2-Bit Bidirectional Voltage-Level Translator

GENERAL DESCRIPTION

The 2-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.2V to 5.5V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 1.2V to 5.5V while it tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the1.2V, 1.8V, 2.5V, 3.3V and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as $V_{\rm CCA}$ is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

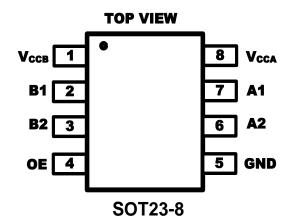
FEATURES

- No Direction-Control
- Data Rates: 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- 1.2V to 5.5V on A ports and 1.2V to 5.5V on B Ports (V_{CCA}≤V_{CCB})
- Vcc Isolation: If Either Vcc is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: Either VccA or VccB can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +125°C
- Packages: SOT23-8

Applications:

- Automotive infotainment
- Advanced Driver Assistance
- System (ADAS)
- Telematics

ORDERING INFORMATION:


Part Number	Package	Ordering Number	Packing Option	Marking Information	
GS0102	SOT23-8	GS0102-3TR	Tape and Real, 3000	GS0102	

PIN DESCRIPTION

Name	SOT23-8	Туре	Function
V _{CCB}	1	Р	B Port Supply Voltage. 1.2V ≤ VCCB ≤ 5.5V
B1	2	I/O	Input/output B1. Reference to V _{CCB}
B2	3	I/O	Input/output B2. Reference to V _{CCB}
OE	4	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to VCCA.
GND	5	-	Ground
A2	6	I/O	Input/output A2. Reference to Vcca
A1	7	I/O	Input/output A1. Reference to V _{CCA}
Vcca	8	Р	A Port Supply Voltage.1.65V <v<sub>CCA<5.5V and V_{CCA}<v<sub>CCB</v<sub></v<sub>

(1) I=input, O=output, I/O=input and output, P=power

SPECIFICATIONS

Absolute Maximum Ratings:

Over recommended operating free-air temperature range (-40°C to 125°C, unless otherwise noted.)^[1]

Parameter	Symbol	Min	Max	Unit	
Supply voltage range	Vcca	-0.3	6.0		
Supply voltage range	V _{CCB}	-0.3	6.0		
	A port		-0.3	6.0	
Input voltage range [2]	B port	Vı	-0.3	6.0	
	OE		-0.3	6.0	V
Voltage range applied to any output in the	A port	\/ -	-0.3	6.0	
high-impedance or power-off state [2]	B port	Vo	-0.3	6.0	İ
Voltage range applied to any output in the	A port	A port Vo	-0.3	Vcca+0.3	
high or Low impedance or power-off state	B port		-0.3	V _{CCB} +0.3	
Input clamp current	VI<0	lıĸ		-50	
Out clamp current	VO<0	Іок		-50	^
Continuous output current		I _O		±50	mA
Continuous current through Vcca, Vcca			±100		
Junction temperature	TJ		150	°C	
Storage temperature		T _{STG}	-65	150	

Note:

[1] Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

[2]The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

[3] The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

ESD Ratings:

Parameter	Symbol		Max	Unit
	I _{ESD}	Latch up current	500	mA
Electrostatic discharge	V_{ESD}	Human-body model (HBM)	±5000	V
		Charge device model (CDM)	±2000	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Recommanded Operating Range:

