

Features

Supply Voltage Range: 2.7V ~ +5.5V

GS4917A: External Feedback Gain Network

GS4917B: Fixed -2V/V Gain

Capless Structure
 Eliminates Ground-Referenced Outputs
 Eliminates Output DC-Blocking Capacitors
 Provides Flat Frequency Response

 80mW into 32Ω Load from 5V Power Supply at THD+N = 0.1% (Typical, per Channel)

• THD+N =0.02% (f = 1kHz)

- High PSRR: -78dB (at 217Hz)
- Quiescent Current:2.7mA (TYP)
- Shutdown Control
- Short-Circuit and Thermal-Overload Protections
- Under-Voltage Lockout Function
- Enhanced Noise Cancellation by Differential Inputs
- Operating Temperature: -40°C ~ +85°C
- Available in a Green QFN-3X3-16 Package

General Description

The GS4917 is stereo headphone amplifier which is designed for portable applications and can operate from a 2.7V to 5.5V single supply. Capless design can produce a ground-referenced output from a single power supply, and can eliminate output DC-blocking capacitors for less-component height and low-cost. For GS4917-BFR, the internal gain setting (-2V/V) is to further reduce component count. For GS4917-AFR, the gain can be adjusted by external feedback resistors.

The GS4917 has low quiescent current 2.7mA at 5V supply, low 0.02% THD+N, 80mW per channel into 32Ω load from 5V power supply at THD+N = 0.1%. The high supply rejection ratio (PSRR) of -78dB at 217Hz allows the device to operate from noisy digital supplies without an additional linear regulator. The device provides short-circuit and thermal-overload protections. Build-in shutdown control also helps for pop/click-free on/off control.

The GS4917 is available in a Green QFN-3x3-16 package. It operates over an ambient temperature range of -40 ℃ to +85 ℃

Applications

Smart Phone

Notebook PCs

- Portable Audio Equipment
- PDAs

Package/Ordering Information

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION	
GS4917	GS4917-AFR	QFN3X3-16	Tone and Book 5000	GS4917A	
	GS4917-BFR	QFN3A3-10	Tape and Reel,5000	GS4917B	

Absolute Maximum Ratings

Condition	Min	Max		
Supply Voltage Range	+2.7V	+5.5V		
PVss to SVss	-0.3V	+0.3V		
PGND to SGND	-0.3V	+0.3V		
PV _{DD} to SV _{DD}	-0.3V	+0.3V		
PV _{DD} and SV _{DD} to PGND or SGND	-0.3V	+6V		
PVss and SVss to PGND or SGND	-6V	+0.3V		
IN to SGND	SV _{SS} -0.3V	SV _{DD} +0.3V		
SHDN to SGND	-0.3V	SV _{DD} +0.3V		
OUT to SGND	SV _{SS} -0.3V	SV _{DD} +0.3V		
C1P to PGND	-0.3V	PV _{DD} +0.3V		
C1N to PGND	PVss-0.3V	+0.3V		
Output Short Circuit to GND or VDD	Conti	Continuous		
Junction Temperature	+15	0°C		
Storage Temperature Range	-65°C	+150°C		
Operating Temperature Range	-40°C	+85°C		
Lead Temperature (soldering, 10sec)	nd Temperature (soldering, 10sec) +260°C			
Package Thermal Resistance (T _A =+25 °C)				
N3X3-16, θ _{JA} 130°C/W				
ESD Susceptibility				
HBM	61	6KV		
CDM	21	2KV		
Latch up	200	200mA		

Note: Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. GAINSIL recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

