# nRF9151

**Product Specification** 

v1.1



# nRF9151 features

#### **Features**

#### Microcontroller

- Arm Cortex -M33
  - 247 EEMBC CoreMark® score running from flash memory
  - Data watchpoint and trace (DWT), embedded trace macrocell (ETM), and instrumentation trace macrocell (ITM)
  - Serial wire debug (SWD)
  - Trace port
- 1 MB flash
- 256 KB low leakage RAM
- Arm TrustZone<sup>®</sup>
- Arm CryptoCell 310
- Up to four SPI controller/targets with EasyDMA
- Up to four I<sup>2</sup>C compatible two-wire controller/targets with EasyDMA
- Up to four UARTs (CTS/RTS) with EasyDMA
- I<sup>2</sup>S with EasyDMA
- Digital microphone interface (PDM) with EasyDMA
- Four pulse width modulator (PWM) units with EasyDMA
- 12-bit, 200 ksps ADC with EasyDMA eight configurable channels with programmable gain
- Three 32-bit timer with counter mode
- Two real-time counter (RTC)
- Programmable peripheral interconnect (PPI)
- 32 general purpose I/O pins
- Single supply voltage from 3.0 V 5.5 V
- Integrated clock sources
- LGA package 12.1x11.1x1.2 mm

#### LTE modem

- Transceiver and baseband
- 3GPP LTE release 14 Cat-M1 compliant
- 3GPP LTE release 14 Cat-NB1 and Cat-NB2 compliant
- 3GPP LTE release 17 IoT NTN compliant
- GPS receiver
  - GPS L1 C/A supported
  - QZSS L1 C/A supported
- RF transceiver for global coverage
  - Power Class 3 up to 23 dBm output power
  - Power Class 5 up to 20 dBm output power
  - -108 dBm sensitivity (Cat-M1) for low band, -107 dBm for mid
  - Single 50 Ω antenna interface
- LTE band support in hardware
  - Cat-M1 B1, B2, B3, B4, B5, B8, B12, B13, B18, B19, B20, B25, B26, B28, B66, B85, B106
  - Cat-NB1/NB2 B1, B2, B3, B4, B5, B8, B12, B13, B17, B19,
     B20, B25, B26, B28, B65, B66, B85. B106
  - IoT NTN B23, B249, B252, B255, B256
- Supports SIM and eSIM with an ETSI TS 102 221 compatible UICC interface
- Power saving features include DRX, eDRX, PSM
- IP v4/v6 stack
- Secure socket (TLS/DTLS) API

#### DECT NR-

- Maximum transmission power 21 dBm (Class II) on bands 1, 2, 9,
   22
- Maximum transmission power 19 dBm (Class III) on band 4

#### Current consumption @ 3.7 V

- LTE power saving mode (PSM) floor current 2.7  $\mu A$
- eDRX @ 81.92s 18 μA in Cat-M1, 32 μA in Cat-NB1 (UICC included)

#### Applications

- Sensor networks
- Logistics and asset tracking
- Smart energy
- Smart building automation
- Smart agriculture

- Industrial
- Retail and monitor devices
- Medical devices
- Wearables



# Contents

|   | nRF9151 features.                                                 | ii   |
|---|-------------------------------------------------------------------|------|
| 1 | Revision history.                                                 | 10   |
| 2 | About this document.                                              | 11   |
|   | 2.1 Document status.                                              | 11   |
|   | 2.2 Peripheral chapters                                           | 11   |
|   | 2.2.2 Peripheral instantiation                                    | 11   |
|   | 2.3 Register tables                                               | 12   |
|   | 2.3.1 Fields and values                                           | . 12 |
|   | 2.3.2 Permissions                                                 | . 13 |
|   | 2.4 Registers                                                     | . 13 |
|   | 2.4.1 DUMMY                                                       | 13   |
| 3 | Product overview                                                  | 14   |
|   | 3.1 Block diagram                                                 | . 14 |
|   | 3.2 Peripheral interface.                                         |      |
|   | 3.2.1 Peripheral ID                                               | 16   |
|   | 3.2.2 Peripherals with shared ID.                                 |      |
|   | 3.2.3 Peripheral registers.                                       |      |
|   | 3.2.4 Bit set and clear.                                          |      |
|   | 3.2.5 Tasks                                                       |      |
|   | 3.2.6 Events                                                      |      |
|   | 3.2.7 Publish and subscribe.                                      |      |
|   | 3.2.8 Shortcuts                                                   |      |
|   | 3.2.9 Interrupts                                                  |      |
|   | 3.2.10 Secure/non-secure peripherals                              |      |
| 4 | Application core.                                                 | 20   |
| _ | ••                                                                |      |
|   | 4.1 CPU                                                           |      |
|   | 4.1.1 Floating-point interrupt.                                   |      |
|   | 4.1.2 CPU and support module configuration.                       |      |
|   | 4.1.3 Electrical specification.                                   |      |
|   | 4.2 Memory                                                        |      |
|   | 4.2.1 Memory map                                                  |      |
|   | 4.2.3 Peripheral access control capabilities.                     | 27   |
|   | 4.3 VMC — Volatile memory controller.                             |      |
|   | 4.3.1 Registers.                                                  |      |
|   | 4.4 NVMC — Non-volatile memory controller.                        |      |
|   | 4.4.1 Writing to flash.                                           | 30   |
|   | 4.4.2 Erasing a secure page in flash.                             | 30   |
|   | 4.4.3 Erasing a non-secure page in flash                          | 30   |
|   | 4.4.4 Writing to user information configuration registers (UICR). |      |
|   | 4.4.5 Erase all                                                   | 31   |
|   | 4.4.6 NVMC protection mechanisms.                                 |      |
|   | 4.4.7 Cache                                                       | 32   |
|   | 4.4.8 Registers                                                   |      |
|   | 4.4.9 Electrical specification.                                   | 36   |



4512\_092 v1.1 iii

|   | 4.5 FICR — Factory information configuration registers |          |
|---|--------------------------------------------------------|----------|
|   | 4.5.1 Registers                                        |          |
|   | 4.6 UICR — User information configuration registers    |          |
|   | 4.6.1 Registers                                        |          |
|   | 4.7 EasyDMA                                            |          |
|   | 4.7.1 EasyDMA error handling                           |          |
|   | 4.7.2 EasyDMA array list.                              |          |
|   | 4.8 AHB multilayer interconnect.                       |          |
|   | 4.8.1 AHB multilayer priorities                        | 49       |
| 5 | Power and clock management.                            | 50       |
|   |                                                        |          |
|   | 5.1 Power management.                                  |          |
|   | 5.1.1 System Disabled mode                             | 50       |
|   | 5.1.2 System OFF mode                                  | 51       |
|   | 5.1.3 System ON mode                                   | 52       |
|   | 5.1.4 Electrical specification.                        | 52       |
|   | 5.2 Power supply                                       | 52       |
|   | 5.2.1 General purpose I/O supply                       | 52       |
|   | 5.3 Power supply monitoring.                           | 53       |
|   | 5.3.1 Power supply supervisor.                         | 53       |
|   | 5.3.2 External power failure warning                   |          |
|   | 5.3.3 Battery monitoring on VDD                        | 54       |
|   | 5.3.4 Electrical specification.                        | 54       |
|   | 5.4 Clock management.                                  | 55       |
|   | 5.4.1 HFCLK clock controller.                          | 56       |
|   | 5.4.2 LFCLK clock controller.                          |          |
|   | 5.4.3 Electrical specification.                        | 57       |
|   | 5.5 Reset                                              | 58       |
|   | 5.5.1 Power-on reset.                                  | 58       |
|   | 5.5.2 Pin reset                                        |          |
|   | 5.5.3 Wakeup from System OFF mode reset                |          |
|   | 5.5.4 Soft reset                                       |          |
|   | 5.5.5 Watchdog reset                                   | 59       |
|   | 5.5.6 Brownout reset.                                  | 59       |
|   | 5.5.7 Retained registers.                              | 59       |
|   | 5.5.8 Reset behavior.                                  |          |
|   | 5.5.9 Electrical specification.                        | 60       |
|   | 5.6 Current consumption                                |          |
|   | 5.6.1 Electrical specification.                        | 62       |
|   | 5.7 Register description                               | 67<br>67 |
|   | 5.7.2 CLOCK — Clock control                            | 73       |
|   | 5.7.3 REGULATORS — Voltage regulators control.         | 73<br>81 |
|   | 3.7.3 REGULATORS VOITage regulators control            | 01       |
| 6 | Peripherals                                            | 83       |
|   | 6.1 CRYPTOCELL — Arm TrustZone CryptoCell 310          | 83       |
|   | 6.1.1 Disclaimer.                                      | 84       |
|   | 6.1.2 Usage                                            | 84       |
|   | 6.1.3 Security configuration.                          |          |
|   | 6.1.4 Cryptographic flow.                              | 85       |
|   | 6.1.5 Cryptographic key selection.                     | 85       |
|   | 6.1.6 Internal memories.                               | 87       |
|   | 6.1.7 Direct memory access (DMA).                      | 87       |
|   | o.1.7 Direct memory access (DIVIA).                    | 07       |



4512\_092 v1.1 iv

| 6.1.8 Power and clock                                                                    | 87  |
|------------------------------------------------------------------------------------------|-----|
| 6.1.9 Interrupt handling                                                                 | 88  |
| 6.1.10 Standards                                                                         | 88  |
| 6.1.11 Registers                                                                         | 89  |
| 6.1.12 Accelerators                                                                      |     |
| 6.1.13 Host integration                                                                  |     |
| 6.2 DPPI - Distributed programmable peripheral interconnect.                             |     |
| 6.2.1 Subscribing to and publishing on channels.                                         |     |
| 6.2.2 DPPI configuration (DPPIC)                                                         |     |
| 6.2.3 Connection examples                                                                |     |
| 6.2.4 Special considerations for a system implementing TrustZone for Cortex-M processors |     |
| 6.2.5 Registers                                                                          |     |
| 6.3 EGU — Event generator unit.                                                          |     |
| 6.3.1 Registers.                                                                         |     |
| 6.3.2 Electrical specification.                                                          |     |
| 6.4 GPIO — General purpose input/output.                                                 |     |
| 6.4.1 Pin configuration.                                                                 |     |
| 6.4.2 Pin sense mechanism.                                                               |     |
|                                                                                          |     |
| 6.4.3 GPIO security                                                                      |     |
| 6.4.4 Registers                                                                          |     |
| 6.4.5 Electrical specification.                                                          |     |
| 6.5 GPIOTE — GPIO tasks and events                                                       |     |
| 6.5.1 Pin events and tasks                                                               |     |
| 6.5.2 Port event                                                                         |     |
| 6.5.3 Tasks and events pin configuration.                                                |     |
| 6.5.4 Registers                                                                          |     |
| 6.6 IPC — Interprocessor communication.                                                  |     |
| 6.6.1 IPC and PPI connections                                                            |     |
| 6.6.2 Registers                                                                          |     |
| 6.6.3 Electrical specification.                                                          |     |
| 6.7 I2S — Inter-IC sound interface                                                       |     |
| 6.7.1 Mode                                                                               |     |
| 6.7.2 Transmitting and receiving.                                                        |     |
| 6.7.3 Left right clock (LRCK).                                                           | 186 |
| 6.7.4 Serial clock (SCK).                                                                | 186 |
| 6.7.5 Master clock (MCK).                                                                | 187 |
| 6.7.6 Width, alignment, and format                                                       | 188 |
| 6.7.7 EasyDMA                                                                            | 189 |
| 6.7.8 Module operation                                                                   | 191 |
| 6.7.9 Pin configuration.                                                                 | 193 |
| 6.7.10 Registers                                                                         | 193 |
| 6.7.11 Electrical specification.                                                         | 204 |
| 6.8 KMU — Key management unit                                                            | 204 |
| 6.8.1 Functional view.                                                                   |     |
| 6.8.2 Access control                                                                     |     |
| 6.8.3 Protecting the UICR content                                                        |     |
| 6.8.4 Usage                                                                              |     |
| 6.8.5 Registers                                                                          |     |
| 6.9 PDM — Pulse density modulation interface.                                            |     |
| 6.9.1 Master clock generator.                                                            |     |
| 6.9.2 Module operation.                                                                  |     |
| 6.9.3 Decimation filter.                                                                 |     |
| 6.9.4 EasyDMA                                                                            |     |
| 6.9.5 Hardware example.                                                                  |     |
| ololo maraware example                                                                   |     |



4512\_092 v1.1 V

| 6.9.6 Pin configuration                                           |            |
|-------------------------------------------------------------------|------------|
| 6.9.7 Registers                                                   | <br>217    |
| 6.9.8 Electrical specification                                    | <br>226    |
| 6.10 PWM — Pulse width modulation                                 |            |
| 6.10.1 Wave counter                                               | <br>227    |
| 6.10.2 Decoder with EasyDMA.                                      | <br>230    |
| 6.10.3 Limitations                                                | <br>238    |
| 6.10.4 Pin configuration.                                         | <br>238    |
| 6.10.5 Registers                                                  |            |
| 6.11 RTC — Real-time counter.                                     |            |
| 6.11.1 Clock source                                               |            |
| 6.11.2 Resolution versus overflow and the prescaler.              |            |
| 6.11.3 Counter register.                                          |            |
| 6.11.4 Overflow                                                   | 251        |
| 6.11.5 Tick event                                                 | 252        |
| 6.11.6 Event control.                                             |            |
| 6.11.7 Compare                                                    |            |
| 6.11.8 Task and event jitter/delay.                               |            |
| 6.11.9 Registers.                                                 |            |
| 6.12 SAADC — Successive approximation analog-to-digital converter | 264        |
| 6.12.1 Overview.                                                  | 264        |
| 6.12.2 Digital output.                                            | 265        |
| 6.12.3 Analog inputs and channels.                                | 266        |
| 6.12.4 Operation modes.                                           |            |
| 6.12.5 EasyDMA.                                                   |            |
| 6.12.6 Resistor ladder.                                           |            |
| 6.12.7 Reference.                                                 |            |
| 6.12.8 Acquisition time.                                          |            |
| 6.12.9 Limits event monitoring.                                   |            |
|                                                                   |            |
| 6.12.10 Registers.                                                |            |
| 6.12.11 Electrical specification.                                 |            |
| 6.12.12 Performance factors                                       |            |
| 6.13 SPIM — Serial peripheral interface master with EasyDMA       | 290<br>291 |
| 6.13.1 SPI master transaction sequence                            |            |
| 6.13.2 Master mode pin configuration.                             |            |
| 6.13.3 Shared resources                                           | 293        |
| 6.13.4 EasyDMA                                                    | 293        |
| 6.13.5 Low power                                                  | 293        |
| 6.13.6 Registers.                                                 | 294        |
| 6.13.7 Electrical specification.                                  | 305        |
| 6.14 SPIS — Serial peripheral interface slave with EasyDMA        | 306        |
| 6.14.1 Shared resources                                           | 307        |
| 6.14.2 EasyDMA                                                    | 307        |
| 6.14.3 SPI slave operation.                                       | 307        |
| 6.14.4 Semaphore operation.                                       |            |
| 6.14.5 Pin configuration.                                         |            |
| 6.14.6 Registers                                                  | 310        |
| 6.14.7 Electrical specification.                                  | 320        |
| 6.15 SPU — System protection unit                                 | 322        |
| 6.15.1 General concepts.                                          | 322        |
| 6.15.2 Flash access control.                                      | 323        |
| 6.15.3 RAM access control                                         | 326        |
| 6.15.4 Peripheral access control.                                 | 329        |
| 6.15.5 Pin access control.                                        | <br>331    |



| 6.15.6 DPPI access control                                                                   |       |
|----------------------------------------------------------------------------------------------|-------|
| 6.15.7 External domain access control                                                        | . 333 |
| 6.15.8 TrustZone for Cortex-M ID allocation                                                  | 334   |
| 6.15.9 Registers                                                                             | 335   |
| 6.16 TIMER — Timer/counter                                                                   | 344   |
| 6.16.1 Capture                                                                               | 345   |
| 6.16.2 Compare                                                                               | 345   |
| 6.16.3 Task delays.                                                                          | 345   |
| 6.16.4 Task priority.                                                                        |       |
| 6.16.5 Registers                                                                             |       |
| 6.17 TWIM $-$ I <sup>2</sup> C compatible two-wire interface master with EasyDMA             |       |
| 6.17.1 Shared resources.                                                                     | 354   |
| 6.17.2 EasyDMA                                                                               |       |
| 6.17.3 Master write sequence.                                                                |       |
| 6.17.4 Master read sequence.                                                                 | 355   |
| 6.17.5 Master repeated start sequence.                                                       | 356   |
| 6.17.6 Low power                                                                             | 357   |
| 6.17.7 Master mode pin configuration.                                                        |       |
| 6.17.8 Registers.                                                                            |       |
| 6.17.9 Electrical specification.                                                             | 372   |
| 6.17.10 Pullup resistor.                                                                     | 373   |
| 6.17.10 Fullip resistor. 6.18 TWIS — $I^2C$ compatible two-wire interface slave with EasyDMA | 373   |
| 6.18.1 Shared resources.                                                                     | 375   |
|                                                                                              |       |
| 6.18.2 EasyDMA.                                                                              |       |
| 6.18.3 TWI slave responding to a read command.                                               |       |
| 6.18.4 TWI slave responding to a write command.                                              |       |
| 6.18.5 Master repeated start sequence                                                        | 378   |
| 6.18.6 Terminating an ongoing TWI transaction.                                               |       |
| 6.18.7 Low power                                                                             | 379   |
| 6.18.8 Slave mode pin configuration.                                                         | 379   |
| 6.18.9 Registers                                                                             |       |
| 6.18.10 Electrical specification.                                                            |       |
| 6.19 UARTE — Universal asynchronous receiver/transmitter with EasyDMA                        | 393   |
| 6.19.1 EasyDMA.                                                                              |       |
| 6.19.2 Transmission.                                                                         | 394   |
| 6.19.3 Reception.                                                                            |       |
| 6.19.4 Error conditions                                                                      |       |
| 6.19.5 Using the UARTE without flow control                                                  |       |
| 6.19.6 Parity and stop bit configuration                                                     | 397   |
| 6.19.7 Low power                                                                             | 397   |
| 6.19.8 Pin configuration                                                                     | . 398 |
| 6.19.9 Registers                                                                             | 398   |
| 6.19.10 Electrical specification                                                             | 416   |
| 6.20 WDT — Watchdog timer                                                                    | 416   |
| 6.20.1 Reload criteria                                                                       | . 416 |
| 6.20.2 Temporarily pausing the watchdog.                                                     | 417   |
| 6.20.3 Watchdog reset                                                                        | 417   |
| 6.20.4 Registers                                                                             | 417   |
| 6.20.5 Electrical specification                                                              | 421   |
| LTE modem                                                                                    | 422   |
|                                                                                              |       |
| 7.1 Non-Terrestrial Network.                                                                 |       |
| 7.2 SIM card interface                                                                       | 425   |
| 7.3 LTE coexistence interface.                                                               | 426   |



4512\_092 v1.1 vii

7

|    | 7.4 LTE RF control external interface                 | 427   |
|----|-------------------------------------------------------|-------|
|    | 7.5 RF front-end interface                            | 427   |
|    | 7.6 Electrical specification                          | 428   |
|    | 7.6.1 Key RF parameters for Cat-M1                    | 428   |
|    | 7.6.2 Key RF parameters for Cat-NB1 and Cat-NB2.      | . 428 |
|    | 7.6.3 Key RF parameters for IoT NTN                   | 428   |
|    | 7.6.4 Receiver parameters for Cat-M1.                 | 429   |
|    | 7.6.5 Receiver parameters for Cat-NB1 and Cat-NB2.    | 429   |
|    | 7.6.6 Receiver parameters for IoT NTN                 | 429   |
|    | 7.6.7 Transmitter parameters for Cat-M1.              | 429   |
|    | 7.6.8 Transmitter parameters for Cat-NB1 and Cat-NB2. | . 430 |
|    | 7.6.9 Transmitter parameters for IoT NTN              | 430   |
|    |                                                       |       |
| 8  | DECT NR+                                              | 431   |
|    | 8.1 massive Machine Type Communication (mMTC)         | 432   |
|    | 8.2 Ultra-Reliable Low-Latency Communication (URLLC). |       |
|    | 8.3 DECT NR+ on the nRF9151                           |       |
|    | 8.4 Key RF Parameters                                 |       |
|    | 8.5 DECT NR+ coexistence interface                    |       |
|    |                                                       |       |
| 9  | GPS receiver.                                         | 434   |
|    | 9.1 Electrical specification.                         | 434   |
|    |                                                       |       |
| 10 | Debug and trace.                                      | 436   |
|    | 10.1 DAP - Debug access port                          | 436   |
|    | 10.2 Access port protection                           | 437   |
|    | 10.2.2 Registers                                      | 439   |
|    | 10.3 Debug interface mode                             | 441   |
|    | 10.4 Real-time debug.                                 | . 441 |
|    | 10.5 Registers                                        | 441   |
|    | 10.5.1 TARGETID                                       | . 441 |
|    | 10.6 Electrical specification                         | 442   |
|    | 10.6.1 Trace port                                     | 442   |
|    | 10.7 Trace                                            | 442   |
|    | 10.7.1 ATB Funnel                                     | 443   |
|    | 10.7.2 ATB Replicator                                 | . 450 |
|    | 10.7.3 ETB — Embedded trace buffer.                   |       |
|    | 10.7.4 ETM — Embedded trace macrocell                 | 470   |
|    | 10.7.5 TPIU — Trace port interface unit               | 491   |
|    | 10.8 CTRL-AP - Control access port.                   | 505   |
|    | 10.8.1 Reset request                                  | 506   |
|    | 10.8.2 Erase all                                      | 506   |
|    | 10.8.3 Mailbox interface.                             | 506   |
|    | 10.8.4 Disabling erase protection.                    |       |
|    | 10.8.5 Debugger registers.                            |       |
|    | 10.8.6 Registers                                      | 511   |
|    | 10.9 TAD - Trace and debug control.                   |       |
|    | 10.9.1 Registers.                                     | 513   |
|    |                                                       |       |
| 11 | •                                                     |       |
|    | 11.1 Pin assignments                                  |       |
|    | 11 1 1 IGΔ nin assignments                            | 518   |



4512\_092 v1.1 viii

|            | 11.2 Mechanical specifications.              | 521         |
|------------|----------------------------------------------|-------------|
|            | 11.2.1 12.1 x 11.1 mm package                | 521         |
|            | 11.3 Reference circuitry                     | 523         |
|            | 11.3.1 nRF9151 reference design.             | 523         |
|            | 11.4 Reflow conditions                       | 524         |
|            | 11.5 Shelf and floor life                    | 524         |
|            | 11.6 Assembly-related instructions           | 524         |
| 4.0        |                                              |             |
| 12         | Operating conditions.                        | 525         |
|            | 12.1 VDD_GPIO considerations                 | 525         |
| 12         | A la calluta de avidado de matina a          | <b>F</b> 2C |
| 13         | Absolute maximum ratings.                    | 526         |
| 14         | Ordering information.                        | 528         |
|            | 14.1 SiP marking                             | 528         |
|            | 14.2 Box labels                              | 528         |
|            | 14.3 Order code                              | 529         |
|            | 14.4 Code ranges and values.                 | 530         |
|            | 14.5 Ordering options                        | 532         |
| <b>1</b> F | Dogulatow, information                       | гээ         |
| 15         |                                              | 533         |
|            | 15.1 Certified bands                         | 533         |
|            | 15.2 Supported FCC/ISED rules                | 534         |
|            | 15.3 FCC/ISED regulatory notices             | 535         |
|            | 15.4 Anatel regulatory information           | 537         |
|            | 15.5 RF exposure considerations              | 537         |
|            | 15.6 Host device manufacturer responsibility | 538         |
|            | 15.7 Antenna interface                       | 538         |
|            | 15.8 Antenna port test connector             | 538         |
|            | 15.9 Reference design                        | 539         |
| 16         | Legal notices                                | 540         |
|            | ==0a                                         | 5.5         |



4512\_092 v1.1 ix

# 1 Revision history

| Date      | Version | Description                                                                                                                                                                                                        |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2025 | 1.1     | <ul> <li>The following content has been added or updated:</li> <li>Key RF Parameters on page 433 – Supported bands and max output power</li> <li>LTE modem – Non-Terrestrial Network</li> <li>Editorial</li> </ul> |
| July 2024 | 1.0     | First release                                                                                                                                                                                                      |



# 2 About this document

This document is organized into chapters that are based on the modules and peripherals available in the IC

## 2.1 Document status

The document status reflects the level of maturity of the document.

| Document name                         | Description                                                                                                                                                                                                                                                |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective Product Specification (OPS) | Applies to document versions up to 1.0.  This document contains target specifications for product development.                                                                                                                                             |
| Product Specification (PS)            | Applies to document versions 1.0 and higher.  This document contains final product specifications. Nordic Semiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |

Table 1: Defined document names

# 2.2 Peripheral chapters

Every peripheral has a unique capitalized name or an abbreviation of its name, e.g. TIMER, used for identification and reference. This name is used in chapter headings and references, and it will appear in the Arm Cortex Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer to identify the peripheral.

The peripheral instance name, which is different from the peripheral name, is constructed using the peripheral name followed by a numbered postfix, starting with 0, for example, TIMERO. A postfix is normally only used if a peripheral can be instantiated more than once. The peripheral instance name is also used in the CMSIS to identify the peripheral instance.

The chapters describing peripherals may include the following information:

- A detailed functional description of the peripheral.
- The register configuration for the peripheral.
- The electrical specification tables, containing performance data which apply for the operating conditions described in Operating conditions on page 525.

# 2.2.2 Peripheral instantiation

The peripherals have a set of security capabilities listed in the instantiation tables.

The following table describes the abbreviations used.



| Abbreviation | Description                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| NS           | Trustzone/security attribute is Non-secure - The peripheral is always accessible as a Non-secure peripheral.                               |
| S            | Trustzone/security attribute is Secure - The peripheral is always accessible as a Secure peripheral.                                       |
| US           | Trustzone Map is user selectable - The Trustzone/security attribute of the peripheral is configurable.                                     |
| HF           | Trustzone Map is Hardware Fixed - The Trustzone/security attribute of the peripheral cannot be changed.                                    |
| NA           | Not Applicable - Peripheral has no DMA capability.                                                                                         |
| NSA          | NoSeparateAttribute - Peripheral with DMA and DMA transfer has the same security attribute as assigned to the peripheral.                  |
| SA           | SeparateAttribute - Peripheral with DMA and DMA transfers can have a different security attribute than the one assigned to the peripheral. |

Table 2: Instantiation table abbreviations

The Secure mapping column in the peripheral instantiation table defines configuration capabilities for the Arm TrustZone for Armv8-M secure attribute. The DMA security column describes the DMA capabilities of the peripheral.

The instantiation table has the following columns:

- Instance Column Indicates the peripheral instance name followed by optional Trustzone attribute. A corresponding address is listed in Base address column indicating the base address for Secure and Nonsecure Trustzone attribute. This optional Trustzone attribute is separated by a colon (:).
- Trustzone Column This has 3 sub-columns indicating the Trustzone map, Trustzone attribute and DMA capability. The options are as listed in Instantiation table abbreviations on page 12.

# 2.3 Register tables

Individual registers are described using register tables. These tables are built up of two sections. The first three colored rows describe the position and size of the different fields in the register. The following rows describe the fields in more detail.

### 2.3.1 Fields and values

The **Id (Field Id)** row specifies the bits that belong to the different fields in the register. If a field has enumerated values, then every value will be identified with a unique value id in the **Value Id** column.

A blank space means that the field is reserved and read as undefined, and it also must be written as 0 to secure forward compatibility. If a register is divided into more than one field, a unique field name is specified for each field in the **Field** column. The **Value Id** may be omitted in the single-bit bit fields when values can be substituted with a Boolean type enumerator range, e.g. true/false, disable(d)/enable(d), on/ off, and so on.

Values are usually provided as decimal or hexadecimal. Hexadecimal values have a  $0 \times$  prefix, decimal values have no prefix.

The Value column can be populated in the following ways:

- Individual enumerated values, for example 1, 3, 9.
- Range of values, e.g. [0..4], indicating all values from and including 0 and 4.

NORDIC\*

• Implicit values. If no values are indicated in the **Value** column, all bit combinations are supported, or alternatively the field's translation and limitations are described in the text instead.

If two or more fields are closely related, the **Value Id**, **Value**, and **Description** may be omitted for all but the first field. Subsequent fields will indicate inheritance with '..'.

A feature marked **Deprecated** should not be used for new designs.

### 2.3.2 Permissions

Different fields in a register might have different access permissions enforced by hardware.

The access permission for each register field is documented in the Access column in the following ways:

| Access | Description      | Hardware behavior                                                                                                                 |
|--------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| RO     | Read-only        | Field can only be read. A write will be ignored.                                                                                  |
| wo     | Write-only       | Field can only be written. A read will return an undefined value.                                                                 |
| RW     | Read-write       | Field can be read and written multiple times.                                                                                     |
| W1     | Write-once       | Field can only be written once per reset. Any subsequent write will be ignored. A read will return an undefined value.            |
| RW1    | Read-write-once  | Field can be read multiple times, but only written once per reset. Any subsequent write will be ignored.                          |
| W1C    | Write 1 to clear | Field can be read multiple times. A one clears (set to zero) the corresponding bit in the register. Bits set to zero are ignored. |
| W1S    | Write 1 to set   | Field can be read multiple times. A one sets the corresponding bit in the register. Bits set to zero are ignored.                 |

Table 3: Register field permission schemes

# 2.4 Registers

### **Register overview**

| Register | Offset | Description                                       |
|----------|--------|---------------------------------------------------|
| DUMMY    | 0x514  | Example of a register controlling a dummy feature |

### 2.4.1 DUMMY

Address offset: 0x514

Example of a register controlling a dummy feature

| Bit n | umber        |              | 31 30 29 28 27 26 25 24 23 22 21 | 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0    |
|-------|--------------|--------------|----------------------------------|---------------------------------------------------------|
| ID    |              |              | D D D D                          | C C C B A                                               |
| Rese  | t 0x00050002 |              | 0 0 0 0 0 0 0 0 0 0 0            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$    |
| ID    |              |              |                                  |                                                         |
| -A    | RW FIELDO    |              | Example o                        | of a read-write field with several enumerated values    |
|       |              | Disabled     | 0 The exam                       | ple feature is disabled                                 |
|       |              | NormalMode   | 1 The exam                       | ple feature is enabled in normal mode                   |
|       |              | ExtendedMode | 2 The exam                       | ple feature is enabled along with extra functionality   |
| В     | RW FIELD1    |              | Example o                        | of a deprecated read-write field                        |
|       |              |              | This field                       | is deprecated.                                          |
|       |              | Disabled     | 0 The overr                      | ide feature is disabled                                 |
|       |              | Enabled      | 1 The overr                      | ide feature is enabled                                  |
| С     | RW FIELD2    |              | Example o                        | of a read-write field with a valid range of values      |
|       |              | ValidRange   | [27] Example of                  | of allowed values for this field                        |
| D     | RW FIELD3    |              | Example o                        | of a read-write field with no restriction on the values |
|       |              |              |                                  |                                                         |



# 3 Product overview

The nRF9151 System-in-Package (SiP) is a low-power Internet of Things (IoT) solution integrating an Arm Cortex-M33 processor with advanced security features, a range of peripherals and a Low-Power Wide-Area (LPWA) network processor. The LPWA network processor can operate as a 5G DECT NR+ (NR+) device, independent of cellular network provider or as an LTE modem compliant with 3GPP LTE release 14 Cat-M1 and Cat-NB1/NB2 standards.