Parameter	Symbol	C	onditions	Min	Max	Unit
Supply Voltage	V_{CCA}				5.5	V
Supply voltage	V_{CCB}			1.2	5.5	V
		A-port I/Os	V_{CCA} =1.2V to 1.95V V_{CCB} =1.2V to 5.5V	V _{CCI} -0.2	V_{CCI}	
High-level input	V _{IH}	A-port i/Os	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	V _{CCI} -0.4	V _{CCI}	V
voltage	VIH	B-port I/Os	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	V _{CCI} -0.4	V_{CCI}	V
		() E INDIT	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	V _{CCA} -0.8	5.5	
		A-port I/Os	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	0	0.15	
Low-level input voltage	VIL	B-port I/Os	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	0	0.15	V
		OE input	V_{CCA} =1.2V to 5.5V V_{CCB} =1.2V to 5.5V	0	V _{CCA} ×0.25	
land the solition		A-port I/C	s push-pull driving		10	
Input transition rise or fall	t_r, t_f	B-port I/C	s push-pull driving		10	ns/V
1100 01 1411		Control input			10	
Operating Temperature	T _A			-40	125	${\mathbb C}$

Note:

^[1] V_{CCA} must be less than or equal to V_{CCB} .

^[2] The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

Electrical Characteristics:

Limits in standard typeface are for $T_A = +25$ °C, bold typeface applies over $T_A = -40$ to +125°C.

Symbol	Parameter	Condition	Vcca	V _{CCB}	Min	TYP	Max	Unit			
Vона	Port A output high voltage	I_{OH} =-20 μ A, $V_{IB} \ge V_{CCB}$ -0.4 V	1.2V to 5.5V	1.2V to 5.5V	V _{CCA} ×0.7		5.5				
Vola	Port A output low voltage	I _{OL} =1mA, V _{IB} ≤0.15V	1.2V to 5.5V	1.2V to 5.5V			0.3	V			
V _{OHB}	Port B output high voltage	I_{OH} =-20 μ A, $V_{IA} \ge V_{CCA}$ -0.4 V	1.2V to 5.5V	1.2V to 5.5V	V _{CCB} ×0.7						
V_{OLB}	Port B output low voltage	I _{OL} =1mA, V _{IA} ≤0.15V	1.2V to 5.5V	1.2V to 5.5V			0.3				
l _l	Input leakage current	OE	1.2V to 5.5V	1.2V to 5.5V			±1 ±1.5				
	Partial power	A port	0V	0V to 5.5V			±0.5 ±1				
loff	down current	B port	0V to 5.5V	0V			±0.5				
	High-						±0.5				
l _{OZ}	impedance State output current	A or B port, OE=0V	1.2V to 5.5V	1.2V to 5.5V			±1				
	V _{CCA} supply current	304		Vı–Vo–Open	1.2V to 5.5V	1.2V to 5.5V			1.0		
ICCA				I _O =0mA	5.5V	0V			1.0	μA	
			0V	5.5V			-1				
			M. sussaiku	\/ aummh.	., .,	1.2V to V _{CCB}	1.2V to 5.5V			10	
I_{CCB}	V _{CCB} supply current	Vı=Vo=open, Io=0mA	5.5V	0V			-1				
	Current		0V	5.5V			1				
ICCA+ICCB	Combined supply current	V _I =V _{CCI} or open, I _O =0mA	1.2V to V _{CCB}	1.2V to 5.5V			15				
Iccza	V _{CCA} supply current	$V_{I}=V_{CCI}$ or 0V, $I_{O}=0$ mA, OE=0V	1.2V to V _{CCB}	1.2V to 5.5V			1				
Іссzв	V _{CCB} supply current	$V_I=V_{CCI}$ or $0V$, $I_O=0$ mA, $OE=0$ V	1.2V to 5.5V	1.2V to 5.5V			1				
Cı	Input capacitance	OE	3.3V	3.3V		2.5					
	Input-to	A port	3.3V	3.3V		5		pF			
Сю	output internal capacitance	B port	3.3V	3.3V		5		F.			

Note:

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. V_{CCA} must be less than or equal to V_{CCB} .

