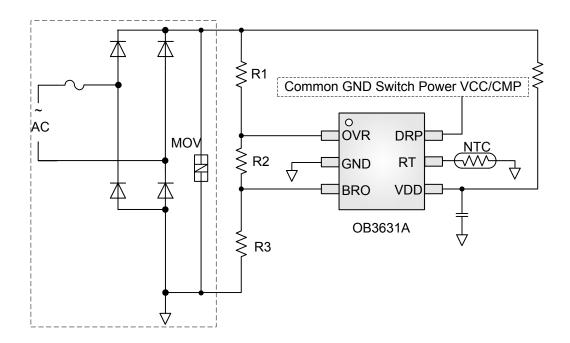


GENERAL DESCRIPTION

OB3631A is a protection IC with features to provide switch power driver work in safety state.

OB3631A offers comprehensive protection coverage with auto-recovery features including line voltage brown out and over voltage protection, over temperature protection through NTC resistor, etc.


FEATURES

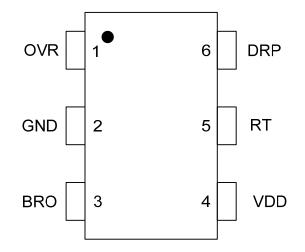
- Line voltage brown out protection
- Line voltage over voltage protection
- Over temperature protection

APPLICATIONS

Switch power

TYPICAL APPLICATION

NOTE:


Line voltage is detected by a resistor divider with R1/R2/R3, and R1 resistance range is suggested from 1M to 5M. For brownout 100Vac and Line OVP 300Vac application, the resistor divider is selected R1=1M*2(2pcs resistor series), R2=2.1K,R3=7.5K, and R1 package should be 1206.

GENERAL INFORMATION

Pin Configuration

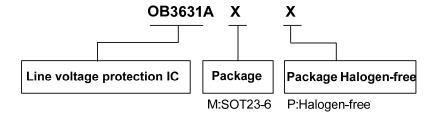
The pin map is shown as below for SOT23-6.

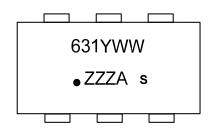
Ordering Information

Part Number	Description				
OB3631AMP	SOT23-6, Halogen-free, T&R				

Note: All Devices are offered in Halogen-free Package if not otherwise noted.

Package Dissipation Rating


Package	RθJA (℃/W)
SOT23-6	200


Absolute Maximum Ratings

Absolute Maximum Ratings					
Parameter	Value				
VDD Voltage	-0.3 to 20V				
DRP Voltage	-0.3 to 40V				
OVR Input Voltage	-0.3 to 7V				
BRO Input Voltage	-0.3 to 7V				
RT Voltage	-0.3 to 7V				
Min/Max Operating Junction Temperature T _J	-40 to 150 ℃				
Min/Max Storage Temperature T _{stq}	-55 to 150 ℃				
Lead Temperature (Soldering, 10secs)	260 ℃				

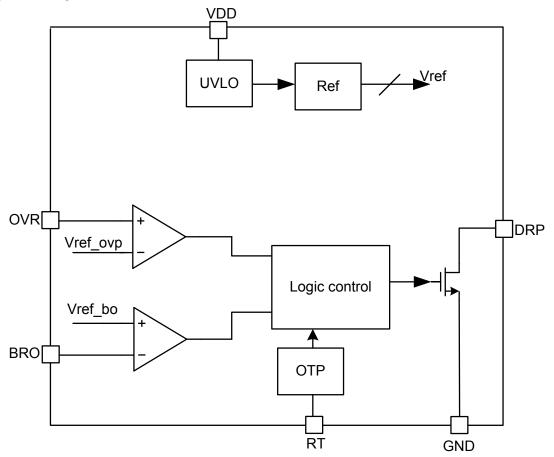
Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y: Year Code

WW: Week Code(01-52)

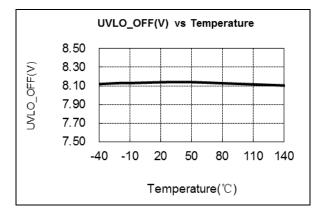
ZZZ: Lot Code A: Character Code

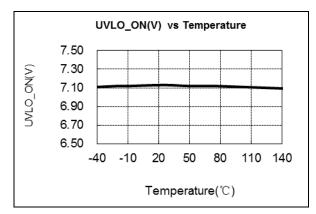

s: Internal Code(Optional)

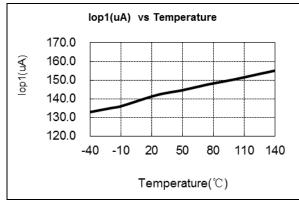
TERMINAL ASSIGNMENTS

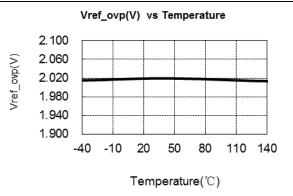
Pin Num	Pin Name	I/O	Description
1	OVR	I/O	Line Voltage OVP and Recovery Control
2	GND	Р	Ground
3	BRO	I/O	Line Voltage Brown-in/Brown-out Control
4	VDD	Р	Power Supply
5	RT	I/O	Temperature Sensing Through NTC Resistor
6	DRP	I/O	Drop-down Protection PIN