The LPWA network processor integrates a flexible transceiver with frequency range 700 MHz to 2200 MHz, through a single  $50~\Omega$  antenna pin and a baseband processor. NR+ or LTE operation is supported depending on which network protocol firmware the customer installs on the LPWA network processor of the nRF9151. Nordic Semiconductor provides firmware to support NR+ or LTE, layers L1-L3 and upper IP layers, providing a secure socket API to the application.

The nRF9151 LPWA network processor also integrate a GPS receiver, enabling local positioning support when supported by the installed firmware.

The Arm Cortex-M33 processor is exclusively for the user application, with 1 MB of flash and 256 kB of RAM dedicated for this. The M33 application processor shares the power, clock, and peripheral architecture with Nordic Semiconductor nRF5 Series of PAN/LAN SoCs, ensuring minimal porting efforts.

The peripheral set offers a variety of analog and digital functionality enabling single-chip implementation of a wide range of IoT applications. Arm TrustZone technology, CryptoCell 310 and supporting blocks for system protection and key management, are embedded to enable advanced security needed for IoT applications.

# 3.1 Block diagram

The block diagram illustrates the overall system. Arrows with white heads indicate signals that share physical pins with other signals.



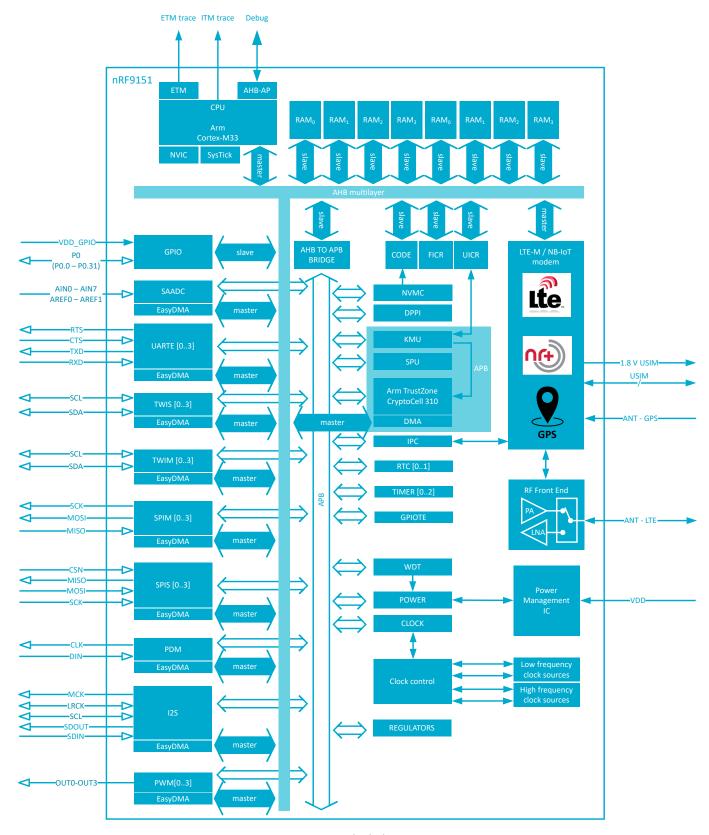



Figure 1: Block diagram

# 3.2 Peripheral interface

Peripherals are controlled by the CPU through configuration registers, as well as task and event registers. Task registers are inputs, enabling the CPU and other peripherals to initiate a functionality. Event registers



are outputs, enabling a peripheral to trigger tasks in other peripherals and/or the CPU by tying events to CPU interrupts.



Figure 2: Peripheral interface

The distributed programmable peripheral interconnect (DPPI) feature enables peripherals to connect events to tasks without CPU intervention. For more information on DPPI and the DPPI channels, see DPPI - Distributed programmable peripheral interconnect on page 151.

## 3.2.1 Peripheral ID

Every peripheral is assigned a fixed block of 0x1000 bytes of address space, which is equal to 1024 x 32-bit registers.

See Instantiation on page 25 for more information about which peripherals are available and where they are located in the address map.

There is a direct relationship between peripheral ID and base address. For example, a peripheral with base address 0x40000000 is assigned ID=0, a peripheral with base address 0x40001000 is assigned ID=1, and a peripheral with base address 0x4001F000 is assigned ID=31.

Peripherals may share the same ID, which may impose one or more of the following limitations:

- Shared registers or common resources
- Limited availability due to mutually exclusive operation; only one peripheral in use at a time

NORDIC\*

• Enforced peripheral behavior when switching between peripherals (disable the first peripheral before enabling the second)

### 3.2.2 Peripherals with shared ID

Peripherals sharing an ID and a base address can not be used simultaneously. Only one peripheral can be enabled per ID.

When switching between two peripherals sharing an ID, the following should be performed to prevent unwanted behavior:

- 1. Disable the previously used peripheral.
- 2. Disable any publish/subscribe connection to the DPPI system for the peripheral that is being disabled.
- **3.** Clear all bits in the INTEN register. (For example, INTENCLR = 0xFFFFFFFF).
- **4.** Configure the peripheral being enabled. Do not rely on the inherited configuration from the disabled peripheral.
- 5. Enable the configured peripheral.

For a list of peripherals that share an ID, see Instantiation on page 25.

### 3.2.3 Peripheral registers

Most peripherals feature an ENABLE register. Unless otherwise specified, the peripheral registers must be configured before enabling the peripheral.

PSEL registers need to be set before a peripheral is enabled or started. Updating PSEL registers while the peripheral is running has no effect. To connect a peripheral to a different GPIO, the following must be performed:

- 1. Disable the peripheral.
- 2. Update the PSEL register.
- 3. Re-enable the peripheral.

It takes four CPU cycles between the PSEL register update and the connection between a peripheral and a GPIO becoming effective.

Note: The peripheral must be enabled before tasks and events can be used.

Most of the register values are lost during System OFF or when a reset is triggered. Some registers will retain their values in System OFF or for some specific reset sources. These registers are marked as retained in the register description for a given peripheral. For more information on their behavior, see chapter Reset on page 58.

### 3.2.4 Bit set and clear

Registers with multiple single-bit bit fields may implement the set-and-clear pattern. This pattern enables firmware to set and clear individual bits in a register without having to perform a read-modify-write operation on the main register.

This pattern is implemented using three consecutive addresses in the register map, where the main register is followed by dedicated SET and CLR registers (in that exact order).

In the main register, the SET register sets individual bits and the CLR register clears them. Writing 1 to a bit in the SET or CLR register will set or clear the same bit in the main register respectively. Writing 0 to a bit in the SET or CLR register has no effect. Reading the SET or CLR register returns the value of the main register.

**Note:** The main register may not be visible and therefore not directly accessible in all cases.



### 3.2.5 Tasks

Tasks are used to trigger actions in a peripheral, such as to start a particular behavior. A peripheral can implement multiple tasks, with each task having a separate register in that peripheral's task register group.

A task is triggered when firmware writes 1 to the task register, or when the peripheral itself or another peripheral toggles the corresponding task signal. See the figure Peripheral interface on page 16.

### 3.2.6 Events

Events are used to notify peripherals and the CPU about events that have happened, for example a state change in a peripheral. A peripheral may generate multiple events, where each event has a separate register in that peripheral's event register group.

An event is generated when the peripheral itself toggles the corresponding event signal, and the event register is updated to reflect that the event has been generated, see figure Peripheral interface on page 16. An event register is cleared when a 0 is written to it by firmware. Events can be generated by the peripheral even when the event register is set to 1.

### 3.2.7 Publish and subscribe

Events and tasks from different peripherals can be connected together through the DPPI system using the PUBLISH and SUBSCRIBE registers in each peripheral. See Peripheral interface on page 16. An event can be published to a DPPI channel by configuring the event's PUBLISH register. Similarly, a task can subscribe to a DPPI channel by configuring the task's SUBSCRIBE register.

See DPPI - Distributed programmable peripheral interconnect on page 151 for details.

### 3.2.8 Shortcuts

A shortcut is a direct connection between an event and a task within the same peripheral. If a shortcut is enabled, the associated task is automatically triggered when its associated event is generated.

Using shortcuts is equivalent to making the connection outside the peripheral and through the DPPI. However, the propagation delay when using shortcuts is usually shorter than the propagation delay through the DPPI.

Shortcuts are predefined, which means that their connections cannot be configured by firmware. Each shortcut can be individually enabled or disabled through the shortcut register, one bit per shortcut, giving a maximum of 32 shortcuts for each peripheral.

## 3.2.9 Interrupts

All peripherals support interrupts which are generated by events.

A peripheral only occupies one interrupt, and the interrupt number follows the peripheral ID. For example, the peripheral with ID=4 is connected to interrupt number 4 in the nested vectored interrupt controller (NVIC).

Using registers INTEN, INTENSET, and INTENCLR, every event generated by a peripheral can be configured to generate that peripheral's interrupt. Multiple events can be enabled to generate interrupts simultaneously. To resolve the correct interrupt source, the event registers in the event group of peripheral registers will indicate the source.

Some peripherals implement only INTENSET and INTENCLR registers, and the INTEN register is not available on those peripherals. See the individual peripheral chapters for details. In all cases, reading back the INTENSET or INTENCLR register returns the same information as in INTEN.

Each event implemented in the peripheral is associated with a specific bit position in the INTEN, INTENSET, and INTENCLR registers.



The relationship between tasks, events, shortcuts, and interrupts is illustrated in figure Peripheral interface on page 16.

### 3.2.9.1 Interrupt clearing and disabling

Interrupts should always be cleared by writing 0 to the corresponding EVENT register.

Until cleared, interrupts will immediately be re-triggered and cause software interrupt service routines to be executed repeatedly.

Because the clearing of the EVENT register may take a number of CPU clock cycles, the program should perform a read from the EVENT register that has been cleared before exiting the interrupt service routine. This will ensure that the EVENT clearing has taken place before the interrupt service routine is exited. Care should be taken to ensure that the compiler does not remove the read operation as an optimization.

Similarly, when disabling an interrupt inside an interrupt service routine, the program should perform a read from the INTEN or INTENCLR registers to ensure that the interrupt is disabled before exiting the interrupt service routine.

### 3.2.10 Secure/non-secure peripherals

For some peripherals, the security configuration can change from secure to non-secure, or vice versa. Care must be taken when changing the security configuration of a peripheral, to prevent security information leakage and ensure correct operation.

The following sequence should be followed, where applicable, when configuring and changing the security settings of a peripheral in the SPU — System protection unit on page 322.

- 1. Stop peripheral operation.
- 2. Disable the peripheral.
- 3. Remove pin connections.
- 4. Disable DPPI connections.
- 5. Clear sensitive registers (e.g. writing back default values).
- **6.** Change peripheral security setting in the SPU System protection unit on page 322.
- 7. Re-enable the peripheral.



# 4 Application core

The nRF9151 application core has a modern and powerful Arm Cortex-M33 with on-chip flash and RAM exclusively for application use.

### 4.1 CPU

The Arm Cortex-M33 processor has a 32-bit instruction set (Thumb<sup>®</sup>-2 technology) that implements a superset of 16 and 32-bit instructions to maximize code density and performance.

This processor implements several features that enable energy-efficient arithmetic and high-performance signal processing, including:

- Digital signal processing (DSP) instructions
- Single-cycle multiply and accumulate (MAC) instructions
- Hardware divide
- 8- and 16-bit single instruction, multiple data (SIMD) instructions
- Single-precision floating-point unit (FPU)
- Memory Protection Unit (MPU)
- Arm TrustZone for ARMv8-M

The Arm Cortex Common Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer for the Arm Cortex processor series is implemented and available for the M33 CPU.

Real-time execution is highly deterministic in thread mode, to and from sleep modes, and when handling events at configurable priority levels via the nested vectored interrupt controller (NVIC).

Executing code from internal or external flash will have a wait state penalty. The instruction cache can be enabled to minimize flash wait states when fetching instructions. For more information on cache, see Cache on page 32. The section Electrical specification on page 21 shows CPU performance parameters including the wait states in different modes, CPU current and efficiency, and processing power and efficiency based on the CoreMark benchmark.

# 4.1.1 Floating-point interrupt

The floating-point unit (FPU) might generate exceptions when used (for example, due to overflow or underflow), which trigger the FPU interrupt.

See Instantiation on page 25 for more information about which exception number (peripheral ID) is triggered by an FPU exception.

The FPU is not affected by any security configuration. It is presented as non-secure in register PERIPHID[n].PERM. See SPU — System protection unit on page 322 for more information.

To clear the IRQ (interrupt request) line when an exception occurs, the relevant exception bit within the floating-point status and control register (FPSCR) must be cleared. For more information about the FPSCR or other FPU registers, see the *Arm Cortex-M33 Devices Generic User Guide*.

# 4.1.2 CPU and support module configuration

The Arm Cortex-M33 processor has a number of CPU options and support modules implemented on the device.



| Option / Module   | Description                                               | Implemented                           |
|-------------------|-----------------------------------------------------------|---------------------------------------|
| Core options      |                                                           |                                       |
| NVIC              | Nested vectored interrupt controller                      | YES                                   |
| PRIORITIES        | Priority bits                                             | 3                                     |
| WIC               | Wake-up interrupt controller                              | NO                                    |
| Endianness        | Memory system endianness                                  | Little endian                         |
| DWT               | Data watchpoint and trace                                 | YES                                   |
| Modules           |                                                           |                                       |
| MPU_NS            | Number of non-secure memory protection unit (MPU) regions | 16                                    |
| MPU_S             | Number of secure MPU regions                              | 16                                    |
| SAU               | Number of security attribution unit (SAU) regions         | 0, see SPU for more information about |
|                   |                                                           | secure regions.                       |
| FPU               | Floating-point unit                                       | YES                                   |
| DSP               | Digital signal processing extension                       | YES                                   |
| ARMv8-M TrustZone | ARMv8-M security extensions                               | YES                                   |
| CPIF              | Co-processor interface                                    | NO                                    |
| ETM               | Embedded trace macrocell                                  | YES                                   |
| ITM               | Instrumentation trace macrocell                           | YES                                   |
| МТВ               | Micro trace buffer                                        | NO                                    |
| СТІ               | Cross trigger interface                                   | YES                                   |
| BPU               | Breakpoint unit                                           | YES                                   |
| HTM               | AMBA AHB trace macrocell                                  | NO                                    |

# 4.1.3 Electrical specification

### 4.1.3.1 CPU performance

The CPU clock speed is 64 MHz. Current and efficiency data is taken when in System ON and the CPU is executing the CoreMark benchmark. It includes power regulator and clock base currents. All other blocks are IDLE.

| Symbol                  | Description                                               | Min. | Тур. | Max. | Units       |
|-------------------------|-----------------------------------------------------------|------|------|------|-------------|
| W <sub>FLASH</sub>      | CPU wait states, running from flash, cache disabled       | 0    |      | 4    |             |
| W <sub>FLASHCACHE</sub> | CPU wait states, running from flash, cache enabled        | 0    |      | 2    |             |
| W <sub>RAM</sub>        | CPU wait states, running from RAM                         |      |      | 0    |             |
| $CM_{FLASH}$            | CoreMark <sup>1</sup> , running from flash, cache enabled |      | 247  |      | CoreMark    |
| CM <sub>FLASH/MHz</sub> | CoreMark per MHz, running from flash, cache enabled       |      | 3.86 |      | CoreMark/   |
|                         |                                                           |      |      |      | MHz         |
| CM <sub>FLASH/mA</sub>  | CoreMark per mA, running from flash, cache enabled        |      | 91   |      | CoreMark/mA |

# 4.2 Memory

The application microcontroller has embedded 1024 kB flash and 256 kB RAM for application code and data storage.

As illustrated in Memory layout on page 22, both CPU and EasyDMA are able to access RAM via the AHB multilayer interconnect. See AHB multilayer interconnect on page 48 and EasyDMA on page 46 for more information about AHB multilayer interconnect and EasyDMA respectively. The LTE modem can access all application MCU memory, but typically a small portion of RAM is dedicated to data exchange between application MCU and the modem baseband controller.

NORDIC\*

<sup>&</sup>lt;sup>1</sup> Using armclang compiler

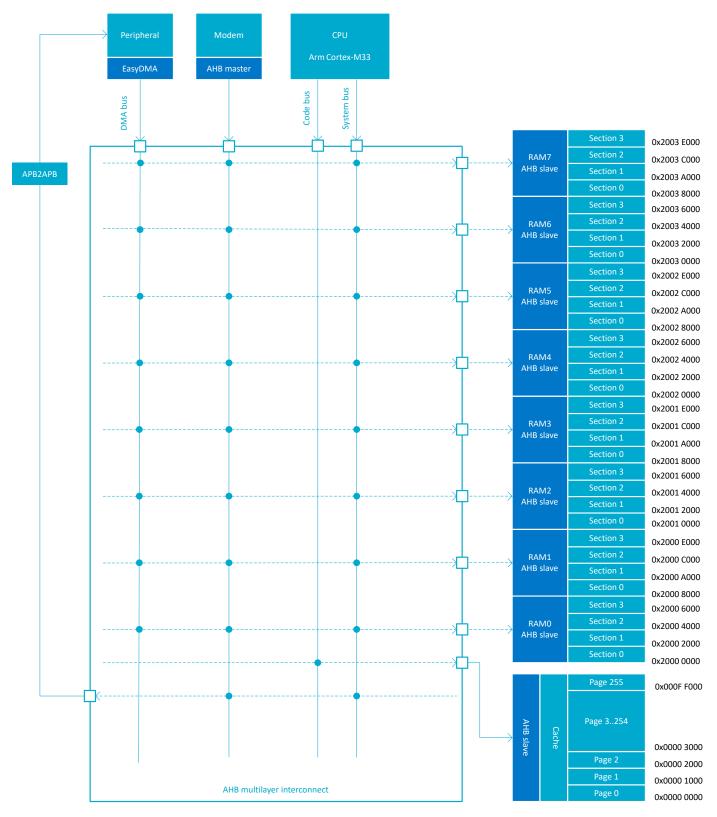



Figure 3: Memory layout

### **RAM - Random access memory**

RAM can be read and written an unlimited number of times by the CPU and the EasyDMA.

Each RAM AHB slave is connected to one or more RAM sections. See Memory layout on page 22 for more information.



The RAM blocks power states and retention states in System ON and System OFF modes are controlled by the VMC.

### Flash - Non-volatile memory

Flash can be read an unlimited number of times by the CPU and is accessible via the AHB interface connected to the CPU, see Memory layout on page 22 for more information. There are restrictions on the number of times flash can be written and erased, and also on how it can be written. For more information, see Absolute maximum ratings on page 526. Writing to flash is managed by the non-volatile memory controller (NVMC).

# 4.2.1 Memory map

All memory and registers are found in the same address space, as illustrated in the device memory map below.



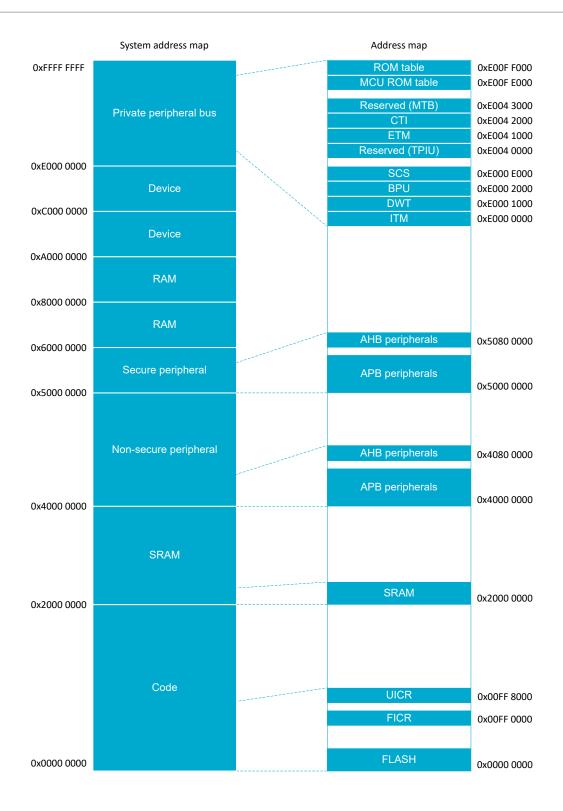



Figure 4: Memory map

Some of the registers are retained (their values kept). Read more about retained registers in Retained registers on page 59 and Reset behavior on page 59.



# 4.2.2 Instantiation

| ID | Base address             | Instance                | TrustZone |     |              | Split access | Description                                      |
|----|--------------------------|-------------------------|-----------|-----|--------------|--------------|--------------------------------------------------|
|    |                          |                         | Мар       | Att | DMA          |              |                                                  |
| 3  | 0x50003000               | SPU                     | HF        | S   | NA           | No           | System Protection Unit                           |
| 4  | 0x50004000               | REGULATORS : S          | US        | NS  | NA           | No           | Regulator configuration                          |
| 4  | 0x40004000               | REGULATORS : NS         | 03        | NS  | NA .         | NO           | Regulator configuration                          |
| 5  | 0x50005000               | CLOCK : S               | US        | NS  | NA           | No           | Clock control                                    |
|    | 0x40005000               | CLOCK : NS              |           |     |              |              |                                                  |
| 5  | 0x50005000               | POWER : S               | US        | NS  | NA           | No           | Power control                                    |
|    | 0x40005000               | POWER : NS              |           |     |              |              |                                                  |
| 6  | 0x50006000               | CTRL_AP_PERI            | HF        | S   | NA           | No           | CTRL-AP-PERI                                     |
| 8  | 0x50008000<br>0x40008000 | SPIM0 : S<br>SPIM0 : NS | US        | NS  | SA           | No           | SPI master 0                                     |
|    | 0x50008000               | SPISO : S               |           |     |              |              |                                                  |
| 8  | 0x40008000               | SPISO : NS              | US        | NS  | SA           | No           | SPI slave 0                                      |
|    | 0x50008000               | TWIM0 : S               |           |     |              |              |                                                  |
| 8  | 0x40008000               | TWIM0 : NS              | US        | NS  | SA           | No           | Two-wire interface master 0                      |
| 0  | 0x50008000               | TWIS0 : S               | uc        | NC  | C A          | N-           | Tura unitra inhantina alaun 0                    |
| 8  | 0x40008000               | TWIS0 : NS              | US        | NS  | SA           | No           | Two-wire interface slave 0                       |
| 8  | 0x50008000               | UARTEO: S               | US        | NS  | SA           | No           | Universal asynchronous receiver/transmitter with |
| O  | 0x40008000               | UARTEO: NS              | 03        | 145 | JA           | NO           | EasyDMA 0                                        |
| 9  | 0x50009000               | SPIM1 : S               | US        | NS  | SA           | No           | SPI master 1                                     |
|    | 0x40009000               | SPIM1 : NS              |           |     |              |              |                                                  |
| 9  | 0x50009000               | SPIS1 : S               | US        | NS  | SA           | No           | SPI slave 1                                      |
|    | 0x40009000               | SPIS1 : NS              |           |     |              |              |                                                  |
| 9  | 0x50009000               | TWIM1 : S               | US        | NS  | SA           | No           | Two-wire interface master 1                      |
|    | 0x40009000<br>0x50009000 | TWIM1 : NS TWIS1 : S    |           |     |              |              |                                                  |
| 9  | 0x40009000               | TWIS1: NS               | US        | NS  | SA           | No           | Two-wire interface slave 1                       |
|    | 0x50009000               | UARTE1:S                |           |     |              |              | Universal asynchronous receiver/transmitter with |
| 9  | 0x40009000               | UARTE1 : NS             | US        | NS  | SA           | No           | EasyDMA 1                                        |
|    | 0x5000A000               | SPIM2 : S               |           |     |              |              |                                                  |
| 10 | 0x4000A000               | SPIM2 : NS              | US        | NS  | SA           | No           | SPI master 2                                     |
| 10 | 0x5000A000               | SPIS2 : S               | US        | NS  | SA           | No           | SPI slave 2                                      |
| 10 | 0x4000A000               | SPIS2 : NS              | 03        | INS | SA           | NO           | SFI Sidve 2                                      |
| 10 | 0x5000A000               | TWIM2 : S               | US        | NS  | SA           | No           | Two-wire interface master 2                      |
| 10 | 0x4000A000               | TWIM2 : NS              |           |     | <b>0</b> , 1 |              | The time interrupe model i                       |
| 10 | 0x5000A000               | TWIS2 : S               | US        | NS  | SA           | No           | Two-wire interface slave 2                       |
|    | 0x4000A000               | TWIS2 : NS              |           |     |              |              |                                                  |
| 10 | 0x5000A000               | UARTE2 : S              | US        | NS  | SA           | No           | Universal asynchronous receiver/transmitter with |
|    | 0x4000A000               | UARTE2 : NS             |           |     |              |              | EasyDMA 2                                        |
| 11 | 0x5000B000<br>0x4000B000 | SPIM3 : S<br>SPIM3 : NS | US        | NS  | SA           | No           | SPI master 3                                     |
|    | 0x4000B000               | SPIS3 : S               |           |     |              |              |                                                  |
| 11 | 0x4000B000               | SPIS3 : NS              | US        | NS  | SA           | No           | SPI slave 3                                      |
|    | 0x5000B000               | TWIM3 : S               |           |     |              |              |                                                  |
| 11 | 0x4000B000               | TWIM3 : NS              | US        | NS  | SA           | No           | Two-wire interface master 3                      |
|    | 0x5000B000               | TWIS3 : S               |           |     |              |              |                                                  |
| 11 | 0x4000B000               | TWIS3 : NS              | US        | NS  | SA           | No           | Two-wire interface slave 3                       |
| 11 | 0x5000B000               | UARTE3 : S              | LIE       | NC  | 64           | No           | Universal asynchronous receiver/transmitter with |
| 11 | 0x4000B000               | UARTE3 : NS             | US        | NS  | SA           | No           | EasyDMA 3                                        |
| 13 | 0x5000D000               | GPIOTE0                 | HF        | S   | NA           | No           | Secure GPIO tasks and events                     |



| ID  | Base address             | Instance               | TrustZone |          |          | Split access | Description                                           |
|-----|--------------------------|------------------------|-----------|----------|----------|--------------|-------------------------------------------------------|
|     |                          |                        | Мар       | Att      | DMA      |              |                                                       |
| 14  | 0x5000E000               | SAADC : S              | US        | NS       | SA       | No           | Analog to digital converter                           |
|     | 0x4000E000               | SAADC : NS             |           |          |          |              |                                                       |
| 15  | 0x5000F000               | TIMERO : S             | US        | NS       | NA       | No           | Timer 0                                               |
|     | 0x4000F000<br>0x50010000 | TIMER0 : NS TIMER1 : S |           |          |          |              |                                                       |
| 16  | 0x40010000               | TIMER1 : NS            | US        | NS       | NA       | No           | Timer 1                                               |
|     | 0x50011000               | TIMER2 : S             |           |          |          |              |                                                       |
| 17  | 0x40011000               | TIMER2 : NS            | US        | NS       | NA       | No           | Timer 2                                               |
| 20  | 0x50014000               | RTC0:S                 | US        | NS       | NA       | No           | Real time counter 0                                   |
| 20  | 0x40014000               | RTC0 : NS              | 03        | NS       | IVA      | NO           | real time counter o                                   |
| 21  | 0x50015000               | RTC1:S                 | US        | NS       | NA       | No           | Real time counter 1                                   |
|     | 0x40015000               | RTC1: NS               |           |          |          |              |                                                       |
| 23  | 0x50017000               | DPPIC: S               | HF        | NS       | NA       | Yes          | DPPI configuration                                    |
|     | 0x40017000<br>0x50018000 | DPPIC: NS<br>WDT: S    |           |          |          |              |                                                       |
| 24  | 0x40018000               | WDT:NS                 | US        | NS       | NA       | No           | Watchdog timer                                        |
|     | 0x5001B000               | EGU0 : S               |           |          |          |              |                                                       |
| 27  | 0x4001B000               | EGU0 : NS              | US        | NS       | NA       | No           | Event generator unit 0                                |
| 28  | 0x5001C000               | EGU1:S                 | US        | NS       | NA       | No           | Event generator unit 1                                |
| 28  | 0x4001C000               | EGU1: NS               | US        | INS      | INA      | No           | Event generator unit 1                                |
| 29  | 0x5001D000               | EGU2:S                 | US        | NS       | NA       | No           | Event generator unit 2                                |
|     | 0x4001D000               | EGU2 : NS              |           |          |          |              | <u> </u>                                              |
| 30  | 0x5001E000               | EGU3:S                 | US        | NS       | NA       | No           | Event generator unit 3                                |
|     | 0x4001E000<br>0x5001F000 | EGU3 : NS<br>EGU4 : S  |           |          |          |              |                                                       |
| 31  | 0x4001F000               | EGU4 : NS              | US        | NS       | NA       | No           | Event generator unit 4                                |
|     | 0x50020000               | EGU5 : S               |           |          |          |              |                                                       |
| 32  | 0x40020000               | EGU5 : NS              | US        | NS       | NA       | No           | Event generator unit 5                                |
| 33  | 0x50021000               | PWM0 : S               | US        | NS       | SA       | No           | Pulse width modulation unit 0                         |
| 33  | 0x40021000               | PWM0 : NS              | 03        | INS      | ЭА       | INO          | ruise width modulation diff. 0                        |
| 34  | 0x50022000               | PWM1:S                 | US        | NS       | SA       | No           | Pulse width modulation unit 1                         |
|     | 0x40022000               | PWM1 : NS              |           |          |          |              |                                                       |
| 35  | 0x50023000<br>0x40023000 | PWM2 : S<br>PWM2 : NS  | US        | NS       | SA       | No           | Pulse width modulation unit 2                         |
|     | 0x50024000               | PWM3:S                 |           |          |          |              |                                                       |
| 36  | 0x40024000               | PWM3 : NS              | US        | NS       | SA       | No           | Pulse width modulation unit 3                         |
|     | 0x50026000               | PDM:S                  |           |          |          |              | Pulse density modulation (digital microphone)         |
| 38  | 0x40026000               | PDM: NS                | US        | NS       | SA       | No           | interface                                             |
| 40  | 0x50028000               | 12S : S                | US        | NS       | SA       | No           | Inter-IC Sound                                        |
| 40  | 0x40028000               | 12S : NS               | 03        | 113      | 371      | 110          | mer re sound                                          |
| 42  | 0x5002A000               | IPC:S                  | US        | NS       | NA       | No           | Interprocessor communication                          |
| 4.4 | 0x4002A000               | IPC : NS               | ШЕ        | NC       | NA       | No           | Floating point unit                                   |
| 44  | 0x4002C000<br>0x40031000 | FPU<br>GPIOTE1         | HF<br>HF  | NS<br>NS | NA<br>NA | No<br>No     | Floating-point unit  Non Secure GPIO tasks and events |
| +3  | 0x50039000               | APPROTECT : S          |           | 145      | IVA      | 140          | non secure of to tasks and events                     |
| 57  | 0x40039000               | APPROTECT : NS         | HF        | NS       | NA       | Yes          | APPROTECT control                                     |
|     | 0x50039000               | KMU : S                | 115       | NC       | NA       | V            | Karamanan II                                          |
| 57  | 0x40039000               | KMU : NS               | HF        | NS       | NA       | Yes          | Key management unit                                   |
| 57  | 0x50039000               | NVMC : S               | HF        | NS       | NA       | Yes          | Non-volatile memory controller                        |
| 3.  | 0x40039000               | NVMC : NS              |           |          |          |              |                                                       |
| 58  | 0x5003A000               | VMC:S                  | US        | NS       | NA       | No           | Volatile memory controller                            |
|     | 0x4003A000               | VMC : NS               |           |          |          |              |                                                       |