Timing requirement V_{CGA} =1.2V±0.15V

		V _{CCB} =2.5V±0.2V (TYP)	V _{CCB} =3.3V±0.2V (TYP)	V _{CCB} =5V±0.2V (TYP)	Unit
Data mata	Push-pull driving	20	21	24	Mhas
Data rate	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving(data inputs)	50	47	41	
duration	Open-drain driving(data inputs)	500	500	500	ns

$V_{CCA} = 1.8V \pm 0.15V$

		V _{CCB} =2.5V±0.2V (TYP)	V _{CCB} =3.3V±0.2V (TYP)	V _{CCB} =5V±0.2V (TYP)	Unit
Data mata	Push-pull driving	21	22	24	Mhas
Data rate	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving(data inputs)	47	45	41	.
duration	Open-drain driving(data inputs)	500	500	500	ns

$V_{CCA} = 2.5V \pm 0.15V$

		V _{CCB} =2.5V±0.2V (TYP)	V _{CCB} =3.3V±0.2V (TYP)	V _{CCB} =5V±0.2V (TYP)	Unit
Data mata	Push-pull driving	20	22	24	Mhma
Data rate	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving(data inputs)	50	45	41	no
duration	Open-drain driving(data inputs)	500	500	500	ns

$V_{CCA} = 3.3V \pm 0.15V$

		V _{CCB} =2.5V±0.2V (TYP)	V _{CCB} =3.3V±0.2V (TYP)	Unit	
Data wate	Push-pull driving	23	24	Mhna	
Data rate	Open-drain driving	2	2	Mbps	
Pulse duration	Push-pull driving(data inputs)	43	41		
Puise duration	Open-drain driving(data inputs)	500	500	ns	

$V_{CCA} = 5.0V \pm 0.15V$

TCCA CIC I I I I		V _{CCB} =2.5V±0.2V (TYP)	Unit
Data mata	Push-pull driving	24	Mhasa
Data rate	Open-drain driving	(TYP) 24 2 41	Mbps
Dulas dunation	Push-pull driving(data inputs)	41	
Pulse duration	Open-drain driving(data inputs)	500	ns

Switching Characteristics: $V_{CCA} = 1.2V$

Over recommended operating free-air temperature range (-40°C to 85°C, unless otherwise noted.)

Parameter	Symbol		Conditions	$V_{CCB}=2.5V$ $\pm 0.2V(TYP)$	V _{CCB} =3.3V ±0.2V(TYP)	V _{CCB} =5.0V ±0.2V(TYP)	Unit
Propagation delay		A-to-B	Push-pull driving	1.44	2	2.28	
time high-to-low output	$t_{ m PHL}$	A-t0-D	Open-drain driving	15.1	14.8	14.4	
Propagation delay			Push-pull driving	2.89	3.46	4.17	
time low-to-high output	$t_{\rm PLH}$	A-to-B	Open-drain driving	132	104	71	
Propagation delay		B-to-A	Push-pull driving	1.28	1.57	1.12	
time high-to-low output	t_{PHL}	D-10-A	Open-drain driving	15.1	14.9	15.1	
Propagation delay		B-to-A	Push-pull driving	3.67	3.78	3.56	
time low-to-high output	$t_{\rm PLH}$	D-10-A	Open-drain driving	72	57	36	
Enable time	t _{en}	OE-to-A or B		24	21	19	
Disable time	$t_{\rm dis}$		OE-to-A or B		1250	1250	ns
To most mine time.	t_{rA}	A port	Push-pull driving	8.3	8.5	7.9	
Input rise time		rise time	Open-drain driving	123	90	63	
To most oils a time.	_	B port	Push-pull driving	7.3	6.5	5.9	
Input rise time	t_{rB}	rise time	Open-drain driving	123	98	68	
I	4	A port	Push-pull driving	4.8	4.1	3.6	
Input fall time	t_{rA}	fall time	Open-drain driving	23	22	24	
T C . 11		B port	Push-pull driving	6.7	8.3	9	
Input fall time	t_{rB}	fall time	Open-drain driving	21	22	20	
Skew(time), output	$t_{SK(O)}$	Chann	Channel-to-Channel Skew		0.5	0.5	
M: d-t(Pi	ush-pull driving	20	21	24	Mi
Maximum data rate		Op	en-drain driving	2	2	2	Mbps

Switching Characteristics: $V_{CCA} = 1.8V \pm 0.15V$

Over recommended operating free-air temperature range (-40°C to 85°C, unless otherwise noted.)