Pin Configuration

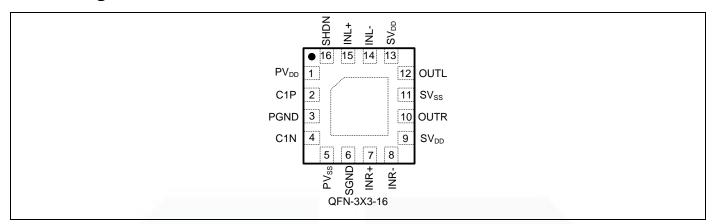


Figure 1. Pin Assignment Diagram

PIN DESCRIPTION

Pin	Name	Function	
1	PV _{DD}	Charge-Pump Power Supply. Powers charge-pump inverter, charge-pump logic, a oscillator. Connect to positive supply (2.7V to 5.5V). Bypass with a 1µF capacitor PGND as close to the pin as possible.	
2	C1P	Positive Terminal for Flying Capacitor. Connect a 1µFcapacitor to C1N.	
3	PGND	Power Ground. Connect to ground.	
4	C1N	Negative Terminal for Flying Capacitor. Connect a 1µF capacitor to C1P.	
5	PV _{SS}	Charge-Pump Output. Connect to SVss.	
6	SGND	Signal Ground. Connect to ground.	
7	INR+	Noninverting Right-Channel Audio Input.	
8	INR-	Inverting Right-Channel Audio Input.	
9, 13	SV _{DD}	Amplifier Positive Power Supply. Connect to positive supply (2.7V to 5.5V). Bypass with a 1µF capacitor to SGND as close to the pin as possible.	
10	OUTR	Output for Right-Channel.	
11	SV _{SS}	Amplifier Negative Power Supply. Connect to PVss.	
12	OUTL	Output for Left-Channel.	
14	INL-	Inverting Left-Channel Audio Input.	
15	INL+	Noninverting Left-Channel Audio Input.	
16	SHDN	Active-Low Shutdown Input.	
Exposed Pad	_	Exposed Pad. Can be connected to GND or left floating.	

Electrical Characteristics

 $(PV_{DD} = SV_{DD} = 5V, PGND = SGND = 0V, SHDN = SV_{DD}, C1 = C2 = 1\mu F, R_L = \infty, resistive load referenced to ground; for GS4917-AFR, gain = -1V/V (R_{IN} = R_F = 10k\Omega); for GS4917-BFR, gain = -2V/V (internally set). T_A = +25°C, unless otherwise noted.)$

		2017	GS4917			
PARAMETER	SYMBOL	CONDITIONS	TYP	MIN	MAX	UNITS
General	•					
Supply Voltage Range	V _{DD}			2.7	5.5	V
Quiescent Supply Current	I _{DD}		2.7		4	mA
Shutdown Supply Current	I _{SHDN}	SHDN = SGND = PGND	0.01		8	μΑ
SHDN Input Logic High	V _{IH}			1.2		V
SHDN Input Logic Low	VIL				0.4	V
SHDN to Full Operation Time	t _{SON}		3.2			ms
Amplifiers						
Voltage Gain	Av	GS4917-BFR	-2	-212	-1.88	V/V
Gain Matching	ΔA _V	GS4917-BFR, between the right and left channels	0.2			%
Output Offset Voltage	Vos	Between IN+ and IN-,input AC-coupled to ground(GS4917-AFR)	1.1	-3	3	mV
Input Impedance	Rin	GS4917-BFR, measured at INL and INR	14.6	12.5	17	kΩ
Common-Mode Voltage Range	CMRR	Input referred, GS4917-AFR	99			dB
Power Supply Rejection Ratio	PSRR	f = 217Hz, V _{RIPPLE} =200mV _{P-P}	107			40
Power Supply Rejection Ratio		f = 10kHz, V _{RIPPLE} =200mV _{P-P}	96			dB
Output Power	Роит	$R_L = 32\Omega$, THD+N = 0.1%	80			mW
Output Impedance in Shutdown			2			kΩ
Total Harmonic Distortion Plus Noise	THD+N	$R_L = 32\Omega$, $P_{OUT} = 55$ mW, $f = 1$ kHz	0.02			%
Signal-to-Noise Ratio	SNR	$R_L = 32\Omega$, $P_{OUT} = 20$ mW,BW< 20 kHz	100			dB
Capacitive Drive	CL	No sustained oscillation	200			pF
Charge-Pump Oscillator Frequency	fosc		420	200	500	kHz
Crosstalk		$R_L=32\Omega$, $V_{IN}=200mV_{P\cdot P}, f=10kHz, A_V=-1V/V$	72			dB
Thermal Shutdown Threshold			140			°C
Thermal Shutdown Hysteresis			10			°C