| ID  | Base address | Instance      | TrustZone |     |     | Split access | Description                        |
|-----|--------------|---------------|-----------|-----|-----|--------------|------------------------------------|
|     |              |               | Мар       | Att | DMA |              |                                    |
| 64  | 0x50840000   | CRYPTOCELL    | HF        | S   | NSA | No           | CRYPTOCELL 310 security subsystem  |
| 65  | 0x50841000   | CC_AES        | HF        | S   | NSA | No           | CRYPTOCELL AES engine              |
| 65  | 0x50841000   | CC_AHB        | HF        | S   | NSA | No           | CRYPTOCELL AHB interface           |
| 65  | 0x50841000   | CC_CHACHA     | HF        | S   | NSA | No           | CRYPTOCELL CHACHA engine           |
| 65  | 0x50841000   | CC_CTL        | HF        | S   | NSA | No           | CRYPTOCELL CTL interface           |
| 65  | 0x50841000   | CC_DIN        | HF        | S   | NSA | No           | CRYPTOCELL DIN DMA engine          |
| 65  | 0x50841000   | CC_DOUT       | HF        | S   | NSA | No           | CRYPTOCELL DOUT DMA engine         |
| 65  | 0x50841000   | CC_HASH       | HF        | S   | NSA | No           | CRYPTOCELL HASH engine             |
| 65  | 0x50841000   | CC_HOST_RGF   | HF        | S   | NSA | No           | CRYPTOCELL HOST register interface |
| 65  | 0x50841000   | CC_MISC       | HF        | S   | NSA | No           | CRYPTOCELL MISC interface          |
| 65  | 0x50841000   | CC_PKA        | HF        | S   | NSA | No           | CRYPTOCELL PKA engine              |
| 65  | 0x50841000   | CC_RNG        | HF        | S   | NSA | No           | CRYPTOCELL RNG engine              |
| 65  | 0x50841000   | CC_RNG_SRAM   | HF        | S   | NSA | No           | CRYPTOCELL RNG SRAM interface      |
| 66  | 0x50842500   | P0:S          | HF        | NS  | NA  | Yes          | General purpose input and output   |
| 00  | 0x40842500   | P0 : NS       | ПГ        | INS | NA  | res          | deneral purpose input and output   |
| N/A | 0x00FF0000   | FICR          | HF        | S   | NA  | No           | Factory information configuration  |
| N/A | 0x00FF8000   | UICR          | HF        | S   | NA  | No           | User information configuration     |
| N/A | 0xE0041000   | ETM           | HF        | NS  | NA  | No           | ETM                                |
| N/A | 0xE0051000   | ETB           | HF        | NS  | NA  | No           | ETB                                |
| N/A | 0xE0054000   | TPIU          | HF        | NS  | NA  | No           | TPIU                               |
| N/A | 0xE0058000   | ATBREPLICATOR | HF        | NS  | NA  | No           | ATBREPLICATOR                      |
| N/A | 0xE005A000   | ATBFUNNEL1    | HF        | NS  | NA  | No           | ATBFUNNEL unit 1                   |
| N/A | 0xE005B000   | ATBFUNNEL2    | HF        | NS  | NA  | No           | ATBFUNNEL unit 2                   |
| N/A | 0xE0080000   | TAD           | HF        | S   | NA  | No           | Trace and debug control            |

Table 4: Instantiation table

# 4.2.3 Peripheral access control capabilities

Information about the peripheral access control capabilities can be found in the instantiation table.

The instantiation table has two columns containing the information about access control capabilities for a peripheral:

- Secure mapping: This column defines configuration capabilities for TrustZone-M secure attribute.
- DMA security: This column indicates whether the peripheral has DMA capabilities, and if DMA transfer can be assigned to a different security attribute than the peripheral itself.

For details on options in secure mapping column and DMA security column, see the following tables respectively.

| Abbreviation | Description                                                                                                      |  |  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| NS           | Non-secure: This peripheral is always accessible as a non-secure peripheral.                                     |  |  |  |  |  |  |  |  |
| S            | Secure: This peripheral is always accessible as a secure peripheral.                                             |  |  |  |  |  |  |  |  |
| US           | User-selectable: Non-secure or secure attribute for this peripheral is defined by the PERIPHID[0].PERM register. |  |  |  |  |  |  |  |  |
| SPLIT        | Both non-secure and secure: The same resource is shared by both secure and non-secure code.                      |  |  |  |  |  |  |  |  |

Table 5: Secure mapping column options



| Abbreviation | Description                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| NA           | Not applicable: Peripheral has no DMA capability.                                                                                          |
| NSA          | No separate attribute: Peripheral has DMA, and DMA transfers always have the same security attribute as assigned to the peripheral.        |
| SA           | Separate attribute: Peripheral has DMA, and DMA transfers can have a different security attribute than the one assigned to the peripheral. |

Table 6: DMA security column options

# 4.3 VMC — Volatile memory controller

The volatile memory controller (VMC) provides power control of RAM blocks.

Each of the available RAM blocks, which can contain multiple RAM sections, can be turned on or off independently in System ON mode, using the RAM[n]registers. These registers also control if a RAM block, or some of its sections, is retained in System OFF mode. See Memory chapter for more information about RAM blocks and sections.

**Note:** Powering up a RAM block takes typically 10 cycles. Thus, it is recommended reading the POWER register before accessing a RAM block that has been recently powered on.

### 4.3.1 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                |
|----------|--------------|-----------|-----|-----|--------------|----------------------------|
|          |              | Мар       | Att | DMA |              |                            |
| VMC : S  | 0x5003A000   | US        | NS  | NA  | No           | Volatile memory controller |
| VMC: NS  | 0x4003A000   | 03        | INS | INA | INO          | volatile memory controller |

### **Register overview**

| Register        | Offset 1 | TZ | Description                       |
|-----------------|----------|----|-----------------------------------|
| RAM[n].POWER    | 0x600    |    | RAMn power control register       |
| RAM[n].POWERSET | 0x604    |    | RAMn power control set register   |
| RAM[n].POWERCLR | 0x608    |    | RAMn power control clear register |

### 4.3.1.1 RAM[n].POWER (n=0..7)

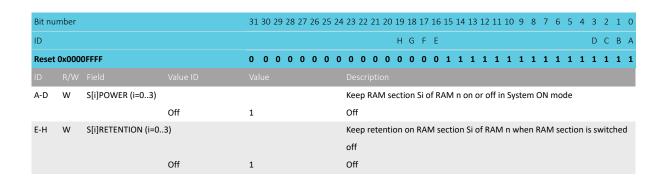
Address offset:  $0x600 + (n \times 0x10)$ RAMn power control register



| D:+    |       |                    |     | 21 | 20 | 20.2 | 00 | 27 . | 20 | 25 | 2.4 | 22.5  |      | 21.2  | 0 1  | 0 1 | 10 1 | 7 /  | 1.0.1 |      | 11.  | 12   | 12    | 11   | 10  | 0    | 0   | 7    | _   | _    | 4    | 3  | 2    | 1   | 0 |
|--------|-------|--------------------|-----|----|----|------|----|------|----|----|-----|-------|------|-------|------|-----|------|------|-------|------|------|------|-------|------|-----|------|-----|------|-----|------|------|----|------|-----|---|
| BIT NO | ımber |                    |     | 31 | 30 | 29 2 | 28 | 21.  | 26 | 25 | 24  | 23 2  | 22 2 | 21 2  |      |     |      |      |       | 15   | 14 . | 13.  | 12    | 11   | 10  | 9    | 8   | /    | ь   | 5    | 4    | _  | -    | -   | U |
| ID     |       |                    |     |    |    |      |    |      |    |    |     |       |      |       | ŀ    | + ' | G    | F    | E     |      |      |      |       |      |     |      |     |      |     |      |      | D  | С    | В   | Α |
| Reset  | 0x000 | OFFFF              |     | 0  | 0  | 0    | 0  | 0    | 0  | 0  | 0   | 0     | 0    | 0 (   | ) (  | 0   | 0    | 0    | 0     | 1    | 1    | 1    | 1     | 1    | 1   | 1    | 1   | 1    | 1   | 1    | 1    | 1  | 1    | 1   | 1 |
| ID     |       |                    |     |    |    |      |    |      |    |    |     |       |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |
| A-D    | RW    | S[i]POWER (i=03)   |     |    |    |      |    |      |    |    |     | Kee   | p R  | AM    | sec  | tio | n Si | of   | RA    | M    | n o  | n o  | r of  | f in | Sy  | ster | n C | )N n | noc | le   |      |    |      |     |   |
|        |       |                    |     |    |    |      |    |      |    |    |     | All F | RAN  | ∕l se | ctic | ns  | wil  | l be | e sv  | vito | he   | d of | ff in | Sy   | ste | m C  | FF  | mo   | de  |      |      |    |      |     |   |
|        |       |                    | Off | 0  |    |      |    |      |    |    |     | Off   |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |
|        |       |                    | On  | 1  |    |      |    |      |    |    |     | On    |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |
| E-H    | RW    | S[i]RETENTION (i=0 | 3)  |    |    |      |    |      |    |    |     | Kee   | p re | eten  | tio  | n o | n R  | ΑM   | se    | ctio | on S | i o  | f RA  | M    | n v | vhe  | n R | AM   | se  | ctio | n is | sw | itch | ned |   |
|        |       |                    |     |    |    |      |    |      |    |    |     | off   |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |
|        |       |                    | Off | 0  |    |      |    |      |    |    |     | Off   |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |
|        |       |                    | On  | 1  |    |      |    |      |    |    |     | On    |      |       |      |     |      |      |       |      |      |      |       |      |     |      |     |      |     |      |      |    |      |     |   |

# 4.3.1.2 RAM[n].POWERSET (n=0..7)

Address offset:  $0x604 + (n \times 0x10)$ RAMn power control set register


When read, this register will return the value of the POWER register.

| Bit nu | mber  |                     |     | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1          |
|--------|-------|---------------------|-----|-------------------------|------------------------------------------------------------------------|
| ID     |       |                     |     |                         | H G F E D C B                                                          |
| Reset  | 0x000 | OFFFF               |     | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1                                |
| ID     |       |                     |     |                         |                                                                        |
| A-D    | W     | S[i]POWER (i=03)    |     |                         | Keep RAM section Si of RAM n on or off in System ON mode               |
|        |       |                     | On  | 1                       | On                                                                     |
| E-H    | W     | S[i]RETENTION (i=0. | .3) |                         | Keep retention on RAM section Si of RAM n when RAM section is switched |
|        |       |                     |     |                         | off                                                                    |
|        |       |                     | On  | 1                       | On                                                                     |

### 4.3.1.3 RAM[n].POWERCLR (n=0..7)

Address offset:  $0x608 + (n \times 0x10)$ RAMn power control clear register

When read, this register will return the value of the POWER register.



# 4.4 NVMC — Non-volatile memory controller

The non-volatile memory controller (NVMC) is used for writing and erasing of the internal flash memory and the user information configuration register (UICR).



The NVMC is a split security peripheral. This means that when the NVMC is configured as non-secure, only a subset of the registers is available from the non-secure code. See SPU — System protection unit on page 322 and Registers on page 32 for more details.

When the NVMC is configured to be a secure peripheral, only secure code has access.

Before a write can be performed, the NVMC must be enabled for writing in CONFIG.WEN. Similarly, before an erase can be performed, the NVMC must be enabled for erasing in CONFIG.EEN, see CONFIG on page 33. The user must make sure that writing and erasing are not enabled at the same time. Failing to do so may result in unpredictable behavior.

### 4.4.1 Writing to flash

When writing is enabled, in CONFIG register for secure region, or in CONFIGNS register for non-secure region, flash is written by writing a full 32-bit word to a word-aligned address in flash.

Secure code has access to both secure and non-secure regions, by using the appropriate configuration of CONFIG and CONFIGNS registers. Non-secure code, in contrast, has access to non-secure regions only. Thus, non-secure code only needs CONFIGNS.

The NVMC is only able to write '0' to erased bits in flash, that is bits set to '1'. It cannot write a bit back to '1'.

As illustrated in Memory on page 21, flash is divided into multiple pages. The same address in flash can only be written nwell number of times before a page erase must be performed.

Only full 32-bit words can be written to flash using the NVMC interface. To write less than 32 bits to flash, write the data as a word, and set all the bits that should remain unchanged in the word to '1'. Note that the restriction about the number of writes (see above) still applies in this case.

The time it takes to write a word to flash is specified by  $t_{WRITE}$ . If CPU executes code from flash while the NVMC is writing to flash, the CPU will be stalled.

Only word-aligned writes are allowed. Byte or half-word-aligned writes will result in a bus fault.

# 4.4.2 Erasing a secure page in flash

When secure region erase is enabled (in CONFIG register), a flash page can be erased by writing 0xFFFFFFFF into the first 32-bit word in a flash page.

Page erase is only applicable to the code area in the flash and does not work with UICR.

After erasing a flash page, all bits in the page are set to '1'. The time it takes to erase a page is specified by t<sub>ERASEPAGE</sub>. The CPU is stalled if the CPU executes code from the flash while the NVMC performs the erase operation.

See Partial erase of a page in flash for information on splitting the erase time in smaller chunks.

# 4.4.3 Erasing a non-secure page in flash

When non-secure region erase is enabled, a non-secure flash page can be erased by writing 0xFFFFFFFF into the first 32-bit word of the flash page.

Page erase is only applicable to the code area in the flash and does not work with UICR.

After erasing a flash page, all bits in the page are set to '1'. The time it takes to erase a page is specified by t<sub>ERASEPAGE</sub>. The CPU is stalled if the CPU executes code from the flash while the NVMC performs the erase operation.

# 4.4.4 Writing to user information configuration registers (UICR)

User information configuration registers (UICR) are written in the same way as flash. After UICR has been written, the new UICR configuration only takes effect after a reset.

NORDIC

UICR is only accessible by secure code. Any write from non-secure code will be faulted.

In order to lock the chip after uploading non-secure code, a simple sequence must be followed:

- 1. Block access to secure code by setting UICR register SECUREAPPROTECT on page 44 to protected
- 2. Use the WRITEUICRNS on page 35 register, via non-secure debugger, in order to set APPROTECT (APPROTECT is automatically written to 0x00000000 by the NVMC)

UICR can only be written nwRITF number of times before an erase must be performed using ERASEALL.

The time it takes to write a word to the UICR is specified by  $t_{WRITE}$ . The CPU is stalled if the CPU executes code from the flash while the NVMC is writing to the UICR.

### 4.4.5 Frase all

When erase is enabled, the whole flash and UICR can be erased in one operation by using the ERASEALL register. ERASEALL does not erase the factory information configuration registers (FICR).

This functionality can be blocked by some configuration of the UICR protection bits, see the table NVMC protection (1 - Enabled, 0 - Disabled, X - Don't care) on page 31.

The time it takes to perform an ERASEALL on page 33 command is specified by t<sub>ERASEALL</sub>. The CPU is stalled if the CPU executes code from the flash while the NVMC performs the erase operation.

### 4.4.6 NVMC protection mechanisms

This chapter describes the different protection mechanisms for the non-volatile memory.

### 4.4.6.1 NVMC blocking

UICR integrity is assured through use of multiple levels of protection. UICR protection bits can be configured to allow or block certain operations.

The table below shows the different statuses of UICR protection bits, and which operations are allowed or blocked.

| ι               | JICR protection bit st | tatus        | NVMC      | protection |
|-----------------|------------------------|--------------|-----------|------------|
| SECUREAPPROTECT | T APPROTECT            | ERASEPROTECT | CTRL-AP   | NVMC       |
|                 |                        |              | ERASEALL  | ERASEALL   |
| 0               | 0                      | 0            | Available | Available  |
| 1               | X                      | 0            | Available | Blocked    |
| X               | 1                      | 0            | Available | Blocked    |
| X               | Х                      | 1            | Blocked   | Blocked    |

Table 7: NVMC protection (1 - Enabled, 0 - Disabled, X - Don't care)

**Note:** Erase can still be performed through CTRL-AP, regardless of the above settings. See CTRL-AP - Control access port on page 505 for more information.

#### Uploading code with secure debugging blocked

Non-secure code can program non-secure flash regions. In order to perform these operations, the NVMC has the following non-secure registers: CONFIGNS, READY and READYNEXT.

Register CONFIGNS on page 35 works as the CONFIG register but it is used only for non-secure transactions. Both page erase and writing to flash require a write transaction (see Erasing a secure page in flash on page 30 or Erasing a non-secure page in flash on page 30). The SPU — System protection unit on page 322 prevents non-secure code from writing to a secure page since the transaction will never reach the NVMC controller.



### 4.4.6.2 NVMC power failure protection

NVMC power failure protection is possible using a power-fail comparator which monitors the power supply. If the power-fail comparator is enabled, and the power supply voltage is below V<sub>POF</sub> threshold, the comparator prevents the NVMC from performing erase or write operations in non-volatile memory (NVM).

If a power failure warning is present at the start of an NVM write or erase operation, the NVMC blocks the operation and a bus error is signaled.

If the power failure warning occurs during an ongoing NVM write operation, the NVMC will try to finish the operation. However, if the power failure warning persists, consecutive NVM write operations are blocked by the NVMC, and a bus error is signaled.

If a power failure warning occurs during an NVM erase operation, the operation is aborted and a bus error is signaled.

### 4.4.7 Cache

An instruction cache (I-Cache) can be enabled for the ICODE bus in the NVMC.

See Memory map on page 23 for the location of flash.

A cache hit is an instruction fetch from the cache, and it has a 0 wait-state delay. The number of wait-states for a cache miss, where the instruction is not available in the cache and needs to be fetched from flash, depends on the processor frequency, see CPU parameter W\_FLASHCACHE.

Enabling the cache can increase the CPU performance and reduce power consumption, by reducing the number of wait cycles and the number of flash accesses. This depends on the cache hit rate. Cache draws current when enabled. If the reduction in average current due to reduced flash accesses is larger than the cache power requirement, the average current to execute the program code is reduced.

When disabled, the cache does not draw current and its content is not retained.

It is possible to enable cache profiling to analyze the performance of the cache for your program using the register ICACHECNF. When profiling is enabled, registers IHIT and IMISS are incremented for every instruction cache hit or miss respectively.

## 4.4.8 Registers

#### **Instances**

| Instance  | Base address | TrustZone |     |     | Split access | Description                    |
|-----------|--------------|-----------|-----|-----|--------------|--------------------------------|
|           |              | Мар       | Att | DMA |              |                                |
| NVMC : S  | 0x50039000   | HF        | NS  | NA  | Yes          | Non volatila mamary controllar |
| NVMC : NS | 0x40039000   | ПГ        | INS | INA | res          | Non-volatile memory controller |

### **Register overview**

| Register            | Offset | TZ | Description                                       |
|---------------------|--------|----|---------------------------------------------------|
| READY               | 0x400  | NS | Ready flag                                        |
| READYNEXT           | 0x408  | NS | Ready flag                                        |
| CONFIG              | 0x504  | S  | Configuration register                            |
| ERASEALL            | 0x50C  | S  | Register for erasing all non-volatile user memory |
| ERASEPAGEPARTIALCFG | 0x51C  | S  | Register for partial erase configuration          |
| ICACHECNF           | 0x540  | S  | I-code cache configuration register               |
| IHIT                | 0x548  | S  | I-code cache hit counter                          |
| IMISS               | 0x54C  | S  | I-code cache miss counter                         |

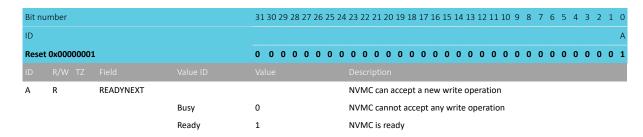




| Register    | Offset | TZ | Description                          |
|-------------|--------|----|--------------------------------------|
| CONFIGNS    | 0x584  | NS |                                      |
| WRITEUICRNS | 0x588  | NS | Non-secure APPROTECT enable register |

### 4.4.8.1 READY

Address offset: 0x400


Ready flag

| Bit nu | umber       |       |       | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 | 1 0 |
|--------|-------------|-------|-------|-----------------------------------------------------------------------------------|-----|
| ID     |             |       |       |                                                                                   | Α   |
| Reset  | t 0x0000000 | 1     |       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                           | 0 1 |
| ID     |             |       |       |                                                                                   |     |
| Α      | R           | READY |       | NVMC is ready or busy                                                             |     |
|        |             |       | Busy  | 0 NVMC is busy (on-going write or erase operation)                                |     |
|        |             |       | Ready | 1 NVMC is ready                                                                   |     |

### 4.4.8.2 READYNEXT

Address offset: 0x408

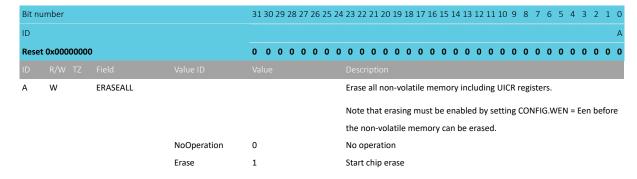
Ready flag



### 4.4.8.3 CONFIG

Address offset: 0x504 Configuration register

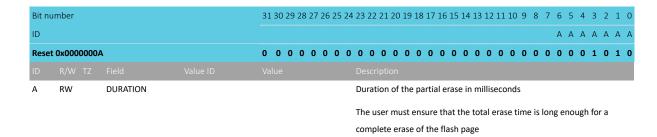
**Note:** This register is one hot


| Bit nu | ımber      |     |      | 31 30 2 | 29 28 | 27 | 26 2 | :5 24 | 4 2 | 3 2 | 22   | 21    | 20  | 19 1 | 8 1  | 17 1 | 6 1  | 5 1   | 4 13  | 3 12 | 11   | 10   | 9     | 8 7  | 7 6  | 5 5 | 4     | 3    | 2   | 1   | 0 |
|--------|------------|-----|------|---------|-------|----|------|-------|-----|-----|------|-------|-----|------|------|------|------|-------|-------|------|------|------|-------|------|------|-----|-------|------|-----|-----|---|
| ID     |            |     |      |         |       |    |      |       |     |     |      |       |     |      |      |      |      |       |       |      |      |      |       |      |      |     |       |      | Α   | Α   | Α |
| Reset  | 0x00000000 | )   |      | 0 0     | 0 0   | 0  | 0    | 0 0   | ) C | )   | 0    | 0     | 0   | 0    | 0    | 0 (  | ) (  | ) (   | 0     | 0    | 0    | 0    | 0     | 0 (  | 0    | 0   | 0     | 0    | 0   | 0   | 0 |
| ID     |            |     |      |         |       |    |      |       |     |     |      |       |     |      |      |      |      |       |       |      |      |      |       |      |      |     |       |      |     |     |   |
| Α      | RW         | WEN |      |         |       |    |      |       | Р   | ro  | gra  | ım ı  | me  | moı  | y a  | cces | ss n | noc   | le. I | t is | stro | ngl  | y re  | com  | ıme  | nde | ed t  | 0 0  | nly |     |   |
|        |            |     |      |         |       |    |      |       | a   | cti | iva  | te e  | ras | e aı | nd v | writ | e m  | od    | es v  | vhe  | n th | ey a | are a | acti | vely | us! | ed.   |      |     |     |   |
|        |            |     |      |         |       |    |      |       | Е   | na  | bli  | ng v  | wri | te o | r ei | rase | wi   | ll in | vali  | dat  | e th | e ca | che   | an   | d ke | еер | it ir | ıval | ida | ted |   |
|        |            |     | Ren  | 0       |       |    |      |       | R   | ea  | ıd o | only  | ac  | ces  | S    |      |      |       |       |      |      |      |       |      |      |     |       |      |     |     |   |
|        |            |     | Wen  | 1       |       |    |      |       | ٧   | ۷ri | ite  | ena   | ble | ed   |      |      |      |       |       |      |      |      |       |      |      |     |       |      |     |     |   |
|        |            |     | Een  | 2       |       |    |      |       | Ε   | ras | se   | ena   | ble | d    |      |      |      |       |       |      |      |      |       |      |      |     |       |      |     |     |   |
|        |            |     | PEen | 4       |       |    |      |       | Ρ   | art | tial | l era | se  | ena  | ble  | ed   |      |       |       |      |      |      |       |      |      |     |       |      |     |     |   |

### **4.4.8.4 ERASEALL**

Address offset: 0x50C

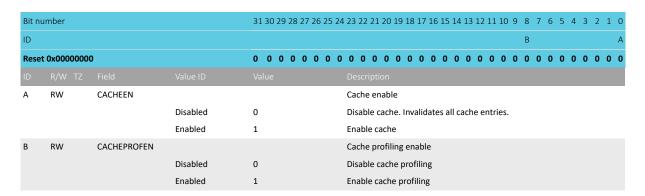



### Register for erasing all non-volatile user memory



### 4.4.8.5 ERASEPAGEPARTIALCFG

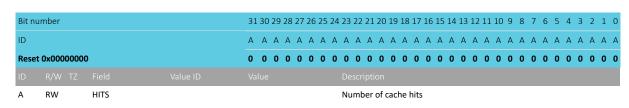
Address offset: 0x51C


Register for partial erase configuration



### 4.4.8.6 ICACHECNF

Address offset: 0x540


I-code cache configuration register



#### 4.4.8.7 IHIT

Address offset: 0x548
I-code cache hit counter





Write zero to clear

### 4.4.8.8 IMISS

Address offset: 0x54C

I-code cache miss counter

| A      | R/W TZ<br>RW | Field<br>MISSES | Value ID | Va | lue |    |      |      |      |      |      |      | crip<br>nbe |     | n<br>f cad | he | mis  | ses |    |    |    |      |      |     |   |     |   |   |   |   |   |     |
|--------|--------------|-----------------|----------|----|-----|----|------|------|------|------|------|------|-------------|-----|------------|----|------|-----|----|----|----|------|------|-----|---|-----|---|---|---|---|---|-----|
| Reset  | 0x00000000   |                 |          |    |     | 0  | 0    | 0    | 0    | 0    |      |      |             |     |            | 0  | 0    | 0   | 0  | 0  | 0  | 0    | 0 (  | 0   | 0 | 0   | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |              |                 |          | А  | Α   | Α  | Α    | Α.   | Α    | Α    | Α    | Α    | A A         | Δ Α | 4 A        | Α  | Α    | Α   | Α  | Α  | Α  | Α    | A A  | Δ Δ | A | . A | Α | Α | Α | Α | Α | А А |
| Bit nu | ımber        |                 |          | 31 | 30  | 29 | 28 : | 27 2 | 26 2 | 25 2 | 24 2 | 23 2 | 22 2        | 1 2 | 0 19       | 18 | 3 17 | 16  | 15 | 14 | 13 | 12 : | 11 1 | 0 9 | 8 | 7   | 6 | 5 | 4 | 3 | 2 | 1 0 |