Parameter	Symbol		Conditions	$V_{CCB}=2.5V$ $\pm 0.2V(TYP)$	V_{CCB} =3.3V ±0.2V(TYP)	V _{CCB} =5.0V ±0.2V(TYP)	Unit		
Propagation delay		A to D	Push-pull driving	2.76	3.32	4.24			
time high-to-low output	$t_{ m PHL}$	A-to-B	Open-drain driving	26.1	26.4	26.6			
Propagation delay			Push-pull driving	5.3	4.4	3.96			
time low-to-high output	t_{PLH}	A-to-B	Open-drain driving	221	183	143			
Propagation delay		B-to-A	Push-pull driving	2.32	2.56	2.72			
time high-to-low output	t_{PHL}	D-10-A	Open-drain driving	26.1	26.1	26.2			
Propagation delay		B-to-A	Push-pull driving	4.64	4.36	4.48			
time low-to-high output	t_{PLH}	B-10-A	Open-drain driving	173	89	66			
Enable time	t _{en}	OE-to-A or B OE-to-A or B		25	21	19]		
Disable time	t_{dis}			1250	125	1250	ns		
Input rise time		A port	Push-pull driving	6.9	6.1	5.6			
input rise time	t_{rA}	rise time	Open-drain driving	118	39	13			
Input sice time		B port	Push-pull driving	5.8	4.8	4.1			
Input rise time	t_{rB}	rise time	Open-drain driving	166	127	75			
Innut fall time	et fall time		A port	Push-pull driving	3.0	2.8	2.7		
Input fall time	t_{rA}	fall time	Open-drain driving	1.9	1.7	1.6			
Input fall time		B port	Push-pull driving	4.8	6.2	8.4			
input rail time	t_{rB}	fall time	fall time	fall time	Open-drain driving	2.3	2.4	2.8	
Skew(time), output	t _{SK(O)}	Chann	el-to-Channel Skew	0.5	0.5	0.5			
Maximum data rate		Push-pull driving		21	22	24	Mbra		
iviaximum data rate		Op	Open-drain driving		2	2	Mbps		

Switching Characteristics: $V_{CCA} = 2.5V \pm 0.15V$

Over recommended operating free-air temperature range (-40°C to 85°C, unless otherwise noted.)

Parameter	Symbol	Conditions		V _{CCB} =2.5V ±0.2V(TYP)	V_{CCB} =3.3V ±0.2V(TYP)	V _{CCB} =5.0V ±0.2V(TYP)	Unit									
Propagation delay		A-to-B	Push-pull driving	2.5	3.5	4.2										
time high-to-low output	t_{PHL}	A-10-B	Open-drain driving	26.3	26.5	26.6										
Propagation delay		A to D	Push-pull driving	2.52	2.76	2.84										
time low-to-high output	$t_{\rm PLH}$	A-to-B	Open-drain driving	198	169	131										
Propagation delay		B-to-A	Push-pull driving	2.96	3.16	4.72										
time high-to-low output	t_{PHL}	D-10-A	Open-drain driving	26.4	26.5	26.6										
Propagation delay		B-to-A	Push-pull driving	1.84	1.6	1.04										
time low-to-high output	t_{PLH}		Open-drain driving	196	138	63										
Enable time	t _{en}		OE-to-A or B	24	20	17										
Disable time	$t_{\rm dis}$		OE-to-A or B	1250	1250	1250	ns									
To most mine time.		A port rise time	Push-pull driving	3.4	2.9	2.7										
Input rise time	t_{rA}		rise time	rise time	Open-drain driving	156	92	13								
Input rise time		B port	Push-pull driving	4.7	3.5	2.7										
input rise time	t_{rB}	rise time	Open-drain driving	160	124	81										
I	_		A port	Push-pull driving	5.1	5.2	5.0									
Input fall time	t_{rA}	fall time	Open-drain driving	2.1	2.0	1.8										
I		B port	Push-pull driving	5.0	6.4	8.7										
Input fall time	t_{rB}	fall time	fall time	fall time	fall time	fall time	fall time	fall time	fall time	fall time	fall time	Open-drain driving	2.0	2.2	2.8	
Skew(time), output	t _{SK(O)}	Chann	el-to-Channel Skew	0.5	0.5	0.5										
M:		Pi	ush-pull driving	20	22	24	Mhns									
Maximum data rate		Open-drain driving		2	2	2	Mbps									