Typical Performance characteristics @TA=+25°C, VDD=5V/3V INP=INM= VCM =0V, RLOAD=NC;

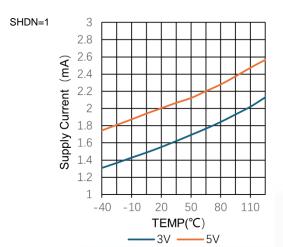


Figure 2. Supply Current vs Temperature

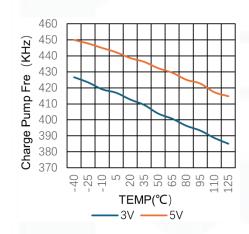


Figure 4. Charge Pump Fre vs Temperature

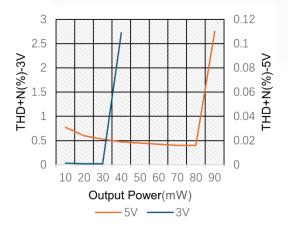


Figure 6. THD+N vs Output Power (double)

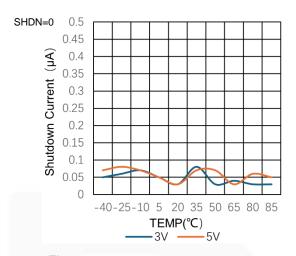


Figure 3. Shutdown Current vs Temperature

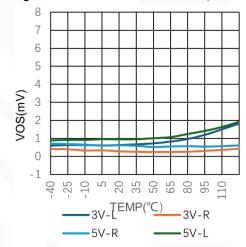


Figure 5.VOS vs Temperature

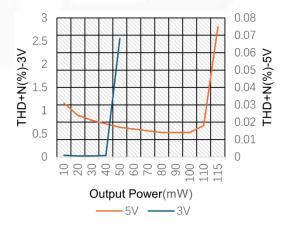
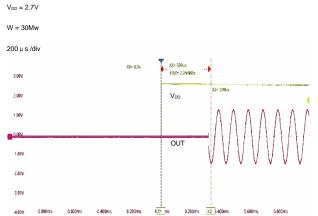


Figure 7. THD+N vs Output Power (single)



Typical Performance characteristics

(@T_A=+25°C, V_{DD}=5.5V/2.7V INP=INM=V_{CM}=0V , f=10kHz , R_{LOAD}=32 Ω)

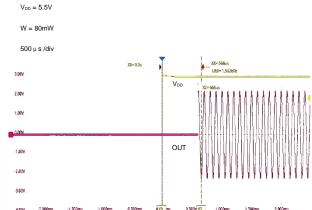


Figure 8. Turn On Time vs Supply Voltage (OUT)

Figure 9. Turn On Time vs Supply Voltage (OUT)

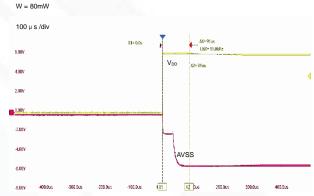



Figure 10. Turn On Time vs Supply Voltage (AVSS)

Figure 11. Turn On Time vs Supply Voltage (AVSS)

W = 80mW

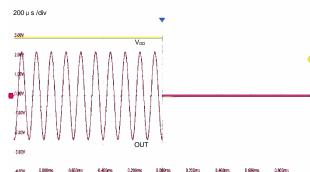


Figure 12. Turn Off Time vs Supply Voltage (OUT)

Figure 13. Turn Off Time vs Supply Voltage (OUT)

Typical Performance characteristics (@T_A=+25°C, V_{DD}=5V/3V INP=INM= V_{CM} =0V , R_{LOAD}=NC)

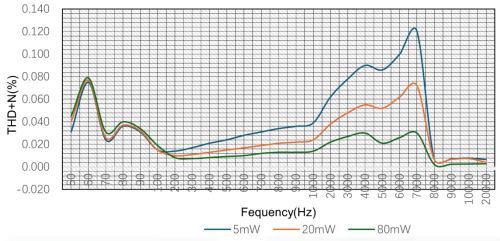
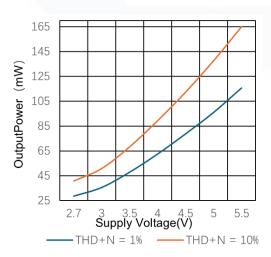