Write zero to clear

### **4.4.8.9 CONFIGNS**

Address offset: 0x584

**Note:** This register is one hot

| Bit number     |     |     | 31 | 1 30 2 | 29 | 28 2 | 27 2 | 6 2 | 5 2 | 24 23 | 22   | 21 2  | 20  | 19 1 | 18 1 | 17 1  | 6 1 | 5 14  | 4 13 | 3 12 | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2   | 1 0 |
|----------------|-----|-----|----|--------|----|------|------|-----|-----|-------|------|-------|-----|------|------|-------|-----|-------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|
| ID             |     |     |    |        |    |      |      |     |     |       |      |       |     |      |      |       |     |       |      |      |      |      |      |      |      |      |      |      |      | ,   | 4 А |
| Reset 0x000000 | 00  |     | 0  | 0      | 0  | 0    | 0    | 0 0 | ) ( | 0 0   | 0    | 0     | 0   | 0 (  | 0    | 0 0   | 0   | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0 (  | ) ( | 0 0 |
| ID R/W TZ      |     |     |    |        |    |      |      |     |     |       |      |       |     |      |      |       |     |       |      |      |      |      |      |      |      |      |      |      |      |     |     |
| A RW           | WEN |     |    |        |    |      |      |     |     | Pro   | ogra | am r  | nei | mor  | y a  | cces  | s n | nod   | e. I | t is | stro | ngl  | y re | con  | nm   | end  | dec  | l to | onl  | У   |     |
|                |     |     |    |        |    |      |      |     |     | act   | iva  | te e  | ras | e ar | nd v | write | e m | ode   | es v | vhe  | n tł | ney  | are  | act  | ive  | ly u | se   | d.   |      |     |     |
|                |     |     |    |        |    |      |      |     |     | En    | abli | ing v | vri | te o | r ei | rase  | wil | ll in | vali | dat  | e tł | ne c | ach  | e ar | nd l | kee  | p it | inv  | alid | ate | ed. |
|                |     | Ren | 0  |        |    |      |      |     |     | Re    | ad o | only  | ac  | cess | 5    |       |     |       |      |      |      |      |      |      |      |      |      |      |      |     |     |
|                |     | Wen | 1  |        |    |      |      |     |     | Wı    | ite  | ena   | ble | d    |      |       |     |       |      |      |      |      |      |      |      |      |      |      |      |     |     |
|                |     | Een | 2  |        |    |      |      |     |     | Era   | ise  | ena   | ble | d    |      |       |     |       |      |      |      |      |      |      |      |      |      |      |      |     |     |

### **4.4.8.10 WRITEUICRNS**

Address offset: 0x588

Non-secure APPROTECT enable register

| Bit nu | ımber     |     |          | 31 30 29 28 | 27 26 | 25 2 | 24 23 | 3 22 2  | 1 20  | 19   | 18 1  | 7 16 | 15    | 14   | 13 12 | 11    | 10 9 | 9 8  | 7   | 6 | 5 | 4 | 3 | 2 1 | 0 |
|--------|-----------|-----|----------|-------------|-------|------|-------|---------|-------|------|-------|------|-------|------|-------|-------|------|------|-----|---|---|---|---|-----|---|
| ID     |           |     |          | ВВВВ        | ВВ    | В    | ВВ    | ВВ      | ВВ    | В    | ВЕ    | 3 B  | В     | В    | в в   | В     | В    | ВВ   | В   | В | В | В |   |     | Α |
| Reset  | 0x0000000 | 0   |          | 0 0 0 0     | 0 0   | 0    | 0 0   | 0 0     | 0     | 0    | 0 0   | 0    | 0     | 0    | 0 0   | 0     | 0 (  | 0 0  | 0   | 0 | 0 | 0 | 0 | 0 0 | 0 |
| ID     |           |     |          |             |       |      |       |         |       |      |       |      |       |      |       |       |      |      |     |   |   |   |   |     |   |
| Α      | W         | SET |          |             |       |      | Α     | llow n  | on-s  | ecui | re co | de t | :O S  | et A | PPRC  | TEC   | г    |      |     |   |   |   |   |     |   |
|        |           |     | Set      | 1           |       |      | Se    | et valu | e     |      |       |      |       |      |       |       |      |      |     |   |   |   |   |     |   |
| В      | W         | KEY |          |             |       |      | Ke    | ey to v | vrite | in c | orde  | r to | valio | date | the   | write | е ор | erat | ion |   |   |   |   |     |   |
|        |           |     | Keyvalid | 0xAFBE5A7   |       |      | Ke    | ey valı | ıe    |      |       |      |       |      |       |       |      |      |     |   |   |   |   |     |   |





# 4.4.9 Electrical specification

# 4.4.9.1 Flash programming

| Symbol                               | Description                                               | Min.   | Тур. | Max. | Units |
|--------------------------------------|-----------------------------------------------------------|--------|------|------|-------|
| n <sub>WRITE</sub>                   | Number of times a 32-bit word can be written before erase |        |      | 2    |       |
| n <sub>ENDURANCE</sub>               | Erase cycles per page                                     | 10,000 |      |      |       |
| t <sub>WRITE</sub>                   | Time to write one 32-bit word                             |        |      | 43   | μs    |
| t <sub>ERASEPAGE</sub>               | Time to erase one page                                    |        |      | 87   | ms    |
| t <sub>ERASEALL</sub>                | Time to erase all flash                                   |        |      | 173  | ms    |
| t <sub>ERASEPAGEPARTIAL</sub> ,setup | Setup time for one partial erase                          |        |      | 1.08 | ms    |

### 4.4.9.2 Cache size

| Symbol                | Description       | Min. | Тур. | Max. | Units |
|-----------------------|-------------------|------|------|------|-------|
| Size <sub>ICODE</sub> | I-Code cache size |      | 2048 |      | Bytes |

# 4.5 FICR — Factory information configuration registers

Factory information configuration registers (FICR) are pre-programmed in factory and cannot be erased by the user. These registers contain chip-specific information and configuration.

# 4.5.1 Registers

#### **Instances**

| Instance | Base address | TrustZone | •   |     | Split access | Description                       |
|----------|--------------|-----------|-----|-----|--------------|-----------------------------------|
|          |              | Мар       | Att | DMA |              |                                   |
| FICR     | 0x00FF0000   | HF        | S   | NA  | No           | Factory information configuration |

### **Register overview**

| Register              | Offset | TZ | Description                                                                            |
|-----------------------|--------|----|----------------------------------------------------------------------------------------|
| SIPINFO.PARTNO        | 0x140  |    | SIP part number                                                                        |
| SIPINFO.HWREVISION[n] | 0x144  |    | SIP hardware revision, encoded in ASCII, for example B0A or B1A                        |
| SIPINFO.VARIANT[n]    | 0x148  |    | SIP VARIANT, encoded in ASCII, for example LACA. See Ordering information for details. |
| INFO.DEVICEID[n]      | 0x204  |    | Device identifier                                                                      |
| INFO.RAM              | 0x218  |    | RAM variant                                                                            |
| INFO.FLASH            | 0x21C  |    | Flash variant                                                                          |
| INFO.CODEPAGESIZE     | 0x220  |    | Code memory page size                                                                  |
| INFO.CODESIZE         | 0x224  |    | Code memory size                                                                       |
| INFO.DEVICETYPE       | 0x228  |    | Device type                                                                            |
| TRIMCNF[n].ADDR       | 0x300  |    | Address                                                                                |
| TRIMCNF[n].DATA       | 0x304  |    | Data                                                                                   |
| TRNG90B.BYTES         | 0xC00  |    | Amount of bytes for the required entropy bits                                          |
| TRNG90B.RCCUTOFF      | 0xC04  |    | Repetition counter cutoff                                                              |
| TRNG90B.APCUTOFF      | 0xC08  |    | Adaptive proportion cutoff                                                             |
| TRNG90B.STARTUP       | 0xC0C  |    | Amount of bytes for the startup tests                                                  |
| TRNG90B.ROSC1         | 0xC10  |    | Sample count for ring oscillator configuration 1                                       |



| Register      | Offset ' | TZ | Description                                      |
|---------------|----------|----|--------------------------------------------------|
| TRNG90B.ROSC2 | 0xC14    |    | Sample count for ring oscillator configuration 2 |
| TRNG90B.ROSC3 | 0xC18    |    | Sample count for ring oscillator configuration 3 |
| TRNG90B.ROSC4 | 0xC1C    |    | Sample count for ring oscillator configuration 4 |

#### 4.5.1.1 SIPINFO

SIP-specific device information is provided in the following chapters.

#### 4.5.1.1.1 SIPINFO.PARTNO

Address offset: 0x140

SIP part number

| Bit nu | umber    |        |      | 31 30 29 2 | 8 27 26 2 | 25 24 | 23 22 : | 21 20 | 19 1 | 8 17  | 16 1 | 5 14 | 13 1 | 2 11 | 10 | 9 8 | 3 7 | 6 | 5  | 4 3 | 2   | 1 0 |
|--------|----------|--------|------|------------|-----------|-------|---------|-------|------|-------|------|------|------|------|----|-----|-----|---|----|-----|-----|-----|
| ID     |          |        |      | A A A A    | A A A     | А А   | А А     | А А   | A A  | A A   | ΑА   | A    | Α ,  | 4 A  | Α  | A A | A   | Α | Α. | A A | A   | A A |
| Rese   | t OxFFFI | FFFF   |      | 1 1 1 1    | l 1 1     | 1 1   | 1 1     | 1 1   | 1 1  | 1 1   | 1 1  | . 1  | 1    | 1 1  | 1  | 1 1 | 1   | 1 | 1  | 1 1 | . 1 | 1 1 |
| ID     |          |        |      |            |           |       | Descrip |       |      |       |      |      |      |      |    |     |     |   |    |     |     |     |
| Α      | R        | PARTNO |      |            |           |       |         |       |      |       |      |      |      |      |    |     |     |   |    |     |     |     |
|        |          |        | 9161 | 0x0000916  | 1         |       | Device  | is an | nRF9 | 161 s | ip   |      |      |      |    |     |     |   |    |     |     |     |
|        |          |        | 9160 | 0x0000916  | 0         |       | Device  | is an | nRF9 | 160 s | ip   |      |      |      |    |     |     |   |    |     |     |     |
|        |          |        | 9151 | 0x0000915  | 1         |       | Device  | is an | nRF9 | 151 s | ip   |      |      |      |    |     |     |   |    |     |     |     |
|        |          |        | 9131 | 0x0000913  | 1         |       | Device  | is an | nRF9 | 131 s | ip   |      |      |      |    |     |     |   |    |     |     |     |

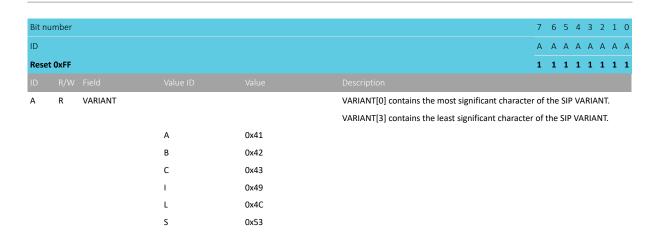
### 4.5.1.1.2 SIPINFO.HWREVISION[n] (n=0..3)

Address offset:  $0x144 + (n \times 0x1)$ 

SIP hardware revision, encoded in ASCII, for example B0A or B1A

**Note:** When treated as a c-string, content is not NULL-terminated.




#### 4.5.1.1.3 SIPINFO.VARIANT[n] (n=0..3)

Address offset:  $0x148 + (n \times 0x1)$ 

SIP VARIANT, encoded in ASCII, for example LACA. See Ordering information for details.

**Note:** When treated as a c-string, content is not NULL-terminated.





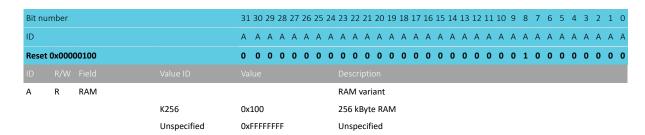
#### 4.5.1.2 INFO

Device info

## 4.5.1.2.1 INFO.DEVICEID[n] (n=0..1)

Address offset:  $0x204 + (n \times 0x4)$ 

Device identifier


| Α      | R     | DEVICEID |                  |            | 64    | bit ur | nique  | devic | e ide | entifi | er |      |      |      |   |   |   |   |   |   |     |     |   |
|--------|-------|----------|------------------|------------|-------|--------|--------|-------|-------|--------|----|------|------|------|---|---|---|---|---|---|-----|-----|---|
| ID     |       |          |                  |            |       |        |        |       |       |        |    |      |      |      |   |   |   |   |   |   |     |     |   |
| Reset  | 0xFFF | FFFFF    | 1 1 1 1 1 1      | l <b>1</b> | 1 1   | 1 1    | 1      | 1 1   | 1 :   | 1 1    | 1  | 1    | 1 1  | . 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 |
| ID     |       |          | A A A A A        | A A        | А А   | A A    | Α .    | А А   | Α /   | 4 A    | Α  | Α .  | 4 Δ  | A    | Α | Α | Α | Α | Α | Α | A A | 4 A | A |
| Bit nu | ımber |          | 31 30 29 28 27 2 | 6 25       | 24 23 | 22 21  | L 20 1 | 19 18 | 17 1  | .6 15  | 14 | 13 1 | .2 1 | 1 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0 |

DEVICEID[0] contains the least significant bits of the device identifier. DEVICEID[1] contains the most significant bits of the device identifier.

#### 4.5.1.2.2 INFO.RAM

Address offset: 0x218

**RAM** variant



#### 4.5.1.2.3 INFO.FLASH

Address offset: 0x21C

Flash variant



| Bit nu   | umber   |       |       | 31 30   |   | <br> | <br> |      |       |       |     | <br> |   |   | <br> |   | _ | ÷ |   | _ | - |   | _ |   |     |
|----------|---------|-------|-------|---------|---|------|------|------|-------|-------|-----|------|---|---|------|---|---|---|---|---|---|---|---|---|-----|
| ID Reset | t 0x000 | 00400 |       | A A 0 0 |   |      |      |      |       |       |     |      |   |   |      |   |   |   |   |   |   |   |   |   | A A |
| ID       |         | Field |       | Value   |   |      |      |      |       | tion  |     |      |   |   |      | _ |   | _ |   |   |   |   | _ |   |     |
| Α        | R       | FLASH |       |         |   |      |      | Flas | sh va | arian | t   |      | Т | Т |      | Т | Т | Т | Т | Т | Т | Т | Т | Т | Т   |
|          |         |       | K1024 | 0x400   | ) |      |      | 1 N  | 1Byt  | e FL  | ASH |      |   |   |      |   |   |   |   |   |   |   |   |   |     |

#### 4.5.1.2.4 INFO.CODEPAGESIZE

Address offset: 0x220 Code memory page size

| Bit nu | ımber |              |       | 31 | . 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 : | 21 : | 20 1 | 19 1 | .8 1 | 7 16 | 15 | 14 | 13 | 12 1 | 1 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | L 0 |
|--------|-------|--------------|-------|----|------|----|----|----|----|----|----|-----|------|------|------|------|------|------|----|----|----|------|------|---|---|---|---|---|---|-----|-----|-----|
| ID     |       |              |       | Α  | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α    | Α.   | A A  | Д Д  | Α    | Α  | Α  | Α  | A A  | A A  | Α | Α | Α | Α | Α | Α | A A | Α Α | A A |
| Reset  | 0x000 | 01000        |       | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0    | 0    | 0 (  | 0 0  | 0    | 0  | 0  | 0  | 1 (  | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0   |
| ID     |       |              |       |    |      |    |    |    |    |    |    |     |      |      |      |      |      |      |    |    |    |      |      |   |   |   |   |   |   |     |     |     |
| Α      | R     | CODEPAGESIZE |       |    |      |    |    |    |    |    |    | Cod | de n | nen  | nory | y pa | ge s | ize  |    |    |    |      |      |   |   |   |   |   |   |     |     |     |
|        |       |              | K4096 | 0x | 100  | 00 |    |    |    |    |    | 4 k | Byte | е    |      |      |      |      |    |    |    |      |      |   |   |   |   |   |   |     |     |     |

#### 4.5.1.2.5 INFO.CODESIZE

Address offset: 0x224 Code memory size

| Bit number            | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-----------------------|---------------------------------------------------------------------------------------|
| ID                    | A A A A A A A A A A A A A A A A A A A                                                 |
| Reset 0x00000100      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                               |
| ID R/W Field Value ID | Value Description                                                                     |
| A R CODESIZE          | Code memory size in number of pages                                                   |
|                       | Total code space is: CODEPAGESIZE * CODESIZE                                          |
| P256                  | 256 256 pages                                                                         |

#### 4.5.1.2.6 INFO.DEVICETYPE

Address offset: 0x228

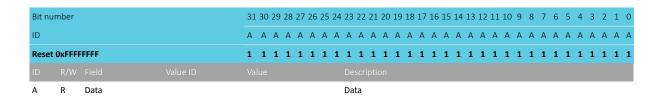
Device type

| Bit nu | ımber |            |      | 31 | L 30 | 29   | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21 | 20 : | 19  | 18 1  | 7 1 | 6 1 | 5 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|------------|------|----|------|------|----|----|----|----|----|----|------|----|------|-----|-------|-----|-----|------|----|----|----|----|---|---|---|---|---|---|---|---|-----|
| ID     |       |            |      | А  | Α    | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α    | Α  | Α    | Α   | A     | Δ , | Δ Δ | A    | Α  | Α  | Α  | Α  | Α | Α | Α | Α | Α | Α | Α | Α | А А |
| Reset  | 0xFFF | FFFFF      |      | 1  | 1    | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1    | 1  | 1    | 1   | 1     | 1 : | 1 1 | 1    | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 |
| ID     |       |            |      |    |      |      |    |    |    |    |    |    |      |    |      |     |       |     |     |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
| Α      | R     | DEVICETYPE |      |    |      |      |    |    |    |    |    | De | vice | ty | pe   |     |       |     |     |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
|        |       |            | Die  | 0х | (000 | 0000 | 00 |    |    |    |    | De | vice | is | an p | hy: | sical | DIE | Ε   |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
|        |       |            | FPGA | 0× | FFF  | FFF  | FF |    |    |    |    | De | vice | is | an F | PG  | Α     |     |     |      |    |    |    |    |   |   |   |   |   |   |   |   |     |

## 4.5.1.3 TRIMCNF[n].ADDR (n=0..255)

Address offset:  $0x300 + (n \times 0x8)$ 

Address



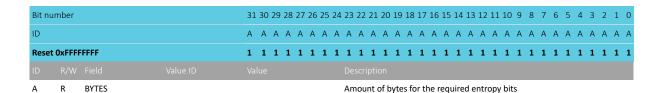

| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  ID A A A A A A A A A A A A A A A A A A A |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| ID A A A A A A A A A A A A A A A A A A A                                                                                                   |
|                                                                                                                                            |
| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                           |
|                                                                                                                                            |

#### 4.5.1.4 TRIMCNF[n].DATA (n=0..255)

Address offset:  $0x304 + (n \times 0x8)$ 

Data

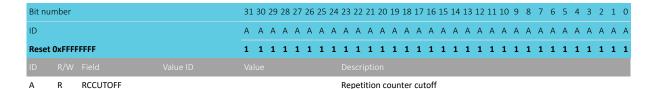



#### 4.5.1.5 TRNG90B

NIST800-90B RNG calibration data

#### 4.5.1.5.1 TRNG90B.BYTES

Address offset: 0xC00


Amount of bytes for the required entropy bits



#### 4.5.1.5.2 TRNG90B.RCCUTOFF

Address offset: 0xC04

Repetition counter cutoff



#### 4.5.1.5.3 TRNG90B.APCUTOFF

Address offset: 0xC08

Adaptive proportion cutoff



| Bit number      |          | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 2 | 23  | 22 2 | 1 2      | 0 19 | 9 18 | 17 | 16 | 15 | 14 | 13 | 12 1 | 1 1 | 0 9 | 8   | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 1 0 |
|-----------------|----------|----|----|----|----|----|----|----|------|-----|------|----------|------|------|----|----|----|----|----|------|-----|-----|-----|---|---|---|---|-----|-----|-----|
| ID              |          | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α    | Α   | A A  | <b>Δ</b> | 4 A  | A    | Α  | Α  | Α  | Α  | Α  | Α,   | A A | , Δ | ι A | Α | Α | Α | Α | A A | A A | А А |
| Reset 0xFFFFFFF |          | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1    | 1   | 1 :  | 1 1      | l 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1    | L 1 | . 1 | . 1 | 1 | 1 | 1 | 1 | 1 1 | L 1 | 1 1 |
| ID R/W Field    | Value ID |    |    |    |    |    |    |    |      | Des | crip | tior     | 1    |      |    |    |    |    |    |      |     |     |     |   |   |   |   |     |     |     |

A R APCUTOFF

Adaptive proportion cutoff

#### 4.5.1.5.4 TRNG90B.STARTUP

Address offset: 0xC0C

Amount of bytes for the startup tests

| Α      | R       | STARTUP |               |         |        | Amou  | int of | byte  | s for | the   | start | up 1 | ests  |    |    |   |   |   |   |   |    |     |   |   |
|--------|---------|---------|---------------|---------|--------|-------|--------|-------|-------|-------|-------|------|-------|----|----|---|---|---|---|---|----|-----|---|---|
| ID     |         |         |               |         |        |       |        |       |       |       |       |      |       |    |    |   |   |   |   |   |    |     |   |   |
| Reset  | t OxFFF | FFFFF   | 1 1 1 1 1     | l 1 1   | 1      | 1 1   | 1      | 1 1   | 1     | 1 1   | 1     | 1    | 1 1   | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1  | l 1 | 1 | 1 |
| ID     |         |         | AAAAA         | A A A   | Α      | А А   | Α .    | A A   | Α .   | 4 А   | Α     | Α    | А А   | Α  | Α  | Α | Α | Α | Α | Α | Α, | A A | Α | Α |
| Bit nu | umber   |         | 31 30 29 28 2 | 7 26 25 | 5 24 : | 23 22 | 21 2   | 20 19 | 18 1  | .7 16 | 15    | 14 : | 13 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3 2 | 1 | 0 |

#### 4.5.1.5.5 TRNG90B.ROSC1

Address offset: 0xC10

Sample count for ring oscillator configuration 1

| Α     | R       | ROSC1 |    |    |    |    |    |    |    |    | Sai | lam | le c | our | nt fo | or ri | ng c | scil | lato | or c | onfi | gur | atio | n 1 |     |   |   |   |   |   |   |   | _ |
|-------|---------|-------|----|----|----|----|----|----|----|----|-----|-----|------|-----|-------|-------|------|------|------|------|------|-----|------|-----|-----|---|---|---|---|---|---|---|---|
| ID    |         |       |    |    |    |    |    |    |    |    |     |     |      |     |       |       |      |      |      |      |      |     |      |     |     |   |   |   |   |   |   |   |   |
| Rese  | t OxFFF | FFFFF | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1   | 1    | 1   | 1     | 1     | 1    | 1    | 1    | 1    | 1 :  | 1 : | L 1  | . 1 | . 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ID    |         |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α   | Α    | Α   | Α     | Α     | Α    | Α.   | A .  | Α.   | Α ,  | Δ Α | Δ Δ  | A   | A   | Α | Α | Α | Α | Α | Α | Α | A |
| Bit n | umber   |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22  | 21   | 20  | 19    | 18    | 17 : | 16 1 | .5 1 | 14 1 | .3 1 | 2 1 | 1 10 | 9   | 8   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

#### 4.5.1.5.6 TRNG90B.ROSC2

Address offset: 0xC14

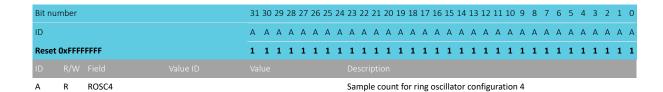
Sample count for ring oscillator configuration 2

| Bit nu | mber  |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 : | 22 2 | 1 20 | 19   | 18    | 17   | 16 : | 15 1 | 4 1  | 3 12 | 11  | 10   | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | L O        |
|--------|-------|-------|----|----|----|----|----|----|----|----|------|------|------|------|-------|------|------|------|------|------|-----|------|---|---|---|---|---|---|-----|-----|------------|
| ID     |       |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α    | A A  | 4 A  | Α    | Α     | Α    | Α    | A A  | A A  | A    | Α   | Α    | Α | Α | Α | Α | Α | Α | A A | A   | A A        |
| Reset  | 0xFFF | FFFF  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1    | 1 :  | 1 1  | 1    | 1     | 1    | 1    | 1 :  | L 1  | . 1  | 1   | 1    | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | . 1 | l <b>1</b> |
| ID     |       |       |    |    |    |    |    |    |    |    | Des  |      |      |      |       |      |      |      |      |      |     |      |   |   |   |   |   |   |     |     |            |
| Α      | R     | ROSC2 |    |    |    |    |    |    |    | :  | San  | nple | cou  | nt f | or ri | ng c | scil | lato | r co | nfig | ura | tion | 2 |   |   |   |   |   |     |     |            |

#### 4.5.1.5.7 TRNG90B.ROSC3

Address offset: 0xC18

Sample count for ring oscillator configuration 3


| Α     | R       | ROSC3 |      |       |    |      |    |    |    | Sar | npl | e co | ount | t foi | r rin | g os | cilla | tor  | cor | figu | ırat | ion | 3 |   |   |   |   |     |   |   |   |
|-------|---------|-------|------|-------|----|------|----|----|----|-----|-----|------|------|-------|-------|------|-------|------|-----|------|------|-----|---|---|---|---|---|-----|---|---|---|
| ID    |         |       |      |       |    |      |    |    |    |     |     |      |      |       |       |      |       |      |     |      |      |     |   |   |   |   |   |     |   |   |   |
| Rese  | t OxFFI | FFFFF | 1    | 1 1   | 1  | . 1  | 1  | 1  | 1  | 1   | 1   | 1    | 1    | 1     | 1     | 1 1  | . 1   | 1    | 1   | 1    | 1    | 1   | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 |
| ID    |         |       | Α .  | A A   | Α  | A    | Α  | Α  | Α  | Α   | Α   | Α    | Α    | Α     | A     | Δ Δ  | \ A   | Α    | Α   | Α    | Α    | Α   | Α | Α | Α | Α | Α | А А | Α | Α | Α |
| Bit n | umber   |       | 31 3 | 80 29 | 28 | 3 27 | 26 | 25 | 24 | 23  | 22  | 21   | 20   | 19 :  | 18 1  | 7 1  | 6 15  | 5 14 | 13  | 12   | 11   | 10  | 9 | 8 | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |



#### 4.5.1.5.8 TRNG90B.ROSC4

Address offset: 0xC1C

Sample count for ring oscillator configuration 4



## 4.6 UICR — User information configuration registers

The user information configuration registers (UICRs) are non-volatile memory (NVM) registers for configuring user specific settings.

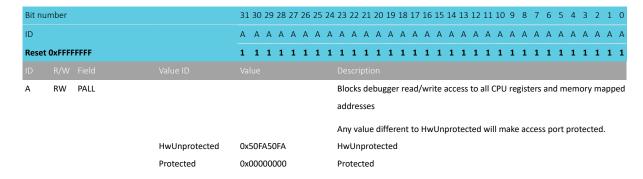
For information on writing UICR registers, see the NVMC — Non-volatile memory controller on page 29 and Memory on page 21 chapters.

## 4.6.1 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                    |
|----------|--------------|-----------|-----|-----|--------------|--------------------------------|
|          |              | Мар       | Att | DMA |              |                                |
| UICR     | 0x00FF8000   | HF        | S   | NA  | No           | User information configuration |

#### **Register overview**


| Register                | Offset | TZ | Description                                                                                 |
|-------------------------|--------|----|---------------------------------------------------------------------------------------------|
| APPROTECT               | 0x000  |    | Access port protection                                                                      |
| XOSC32M                 | 0x014  |    | Oscillator control                                                                          |
| HFXOSRC                 | 0x01C  |    | HFXO clock source selection                                                                 |
| HFXOCNT                 | 0x020  |    | HFXO startup counter                                                                        |
| APPNVMCPOFGUARD         | 0x024  |    | Enable blocking NVM WRITE and aborting NVM ERASE for Application NVM in POFWARN             |
|                         |        |    | condition.                                                                                  |
| SECUREAPPROTECT         | 0x02C  |    | Secure access port protection                                                               |
| ERASEPROTECT            | 0x030  |    | Erase protection                                                                            |
| OTP[n]                  | 0x108  |    | One time programmable memory                                                                |
| KEYSLOT.CONFIG[n].DEST  | 0x400  |    | Destination address where content of the key value registers (KEYSLOT.KEYn.VALUE[0-3]) will |
|                         |        |    | be pushed by KMU. Note that this address must match that of a peripheral's APB mapped       |
|                         |        |    | write-only key registers, otherwise the KMU can push this key value into an address range   |
|                         |        |    | which the CPU can potentially read.                                                         |
| KEYSLOT.CONFIG[n].PERM  | 0x404  |    | Define permissions for the key slot. Bits 0-15 and 16-31 can only be written when equal to  |
|                         |        |    | OxFFFF.                                                                                     |
| KEYSLOT.KEY[n].VALUE[o] | 0x800  |    | Define bits [31+o*32:0+o*32] of value assigned to KMU key slot.                             |

#### **4.6.1.1 APPROTECT**

Address offset: 0x000



#### Access port protection



#### 4.6.1.2 XOSC32M

Address offset: 0x014
Oscillator control

| Α     | RW CTRL      |                     | Pie      | ce curr | ent D | AC co | ntrol | signa      | ıls  |      |    |     |     |   |   |   |     |   |   |
|-------|--------------|---------------------|----------|---------|-------|-------|-------|------------|------|------|----|-----|-----|---|---|---|-----|---|---|
| ID    |              |                     |          |         |       |       |       |            |      |      |    |     |     |   |   |   |     |   |   |
| Rese  | t 0xFFFFFFCF | 1 1 1 1 1 1         | 1 1 1    | 1 1 :   | 1 1   | 1 1   | 1 1   | l <b>1</b> | 1 1  | l 1  | 1  | 1 1 | . 1 | 1 | 0 | 0 | 1 1 | 1 | 1 |
| ID    |              |                     |          |         |       |       |       |            |      |      |    |     |     |   | Α | Α | A A | A | Α |
| Bit n | umber        | 31 30 29 28 27 26 2 | 25 24 23 | 22 21 2 | 0 19  | 18 17 | 16 1  | 5 14       | 13 1 | 2 11 | 10 | 9 8 | 7   | 6 | 5 | 4 | 3 2 | 1 | 0 |

#### 4.6.1.3 HFXOSRC

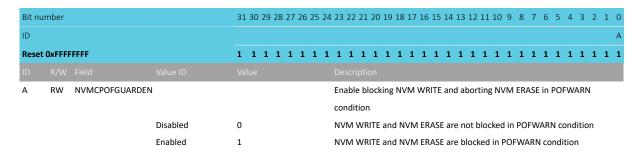
Address offset: 0x01C

HFXO clock source selection

| Bit nu | ımber |         |      | 31 30 29 28 27 26 2 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|---------|------|---------------------|---------------------------------------------------------------------|
| ID     |       |         |      |                     | A                                                                   |
| Rese   | 0xFFF | FFFFF   |      | 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                             |
| ID     |       |         |      |                     | Description                                                         |
| Α      | RW    | HFXOSRC |      |                     | HFXO clock source selection                                         |
|        |       |         | XTAL | 1                   | 32 MHz crystal oscillator                                           |
|        |       |         | TCXO | 0                   | 32 MHz temperature compensated crystal oscillator (TCXO)            |

#### 4.6.1.4 HFXOCNT

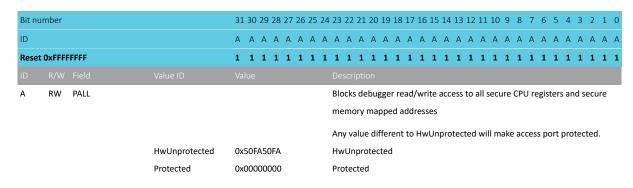
Address offset: 0x020 HFXO startup counter


| Bit nu | mber   |         |                 | 31 30 2 | 9 28 | 27 2 | 26 25 | 24 2 | 23 2                                     | 2 21  | 20 1 | 19 18 | 3 17  | 16   | 15 1  | L4 1  | 3 12  | 11  | 10 9  | 8   | 7   | 6   | 5    | 4   | 3 2   | 1 0 |
|--------|--------|---------|-----------------|---------|------|------|-------|------|------------------------------------------|-------|------|-------|-------|------|-------|-------|-------|-----|-------|-----|-----|-----|------|-----|-------|-----|
| ID     |        |         |                 |         |      |      |       |      |                                          |       |      |       |       |      |       |       |       |     |       |     | Α   | Α   | Α.   | A . | A A   | А А |
| Reset  | 0xFFFI | FFFF    |                 | 1 1 1   | . 1  | 1    | 1 1   | 1    | 1 1                                      | . 1   | 1    | 1 1   | 1     | 1    | 1     | 1 1   | . 1   | 1   | 1 1   | . 1 | 1   | 1   | 1    | 1   | 1 1   | 1 1 |
| ID     |        |         |                 |         |      |      |       |      |                                          |       |      |       |       |      |       |       |       |     |       |     |     |     |      |     |       |     |
| Α      | RW     | HFXOCNT |                 |         |      |      |       | H    | HFXC                                     | ) sta | rtup | cour  | nter. | Tota | al de | ebo   | ınce  | tim | e = H | FXO | CNT | *64 | 4 us | + 0 | .5 us |     |
|        |        |         | MinDebounceTime | 0       |      |      |       | N    | ∕lin                                     | debo  | unc  | e tim | ne =  | (0*6 | 54 u  | s + ( | ).5 u | s)  |       |     |     |     |      |     |       |     |
|        |        |         | MaxDebounceTime | 255     |      |      |       | N    | Max debounce time = (255*64 us + 0.5 us) |       |      |       |       |      |       |       |       |     |       |     |     |     |      |     |       |     |



#### 4.6.1.5 APPNVMCPOFGUARD

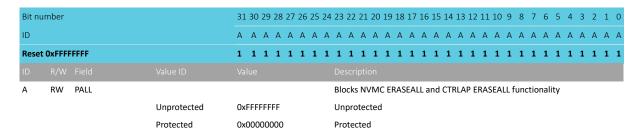
Address offset: 0x024


Enable blocking NVM WRITE and aborting NVM ERASE for Application NVM in POFWARN condition.