Switching Characteristics: $V_{CCA} = 3.3V \pm 0.15V$

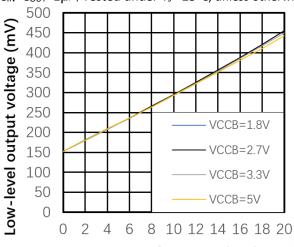
Over recommended operating free-air temperature range (-40°C to 85°C, unless otherwise noted.)

Parameter	Symbol		Conditions	V _{CCB} =2.3V ±0.2V(TYP)	$V_{CCB}=5.0V \\ \pm 0.2V(TYP)$	Unit
Propagation delay		A-to-B	Push-pull driving	4.16	5.04	
time high-to-low output	t_{PHL}	А-10-В	Open-drain driving	26.4	26.6	
Propagation delay		A 4- D	Push-pull driving	3.1	2.4	
time low-to-high output	t_{PLH}	A-to-B	Open-drain driving	155	109	
Propagation delay		B-to-A	Push-pull driving	3.68	5.68	
time high-to-low output	t _{PHL}		Open-drain driving	26.5	26.7	
Propagation delay		-	Push-pull driving	1.88	1.28	
time low-to-high output	t_{PLH}	B-to-A	Open-drain driving	158	87	
Enable time	t _{en}	OE-to-A or B OE-to-A or B		19	15	
Disable time	t _{dis}			1250	1250	ns
T		A port rise time	Push-pull driving	2.3	2.1	
Input rise time	t_{rA}		Open-drain driving	117	48	
T		B port rise	Push-pull driving	3.0	2.4	
Input rise time	t_{rB}	time	Open-drain driving	117	75	
T C 11		A port fall	Push-pull driving	8.0	7.6	
Input fall time	t_{rA}	time	Open-drain driving	2.2	2.1	
I		B port fall	Push-pull driving	8.2	10.8	
Input fall time	t_{rB}	time	Open-drain driving	2.1	2.4	
Skew(time), output	t _{SK(O)}	Channel-to-Channel Skew		0.5	0.5	
Mi d-tt-		Push-pull driving		23	24	Mhns
Maximum data rate		(Open-drain driving	2	2	Mbps

Switching Characteristics: $V_{CCA} = 5.0V \pm 0.15V$

Over recommended operating free-air temperature range (-40°C to 85°C, unless otherwise noted.)