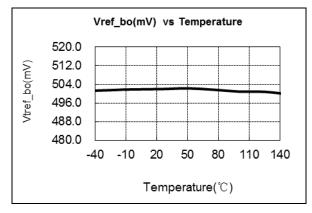
BLOCK DIAGRAM

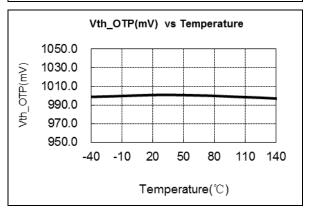

ELECTRICAL CHARACTERISTICS

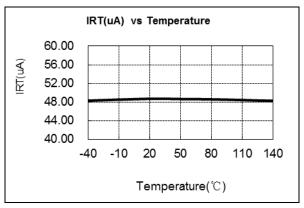

(TA = 25° C, VDD=11V, if not otherwise noted)


Parameter	Symbol	Conditions	Min	Тур	Max	Units		
Current Consumption								
Operating supply current 1	lop1	VDD=11V RT connect res to GND	120	150	180	uA		
Operating supply current 2	lop2	VDD=11V RT floating	80	100	120	uA		
VDD &UVLO	VDD &UVLO							
UVLO	UVLO(OFF)		7	8	9	V		
UVLO Hysteresis	UVLO(Hys)			1		V		
VDD clamp voltage	Vclamp		11	12	13	V		
VDD clamp current	Iclamp	VDD>13V	28			mA		
Protection Referenc	e							
Reference voltage1	Vref_bo		0.475	0.5	0.525	V		
Hysteresis				50		mV		
Reference voltage2	Vref_ovp		1.95	2	2.05	V		
Hysteresis				100		mV		
DRP Switch on resistance								
DRP res	Drp_res			50		Ω		
ОТР								
Output current of RT pin	I_RT		40	50	60	uA		
OTP Threshold voltage	Vth_OTP		0.95	1	1.05	V		
OTP Threshold hysteresis				200		mV		




CHARACTERIZATION PLOTS





.

OPERATION DESCRIPTION

OB3631A is a protection IC with features to provide LED driver work in safety state. OB3631A offers comprehensive protection coverage with auto-recovery features including line voltage brown out and over voltage protection, over temperature protection through NTC resistor, etc

Start up Control

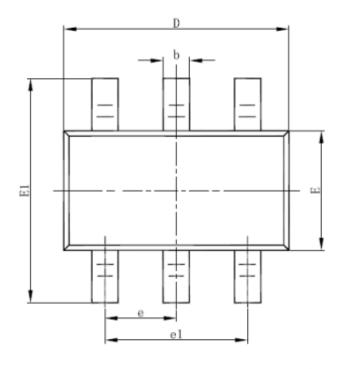
Startup process is realized by charging VDD capacitor. When VDD voltage reaches up to UVLO(OFF), the system starts to operate. A 12V (typical) clamp circuit is applied to clamp VDD voltage.

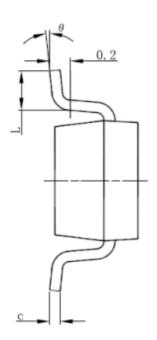
Brown out

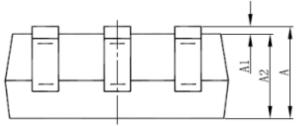
OB3631A detects the states of LED system line voltage. When the voltage at BRO pin drops below a threshold of approximately 0.5V for 20mS (typical), the Brown out protection function is activated and the DRP pin is drop down. This state can be reset when the voltage of BRO pin

exceeds a threshold of approximately 0.55V (typical).

Line OVP


During normal operation, when the voltage at OVR pin exceeds a threshold of approximately 2V (typical), the line over voltage protection function is activated and the DRP pin is drop down immediately. This state can be reset when the voltage of OVR pin drops below a threshold of approximately 1.9V (typical) for 20mS (typical).


External OTP


Accurate detection of external OTP through RT resistor, for external OTP detection, the 50uA (typical) current flows out from RT pin. When VRT< 1V (typical), external OTP protection is triggered, the DRP pin is drop down. This state can be reset when the voltage of BRO pin exceeds a threshold of approximately 1.2 V (typical).

PACKAGE MECHANICAL DATA

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.000	1.450	0.039	0.057	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.300	0.035	0.051	
b	0.300	0.500	0.012	0.020	
С	0.080	0.220	0.003	0.009	
D	2.800	3.020	0.110	0.119	
E	1.500	1.726	0.059	0.068	
E1	2.600 3.000 0.1		0.102	0.118	
е	0.950 (BSC)		0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.