#### 4.6.1.6 SECUREAPPROTECT

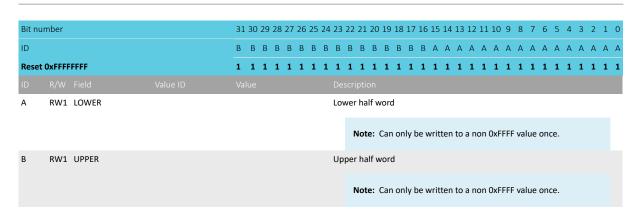
Address offset: 0x02C


Secure access port protection



#### 4.6.1.7 ERASEPROTECT

Address offset: 0x030


**Erase protection** 



#### 4.6.1.8 OTP[n] (n=0..189)

Address offset:  $0x108 + (n \times 0x4)$ One time programmable memory






### 4.6.1.9 KEYSLOT.CONFIG[n].DEST (n=0..127)

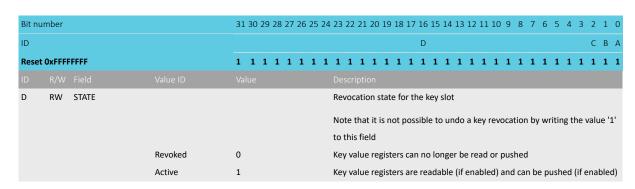
Address offset:  $0x400 + (n \times 0x8)$ 

Destination address where content of the key value registers (KEYSLOT.KEYn.VALUE[0-3]) will be pushed by KMU. Note that this address must match that of a peripheral's APB mapped write-only key registers, otherwise the KMU can push this key value into an address range which the CPU can potentially read.

Note: Writing/reading this register requires the KMU SELECTKEYSLOT register to be set to n+1.



## 4.6.1.10 KEYSLOT.CONFIG[n].PERM (n=0..127)

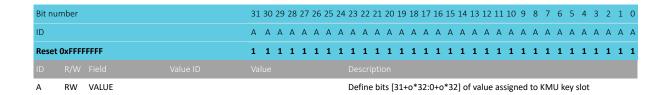

Address offset:  $0x404 + (n \times 0x8)$ 

Define permissions for the key slot. Bits 0-15 and 16-31 can only be written when equal to 0xFFFF.

Note: Writing/reading this register requires the KMU SELECTKEYSLOT register to be set to n+1.

| Bit nu | ımber  |       |          | 31 30 | 29 2 | 8 27 2     | 26 25 | 24 | 23 2  | 22 2 | 21 2  | 20 19  | 9 1  | 8 17  | 16    | 15   | 14 1  | .3 1 | .2 1: | 10   | 9   | 8     | 7    | 6   | 5     | 4     | 3 2   | 1     | . 0 |
|--------|--------|-------|----------|-------|------|------------|-------|----|-------|------|-------|--------|------|-------|-------|------|-------|------|-------|------|-----|-------|------|-----|-------|-------|-------|-------|-----|
| ID     |        |       |          |       |      |            |       |    |       |      |       |        |      |       | D     |      |       |      |       |      |     |       |      |     |       |       | C     | : B   | 8 A |
| Reset  | 0xFFFI | FFFF  |          | 1 1   | 1 1  | l <b>1</b> | 1 1   | 1  | 1     | 1    | 1 :   | 1 1    | . 1  | l 1   | 1     | 1    | 1     | 1    | 1 1   | 1    | 1   | 1     | 1    | 1   | 1     | 1     | 1 1   | . 1   | . 1 |
| ID     |        |       |          |       |      |            |       |    |       |      |       |        |      |       |       |      |       |      |       |      |     |       |      |     |       |       |       |       |     |
| Α      | RW     | WRITE |          |       |      |            |       |    | Writ  | te p | oern  | nissi  | ion  | for I | key s | lot  |       |      |       |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Disabled | 0     |      |            |       |    | Disa  | able | wr    | ite t  | o tl | he k  | ey va | llue | reg   | iste | ers   |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Enabled  | 1     |      |            |       |    | Enal  | ble  | wri   | te to  | o th | ne ke | y va  | lue  | regi  | iste | rs    |      |     |       |      |     |       |       |       |       |     |
| В      | RW     | READ  |          |       |      |            |       |    | Read  | d p  | erm   | nissio | on 1 | for k | ey sl | ot   |       |      |       |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Disabled | 0     |      |            |       |    | Disa  | ble  | e rea | ad fr  | om   | key   | valu  | ie r | egis  | ter  | 5     |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Enabled  | 1     |      |            |       |    | Enal  | ble  | rea   | d fro  | om   | key   | valu  | e re | egist | ers  |       |      |     |       |      |     |       |       |       |       |     |
| С      | RW     | PUSH  |          |       |      |            |       |    | Pusł  | h pe | erm   | issic  | on f | or k  | ey sl | ot   |       |      |       |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Disabled | 0     |      |            |       |    | Disa  | ble  | e pu  | shin   | ıg o | f ke  | / val | ue   | regis | ster | s ov  | er s | ecu | re A  | PB,  | bu  | t ca  | ın be | e rea | ıd if | f   |
|        |        |       |          |       |      |            |       |    | field | d RE | EAD   | is E   | nak  | oled  |       |      |       |      |       |      |     |       |      |     |       |       |       |       |     |
|        |        |       | Enabled  | 1     |      |            |       |    | Enal  | ble  | pus   | shing  | g of | fkey  | valu  | ie r | egis  | ter  | ove   | r se | cur | e Al  | PB.  | Reg | giste | er    |       |       |     |
|        |        |       |          |       |      |            |       |    | KEYS  | SLO  | OT.CO | ONF    | lGr  | n.DE  | ST m  | ust  | cor   | itai | n a v | alid | des | stina | atic | n a | ddr   | ess!  |       |       |     |






#### 4.6.1.11 KEYSLOT.KEY[n].VALUE[o] (n=0..127) (o=0..3)

Address offset:  $0x800 + (n \times 0x10) + (o \times 0x4)$ 

Define bits [31+o\*32:0+o\*32] of value assigned to KMU key slot.

**Note:** Writing/reading this register requires the KMU SELECTKEYSLOT register to be set to n+1.



## 4.7 EasyDMA

EasyDMA is a module implemented by some peripherals to gain direct access to Data RAM.

EasyDMA is an AHB bus master similar to CPU and is connected to the AHB multilayer interconnect for direct access to Data RAM. EasyDMA is not able to access flash.

A peripheral can implement multiple EasyDMA instances to provide dedicated channels. For example, for reading and writing of data between the peripheral and RAM. This concept is illustrated in EasyDMA example on page 46.

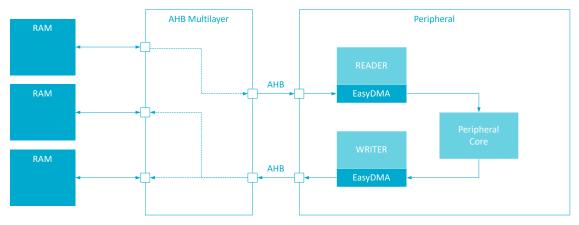



Figure 5: EasyDMA example



An EasyDMA channel is implemented in the following way, but some variations may occur:

```
READERBUFFER_SIZE 5
WRITERBUFFER_SIZE 6

uint8_t readerBuffer[READERBUFFER_SIZE] __at__ 0x20000000;
uint8_t writerBuffer[WRITERBUFFER_SIZE] __at__ 0x200000005;

// Configuring the READER channel
MYPERIPHERAL->READER.MAXCNT = READERBUFFER_SIZE;
MYPERIPHERAL->READER.PTR = &readerBuffer;

// Configure the WRITER channel
MYPERIPHERAL->WRITER.MAXCNT = WRITEERBUFFER_SIZE;
MYPERIPHERAL->WRITER.MAXCNT = &writerBuffer;
```

This example shows a peripheral called MYPERIPHERAL that implements two EasyDMA channels - one for reading called READER, and one for writing called WRITER. When the peripheral is started, it is assumed that the peripheral will perform the following tasks:

- Read 5 bytes from the readerBuffer located in RAM at address 0x20000000
- · Process the data
- Write no more than 6 bytes back to the writerBuffer located in RAM at address 0x20000005

The memory layout of these buffers is illustrated in EasyDMA memory layout on page 47.

| 0x20000000 | readerBuffer[0] | readerBuffer[1] | readerBuffer[2] | readerBuffer[3] |
|------------|-----------------|-----------------|-----------------|-----------------|
| 0x20000004 | readerBuffer[4] | writerBuffer[0] | writerBuffer[1] | writerBuffer[2] |
| 0x20000008 | writerBuffer[3] | writerBuffer[4] | writerBuffer[5] |                 |

Figure 6: EasyDMA memory layout

The WRITER.MAXCNT register should not be specified larger than the actual size of the buffer (writerBuffer). Otherwise, the channel would overflow the writerBuffer.

Once an EasyDMA transfer is completed, the AMOUNT register can be read by the CPU to see how many bytes were transferred. For example, CPU can read MYPERIPHERAL->WRITER.AMOUNT register to see how many bytes WRITER wrote to RAM.

**Note:** The PTR register of a READER or WRITER must point to a valid memory region before use. The reset value of a PTR register is not guaranteed to point to valid memory. See Memory on page 21 for more information about the different memory regions and EasyDMA connectivity.

## 4.7.1 EasyDMA error handling

Some errors may occur during DMA handling.

If READER.PTR or WRITER.PTR is not pointing to a valid memory region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 21 for more information about the different memory regions.



If several AHB bus masters try to access the same AHB slave at the same time, AHB bus congestion might occur. An EasyDMA channel is an AHB master. Depending on the peripheral, the peripheral might either stall and wait for access to be granted, or lose data.

## 4.7.2 EasyDMA array list

EasyDMA can operate in Array List mode.

The Array List mode is implemented in channels where the LIST register is available.

The array list does not provide a mechanism to explicitly specify where the next item in the list is located. Instead, it assumes that the list is organized as a linear array where items are located one after the other in RAM.

The EasyDMA Array List can be implemented by using the data structure ArrayList\_type as illustrated in the code example below using a READER EasyDMA channel as an example:

```
#define BUFFER_SIZE 4

typedef struct ArrayList
{
   uint8_t buffer[BUFFER_SIZE];
} ArrayList_type;

ArrayList_type ReaderList[3] __at__ 0x20000000;

MYPERIPHERAL->READER.MAXCNT = BUFFER_SIZE;
MYPERIPHERAL->READER.PTR = &ReaderList;
MYPERIPHERAL->READER.LIST = MYPERIPHERAL_READER_LIST_ArrayList;
```

The data structure only includes a buffer of size equal to the size of READER.MAXCNT register. EasyDMA uses the READER.MAXCNT register to determine when the buffer is full.

READER.PTR = &ReaderList

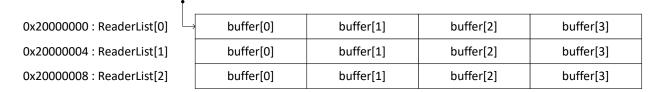



Figure 7: EasyDMA array list

## 4.8 AHB multilayer interconnect

On the AHB multilayer interconnect, the application CPU and all EasyDMA instances are AHB bus masters while RAM, cache, and peripherals are AHB slaves. External MCU subsystems can be seen both as master and slave on the AHB multilayer interconnect.

Multiple AHB masters can access slave resources within the AHB multilayer interconnect as illustrated in Memory on page 21. Access rights to each of the AHB slaves are resolved using the default natural priority of the different bus masters in the system.



## 4.8.1 AHB multilayer priorities

Each master connected to the AHB multilayer is assigned a default natural priority.

| Bus master name                | Natural relative priority | In/Out |
|--------------------------------|---------------------------|--------|
| System (CPU)                   | Highest priority          | 1/0    |
| LTE Modem                      |                           | 1/0    |
| 125                            |                           | 1/0    |
| PDM                            |                           | T      |
| SPIMO/SPISO/TWIMO/TWISO/UARTEO |                           | I/O    |
| SPIM1/SPIS1/TWIM1/TWIS1/UARTE1 |                           | 1/0    |
| SPIM2/SPIS2/TWIM2/TWIS2/UARTE2 |                           | I/O    |
| SPIM3/SPIS3/TWIM3/TWIS3/UARTE3 |                           | 1/0    |
| SAADC                          |                           | 1      |
| PWM0                           |                           | 0      |
| PWM1                           |                           | 0      |
| PWM2                           |                           | 0      |
| PWM3                           |                           | 0      |
| CC310                          | Lowest priority           | I/O    |
|                                |                           |        |

Table 8: AHB bus masters (listed from highest to lowest priority)



# 5 Power and clock management

The power and clock management system automatically ensures maximum power efficiency.

The nRF9151 has three power modes - System Disabled, System ON and System OFF. The System ON and System OFF are internal (automatically handled by the device) and the System Disabled is external (driven by the ENABLE pin and overriding internal ones).

The core of the automatic power and clock management is the power management unit (PMU) illustrated in the following image.

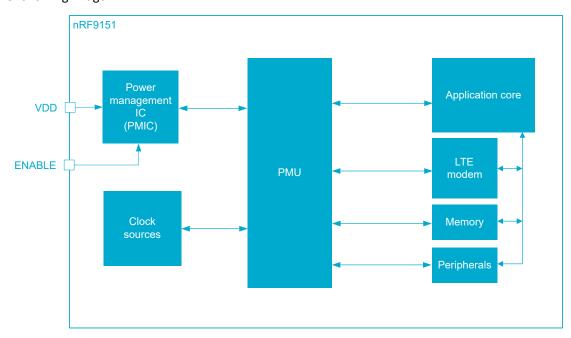



Figure 8: Power management unit

When the device is powered and enabled, the PMU automatically tracks the power and clock resources required by the different components in the system. It then starts/stops and chooses operation modes in supply regulators and clock sources, without user interaction, to achieve the lowest power consumption possible.

## 5.1 Power management

The two internal modes are handled by the power management unit (PMU), whereas the external is handled by the user via the ENABLE pin.

The System Disabled mode provides a way to override the PMU by manipulating voltages presented to the ENABLE pin.

The PMU steers system-wide clock and power in order to provide the power modes - System ON and System OFF. Under the various modes, internal blocks are automatically powered by the PMU as required by the application.

## 5.1.1 System Disabled mode

The entire device can be powered down by presenting the appropriate voltage to the externally available ENABLE pin.



The nRF9151 provides a feature to be able disable power throughout the entire device externally. This can be useful when the device is operating as slave processor where it does not need to be powered on at all times, then it is possible to avoid unnecessary current leaking by driving the ENABLE pin to low. The nRF9151 will not start if is not enabled. Moreover, a change from disable to enable, will result in a power-on-reset behavior inside the device.

**Note:** VDD\_GPIO input must be driven low when device is disabled, failing to do so could result in increased leakage. For more information, see VDD\_GPIO considerations in Operating conditions on page 525.

**Note:** If System Disabled mode is not used, ENABLE must be connected to VDD.

| Pin Value | Power status | description                                |
|-----------|--------------|--------------------------------------------|
| Low       | Disabled     | Device's internal power regulator disabled |
| High      | Enabled      | Device's internal power regulator enabled  |

Table 9: ENABLE pin configuration

## 5.1.2 System OFF mode

System OFF is the deepest internal power saving mode the system can enter.

In this mode, the core system functionality is powered down and ongoing tasks terminated, and only the reset and the wakeup functions are available and responsive.

The device is put into System OFF mode using the REGULATORS register interface. When in System OFF mode, one of the following signals/actions will wake up the device:

- 1. DETECT signal, generated by the GPIO peripheral
- 2. RESET
- 3. Debug session start

When the device wakes up from System OFF mode, a system reset is performed.

One or more RAM blocks can be retained in System OFF mode depending on the settings in the RAM[n].POWER registers in VMC. RAM[n].POWER are retained registers, see Reset behavior on page 59. Note that these registers are usually overwritten by the startup code provided with the nRF application examples.

Before entering System OFF mode, the user must make sure that all on-going EasyDMA transactions have completed. This can be done by making sure that EasyDMA enabled peripherals have stopped and END events from them received. The LTE modem must also be stopped, by issuing a command through the modem API, before entering System OFF mode. Once the command is issued, wait for the modem to respond that it actually has stopped, as there may be a delay until the modem is disconnected from the network.

#### 5.1.2.1 Emulated System OFF mode

If the device is in debug interface mode, System OFF will be emulated to ensure that all resources required for debugging are available during System OFF.

See Debug and trace on page 436 chapter for more information. Resources required for debugging include the following key components: Debug and trace on page 436, CLOCK — Clock control on page 73, POWER — Power control on page 67, NVMC — Non-volatile memory controller on page 29, CPU on page 20, flash, and RAM. To prevent the CPU from executing unwanted code, an infinite loop must be added directly after entering System OFF mode.



### 5.1.3 System ON mode

System ON is the power mode entered after a power-on reset.

While in System ON, the system can reside in one of two sub modes:

- · Low power
- Constant latency

The low power mode is default after power-on reset.

In low power mode, whenever no application or wireless activity takes place, function blocks like the application CPU, LTE modem and all peripherals are in IDLE state. That particular state is referred to as System ON IDLE. In this state, all function blocks retain their state and configuration, so they are ready to become active once configured by the CPU.

If any application or modem activity occurs, the system leaves the System ON IDLE state. Once a given activity in a function block is completed, the system automatically returns to IDLE, retaining its configuration.

As long as the system resides in low power mode, the PMU ensures that the appropriate regulators and clock sources are started or stopped based on the needs of the function blocks active at any given time.

This automatic power management can be overridden by switching to constant latency mode. In this mode, the CPU wakeup latency and the PPI task response are constant and kept at a minimum. This is secured by keeping a set of base resources that are always enabled. The advantage of having a constant and predictable latency will be at the cost of having significantly increased power consumption compared to the low power mode. The constant latency mode is enabled by triggering the CONSTLAT task (TASKS\_CONSTLAT on page 68).

While the system is in constant latency mode, the low power mode can be enabled by triggering LOWPWR task (TASKS LOWPWR on page 68).

To reduce power consumption while in System ON IDLE, RAM blocks can be turned off in System ON mode while enabling the retention of these RAM blocks in RAM[n].POWER registers in VMC. RAM[n].POWER are retained registers, see Reset behavior on page 59. Note that these registers are usually overwritten by the startup code provided with the nRF application examples.

## 5.1.4 Electrical specification

#### 5.1.4.1 ENABLE pin

| Symbol                           | Description                                                | Min.     | Тур. | Max.     | Units |
|----------------------------------|------------------------------------------------------------|----------|------|----------|-------|
| V <sub>SYSTEM</sub> DISABLED ON  | Operational voltage to enforce System-Disabled power mode. |          | •    | 0.18*VDD | V     |
| V <sub>SYSTEM_DISABLED_OFF</sub> | Operational voltage to cancel System-Disabled power mode.  | 0.89*VDD |      |          | V     |
| t <sub>HOLDENABLE</sub>          | ENABLE pin hold time                                       | TBA      |      |          | ms    |

## 5.2 Power supply

The nRF9151 has a single main power supply VDD, and the internal components are powered by integrated voltage regulators. The PMU manages these regulators automatically, no voltage regulator control needs to be included in application firmware.

## 5.2.1 General purpose I/O supply

The input/output (I/O) drivers of P0.00 - P0.31 pins are supplied independently of VDD through VDD GPIO. This enables easy match to signal voltage levels in the printed circuit board design.



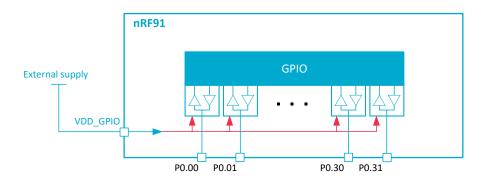



Figure 9: GPIO supply input (VDD\_GPIO)

The I/Os are supplied via VDD\_GPIO pin as shown in figure above. VDD\_GPIO pin supports voltage levels within range given in table Operating conditions on page 525. See VDD\_GPIO considerations on page 525 for more information on how to control VDD\_GPIO power supply.

## 5.3 Power supply monitoring

Power monitor solutions are available in the device, in order to survey the VDD (battery voltage).

## 5.3.1 Power supply supervisor

The power supply supervisor enables monitoring of the connected power supply.

Two functionalities are implemented:

- Power-on reset (POR): Generates a reset when the supply is applied to the device, and ensures that the
  device starts up in a known state
- Brownout reset (BOR): Generates a reset when the supply drops below the minimum voltage required for safe operations

The supply voltage level values of POR and BOR are given in Power supply supervisor on page 55.

## 5.3.2 External power failure warning

The external power failure (EXTPOF) warning can provide the CPU an early warning of an imminent power failure. It does not reset the system, but gives the CPU time to prepare for an orderly power-down. EXTPOF detects power failures external to PMU from the device internal PMIC.

**Note:** All nRF9151 modem firmware versions support this feature.

The user can start and stop the PMIC EXTPOF feature and set the battery voltage low threshold level through the modem API.

For application core to receive the power failure warning events, EXTPOFCON on page 82 register in REGULATORS — Voltage regulators control on page 81 must be enabled. If this is disabled, the state of the PMIC warning input is ignored and the power failure warning events are not delivered to application core

The available time for the CPU to prepare for a power-down depends on the set warning threshold level, the load of the running tasks, and the type of power source used.

**Note:** For details on services provided by the modem AT command interface, see nRF Connect SDK AT interface and nRF91 AT Commands.

The EXTPOF functional overview is shown in the following figure.



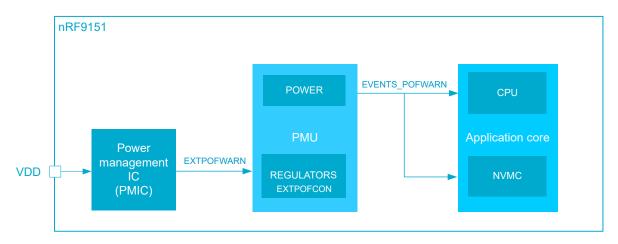



Figure 10: External power failure warning arrangement

If EXTPOF is enabled and the device's internal PMIC detects that battery voltage has dropped below the low threshold level, an POFWARN event is generated (see EVENTS\_POFWARN on page 69). The POFWARN event to the CPU can be cleared in the event register, however the PMIC input continues to indicate a warning as long as the battery voltage remains below the low threshold level.

POFWARN event also sets the LTE modem in offline mode.

**Note:** If a power failure warning occurs during an ongoing NVM write operation, the NVMC tries to finish the operation. Consecutive NVM write operations will be blocked by the NVMC as long as the PMIC input indicates a warning. The CPU interprets a blocked NVM write as a fault, which needs to be handled by the application. If a power failure warning occurs during an ongoing NVM erase operation, the operation will be aborted. Blocking NVM writes and aborting NVM erase operations can be disabled in APPNVMCPOFGUARD on page 44.

The external power failure warning doesn't trigger wakeup from System OFF.

The external power failure warning is disabled in System OFF mode.

## 5.3.3 Battery monitoring on VDD

A battery voltage (VDD) monitoring capability is provided via a modem API.

**Note:** For details on services provided by the modem AT command interface, see nRF Connect SDK AT interface and nRF91 AT Commands.

## 5.3.4 Electrical specification

## 5.3.4.1 Device startup times

| Symbol                  | Description                                                                     | Min. | Тур. | Max. | Units |
|-------------------------|---------------------------------------------------------------------------------|------|------|------|-------|
| t <sub>POR</sub>        | Time in power-on reset after VDD has reached 3V, ENABLE is tied to VDD.         |      | 1.2  |      | ms    |
| t <sub>PINR</sub>       | The maximum time taken to pull up the nRESET pin and release reset after        |      |      |      |       |
|                         | power-on reset. Dependent on the pin capacitive load (C) $^2$ : t=TRC; Typical: |      |      |      |       |
|                         | T=2 R=13 kΩ; Max: T=5 R=16 kΩ.                                                  |      |      |      |       |
| t <sub>PINR,500nF</sub> | C=500 nF                                                                        |      | 13   | 40   | ms    |
| t <sub>PINR,10uF</sub>  | C=10 μF                                                                         |      | 260  | 800  | ms    |
| t <sub>R2ON</sub>       | Time from reset to ON (CPU execute)                                             |      | 127  | 135  | μs    |

<sup>&</sup>lt;sup>2</sup> To decrease the maximum time a device can be held in reset, a strong external pull-up resistor can be used.



| Description                                                                                     | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time from OFF to CPU execute                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time from WFE to CPU execute                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time from WFI to CPU execute                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time from HW event to PPI event in constant latency System ON mode                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time from HW event to PPI event in low power System ON mode                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\ensuremath{LTE}$ modem typical startup time. Time from application core powering up the       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\label{eq:modem_state} \mbox{modem until the modem is ready to receive the first AT command.}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LTE modem worst case startup time. Time from application core powering up $\ensuremath{LTE}$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the modem until the modem is ready to receive the first AT command, with                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| modem firmware variable elements included.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LTE modem startup time after modem FOTA update. Time from application                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| core powering up the modem after a modem FOTA update until the modem $\boldsymbol{i}$           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ready to receive the first AT command.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LTE modem startup time after a rejected modem FOTA update. Time from                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| application core powering up the modem after a rejected modem FOTA                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| update until the modem is ready to receive the first AT command. Modem                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| will revert back to original firmware image.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LTE modem typical shutdown time. Time from application core calling                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| bsd_shutdown command until bsd_shutdown returns.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LTE modem worst case shutdown time. Time from application core calling                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| bsd_shutdown command until bsd_shutdown returns, including modem                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| firmware variable elements.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                 | Time from OFF to CPU execute  Time from WFE to CPU execute  Time from WFI to CPU execute  Time from WFI to CPU execute  Time from HW event to PPI event in constant latency System ON mode  Time from HW event to PPI event in low power System ON mode  LTE modem typical startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command.  LTE modem worst case startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command, with modem firmware variable elements included.  LTE modem startup time after modem FOTA update. Time from application core powering up the modem after a modem FOTA update until the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update until the modem is ready to receive the first AT command. Modem will revert back to original firmware image.  LTE modem typical shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns.  LTE modem worst case shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns, including modem | Time from OFF to CPU execute  Time from WFE to CPU execute  Time from WFI to CPU execute  Time from HW event to PPI event in constant latency System ON mode  Time from HW event to PPI event in low power System ON mode  LTE modem typical startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command.  LTE modem worst case startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command, with modem firmware variable elements included.  LTE modem startup time after modem FOTA update. Time from application core powering up the modem after a modem FOTA update until the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update until the modem will revert back to original firmware image.  LTE modem typical shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns.  LTE modem worst case shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns, including modem | Time from OFF to CPU execute 73  Time from WFE to CPU execute 70  Time from WFI to CPU execute 69  Time from HW event to PPI event in constant latency System ON mode 0.1  Time from HW event to PPI event in low power System ON mode 0.1  LTE modem typical startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command.  LTE modem worst case startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command, with modem firmware variable elements included.  LTE modem startup time after modem FOTA update. Time from application core powering up the modem after a modem FOTA update until the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update. Time from application core powering up the modem is ready to receive the first AT command. Modem will revert back to original firmware image.  LTE modem typical shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns.  LTE modem worst case shutdown time. Time from application core calling bsd_shutdown command until bsd_shutdown returns, including modem | Time from OFF to CPU execute 70 90  Time from WFI to CPU execute 69 90  Time from HW event to PPI event in constant latency System ON mode 0.1 0.1  Time from HW event to PPI event in low power System ON mode 0.1 0.7  LTE modem typical startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command.  LTE modem worst case startup time. Time from application core powering up the modem until the modem is ready to receive the first AT command, with modem firmware variable elements included.  LTE modem startup time after modem FOTA update. Time from application core powering up the modem after a modem FOTA update until the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update until the modem is ready to receive the first AT command.  LTE modem startup time after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem after a rejected modem FOTA update. Time from application core powering up the modem is ready to receive the first AT command. Modem will revert back to original firmware image.  LTE modem typical shutdown time. Time from application core calling  1.6  bsd_shutdown command until bsd_shutdown returns, including modem |

#### 5.3.4.2 Power supply supervisor

| Symbol           | Description                                                                | Min. | Тур. | Max. | Units |
|------------------|----------------------------------------------------------------------------|------|------|------|-------|
| V <sub>BOR</sub> | Brownout reset voltage threshold.                                          |      | 2.80 |      | V     |
| $V_{POR}$        | Voltage threshold at which the device enters power-on reset (POR) when VDD |      |      |      | V     |
|                  | is ramping up.                                                             |      |      |      |       |

## 5.4 Clock management

The clock control system can source the system clocks from a range of high and low frequency oscillators, and distribute them to modules based upon a module's individual requirements.