Parameter	Symbol	Conditions		V_{CCB} =5.0V±0.2V(TYP)	Unit	
Propagation delay	•	A-to-B	Push-pull driving	8.72	-	
time high-to-low output	$t_{ m PHL}$	А-10-Б	Open-drain driving	26.8		
Propagation delay		A to D	Push-pull driving	2		
time low-to-high output	$t_{\rm PLH}$	A-to-B Open-drain driv	Open-drain driving	155		
Propagation delay		B-to-A	Push-pull driving	8.04		
time high-to-low output	$t_{ m PHL}$	B-10-A	Open-drain driving	27.5		
Propagation delay	_	D 4- A	Push-pull driving	1.5		
time low-to-high output	$t_{\rm PLH}$	B-to-A	Open-drain driving	160		
Enable time	t _{en}		OE-to-A or B	17		
Disable time	t _{dis}		OE-to-A or B	1250	ns	
Input sign time		A port rise time	Push-pull driving	1.9		
Input rise time	t_{rA}		Open-drain driving	105		
Input sign time		B port rise	Push-pull driving	2.3		
Input rise time	$t_{ m rB}$	time	Open-drain driving	95		
Input fall time	time t	A port fall	Push-pull driving	9.0		
Input fall time	t_{rA}	time	Open-drain driving	2.6		
In many Call dinner		B port fall	Push-pull driving	8.9		
Input fall time	$t_{ m rB}$	time	Open-drain driving	2.5		
Skew(time), output	t _{SK(O)}	Channel-to-Channel Skew		0.5		
Maximum data rate		I	Push-pull driving	24	Mhns	
Maximum data rate		0	pen-drain driving	2	Mbps	



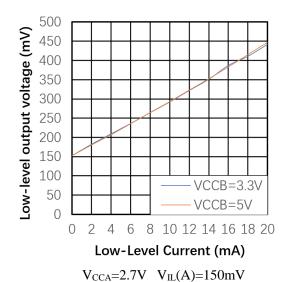
PERFORMANCE CHARACTERISTICS:

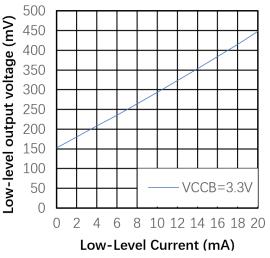
 $(C_{IN}=C_{OUT}=1\mu F, Tested under T_J=25^{\circ}C, unless otherwise specified)$

Low-Level Current (mA)

 $V_{CCA}=1.2V$ $V_{IL}(A)=150mV$

Figure 1 Low-Level Output Voltage vs Low-Level Current




Figure 3 Low-Level Output Voltage vs Low-Level Current

Low-Level Current (mA)

 $V_{CCA}=1.8V$ $V_{IL}(A)=150mV$

Figure 2 Low-Level Output Voltage vs Low-Level Current

 $V_{CCA}=3.3V$ $V_{IL}(A)=150mV$

Figure 4 Low-Level Output Voltage vs Low-Level Current

Parameter Measurement Information

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- PRR 10MHz
- $ZO = 50 \Omega$
- $dv/dt \ge 1 V/ns$

Note: All input pulses are measured one at a time, with one transition per measurement.

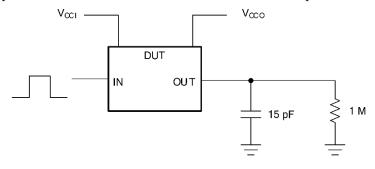


Figure 5 Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using A Push-Pull Driver

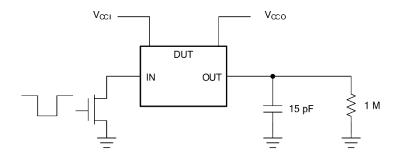


Figure 6 Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using an Open-Drain Driver

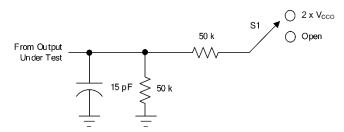
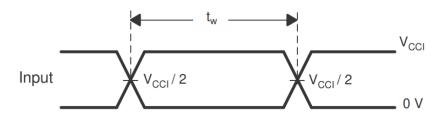


Figure 7 Load Circuit for Enable/Disable Time Measurement

Table 1. Switch Configuration for Enable/Disable Timing

Table 11 5 witch Comiguration for Enable District Immig					
Test	S 1				
t _{PZL} /t _{PLZ}	2 ×Vcco				
tpuz/tpzu	Open				


Note:

- [1] t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- [2] $t_{\mbox{\scriptsize PZL}}$ and $t_{\mbox{\scriptsize PZH}}$ are the same as $t_{\mbox{\scriptsize en}}.$

(1) All input pulses are measured one at a time, with one transition per measurement.