Figure 14. THD+N vs Frequency (5V)

0.140
0.120
0.100
0.080
0.080
0.020
0.020
0.020
-0.020
Fequency(Hz)
-5mW 20mW 40mW
Figure 15. THD+N vs Frequency (3V)

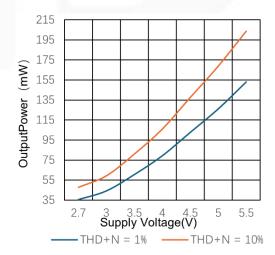
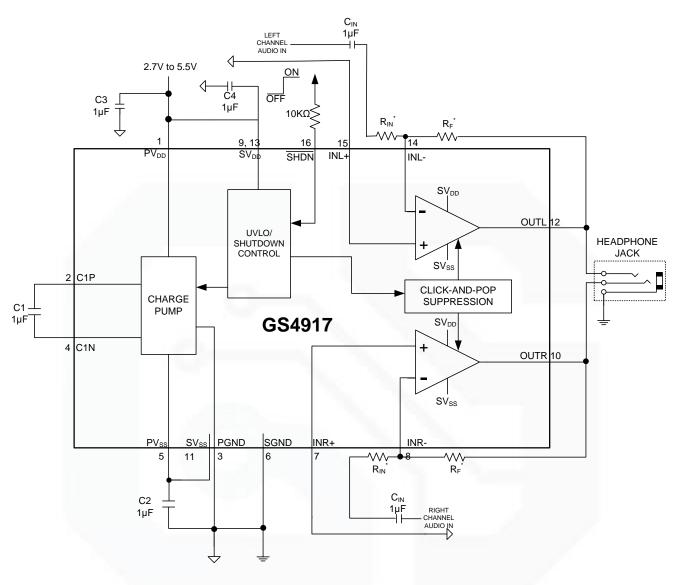


Figure 16. Output Power vs Supply Voltage (double)


Figure 17. Output Power vs Supply Voltage (single)

FUNCTIONAL DIAGRAM/TYPLCAL APPLICATION CIRCUIT

* GS4917A, R_{IN} AND R_F are external to device.

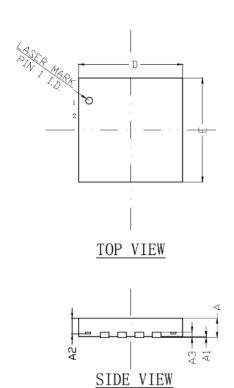
GS4917B, R_{IN} = 15k $\!\Omega_{\rm F}$ R $_{\!F}$ = 30k $\!\Omega_{\! F}$, R_{IN} and $R_{\!F}$ are inside the device

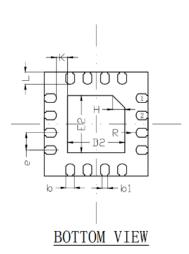
Figure 18. Typical Single-Ended Input Application Circuit

NOTES:

1.To ensure the normal operation of the device, decoupling capacitor (C3) must be placed as close to GS4917 as possible. The loop length formed by C3, SV_{DD} and GND should be no longer than 1.2cm; otherwise the device will not start up at high supply voltage.

2.In order to get good performance, it's important to select the right C1, C2 and C3 in application. All tests are performed with circuit set up with X5R and X7R capacitors. Capacitors having high dissipative loss, such as Y5V capacitor, may cause performance degradation and unexpected system behavior.





Package Information

QFN3X3-16

SYMBO	M.	ILLIMET	ER	
L	MIN	NDM	MAX	
Α	0.50	0.55	0.60	
A1	0.00	0.02	0.05	
A2	0.40	0.45	0.50	
A3	0.15REF			
b	0.18	0.25	0.30	
b1	0.16REF			
D	2.90	3.00	3.10	
E	2.90	3.00	3.10	
D2	1.55	1.65	1.75	
E2	1.55	1.65	1.75	
6	0.40	0.50	0.60	
Н	0.35REF			
K	0.30			
L	0.30	0.35	0.40	
R	0.14			