Clock generation and distribution is handled automatically by PMU to optimize current consumption. This optimization will affect the predictability of the oscillators' startup times under different device operating conditions. However, it is possible to bypass some of the power saving mechanisms by explicitly keeping the system on constant latency sub mode (more about constant latency in System ON mode on page 52) and/or manipulating START/STOP clock task registers.

The following are the available clock signal sources:

- 64 MHz oscillator (HFINT)
- 64 MHz high accuracy oscillator (HFXO)
- 32.768 kHz RC oscillator (LFRC)
- 32.768 kHz high accuracy oscillator (LFXO)

The clock and oscillator resources are configured and controlled via the CLOCK peripheral as illustrated below.



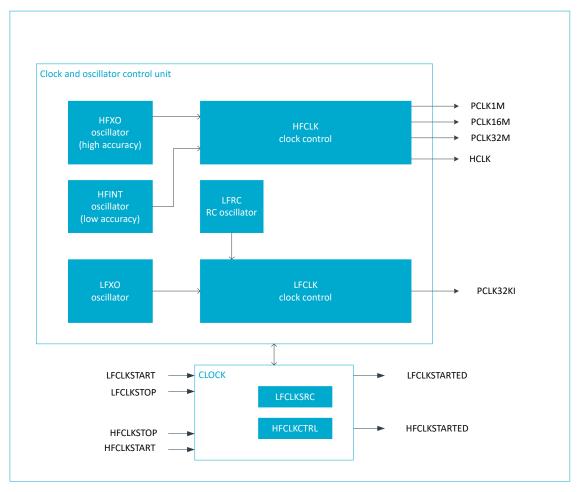



Figure 11: Clock and oscillator setup

### 5.4.1 HFCLK clock controller

The HFCLK clock controller provides several clocks in the system.

These are as follows:

- HCLK: 64 MHz CPU clock
- PCLK1M: 1 MHz peripheral clock
- PCLK16M: 16 MHz peripheral clock
- PCLK32M: 32 MHz peripheral clock

The HFCLK controller uses the following high frequency clock (HFCLK) sources:

- 64 MHz oscillator (HFINT)
- 64 MHz high accuracy oscillator (HFXO)

For illustration, see Clock and oscillator setup on page 56.

The HFCLK controller automatically provides the clock(s) requested by the system. If the system does not request any clocks from the HFCLK controller, the controller switches off all its clock sources and enters a power saving mode.

The HFINT source is used when HFCLK is requested and HFXO has not been started.

The HFXO is started by triggering the HFCLKSTART task and stopped using the HFCLKSTOP task. A HFCLKSTARTED event is generated when the HFXO has started and its frequency is stable.



#### 5.4.2 LFCLK clock controller

The system supports several low frequency clock sources.

As illustrated in Clock and oscillator setup on page 56, the system supports the following low frequency clock sources:

- LFXO: 32.768 kHz high accuracy oscillator
- LFRC: 32.768 kHz RC oscillator

The LFCLK clock controller and all LFCLK clock sources are always switched off when in System OFF mode.

The LFCLK clock is started by first selecting the preferred clock source in the LFCLKSRC on page 81 register and then triggering the LFCLKSTART task. LFXO is highly recommended as the LFCLK clock source, since the LFRC has a large frequency variation.

Note: The LTE modem requires use of LFXO as the LFCLK source.

Switching between LFCLK clock sources can be done without stopping the LFCLK clock. A LFCLK clock source which is running prior to triggering the LFCLKSTART task continues to run until the selected clock source is available. After that the clock sources will be switched. Switching between clock sources will stretch a clock pulse by 0.5 to 1.0 clock cycle (i.e. will delay rising edge by 0.5 to 1.0 clock cycle).

**Note:** If the watchdog timer (WDT) is running, the default LFCLK clock source (LFRC - see LFCLKSRC on page 81) is started automatically (LFCLKSTART task doesn't have to be triggered).

A LFCLKSTARTED event will be generated when the selected LFCLK clock source has started.

**Note:** The first time LFXO is selected, LFRC quality is provided until LFXO is stable.

A LFCLKSTOP task will prevent global requesting of the LFCLK clock, unless a system component such as WDT or modem requires the LFCLK, in which case the clock is not stopped. The LFCLKSTOP task should only be triggered after the STATE field in the LFCLKSTAT register indicates a LFCLK running state.

#### 5.4.2.1 32.768 kHz RC oscillator (LFRC)

The default source of the low frequency clock (LFCLK) is the 32.768 kHz RC oscillator (LFRC).

The LFRC frequency is affected by variation in temperature.

## 5.4.3 Electrical specification

#### 5.4.3.1 64 MHz internal oscillator (HFINT)

| Symbol                   | Description              | Min. | Тур. | Max. | Units |
|--------------------------|--------------------------|------|------|------|-------|
| f <sub>NOM_HFINT</sub>   | Nominal output frequency |      | 64   |      | MHz   |
| f <sub>TOL_HFINT</sub>   | Frequency tolerance      |      | ±1   | ±5   | %     |
| t <sub>START_HFINT</sub> | Startup time             |      | 3.2  |      | μs    |

#### 5.4.3.2 64 MHz high accuracy oscillator (HFXO)

| Symbol                  | Description              | Min. | Тур. | Max. | Units |
|-------------------------|--------------------------|------|------|------|-------|
| f <sub>NOM_HFXO</sub>   | Nominal output frequency |      | 64   |      | MHz   |
| $f_{TOL\_HFXO}$         | Frequency tolerance      |      | ±1   |      | ppm   |
| t <sub>START HEXO</sub> | Startup time             |      | 2    |      | ms    |



### 5.4.3.3 32.768 kHz high accuracy oscillator (LFXO)

| Symbol                  | Description         | Min. | Тур.   | Max. | Units |
|-------------------------|---------------------|------|--------|------|-------|
| f <sub>NOM_LFXO</sub>   | Frequency           |      | 32.768 |      | kHz   |
| $f_{TOL\_LFXO}$         | Frequency tolerance |      | ±20    |      | ppm   |
| t <sub>START LFXO</sub> | Startup time        |      | 450    |      | ms    |

### 5.4.3.4 32.768 kHz RC oscillator (LFRC)

| Symbol                  | Description         | Min. | Тур.   | Max. | Units |
|-------------------------|---------------------|------|--------|------|-------|
| f <sub>NOM_LFRC</sub>   | Nominal frequency   |      | 32.768 |      | kHz   |
| f <sub>TOL_LFRC</sub>   | Frequency tolerance |      | 30     |      | %     |
| t <sub>START_LFRC</sub> | Startup time        |      | 600    |      | μs    |

## 5.5 Reset

A system reset can be triggered by multiple sources. After a reset the CPU can query the RESETREAS (reset reason register) to find out which source generated the reset.

#### 5.5.1 Power-on reset

The power-on reset generator initializes the system at power-on. The system is held in reset state until the supply has reached the minimum operating voltage and the internal voltage regulators have started.

#### 5.5.2 Pin reset

A pin reset is generated when the physical reset pin (nRESET) on the device is pulled low.

To ensure that reset is issued correctly, the reset pin should be held low for the time specified in Pin reset on page 60.

nRESET pin has an always-on internal pull-up resistor connected to nRF9151 internal voltage typically of 2.2 V level, as illustrated in the following figure. The value of the pull-up resistor is given in Pin reset on page 60.

Note: Driving nRESET high with a voltage lower than 2.2V will result in additional leakage.

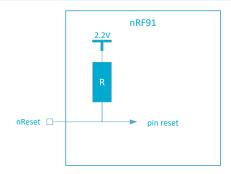



Figure 12: Pin reset internal generation

## 5.5.3 Wakeup from System OFF mode reset

The device is reset when it wakes up from System OFF mode.



The Debug access port is not reset following a wake up from System OFF mode if the device is in debug interface mode, see Debug and trace on page 436 chapter for more information.

#### 5.5.4 Soft reset

A soft reset is generated when the SYSRESETREQ bit of the application interrupt and reset control register (AIRCR register) in the Arm core is set.

## 5.5.5 Watchdog reset

A watchdog reset is generated when the watchdog timer (WDT) times out.

See WDT — Watchdog timer on page 416 chapter for more information.

#### 5.5.6 Brownout reset

The brownout reset generator puts the system in reset state if the supply voltage drops below the brownout reset threshold.

## 5.5.7 Retained registers

A retained register is a register that will retain its value in System OFF mode, and through a reset depending on reset source. For information on which peripheral registers are retained, see the corresponding peripheral's chapter.

#### 5.5.8 Reset behavior

Reset behavior depends on the reset source.

The reset behavior is summarized in the table below.

| Reset source                | Reset target |       |                    |        |                  |                  |     |           |
|-----------------------------|--------------|-------|--------------------|--------|------------------|------------------|-----|-----------|
|                             | СРИ          | Modem | Debug <sup>3</sup> | SWJ-DP | Not retained     | d Retained       | WDT | RESETREAS |
|                             |              |       |                    |        | RAM <sup>4</sup> | RAM <sup>4</sup> |     |           |
| CPU lockup <sup>5</sup>     | х            | х     |                    |        |                  |                  |     |           |
| Soft reset                  | х            | х     |                    |        |                  |                  |     |           |
| Wakeup from System OFF      | x            | x     | x <sup>6</sup>     |        | х                |                  | x   |           |
| mode reset                  |              |       |                    |        |                  |                  |     |           |
| Watchdog reset <sup>7</sup> | х            | x     | x                  |        | х                | х                | х   |           |
| Pin reset                   | x            | x     | x                  | x      | х                | х                | x   |           |
| Brownout reset              | x            | x     | x                  | х      | х                | х                | x   | Х         |
| Power-on reset              | x            | x     | х                  | х      | х                | х                | х   | х         |

Table 10: Reset behavior for the main components

**Note:** The RAM is never reset but its content might be corrupted after reset in the cases given in the table above.

NORDI

<sup>&</sup>lt;sup>3</sup> All debug components excluding SWJ-DP. See Debug and trace on page 436 chapter for more information about the different debug components in the system.

<sup>&</sup>lt;sup>4</sup> RAM can be configured to be retained using registers in VMC — Volatile memory controller on page 28.

Reset from CPU lockup is disabled if the device is in debug interface mode. CPU lockup is not possible in System OFF.

<sup>&</sup>lt;sup>6</sup> The debug components will not be reset if the device is in debug interface mode.

Watchdog reset is not available in System OFF.

| Reset source                      | Reset target       |           |              |                |             |                |  |
|-----------------------------------|--------------------|-----------|--------------|----------------|-------------|----------------|--|
|                                   | Regular peripheral | GPIO, SPU | NVMC         | NVMC           | REGULATORS, | POWER.GPREGRET |  |
|                                   | registers          |           | WAITSTATENUM | I IFCREADDELAY | OSCILLATORS |                |  |
| CPU lockup <sup>5</sup>           | х                  | х         | х            |                |             |                |  |
| Soft reset                        | х                  | х         | х            |                |             |                |  |
| Wakeup from System OFF mode reset | x                  |           | х            |                |             |                |  |
| Watchdog reset <sup>7</sup>       | х                  | х         | х            |                | х           |                |  |
| Pin reset                         | х                  | х         | х            |                | х           |                |  |
| Brownout reset                    | x                  | х         | х            | х              | х           | х              |  |
| Power-on reset                    | x                  | Х         | х            | X              | х           | X              |  |

Table 11: Reset behavior for the retained registers

## 5.5.9 Electrical specification

#### 5.5.9.1 Pin reset

| Symbol                 | Description                                    | Min. | Тур. | Max. | Units |
|------------------------|------------------------------------------------|------|------|------|-------|
| t <sub>HOLDRESET</sub> | Hold time for reset pin when doing a pin reset | 5    |      |      | μs    |
| R <sub>PULL-UP</sub>   | Value of the internal pull-up resistor         |      | 13   |      | kΩ    |

## 5.6 Current consumption

As the system is constantly tuned by the PMU described in Power and clock management on page 50, estimating the current consumption of an application can be challenging if the designer cannot perform measurements directly on the hardware. To facilitate the estimation process, a set of current consumption scenarios are provided to show the typical current drawn from the VDD supply.

Each scenario specifies a set of operations and conditions that apply to the given scenario. The following table shows a set of common conditions used in all scenarios, unless otherwise is stated in the scenario's description. Similarly, Current consumption scenarios, common conditions for LTE modem on page 61 describes the conditions used for the modem current consumption specifications. For a list of all scenarios, see Electrical specification on page 62.

Peripherals typically share one or more power sources. This results in a current consumption that does not scale linearly with the number of peripherals enabled. For example, the current consumption for an application with two peripherals enabled, is not the sum of the currents reported by their individual peripherals.



| Condition     | Value                                               |
|---------------|-----------------------------------------------------|
| Supply        | 3.7 V                                               |
| Temperature   | 25 °C                                               |
| CPU           | WFI (wait for interrupt)/WFE (wait for event) sleep |
| Peripherals   | All idle <sup>8</sup>                               |
| Clock         | HFCLK=HFINT Not running                             |
|               | LFCLK=Not running                                   |
| RAM           | No retention                                        |
| Cache enabled | Yes                                                 |

Table 12: Current consumption scenarios, common conditions

| Condition                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|
| Cat-M1 and Cat-NB1 HD FDD mode                                                                                       |
| Good channel, RF cable, no errors in DL/UL communication                                                             |
| Minimum network response times                                                                                       |
| Wideband radio communication tester used. <sup>9</sup>                                                               |
| Output power at antenna port, single-ended 50 $\Omega$                                                               |
| Modem eDRX current consumption quoted with UICC that allows UICC supply shut down at eDRX intervals. $^{10\ 11\ 12}$ |
| Modem PSM TAU event energy is measured from the modem PSM wake-up until end of RX inactivity time                    |
| All LTE modem current consumption numbers include application core idle mode consumption <sup>13</sup>               |

Table 13: Current consumption scenarios, common conditions for LTE modem



<sup>&</sup>lt;sup>8</sup> Except for currents reported for a given peripheral. Peripherals' currents are estimated during momentary transmission.

<sup>&</sup>lt;sup>9</sup> Key network parameters can differ between every network and live network measurements may differ from Product Specification.

<sup>&</sup>lt;sup>10</sup> Required UICC restart current consumption is included.

If the UICC used does not support supply shut down, then UICC will remain in clock stop mode. Depending on the UICC used, a clock stop current in the range of 20  $\mu$ A to 60  $\mu$ A@3.7 V must be added to get the total average consumption.

Minimum UICC supply shut down interval and clock stop mode current consumption must be obtained from the UICC supplier.

Application RAM leakage not included. Application RAM leakage quoted separately under Sleep on page 62.

## 5.6.1 Electrical specification

## 5.6.1.1 Current consumption during System Disabled

| Symbol                       | Description                       | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------|------|------|------|-------|
| I <sub>SYSTEM_DISABLED</sub> | ENABLE and VDD_GPIO pins grounded |      | 150  |      | nA    |

## 5.6.1.2 Sleep

| Symbol               | Description                                                          | Min. | Тур. | Max. | Units |
|----------------------|----------------------------------------------------------------------|------|------|------|-------|
| I <sub>MCUOFF0</sub> | MCU off, modem off, wake on GPIO and reset                           |      | 1.4  |      | μΑ    |
| I <sub>MCUON0</sub>  | MCU on IDLE, modem off, RTC off                                      |      | 1.8  |      | μΑ    |
| I <sub>MCUON1</sub>  | MCU on IDLE, modem off, RTC on                                       |      | 2.2  |      | μΑ    |
| I <sub>MCUON2</sub>  | MCU on IDLE, modem off, wake on GPIOTE input (event mode), Constant  |      | 600  |      | μΑ    |
|                      | latency System ON mode                                               |      |      |      |       |
| I <sub>MCUON3</sub>  | MCU on IDLE, modem off, wake on GPIOTE input (event mode), Low power |      | 18   |      | μΑ    |
|                      | System ON mode                                                       |      |      |      |       |
| I <sub>MCUON4</sub>  | MCU on IDLE, modem off, wake on GPIOTE input (port event)            |      | 1.8  |      | μΑ    |
| I <sub>RAM</sub>     | RAM retention leakage current of a 32kB block                        |      | 0.1  |      | μΑ    |

## 5.6.1.3 Application CPU active current consumption

The application CPU running parameters are obtained using the following compiler version:

Compiler: Arm version 6.16 (armclang)

#### Compiler flags:

-Wno-unused-command-line-argument --target=arm-arm-none-eabi -c -g -masm=auto -Wno-unused-value -mcpu=cortex-m33 -mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-rtti -flto -funsigned-char -mcmse -Omax -ffunction-sections

| Symbol                             | Description                                                           | Min. | Typ. | Max. | Units       |
|------------------------------------|-----------------------------------------------------------------------|------|------|------|-------------|
|                                    |                                                                       |      |      | -    |             |
| I <sub>CPU0_FLASH</sub>            | CPU running CoreMark @64 MHz from flash, clock = HFINT, cache enabled |      | 2.7  |      | mA          |
| I <sub>COREMARK_PER_MA_FLASH</sub> | CoreMark per mA, executing from flash, CoreMark=247                   |      | 91   |      | CoreMark/mA |
| I <sub>CPU0_RAM</sub>              | CPU running CoreMark @64 MHz from RAM, clock = HFINT                  |      | 2.1  |      | mA          |
| I <sub>COREMARK_PER_MA_RAM</sub>   | CoreMark per mA, executing from RAM, CoreMark=239                     |      | 114  |      | CoreMark/mA |

#### 5.6.1.4 I2S

| Symbol            | Description                                                    | Min. | Тур. | Max. | Units |
|-------------------|----------------------------------------------------------------|------|------|------|-------|
| I <sub>1250</sub> | I2S transferring data left-channel (mono) @ 16 bit x 16 kHz    |      | 600  |      | μΑ    |
|                   | (CONFIG.MCKFREQ = 32MDIV8, CONFIG.RATIO = 256X), Clock = HFINT |      |      |      |       |
| I <sub>I2S1</sub> | I2S transferring data left-channel (mono) @ 16 bit x 16 kHz    |      | 1620 |      | μΑ    |
|                   | (CONFIG.MCKFREQ = 32MDIV8, CONFIG.RATIO = 256X), Clock = HFXO  |      |      |      |       |





## 5.6.1.5 PDM

| Symbol           | Description                                                   | Min. | Тур. | Max. | Units |
|------------------|---------------------------------------------------------------|------|------|------|-------|
| I <sub>PDM</sub> | PDM receiving and processing data 16KHz, with FREQ = 1.28MHz, |      | 620  |      | μΑ    |
|                  | MODE.OPERATION = mono                                         |      |      |      |       |
| I <sub>PDM</sub> | PDM receiving and processing data 16KHz, with FREQ = 1.28MHz, |      | 1630 |      | μΑ    |
|                  | MODE.OPERATION = mono, clock HFXO                             |      |      |      |       |

## 5.6.1.6 PWM

| Symbol            | Description                             | Min. | Тур. | Max. | Units |
|-------------------|-----------------------------------------|------|------|------|-------|
| I <sub>PWM0</sub> | PWM running @ 125 kHz, fixed duty cycle |      | 510  |      | μΑ    |
| I <sub>PWM1</sub> | PWM running @ 16 MHz, fixed duty cycle  |      | 680  |      | μΑ    |

## 5.6.1.7 SAADC

| Symbol                   | Description                                                                 | Min. | Тур. | Max. | Units |
|--------------------------|-----------------------------------------------------------------------------|------|------|------|-------|
| I <sub>SAADC_HFXO</sub>  | SAADC sampling @ 16 ksps, with high accuracy clock HFXO, acquisition time   |      | 1550 |      | μΑ    |
|                          | = 20 μs                                                                     |      |      |      |       |
| I <sub>SAADC_HFINT</sub> | SAADC sampling @ 16 ksps, with low accuracy clock HFINT, acquisition time = | •    | 540  |      | μΑ    |
|                          | 20 μs                                                                       |      |      |      |       |

## 5.6.1.8 TIMER

| Symbol              | Description            | Min. | Тур. | Max. | Units |
|---------------------|------------------------|------|------|------|-------|
| I <sub>TIMERO</sub> | TIMER running @ 1 MHz  |      | 390  |      | μΑ    |
| I <sub>TIMER1</sub> | TIMER running @ 16 MHz |      | 440  |      | μΑ    |

## 5.6.1.9 SPIM

| Symbol             | Description                                    | Min. | Тур. | Max. | Units |
|--------------------|------------------------------------------------|------|------|------|-------|
| I <sub>SPIM0</sub> | SPIM transferring data @ 2 Mbps, Clock = HFINT |      | 610  |      | μΑ    |
| I <sub>SPIM1</sub> | SPIM transferring data @ 2 Mbps, Clock = HFXO  |      | 1620 |      | μΑ    |
| I <sub>SPIM2</sub> | SPIM transferring data @ 8 Mbps, Clock = HFINT |      | 640  |      | μΑ    |
| I <sub>SPIM3</sub> | SPIM transferring data @ 8 Mbps, Clock = HFXO  |      | 1660 |      | μΑ    |

## 5.6.1.10 SPIS

| Symbol                 | Description                               | Min. | Тур. | Max. | Units |
|------------------------|-------------------------------------------|------|------|------|-------|
| I <sub>SPIS_2M</sub>   | SPIS receiving data @ 2 Mbps, Clock=HFINT |      | 500  |      | μΑ    |
| I <sub>SPIS_2MXO</sub> | SPIS receiving data @ 2 Mbps, Clock=HFXO  |      | 1510 |      | μΑ    |
| I <sub>SPIS_8M</sub>   | SPIS receiving data @ 8 Mbps, Clock=HFINT |      | 510  |      | μΑ    |
| I <sub>SPIS_8MXO</sub> | SPIS receiving data @ 8 Mbps, Clock=HFXO  |      | 1520 |      | μΑ    |



#### 5.6.1.11 TWIM

| Symbol                  | Description                            | Min. | Тур. | Max. | Units |
|-------------------------|----------------------------------------|------|------|------|-------|
| I <sub>TWIM_100</sub>   | TWIM running @ 100 kbps, Clock=HFINT   |      | 590  |      | μΑ    |
| I <sub>TWIM_400</sub>   | TWIM running @ 400 kbps, Clock = HFINT |      | 590  |      | μΑ    |
| I <sub>TWIM_100XO</sub> | TWIM running @ 100 kbps, Clock = HFXO  |      | 1600 |      | μΑ    |
| I <sub>TWIM_400XO</sub> | TWIM running @ 400 kbps, Clock = HFXO  |      | 1610 |      | μΑ    |

### 5.6.1.12 TWIS

| Symbol                      | Description                                     | Min. | Тур. | Max. | Units |
|-----------------------------|-------------------------------------------------|------|------|------|-------|
| I <sub>TWIS,RUN_100</sub>   | TWIS transferring data @ 100 kbps, Clock=HFINT  |      | 590  |      | μΑ    |
| I <sub>TWIS1,RUN_400</sub>  | TWIS transferring data @ 400 kbps, Clock=HFINT  |      | 510  |      | μΑ    |
| I <sub>TWIS,RUN_100XO</sub> | TWIS transferring data @ 100 kbps, Clock = HFXO |      | 1480 |      | μΑ    |
| I <sub>TWIS,RUN_400XO</sub> | TWIS transferring data @ 400 kbps, Clock = HFXO |      | 1370 |      | μΑ    |

#### 5.6.1.13 UARTE

| Symbol                  | Description                          | Min. | Тур. | Max. | Units |
|-------------------------|--------------------------------------|------|------|------|-------|
| I <sub>UARTE,1M</sub>   | UARTE transferring data @ 1Mbps      |      | 700  |      | μΑ    |
| I <sub>UARTE,115K</sub> | UARTE transferring data @ 115200 bps |      | 510  |      | μΑ    |

## 5.6.1.14 WDT

| Symbol           | Description | Min. | Тур. | Max. | Units |
|------------------|-------------|------|------|------|-------|
| I <sub>WDT</sub> | WDT started |      | 2.5  |      | μΑ    |

## 5.6.1.15 Power Class 3 modem current consumption

To estimate specific use cases, see Online Power Profiler for LTE

NORDIC SEMICONDUCTOR

| Symbol                 | Description                                                                                        |        | B20    | В3     | В4     | Units |
|------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|--------|-------|
|                        |                                                                                                    | (typ.) | (typ.) | (typ.) | (typ.) |       |
| Sleep curren           | t consumption, Cat-M1 and Cat-NB1                                                                  |        |        |        |        |       |
| I <sub>PSM</sub>       | PSM floor current                                                                                  | 2.7    | 2.7    | 2.7    | 2.7    | μΑ    |
| PSM TAU eve            | ent energy and duration, Cat-M1                                                                    |        |        |        |        |       |
| E <sub>PSM_TAU</sub>   | Pout 23 dBm, QPSK, resource blocks 6, TBS index 9, UICC included                                   | 91     | 97     | 95     | 94     | mJ    |
| T <sub>PSM_TAU</sub>   | Pout 23 dBm, QPSK, resource blocks 6, TBS index 9, UICC included                                   | 1.0    | 1.0    | 1.0    | 1.0    | s     |
| PSM TAU eve            | ent energy and duration, Cat-NB1                                                                   |        |        |        |        |       |
| E <sub>PSM_TAU</sub>   | Pout 23 dBm, QPSK, UICC included; UL: 12SC, MCS Index 5 Resource Units 1, Repetitions 1; DL, 12SC, | 343    | 376    | 357    | 347    | mJ    |
|                        | MCS Index 6, Subframes 3, Repetitions 1                                                            |        |        |        |        |       |
| T <sub>PSM_TAU</sub>   | Pout 23 dBm, QPSK, UICC included; UL: 12SC, MCS Index 5 Resource Units 1, Repetitions 1; DL, 12SC, | 2.3    | 2.4    | 2.3    | 2.4    | S     |
|                        | MCS Index 6, Subframes 3, Repetitions 1                                                            |        |        |        |        |       |
| Average curi           | rent consumption, radio resource control (RRC) mode, Cat-M1                                        |        |        |        |        |       |
| I <sub>EDRX</sub>      | eDRX average current, 81.92 s, one PO/PTW, PTW = 2.56 s                                            | 18     | -      | 18     | -      | μΑ    |
| I <sub>IEDRX</sub>     | Idle eDRX average current, 655 s, one PO/PTW, PTW = 2.56 s                                         | 5      | -      | 5      | -      | μΑ    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                        | 45     | 45     | 45     | 45     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                       | 50     | 50     | 55     | 55     | mA    |
| I <sub>RMC_23DBM</sub> | Pout 23 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                       | 115    | 125    | 120    | 120    | mA    |
| Average curi           | rent consumption, radio resource control (RRC) mode, Cat-NB1                                       |        |        |        |        |       |
| I <sub>EDRX</sub>      | eDRX average current, 81.92 s, one PO/PTW, PTW = 2.56 s                                            | 32     | -      | 33     | -      | μΑ    |
| I <sub>IEDRX</sub>     | Idle eDRX average current, 655 s, one PO/PTW, PTW = 2.56 s                                         | 7      | -      | 7      | -      | μΑ    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4       | 30     | 30     | 30     | 35     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4      | 40     | 40     | 40     | 45     | mA    |
| I <sub>RMC_23DBM</sub> | Pout 23 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4      | 100    | 120    | 110    | 115    | mA    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4 $$  | 50     | 50     | 55     | 55     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4    | 70     | 70     | 80     | 80     | mA    |
| I <sub>RMC_23DBM</sub> | Pout 23 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4 $$ | 215    | 240    | 235    | 230    | mA    |
| Average curi           | rent consumption, IoT NTN                                                                          |        |        |        |        |       |
| TBA                    |                                                                                                    |        |        |        |        |       |

## 5.6.1.16 Power Class 5 modem current consumption

To estimate specific use cases, see Online Power Profiler for LTE



| Symbol                 | Description                                                                                        | B13    | B20    | В3     | B4     | Units |
|------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|--------|-------|
|                        |                                                                                                    | (typ.) | (typ.) | (typ.) | (typ.) |       |
| Sleep curren           | t consumption, Cat-M1 and Cat-NB1                                                                  |        |        |        |        |       |
| I <sub>PSM</sub>       | PSM floor current                                                                                  | 2.7    | 2.7    | 2.7    | 2.7    | μΑ    |
| PSM TAU eve            | ent energy and duration, Cat-M1                                                                    |        |        |        |        |       |
| E <sub>PSM_TAU</sub>   | Pout 20 dBm, QPSK, resource blocks 6, TBS index 9, UICC included                                   | 84     | 87     | 87     | 86     | mJ    |
| T <sub>PSM_TAU</sub>   | Pout 20 dBm, QPSK, resource blocks 6, TBS index 9, UICC included                                   | 1.0    | 1.0    | 1.0    | 1.0    | S     |
| PSM TAU eve            | ent energy and duration, Cat-NB1                                                                   |        |        |        |        |       |
| E <sub>PSM_TAU</sub>   | Pout 20 dBm, QPSK, UICC included; UL: 12SC, MCS Index 5 Resource Units 1, Repetitions 1; DL, 12SC, | 260    | 276    | 280    | 290    | mJ    |
|                        | MCS Index 6, Subframes 3, Repetitions 1                                                            |        |        |        |        |       |
| T <sub>PSM_TAU</sub>   | Pout 20 dBm, QPSK, UICC included; UL: 12SC, MCS Index 5 Resource Units 1, Repetitions 1; DL, 12SC, | 2.3    | 2.4    | 2.4    | 2.4    | S     |
|                        | MCS Index 6, Subframes 3, Repetitions 1                                                            |        |        |        |        |       |
| Average curr           | ent consumption, radio resource control (RRC) mode, Cat-M1                                         |        |        |        |        |       |
| I <sub>EDRX</sub>      | eDRX average current, 81.92 s, one PO/PTW, PTW = 2.56 s                                            | 18     | -      | 18     | -      | μΑ    |
| I <sub>IEDRX</sub>     | Idle eDRX average current, 655 s, one PO/PTW, PTW = 2.56 s                                         | 5      | -      | 5      | -      | μΑ    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                        | 45     | 45     | 45     | 45     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                       | 50     | 50     | 55     | 55     | mA    |
| I <sub>RMC_20DBM</sub> | Pout 20 dBm, QPSK, 1RB, 5MHz, RMC settings as per 3GPP TS 36.521-1 Annex A.2                       | 90     | 90     | 90     | 90     | mA    |
| Average curr           | ent consumption, radio resource control (RRC) mode, Cat-NB1                                        |        |        |        |        |       |
| I <sub>EDRX</sub>      | eDRX average current, 81.92 s, one PO/PTW, PTW = 2.56 s                                            | 32     | -      | 33     | -      | μΑ    |
| I <sub>IEDRX</sub>     | Idle eDRX average current, 655 s, one PO/PTW, PTW = 2.56 s                                         | 7      | -      | 7      | -      | μΑ    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4       | 30     | 30     | 30     | 35     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4      | 40     | 40     | 40     | 45     | mA    |
| I <sub>RMC_20DBM</sub> | Pout 20 dBm, QPSK, 1SC, 15 kHz, TX 33% RX 33%, RMC settings as per 3GPP TS 36.101 Annex A.2.4      | 70     | 75     | 80     | 80     | mA    |
| I <sub>RMC_ODBM</sub>  | Pout 0 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4     | 50     | 50     | 55     | 55     | mA    |
| I <sub>RMC_10DBM</sub> | Pout 10 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4    | 70     | 70     | 80     | 80     | mA    |
| I <sub>RMC_20DBM</sub> | Pout 20 dBm, BPSK, 1SC, 3.75 kHz, TX 80% RX 10%, RMC settings as per 3GPP TS 36.101 Annex A.2.4    | 145    | 150    | 160    | 160    | mA    |
| Average curr           | ent consumption, IoT NTN                                                                           |        |        |        |        |       |
| ТВА                    |                                                                                                    |        |        |        |        |       |

## 5.6.1.17 DECT NR+ current consumption

| Symbol                           | Description                                                                                | B1, B2, B9, B22 | Units |
|----------------------------------|--------------------------------------------------------------------------------------------|-----------------|-------|
|                                  |                                                                                            | (typ.)          |       |
| Average current during a         | ctive transmission, nominal operating conditions                                           |                 |       |
| I <sub>TX_PL13_LOW_LATENCY</sub> | Minimum latency mode <sup>14</sup> , any modulation, Power level <sup>15</sup> 13 (19 dBm) | 235             | mA    |
| Average current during a         | ctive reception, nominal operating conditions                                              |                 |       |
| I <sub>RX90DBM_LOW_LATENCY</sub> | Minimum latency mode <sup>14</sup> , Received signal -90 dBm                               | 47              | mA    |
| Average current during io        | dle <sup>16</sup> , nominal operating conditions                                           |                 |       |
| I <sub>IDLE_LOW_LATENCY</sub>    | Minimum latency mode <sup>14</sup> , modem waiting for TX or RX operation                  | 37              | mA    |

66



Modem is configured to mode where lowest possible latency TX or RX operations can be achieved. In this mode certain circuit blocks which are slow to power-up are kept powered ON constantly. This will increase the current consumption during TX, RX, and especially idle operation.

