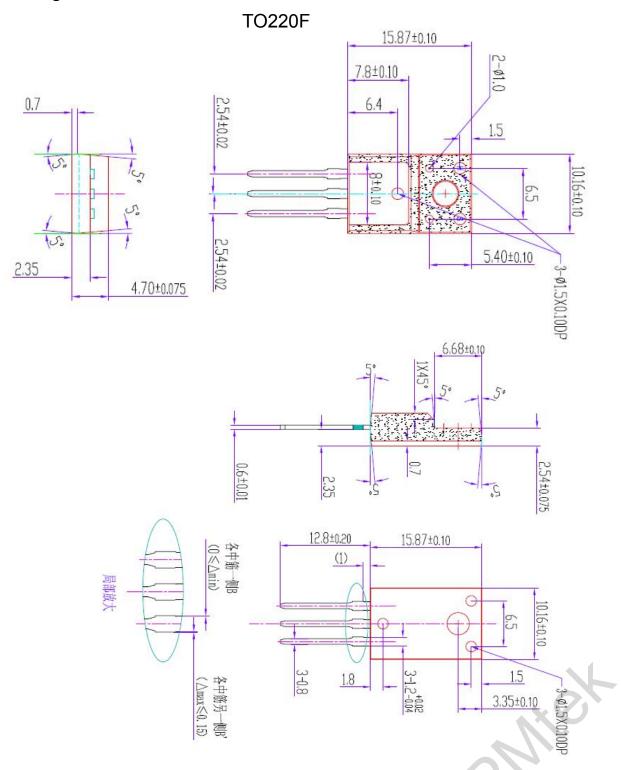

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms



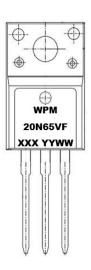

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Forward Voltage Drop

Package Dimensions



Marking Information

TO-247

TO-220F

WPM=WPMtek's Logo 20N65VF=Marking XXX YYWW=Date Code

WPMtek reserves the right to make changes to the product specification and data in this document without notice. WPMtek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does WPMtek assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Any enquiry ,please write to sales@wpmtek.com for futher information.