Figure 8 Voltage Waveforms Pulse Duration

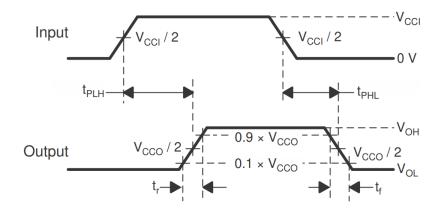


Figure 9 Voltage Waveforms Propagation Delay Times

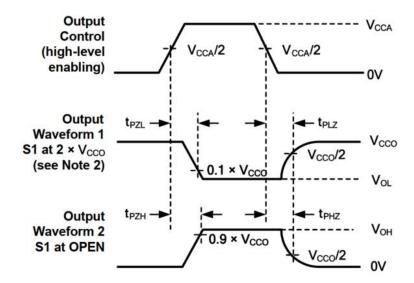


Figure 10 Voltage Waveforms Enable and Disable

Feature DESCRIPTION:

Overview

The GS0102 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.2 V to 5.5 V, while the B port can accept I/O voltages from 1.2 V to 5.5 V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. $10-k\Omega$ pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Architecture

The GS0102 architecture is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

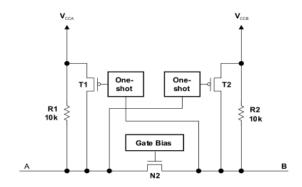


Figure 11. Architecture of a GS0102 Cell

The GS0102 employs two key circuits to enable this voltage translation:

- An N-channel pass-gate transistor topology that ties the A-port to the B-port.
- Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B Ports.

Input Driver Requirements

The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or push - pull) drivers that are interfaced to the GS0102 I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal $10k\Omega$ pullup resistors.

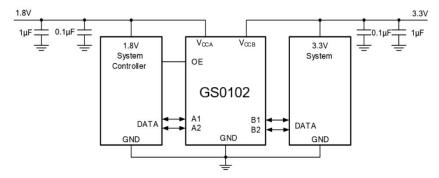
The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving GS0102 data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and max data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50Ω .

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic lcc, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the GS0102 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

Enable and Disable


The GS0102 device has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

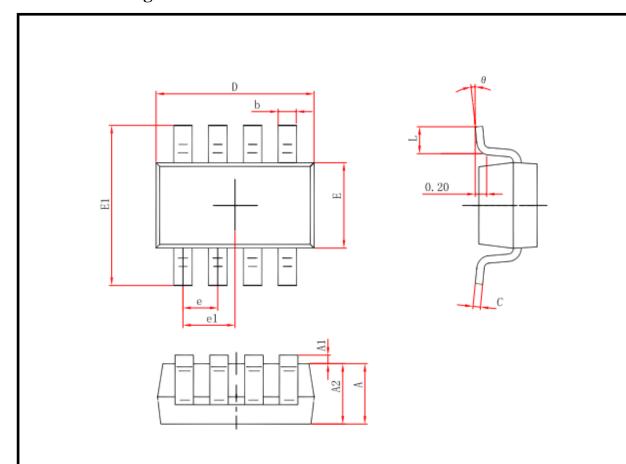
Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has an internal $10k\Omega$ pullup resistor to V_{CCA} , and each B-port I/O has an internal $10k\Omega$ pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10k\Omega$ resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the GS0102 are disabled when the OE pin is low.

Application Information

The GS0102 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the GS0102 might be a better option for such push-pull applications.

Figure 12 Typical Application Circuit



PACKAGE OUTLINE:

SOT23-8 Package

Symbol	Dimensions In	Millimeters	Dimensions	s In Inches	
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.65 (E	SSC)	0.026	6(BSC)	
e1	0.975 (BSC)	0.038	(BSC)	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