Transmit power level requested from modem according to ETSI TS 103 636-4 Table 6.2.1-3a.

DECT NR+ enabled and waiting for TX or RX operations.

## 5.6.1.18 GPS current consumption

| Symbol                          | Description                                                                     | Min. | Тур. | Max. | Units |
|---------------------------------|---------------------------------------------------------------------------------|------|------|------|-------|
| I <sub>GPS_CONTINUOUS</sub>     | Continuous tracking, without power saving mode                                  |      | 43.1 |      | mA    |
| I <sub>GPS_CONTINUOUS_PSM</sub> | Continuous tracking, power saving mode                                          |      | 7.8  |      | mA    |
| I <sub>GPS_PERIODIC</sub>       | Periodic fix average current with A-GPS <sup>17</sup> , one fix every 2 minutes |      | 0.5  |      | mA    |

## 5.7 Register description

## 5.7.1 POWER — Power control

The POWER module provides an interface to tasks, events, interrupt, and reset related configuration settings of the power management unit.

**Note:** Registers INTEN on page 70, INTENSET on page 71, and INTENCLR on page 71 are the same registers (at the same address) as corresponding registers in CLOCK — Clock control on page 73.

### 5.7.1.1 Registers

#### **Instances**

| Instance   | Base address | TrustZone |     |     | Split access | Description   |
|------------|--------------|-----------|-----|-----|--------------|---------------|
|            |              | Мар       | Att | DMA |              |               |
| POWER : S  | 0x50005000   | LIC       | NS  | NA  | No           | Power control |
| POWER : NS | 0x40005000   | US        | INS | INA | NO           | Power control |

#### **Register overview**

| Register           | Offset | TZ | Description                                |
|--------------------|--------|----|--------------------------------------------|
| TASKS_CONSTLAT     | 0x78   |    | Enable constant latency mode.              |
| TASKS_LOWPWR       | 0x7C   |    | Enable low power mode (variable latency)   |
| SUBSCRIBE_CONSTLAT | 0xF8   |    | Subscribe configuration for task CONSTLAT  |
| SUBSCRIBE_LOWPWR   | 0xFC   |    | Subscribe configuration for task LOWPWR    |
| EVENTS_POFWARN     | 0x108  |    | Power failure warning                      |
| EVENTS_SLEEPENTER  | 0x114  |    | CPU entered WFI/WFE sleep                  |
| EVENTS_SLEEPEXIT   | 0x118  |    | CPU exited WFI/WFE sleep                   |
| PUBLISH_POFWARN    | 0x188  |    | Publish configuration for event POFWARN    |
| PUBLISH_SLEEPENTER | 0x194  |    | Publish configuration for event SLEEPENTER |
| PUBLISH_SLEEPEXIT  | 0x198  |    | Publish configuration for event SLEEPEXIT  |
| INTEN              | 0x300  |    | Enable or disable interrupt                |
| INTENSET           | 0x304  |    | Enable interrupt                           |
| INTENCLR           | 0x308  |    | Disable interrupt                          |
| RESETREAS          | 0x400  |    | Reset reason                               |
| POWERSTATUS        | 0x440  |    | Modem domain power status                  |
| GPREGRET[n]        | 0x51C  |    | General purpose retention register         |
| LTEMODEM.STARTN    | 0x610  |    | Start LTE modem                            |
| LTEMODEM.FORCEOFF  | 0x614  |    | Force off LTE modem                        |
|                    |        |    |                                            |

<sup>17</sup> Including LTE current consumption.



#### 5.7.1.1.1 TASKS\_CONSTLAT

Address offset: 0x78

Enable constant latency mode.



#### 5.7.1.1.2 TASKS\_LOWPWR

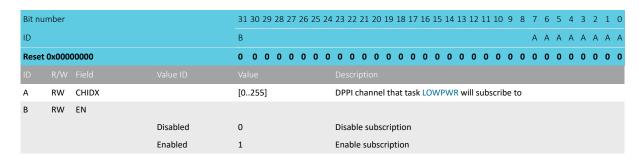
Address offset: 0x7C

Enable low power mode (variable latency)

| Bit nu | ımber |              |         | 31 | 30 | 29 | 28 | 27 | 26 2 | 25 : | 24 2 | 3 2 | 22 2: | 1 2 | 0 19 | 18  | 17 | 16   | 15  | 14  | 13    | 12   | 11 1 | .0 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|--------------|---------|----|----|----|----|----|------|------|------|-----|-------|-----|------|-----|----|------|-----|-----|-------|------|------|------|---|---|---|---|---|---|---|-----|
| ID     |       |              |         |    |    |    |    |    |      |      |      |     |       |     |      |     |    |      |     |     |       |      |      |      |   |   |   |   |   |   |   | Α   |
| Reset  | 0x000 | 00000        |         | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0   | 0 0   | 0   | 0    | 0   | 0  | 0    | 0   | 0   | 0     | 0    | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |              |         |    |    |    |    |    |      |      |      |     |       |     |      |     |    |      |     |     |       |      |      |      |   |   |   |   |   |   |   |     |
| Α      | W     | TASKS_LOWPWR |         |    |    |    |    |    |      |      | Е    | nal | ble l | ow  | pov  | ver | mo | de ( | var | iab | le la | iter | icy) |      |   |   |   |   |   |   |   |     |
|        |       |              | Trigger | 1  |    |    |    |    |      |      | Т    | rig | ger t | ask | :    |     |    |      |     |     |       |      |      |      |   |   |   |   |   |   |   |     |

#### 5.7.1.1.3 SUBSCRIBE\_CONSTLAT

Address offset: 0xF8


Subscribe configuration for task CONSTLAT

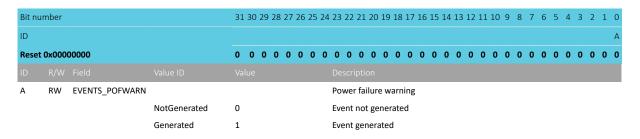
| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                 |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |         |       |          |                         | Description                                                   |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task CONSTLAT will subscribe to             |
| В      | D14/    |       |          |                         |                                                               |
| _      | RW      | EN    |          |                         |                                                               |
|        | RW      | EN    | Disabled | 0                       | Disable subscription                                          |

## 5.7.1.1.4 SUBSCRIBE\_LOWPWR

Address offset: 0xFC

Subscribe configuration for task LOWPWR

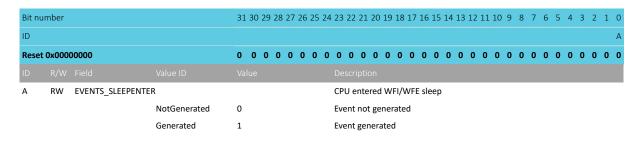







#### 5.7.1.1.5 EVENTS\_POFWARN

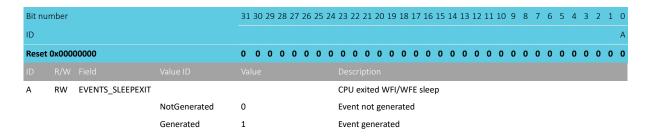
Address offset: 0x108


Power failure warning



#### 5.7.1.1.6 EVENTS\_SLEEPENTER

Address offset: 0x114


CPU entered WFI/WFE sleep



#### 5.7.1.1.7 EVENTS SLEEPEXIT

Address offset: 0x118

CPU exited WFI/WFE sleep



#### 5.7.1.1.8 PUBLISH\_POFWARN

Address offset: 0x188

Publish configuration for event POFWARN



| Bit nu | ımber  |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |        |       |          | В                       | A A A A A A A                                                   |
| Reset  | 0x0000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |        |       |          |                         |                                                                 |
| Α      | RW     | CHIDX |          | [0255]                  | DPPI channel that event POFWARN will publish to                 |
| В      | RW     | EN    |          |                         |                                                                 |
|        |        |       | Disabled | 0                       | Disable publishing                                              |
|        |        |       | Enabled  | 1                       | Enable publishing                                               |

## 5.7.1.1.9 PUBLISH\_SLEEPENTER

Address offset: 0x194

Publish configuration for event SLEEPENTER

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A                                                     |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event SLEEPENTER will publish to              |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable publishing                                              |
|        |       |       | Enabled  | 1                       | Enable publishing                                               |

## 5.7.1.1.10 PUBLISH\_SLEEPEXIT

Address offset: 0x198

Publish configuration for event SLEEPEXIT

| Bit nu | ımber |       |          | 31 30 29 2 | 8 27 26 25 | 24 23 | 3 22 2 | 21 20 | 0 19   | 18 17  | 16 1   | 15 14 | 1 13 | 12 3 | 11 10 | 9      | 8 | 7   | 6 5      | 5 4 | 3 | 2 | 1 0 |
|--------|-------|-------|----------|------------|------------|-------|--------|-------|--------|--------|--------|-------|------|------|-------|--------|---|-----|----------|-----|---|---|-----|
| ID     |       |       |          | В          |            |       |        |       |        |        |        |       |      |      |       |        |   | Α . | <b>Δ</b> | A A | Α | Α | А А |
| Reset  | 0x000 | 00000 |          | 0 0 0 0    | 0 0 0      | 0 0   | 0      | 0 0   | 0      | 0 0    | 0      | 0 0   | 0    | 0    | 0 0   | 0      | 0 | 0   | ) (      | 0   | 0 | 0 | 0 0 |
| ID     |       |       |          |            |            |       |        |       |        |        |        |       |      |      |       |        |   |     |          |     |   |   |     |
| Α      | RW    | CHIDX |          | [0255]     |            | D     | PPI ch | nann  | el tha | at eve | ent SI | EEP   | EXIT | will | publ  | ish to | 0 |     |          |     |   |   |     |
| В      | RW    | EN    |          |            |            |       |        |       |        |        |        |       |      |      |       |        |   |     |          |     |   |   |     |
|        |       |       | Disabled | 0          |            | D     | isable | pub   | lishir | ng     |        |       |      |      |       |        |   |     |          |     |   |   |     |
|        |       |       | Enabled  | 1          |            | Eı    | nable  | publ  | lishin | g      |        |       |      |      |       |        |   |     |          |     |   |   |     |

#### 5.7.1.1.11 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit nu | umber   |            |          | 31 3 | 0 29 | 28 | 27 2 | 26 2 | 25 24 | 4 23 | 3 22  | 21   | 20 : | 19 1 | 8 17 | 16   | 15   | 14 1 | L3 1 | .2 13 | 10   | 9    | 8 7 | 7 6 | 5 5 | 4 | 3 | 2 | 1 0 |
|--------|---------|------------|----------|------|------|----|------|------|-------|------|-------|------|------|------|------|------|------|------|------|-------|------|------|-----|-----|-----|---|---|---|-----|
| ID     |         |            |          |      |      |    |      |      |       |      |       |      |      |      |      |      |      |      |      |       |      |      |     | E   | E D | 1 |   | Α |     |
| Rese   | t 0x000 | 00000      |          | 0    | 0 0  | 0  | 0    | 0    | 0 0   | 0    | 0     | 0    | 0    | 0 0  | 0    | 0    | 0    | 0    | 0 (  | 0 0   | 0    | 0    | 0 ( | ) ( | 0   | 0 | 0 | 0 | 0 0 |
| ID     |         |            |          |      |      |    |      |      |       |      |       |      |      |      |      |      |      |      |      |       |      |      |     |     |     |   |   |   |     |
| Α      | RW      | POFWARN    |          |      |      |    |      |      |       | Er   | nable | e or | disa | able | inte | rrup | t fo | r ev | ent  | POF   | WAF  | RN   |     |     |     |   |   |   |     |
|        |         |            | Disabled | 0    |      |    |      |      |       | Di   | isabl | e    |      |      |      |      |      |      |      |       |      |      |     |     |     |   |   |   |     |
|        |         |            | Enabled  | 1    |      |    |      |      |       | Er   | nable | е    |      |      |      |      |      |      |      |       |      |      |     |     |     |   |   |   |     |
| D      | RW      | SLEEPENTER |          |      |      |    |      |      |       | Er   | nable | e or | disa | able | inte | rrup | t fo | r ev | ent  | SLE   | EPEN | ITER | R   |     |     |   |   |   |     |
|        |         |            | Disabled | 0    |      |    |      |      |       | Di   | isabl | e    |      |      |      |      |      |      |      |       |      |      |     |     |     |   |   |   |     |
|        |         |            | Enabled  | 1    |      |    |      |      |       | Er   | nable | е    |      |      |      |      |      |      |      |       |      |      |     |     |     |   |   |   |     |





| Bit nur | mber  |           |          | 31 3 | 30 29 | 28 | 27 20 | 5 25 | 24 2 | 2 2   | 2 21  | L 20  | 19    | 18 1  | .7 16 | 5 15 | 14   | 13 1 | .2 1 | 1 10 | 9   | 8 | 7 | 6 5 | 5 4 | 3 | 2 | 1 0 |
|---------|-------|-----------|----------|------|-------|----|-------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|-----|---|---|-----|-----|---|---|-----|
| ID      |       |           |          |      |       |    |       |      |      |       |       |       |       |       |       |      |      |      |      |      |     |   |   | Ε [ | )   |   | Α |     |
| Reset   | 0x000 | 00000     |          | 0    | 0 0   | 0  | 0 0   | 0    | 0 (  | 0 (   | 0     | 0     | 0     | 0 (   | 0 0   | 0    | 0    | 0    | 0 0  | 0    | 0   | 0 | 0 | 0 ( | 0   | 0 | 0 | 0 0 |
| ID      |       |           |          |      |       |    |       |      |      |       |       |       |       |       |       |      |      |      |      |      |     |   |   |     |     |   |   |     |
| E       | RW    | SLEEPEXIT |          |      |       |    |       |      | E    | nab   | ole o | r dis | sable | e int | erru  | pt f | or e | vent | SLE  | EPE  | KIT |   |   |     |     |   |   |     |
|         |       |           | Disabled | 0    |       |    |       |      | C    | Disal | ble   |       |       |       |       |      |      |      |      |      |     |   |   |     |     |   |   |     |
|         |       |           | Enabled  | 1    |       |    |       |      | Е    | nab   | ole   |       |       |       |       |      |      |      |      |      |     |   |   |     |     |   |   |     |

#### 5.7.1.1.12 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber   |            |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |            |          |                         | E D A                                                           |
| Reset  | t 0x000 | 00000      |          | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |            |          |                         | Description                                                     |
| Α      | RW      | POFWARN    |          |                         | Write '1' to enable interrupt for event POFWARN                 |
|        |         |            | Set      | 1                       | Enable                                                          |
|        |         |            | Disabled | 0                       | Read: Disabled                                                  |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                   |
| D      | RW      | SLEEPENTER |          |                         | Write '1' to enable interrupt for event SLEEPENTER              |
|        |         |            | Set      | 1                       | Enable                                                          |
|        |         |            | Disabled | 0                       | Read: Disabled                                                  |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                   |
| Е      | RW      | SLEEPEXIT  |          |                         | Write '1' to enable interrupt for event SLEEPEXIT               |
|        |         |            | Set      | 1                       | Enable                                                          |
|        |         |            | Disabled | 0                       | Read: Disabled                                                  |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                   |

### 5.7.1.1.13 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | umber   |            |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |            |          |                         | E D A                                                         |
| Reset  | t 0x000 | 00000      |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |         |            |          |                         | Description                                                   |
| Α      | RW      | POFWARN    |          |                         | Write '1' to disable interrupt for event POFWARN              |
|        |         |            | Clear    | 1                       | Disable                                                       |
|        |         |            | Disabled | 0                       | Read: Disabled                                                |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                 |
| D      | RW      | SLEEPENTER |          |                         | Write '1' to disable interrupt for event SLEEPENTER           |
|        |         |            | Clear    | 1                       | Disable                                                       |
|        |         |            | Disabled | 0                       | Read: Disabled                                                |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                 |
| Е      | RW      | SLEEPEXIT  |          |                         | Write '1' to disable interrupt for event SLEEPEXIT            |
|        |         |            | Clear    | 1                       | Disable                                                       |
|        |         |            | Disabled | 0                       | Read: Disabled                                                |
|        |         |            | Enabled  | 1                       | Read: Enabled                                                 |
|        |         |            |          |                         |                                                               |





#### 5.7.1.1.14 RESETREAS

Address offset: 0x400

Reset reason

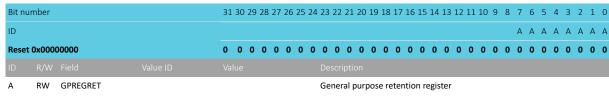
Note: Unless cleared, the RESETREAS register will be cumulative. A field is cleared by writing '1' to it. If none of the reset sources are flagged, this indicates that the chip was reset from the on-chip reset generator, which will indicate a power-on reset or a brownout reset.

| Bit nu | ımber |          |             | 31 30 29 28 27 26 2 | 5 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0       |
|--------|-------|----------|-------------|---------------------|------|-----------------------------------------------------------------------|
| ID     |       |          |             |                     |      | G F E D C B A                                                         |
| Reset  | 0x000 | 00000    |             | 0 0 0 0 0 0         | 0 0  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| ID     |       |          |             |                     |      | Description                                                           |
| Α      | RW    | RESETPIN |             |                     |      | Reset from pin reset detected                                         |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| В      | RW    | DOG      |             |                     |      | Reset from global watchdog detected                                   |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| С      | RW    | OFF      |             |                     |      | Reset due to wakeup from System OFF mode, when wakeup is triggered by |
|        |       |          |             |                     |      | DETECT signal from GPIO                                               |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| D      | RW    | DIF      |             |                     |      | Reset due to wakeup from System OFF mode, when wakeup is triggered by |
|        |       |          |             |                     |      | entering debug interface mode                                         |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| E      | RW    | SREQ     |             |                     |      | Reset from AIRCR.SYSRESETREQ detected                                 |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| F      | RW    | LOCKUP   |             |                     |      | Reset from CPU lock-up detected                                       |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |
| G      | RW    | CTRLAP   |             |                     |      | Reset triggered through CTRL-AP                                       |
|        |       |          | NotDetected | 0                   |      | Not detected                                                          |
|        |       |          | Detected    | 1                   |      | Detected                                                              |

#### **5.7.1.1.15 POWERSTATUS**

Address offset: 0x440

Modem domain power status


| Bit nu | umber   |          |     | 31 30 29 28 27 26 | 5 25 24 : | 23 22 | 21 2 | 20 19 | 18 1 | .7 16 | 5 15 | 14 1 | 13 12 | 2 11 | 10 | 9 | 8   | 7 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|---------|----------|-----|-------------------|-----------|-------|------|-------|------|-------|------|------|-------|------|----|---|-----|-----|---|---|---|---|-----|
| ID     |         |          |     |                   |           |       |      |       |      |       |      |      |       |      |    |   |     |     |   |   |   |   | Α   |
| Rese   | t 0x000 | 00000    |     | 0 0 0 0 0 0       | 0 0       | 0 0   | 0    | 0 0   | 0    | 0 0   | 0    | 0    | 0 0   | 0    | 0  | 0 | 0 ( | 0   | 0 | 0 | 0 | 0 | 0 0 |
| ID     |         |          |     |                   |           | Descr |      |       |      |       |      |      |       |      |    |   |     |     |   |   |   |   |     |
| Α      | R       | LTEMODEM |     |                   |           | LTE m | oder | n doı | main | statı | us   |      |       |      |    |   |     |     |   |   |   |   |     |
|        |         |          | OFF | 0                 |           | LTE m | oder | n doı | main | is po | ower | ed c | off   |      |    |   |     |     |   |   |   |   |     |
|        |         |          | ON  | 1                 |           | LTE m | oder | n doı | main | is po | ower | ed c | n     |      |    |   |     |     |   |   |   |   |     |

## 5.7.1.1.16 GPREGRET[n] (n=0..1)

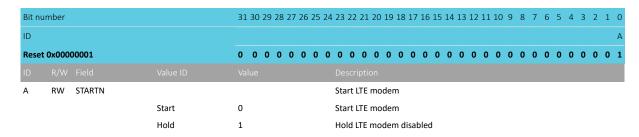
Address offset:  $0x51C + (n \times 0x4)$ 



#### General purpose retention register



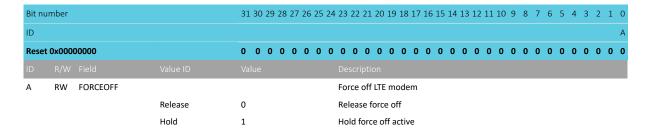
This register is a retained register


#### 5.7.1.1.17 LTEMODEM

LTE Modem

#### 5.7.1.1.17.1 LTEMODEM.STARTN

Address offset: 0x610 Start LTE modem


**Note:** Starting and stopping LTE modem must only be done through the LTE modem API to guarantee correct sequence in FW and HW and to avoid possible malfunctions.



#### 5.7.1.1.17.2 LTEMODEM.FORCEOFF

Address offset: 0x614
Force off LTE modem

**Note:** Starting and stopping LTE modem must only be done through the LTE modem API to guarantee correct sequence in FW and HW and to avoid possible malfunctions.




# 5.7.2 CLOCK — Clock control

The CLOCK module provides one of the interfaces to power and clock management configuration settings.

Through CLOCK module it is able to configure the following:

- LFCLK clock source setup
- LFCLK and HFCLK status



- · Tasks and events
- Interrupts
- Reset

**Note:** Registers INTEN on page 78, INTENSET on page 78, and INTENCLR on page 78 are the same registers (at the same address) as corresponding registers in POWER — Power control on page 67.

# 5.7.2.1 Registers

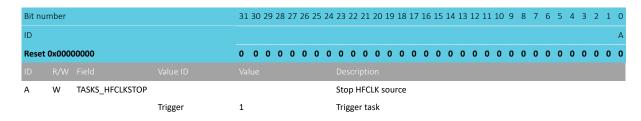
#### **Instances**

| Instance   | Base address | TrustZone |     |     | Split access | Description   |
|------------|--------------|-----------|-----|-----|--------------|---------------|
|            |              | Мар       | Att | DMA |              |               |
| CLOCK : S  | 0x50005000   | HC        | NC  | NIA | No           | Cleak control |
| CLOCK : NS | 0x40005000   | US        | NS  | NA  | No           | Clock control |

# **Register overview**

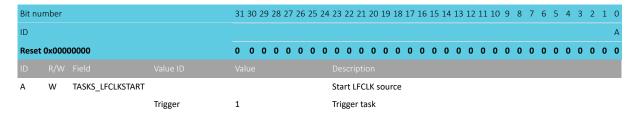
| Register             | Offset | TZ | Description                                                                                    |
|----------------------|--------|----|------------------------------------------------------------------------------------------------|
| TASKS_HFCLKSTART     | 0x000  |    | Start HFCLK source                                                                             |
| TASKS_HFCLKSTOP      | 0x004  |    | Stop HFCLK source                                                                              |
| TASKS_LFCLKSTART     | 0x008  |    | Start LFCLK source                                                                             |
| TASKS_LFCLKSTOP      | 0x00C  |    | Stop LFCLK source                                                                              |
| SUBSCRIBE_HFCLKSTART | 0x080  |    | Subscribe configuration for task HFCLKSTART                                                    |
| SUBSCRIBE_HFCLKSTOP  | 0x084  |    | Subscribe configuration for task HFCLKSTOP                                                     |
| SUBSCRIBE_LFCLKSTART | 0x088  |    | Subscribe configuration for task LFCLKSTART                                                    |
| SUBSCRIBE_LFCLKSTOP  | 0x08C  |    | Subscribe configuration for task LFCLKSTOP                                                     |
| EVENTS_HFCLKSTARTED  | 0x100  |    | HFCLK oscillator started                                                                       |
| EVENTS_LFCLKSTARTED  | 0x104  |    | LFCLK started                                                                                  |
| PUBLISH_HFCLKSTARTED | 0x180  |    | Publish configuration for event HFCLKSTARTED                                                   |
| PUBLISH_LFCLKSTARTED | 0x184  |    | Publish configuration for event LFCLKSTARTED                                                   |
| INTEN                | 0x300  |    | Enable or disable interrupt                                                                    |
| INTENSET             | 0x304  |    | Enable interrupt                                                                               |
| INTENCLR             | 0x308  |    | Disable interrupt                                                                              |
| INTPEND              | 0x30C  |    | Pending interrupts                                                                             |
| HFCLKRUN             | 0x408  |    | Status indicating that HFCLKSTART task has been triggered                                      |
| HFCLKSTAT            | 0x40C  |    | The register shows if HFXO has been requested by triggering HFCLKSTART task and if it has      |
|                      |        |    | been started (STATE).                                                                          |
| LFCLKRUN             | 0x414  |    | Status indicating that LFCLKSTART task has been triggered                                      |
| LFCLKSTAT            | 0x418  |    | The register shows which LFCLK source has been requested (SRC) when triggering LFCLKSTART      |
|                      |        |    | task and if the source has been started (STATE).                                               |
| LFCLKSRCCOPY         | 0x41C  |    | Copy of LFCLKSRC register, set after LFCLKSTART task has been triggered                        |
| LFCLKSRC             | 0x518  |    | Clock source for the LFCLK. LFCLKSTART task starts a clock source selected with this register. |
|                      |        |    |                                                                                                |

# 5.7.2.1.1 TASKS\_HFCLKSTART


Address offset: 0x000 Start HFCLK source

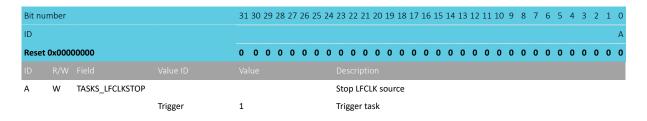


| Bit nu | mber  |                  |         | 31 30 29 | 28 27 : | 26 25 2 | 24 23 | 22 2   | 21 20 | 19 1 | .8 17 | 16 | 15 1 | 4 13 | 12 | 11 1 | 0 9 | 8 | 7 | 6 | 5 4 | 4 3 | 3 2 | 1 | 0 |
|--------|-------|------------------|---------|----------|---------|---------|-------|--------|-------|------|-------|----|------|------|----|------|-----|---|---|---|-----|-----|-----|---|---|
| ID     |       |                  |         |          |         |         |       |        |       |      |       |    |      |      |    |      |     |   |   |   |     |     |     |   | Α |
| Reset  | 0x000 | 00000            |         | 0 0 0    | 0 0     | 0 0     | 0 0   | 0      | 0 0   | 0    | 0 0   | 0  | 0 0  | 0    | 0  | 0    | 0 0 | 0 | 0 | 0 | 0 ( | 0 ( | 0   | 0 | 0 |
| ID     |       |                  |         |          |         |         |       |        |       |      |       |    |      |      |    |      |     |   |   |   |     |     |     |   |   |
| Α      | W     | TASKS_HFCLKSTART |         |          |         |         | Sta   | art HI | FCLK  | sour | ce    |    |      |      |    |      |     |   |   |   |     |     |     |   |   |
|        |       |                  | Trigger | 1        |         |         | Tri   | gger   | task  |      |       |    |      |      |    |      |     |   |   |   |     |     |     |   |   |


# 5.7.2.1.2 TASKS\_HFCLKSTOP

Address offset: 0x004 Stop HFCLK source




# 5.7.2.1.3 TASKS\_LFCLKSTART

Address offset: 0x008 Start LFCLK source



## 5.7.2.1.4 TASKS LFCLKSTOP

Address offset: 0x00C Stop LFCLK source



## 5.7.2.1.5 SUBSCRIBE\_HFCLKSTART

Address offset: 0x080

Subscribe configuration for task HFCLKSTART



| Bit nu | ımber |       |          | 31 30 29 28 27 | 26 25 | 24 2 | 3 22  | 21 2  | 0 19   | 18 1  | 7 16  | 15 14 | 1 13 | 12 11 | . 10 | 9 8  | 7  | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|--------|-------|-------|----------|----------------|-------|------|-------|-------|--------|-------|-------|-------|------|-------|------|------|----|---|---|---|-----|-----|---|
| ID     |       |       |          | В              |       |      |       |       |        |       |       |       |      |       |      |      | Α  | Α | Α | Α | А А | A   | Α |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0      | 0 0   | 0 (  | 0 0   | 0 (   | 0 0    | 0 (   | 0     | 0 0   | 0    | 0 0   | 0    | 0 (  | 0  | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID     |       |       |          |                |       |      |       |       |        |       |       |       |      |       |      |      |    |   |   |   |     |     |   |
| Α      | RW    | CHIDX |          | [0255]         |       | D    | PPI c | hanr  | nel th | at ta | sk HF | CLKS  | TART | wills | ubso | ribe | to |   |   |   |     |     |   |
| В      | RW    | EN    |          |                |       |      |       |       |        |       |       |       |      |       |      |      |    |   |   |   |     |     |   |
|        |       |       | Disabled | 0              |       | D    | isabl | e sub | oscrip | otion |       |       |      |       |      |      |    |   |   |   |     |     |   |
|        |       |       | Enabled  | 1              |       | Е    | nable | e sub | scrip  | tion  |       |       |      |       |      |      |    |   |   |   |     |     |   |

# 5.7.2.1.6 SUBSCRIBE\_HFCLKSTOP

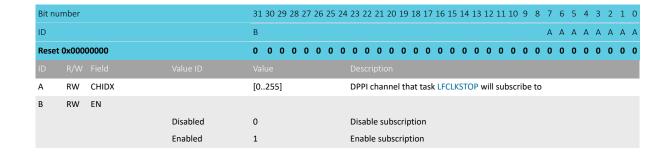
Address offset: 0x084

Subscribe configuration for task HFCLKSTOP

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A A                                               |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task HFCLKSTOP will subscribe to            |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

# 5.7.2.1.7 SUBSCRIBE\_LFCLKSTART

Address offset: 0x088

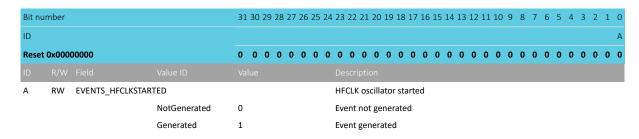

Subscribe configuration for task LFCLKSTART

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task LFCLKSTART will subscribe to           |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

# 5.7.2.1.8 SUBSCRIBE\_LFCLKSTOP

Address offset: 0x08C

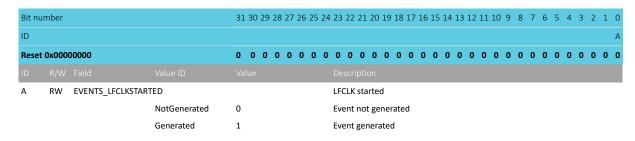
Subscribe configuration for task LFCLKSTOP







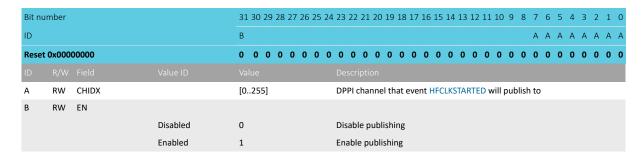

# 5.7.2.1.9 EVENTS\_HFCLKSTARTED


Address offset: 0x100
HFCLK oscillator started



## 5.7.2.1.10 EVENTS\_LFCLKSTARTED

Address offset: 0x104


LFCLK started



## 5.7.2.1.11 PUBLISH HFCLKSTARTED

Address offset: 0x180

Publish configuration for event HFCLKSTARTED



## 5.7.2.1.12 PUBLISH\_LFCLKSTARTED

Address offset: 0x184

Publish configuration for event LFCLKSTARTED



| Bit nu | mber  |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event LFCLKSTARTED will publish to          |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

## 5.7.2.1.13 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit nu | ımber   |              |          | 31 | 30 | 29 | 28 | 27 | 26 | 5 2 | 5 2 | 4 2 | 23 2 | 2 2 | 1 2  | 20 1 | 19  | 18   | 17  | 16  | 15   | 14 | 11  | 3 1 | .2 : | 11  | 10   | 9   | 8   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---------|--------------|----------|----|----|----|----|----|----|-----|-----|-----|------|-----|------|------|-----|------|-----|-----|------|----|-----|-----|------|-----|------|-----|-----|---|---|---|---|---|---|---|---|
| ID     |         |              |          |    |    |    |    |    |    |     |     |     |      |     |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   | В | Α |
| Rese   | t 0x000 | 00000        |          | 0  | 0  | 0  | 0  | 0  | 0  | (   | 0   | ) ( | 0 (  | ) ( | 0 (  | 0    | 0   | 0    | 0   | 0   | 0    | 0  | (   | )   | 0    | 0   | 0    | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |         |              |          |    |    |    |    |    |    |     |     |     |      |     |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   |   |   |
| Α      | RW      | HFCLKSTARTED |          |    |    |    |    |    |    |     |     | Е   | nak  | le  | or ( | disa | abl | e ir | ite | rru | ot 1 | or | eve | ent | НЕ   | CL  | .KST | AR  | TEC | ) |   |   |   |   |   |   |   |
|        |         |              | Disabled | 0  |    |    |    |    |    |     |     |     | Disa | ble |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   |   |   |
|        |         |              | Enabled  | 1  |    |    |    |    |    |     |     | Е   | Enak | le  |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   |   |   |
| В      | RW      | LFCLKSTARTED |          |    |    |    |    |    |    |     |     | E   | Enak | le  | or ( | disa | abl | e ir | ite | rru | ot 1 | or | eve | ent | LF   | CLI | KST  | ART | ΓED | 1 |   |   |   |   |   |   |   |
|        |         |              | Disabled | 0  |    |    |    |    |    |     |     | 0   | Disa | ble |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   |   |   |
|        |         |              | Enabled  | 1  |    |    |    |    |    |     |     | Е   | Enak | le  |      |      |     |      |     |     |      |    |     |     |      |     |      |     |     |   |   |   |   |   |   |   |   |

# 5.7.2.1.14 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber |              |          | 31 | 30 2 | 29 2 | 8 2 | 7 2 | 6 25 | 5 24 | 4 23 | 3 22 | 21  | 20   | 19   | 18    | 17  | 16 : | 15 1 | 4 1  | L3 1 | 2 1  | 1 10 | 9   | 8   | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 1 0 |
|--------|-------|--------------|----------|----|------|------|-----|-----|------|------|------|------|-----|------|------|-------|-----|------|------|------|------|------|------|-----|-----|---|---|---|---|-----|-----|-----|
| ID     |       |              |          |    |      |      |     |     |      |      |      |      |     |      |      |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     | E   | ВА  |
| Reset  | 0x000 | 00000        |          | 0  | 0    | 0 (  | 0 0 | ) ( | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0     | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0 | 0 | 0 | 0 | 0 0 | ) ( | 0 0 |
| ID     |       |              |          |    |      |      |     |     |      |      |      |      |     |      |      |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
| Α      | RW    | HFCLKSTARTED |          |    |      |      |     |     |      |      | W    | rite | '1' | to e | enak | ole i | nte | rru  | pt f | or e | ever | t HI | FCLk | STA | RTE | D |   |   |   |     |     |     |
|        |       |              | Set      | 1  |      |      |     |     |      |      | Er   | nabl | e   |      |      |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
|        |       |              | Disabled | 0  |      |      |     |     |      |      | Re   | ead: | Dis | abl  | ed   |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
|        |       |              | Enabled  | 1  |      |      |     |     |      |      | Re   | ead: | Ena | able | ed   |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
| В      | RW    | LFCLKSTARTED |          |    |      |      |     |     |      |      | W    | rite | '1' | to e | enat | ole i | nte | rru  | pt f | or e | ever | t LF | CLK  | STA | RTE | D |   |   |   |     |     |     |
|        |       |              | Set      | 1  |      |      |     |     |      |      | Er   | nabl | e   |      |      |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
|        |       |              | Disabled | 0  |      |      |     |     |      |      | Re   | ead: | Dis | abl  | ed   |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |
|        |       |              | Enabled  | 1  |      |      |     |     |      |      | Re   | ead: | Ena | able | ed   |       |     |      |      |      |      |      |      |     |     |   |   |   |   |     |     |     |

# 5.7.2.1.15 INTENCLR

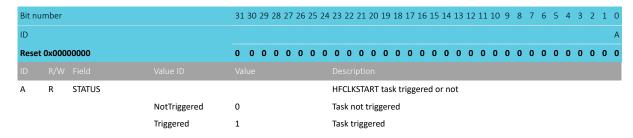
Address offset: 0x308

Disable interrupt



| Bit nu | mber  |              |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|--------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |              |          |                         | В А                                                           |
| Reset  | 0x000 | 00000        |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |              |          |                         | Description                                                   |
| Α      | RW    | HFCLKSTARTED |          |                         | Write '1' to disable interrupt for event HFCLKSTARTED         |
|        |       |              | Clear    | 1                       | Disable                                                       |
|        |       |              | Disabled | 0                       | Read: Disabled                                                |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                 |
| В      | RW    | LFCLKSTARTED |          |                         | Write '1' to disable interrupt for event LFCLKSTARTED         |
|        |       |              | Clear    | 1                       | Disable                                                       |
|        |       |              | Disabled | 0                       | Read: Disabled                                                |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                 |

#### 5.7.2.1.16 INTPEND

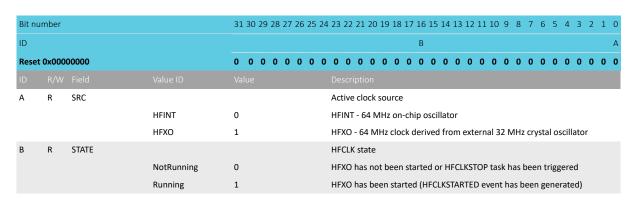

Address offset: 0x30C Pending interrupts

| Bit nu | ımber |              |            | 31 | 30 2 | 9 28 | 3 27 | 26 | 25 | 24 2 | 23 2 | 2 2  | 1 2 | 0 1  | 9 1  | 8 1 | 7 1  | 5 15 | 14  | 13   | 12   | 11  | . 10 | 9    | 8    | 7   | 6  | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|--------------|------------|----|------|------|------|----|----|------|------|------|-----|------|------|-----|------|------|-----|------|------|-----|------|------|------|-----|----|---|---|---|---|-----|
| ID     |       |              |            |    |      |      |      |    |    |      |      |      |     |      |      |     |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   | ВА  |
| Reset  | 0x000 | 00000        |            | 0  | 0    | 0 0  | 0    | 0  | 0  | 0    | 0 (  | 0    | ) ( | 0 0  | ) (  | 0   | 0    | 0    | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0   | 0  | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |              |            |    |      |      |      |    |    |      |      |      |     |      |      |     |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   |     |
| Α      | R     | HFCLKSTARTED |            |    |      |      |      |    |    | F    | Reac | d pe | end | ing  | stat | tus | of i | ntei | rup | t fo | or e | ver | t H  | FCLI | KST  | AR1 | ED |   |   |   |   |     |
|        |       |              | NotPending | 0  |      |      |      |    |    | F    | Reac | d: N | ot  | pen  | din  | g   |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   |     |
|        |       |              | Pending    | 1  |      |      |      |    |    | F    | Reac | d: P | enc | ding |      |     |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   |     |
| В      | R     | LFCLKSTARTED |            |    |      |      |      |    |    | ı    | Read | d pe | end | ing  | stat | tus | of i | ntei | rup | t fo | r e  | ver | t LF | CLk  | (ST/ | ١RT | ED |   |   |   |   |     |
|        |       |              | NotPending | 0  |      |      |      |    |    | F    | Read | d: N | ot  | pen  | din  | g   |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   |     |
|        |       |              | Pending    | 1  |      |      |      |    |    | ı    | Read | d: P | enc | ding |      |     |      |      |     |      |      |     |      |      |      |     |    |   |   |   |   |     |

## 5.7.2.1.17 HFCLKRUN

Address offset: 0x408

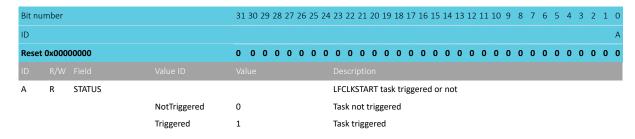
Status indicating that HFCLKSTART task has been triggered




#### 5.7.2.1.18 HFCLKSTAT

Address offset: 0x40C

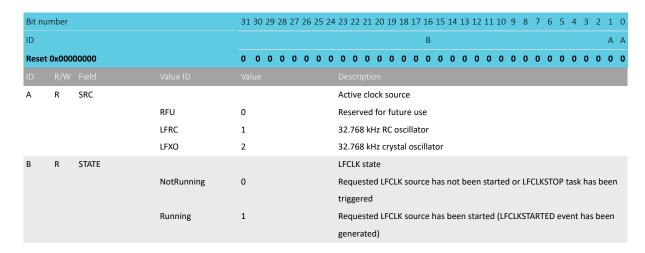
The register shows if HFXO has been requested by triggering HFCLKSTART task and if it has been started (STATE).






#### 5.7.2.1.19 LFCLKRUN

Address offset: 0x414

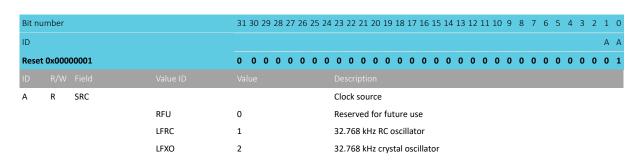

Status indicating that LFCLKSTART task has been triggered



#### 5.7.2.1.20 LFCLKSTAT

Address offset: 0x418

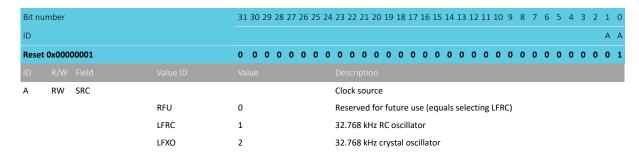
The register shows which LFCLK source has been requested (SRC) when triggering LFCLKSTART task and if the source has been started (STATE).




#### 5.7.2.1.21 LFCLKSRCCOPY

Address offset: 0x41C

Copy of LFCLKSRC register, set after LFCLKSTART task has been triggered






#### 5.7.2.1.22 LFCLKSRC

Address offset: 0x518

Clock source for the LFCLK. LFCLKSTART task starts a clock source selected with this register.



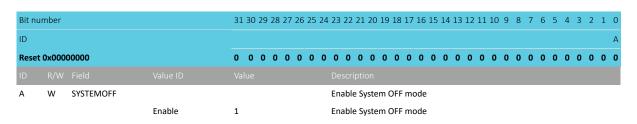
# 5.7.3 REGULATORS — Voltage regulators control

The REGULATORS module provides an interface to certain configuration settings of on-chip voltage regulators.

## 5.7.3.1 Registers

#### **Instances**

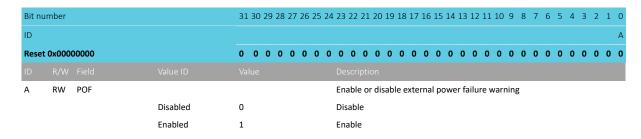
| Instance        | Base address | TrustZone |     |      | Split access | Description                |
|-----------------|--------------|-----------|-----|------|--------------|----------------------------|
|                 |              | Мар       | Att | DMA  |              |                            |
| REGULATORS : S  | 0x50004000   | LIC       | NC  | NI A | N-           | Description of figurestics |
| REGULATORS : NS | 0x40004000   | US        | NS  | NA   | No           | Regulator configuration    |


## **Register overview**

| Register  | Offset | TZ | Description                                  |
|-----------|--------|----|----------------------------------------------|
| SYSTEMOFF | 0x500  |    | System OFF register                          |
| EXTPOFCON | 0x514  |    | External power failure warning configuration |
| DCDCEN    | 0x578  |    | Enable a step-down DC/DC voltage regulator.  |

#### 5.7.3.1.1 SYSTEMOFF

Address offset: 0x500 System OFF register

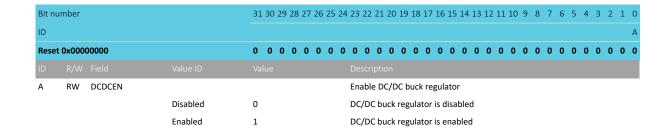





## 5.7.3.1.2 EXTPOFCON

Address offset: 0x514

External power failure warning configuration




#### 5.7.3.1.3 DCDCEN

Address offset: 0x578

Enable a step-down DC/DC voltage regulator.

Note: DCDCEN must be set to 1 (enabled) before the LTE modem is started.





# 6 Peripherals

The nRF9151 application core peripherals are found in Instantiation on page 25.

# 6.1 CRYPTOCELL — Arm TrustZone CryptoCell 310

Arm TrustZone CryptoCell 310 (CRYPTOCELL) is a security subsystem providing root of trust (RoT) and cryptographic services for a device.

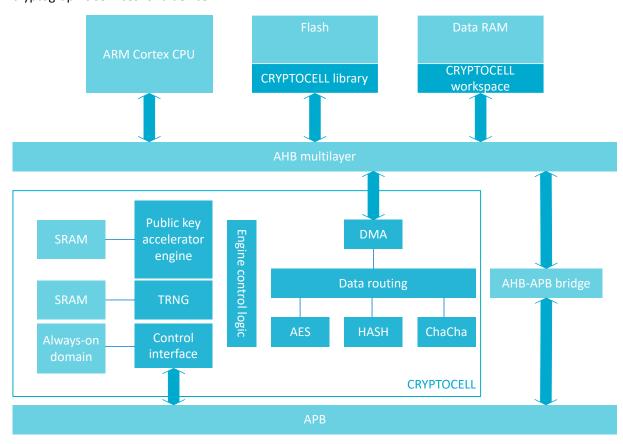



Figure 13: CRYPTOCELL block diagram

The following cryptographic features are among the functionality that can be supported:

- True random number generator (TRNG) compliant with FIPS 140-2, BSI AIS-31, and NIST 800-90B.
- Pseudorandom number generator (PRNG) using underlying AES engine compliant with NIST 800-90A
- RSA public key cryptography
  - Signature verification up to key sizes of 2048 bits
  - Key generation up to key sizes of 2048 bits
  - PKCS#1 v2.1/v1.5
- Elliptic curve cryptography (ECC)
  - NIST FIPS 186-4 recommended curves using pseudorandom parameters, up to 521 bits:
    - Prime field: P-192, P-224, P-256, P-384, P-521
  - SEC 2 recommended curves using pseudorandom parameters, up to 521 bits:
    - Prime field: secp160r1, secp192r1, secp224r1, secp256r1, secp384r1, secp521r1



- Koblitz curves using fixed parameters, up to 256 bits:
  - Prime field: secp160k1, secp192k1, secp224k1, secp256k1
- Brainpool curves:
  - Prime field: BrainpoolP256r1
- Edwards/Montgomery curves:
  - Ed25519, Curve25519
- ECDH/ECDSA support
- Secure remote password protocol (SRP), up to 3072 bits operations
- · Hashing functions
  - SHA-1, SHA-2 up to 256 bits
  - Keyed-hash message authentication code (HMAC)
- · AES symmetric encryption
  - General purpose AES engine (encrypt/decrypt, sign/verify)
  - 128 bits key size
  - Supported encryption modes: ECB, CBC, CMAC/CBC-MAC, CTR, CCM/CCM\*
- ChaCha20/Poly1305 symmetric encryption
  - 128 and 256 bits key size
  - · Authenticated encryption with associated data (AEAD) mode

#### 6.1.1 Disclaimer

This section contains an important disclaimer about the CRYPTOCELL subsystem documentation.

The CRYPTOCELL subsystem is recommended for use with the libraries in the Nordic Semiconductor ASA SDK. These libraries are tested and verified to work with the CRYPTOCELL subsystem hardware. The CRYPTOCELL subsystem documentation and register descriptions are for reference only and can be used for modifying the Nordic supplied SDK libraries or implementing new features.

Nordic Semiconductor ASA reserves the right to change the CRYPTOCELL documentation and register descriptions without further notice. Changes will not trigger erratas and will not be seen as changing form/fit/function of the device.

Please note that Nordic cannot support questions directly related to the register interface or modification of the source code implementation. Nordic provide support for the top-level API in the software library distributed as part of the device SDK.

# 6.1.2 Usage

The CRYPTOCELL subsystem is a hardware and software solution where software is delivered as libraries in Nordic device SDKs. Recommended usage of the CRYPTOCELL subsystem is to use the SDK library implementation available for the device. The CRYPTOCELL subsystem is documented for reference purpose only, please see section Disclaimer on page 84 for more information.

To enable CRYPTOCELL, use register ENABLE on page 90. The device will not enter the System ON IDLE mode until CRYPTOCELL has been disabled, see POWER — Power control on page 67 for more information. The Nordic SDK software library automatically controls enabling and disabling of the CRYPTOCELL subsystem as a part of its function calls.

# 6.1.3 Security configuration

CRYPTOCELL has internal storage for its security configuration, which is preserved even if CRYPTOCELL is disabled.

The following configuration settings are retained:

NORDIC\*

- Device life cycle state (LCS)
- Various lock bits
- 128 bits device root key, K<sub>DR</sub>, see Device root key on page 86

Any reset source will erase the CRYPTOCELL internal storage, see Reset on page 58 for more information.

# 6.1.3.1 Lifecycle state (LCS)

Lifecycle refers to the multiple states a device goes through during its lifetime. DebugEnable and Secure are the two CRYPTOCELL lifecycle states available to the device.

The CRYPTOCELL lifecycle state (LCS) is controlled through register <code>HOST\_IOT\_LCS</code> on page 148. The LCS is configured by writing either <code>DebugEnable</code> or <code>Secure</code> to the LCS field of this register. To validate that the register is configured correctly, read back the read-only field <code>LCS\_IS\_VALID</code> from the register <code>HOST\_IOT\_LCS</code> on page 148. The <code>LCS\_IS\_VALID</code> field will change from <code>Invalid</code> to <code>Valid</code> once a valid LCS value is written.

The following debug override functionality is available if LCS is configured as <code>DebugEnable</code>:

- Registers HOST\_IOT\_KDR0 through HOST\_IOT\_KDR3 can be written multiple times.
- The TRNG output can be overridden. This is done by writing the desired value to register EHR\_DATA[0] through EHR\_DATA[5] in RNG engine. If LCS is configured as Secure, registers EHR\_DATA are readonly and its content is randomly generated by the RNG engine.

| LCS field value | LCS_IS_VALID field value | Description                                                                                         |
|-----------------|--------------------------|-----------------------------------------------------------------------------------------------------|
| Secure          | Invalid                  | Default reset value indicating that LCS has not been configured.                                    |
| Secure          | Valid                    | LCS set to Secure mode, and LCS is valid. Registers HOST_IOT_KDR0 through HOST_IOT_KDR3 can only be |
|                 |                          | written once. Any additional writes are ignored.                                                    |
| DebugEnable     | Valid                    | LCS set to DebugEnable mode, and LCS is valid. Registers HOST_IOT_KDR0 through HOST_IOT_KDR3 can be |
|                 |                          | written multiple times.                                                                             |

Table 14: Lifecycle states

# 6.1.4 Cryptographic flow

The following section describe a typical cryptographic flow for the CRYPTOCELL subsystem.

- 1. Enable CRYPTOCELL subsystem as described in Usage on page 84.
- **2.** Perform clock control for the desired cryptographic engine(s) as described in Power and clock on page 87.
- 3. Configure the desired cryptographic mode as described in CTL interface on page 133.
- **4.** Depending on the selected cryptographic mode the active engine(s) must be configured, including which cryptographic key to use as described in Cryptographic key selection on page 85.
- 5. Optionally configure DMA engines as described in Direct memory access (DMA) on page 87.
- 6. Initiate the operation, and wait for an event as described in Interrupt handling on page 88.
- 7. Check status register(s) for the active engine(s).

# 6.1.5 Cryptographic key selection

The CRYPTOCELL subsystem can operate on different cryptographic keys.

#### 6.1.5.1 Hardware unique keys

The AES engine can be instructed to use different key input sources.

The cryptographic key input for the AES engine on page 90 can either be a hard-coded RTL key referred to as  $K_{PRTL}$ , a device root key referred to as  $K_{DR}$  which is typically programmed into CRYPTOCELL during boot by an immutable bootloader, or a session key provided runtime by the application or the KMU — Key management unit on page 204.



Register HOST\_CRYPTOKEY\_SEL on page 146 selects one of the following keys for the AES cryptographic operations:

- RTL key K<sub>PRTL</sub>
- Device root key K<sub>DR</sub>
- Session key

#### 6.1.5.1.1 RTL key

CRYPTOCELL contains one hard-coded RTL key referred to as K<sub>PRTL</sub>. This key is set to the same value for all devices with the same part code and cannot be changed.

CRYPTOCELL can perform cryptographic operations using the  $K_{PRTL}$  key without a bootloader or application having access to the key value itself. Usage of  $K_{PRTL}$  can be disabled until next reset by writing to register HOST\_IOT\_KPRTL\_LOCK on page 146. If a locked  $K_{PRTL}$  key is requested, a zero vector key will be used by the AES engine instead.

#### 6.1.5.1.2 Device root key

The device root key,  $K_{DR}$ , is a 128 bits AES key typically programmed by an immutable bootloader as part of the CRYPTOCELL initialization process during device boot sequence. It is kept in the CRYPTOCELL internal storage until the next reset.

To configure the  $K_{DR}$  key, write the key value into registers HOST\_IOT\_KDR0 through HOST\_IOT\_KDR3. These registers are write-only when LCS is set to <code>DebugEnable</code> mode, and write-once when LCS is set to <code>Secure</code> mode. The  $K_{DR}$  key value is kept when the read-back value of register HOST\_IOT\_KDR0 is <code>Retained</code>. Once configured, CRYPTOCELL can perform cryptographic operations using the  $K_{DR}$  key without an updatable bootloader or application having access to the key value itself.

The K<sub>DR</sub> key should be protected by the KMU — Key management unit on page 204.

#### 6.1.5.2 Session keys

Session keys are supported by the AES and CHACHA engine.

Before starting a cryptographic operation using a session key, the desired key value must be written in clear-text by the CPU into the write-only key registers of the corresponding engine. One session key can be overwritten by another as long as the write order of the write-only key registers are respected. Please refer to the corresponding chapter of each cryptographic engine for more information about write order.

The AES engine on page 90 supports 128 bits session keys, and CHACHA engine on page 96 supports 128/256 bits session keys.

The last written session key for each engine is retained until CRYPTOCELL is disabled, the engine is reset, or the device is reset.

#### 6.1.5.3 Key Management Unit (KMU) keys

The KMU — Key management unit on page 204 is designed to securely transfer symmetric encryption keys directly into the dedicated write-only key registers of the AES and CHACHA cryptographic engines upon request from the CPU.

Pushing a symmetric key value stored in a KMU key slot into either the AES or CHACHA engine will replace the need for software to write a session key in clear-text into registers AES\_KEY\_0[n] (n=0..7) on page 92 for 128 bits AES keys or registers CHACHA\_KEY[n] (n=0..7) on page 99 for 128/256 bits CHACHA keys.

The symmetric key value pushed from a KMU key slot into the AES or CHACHA engine will be retained until CRYPTOCELL is disabled or the device is reset.

#### 6.1.5.4 Asymmetric keys

Asymmetric cryptographic keys are supported by the PKA engine.

NORDIC

Before starting a cryptographic operation using an asymmetric key, the desired key value must be written into the PKA SRAM together with the payload.

See PKA engine on page 109 for more information.

# 6.1.6 Internal memories

CRYPTOCELL contains two dedicated memory blocks; one 4 kB SRAM block for the PKA engine calculations, and one 2 kB SRAM block for the RNG engine entropy collector.

See PKA SRAM on page 113 and RNG SRAM on page 121 for more information about these dedicated memory blocks.

# 6.1.7 Direct memory access (DMA)

CRYPTOCELL support direct memory access (DMA) to allow cryptographic operations on memory mapped regions without involving the CPU.

The following table indicates which memory is accessible by CRYPTOCELL DMA engines.

| Memory type | Read | Write |
|-------------|------|-------|
| SRAM        | Yes  | Yes   |
| Flash       | No   | No    |

Table 15: DMA transaction types

Data stored in a memory type not accessible by CRYPTOCELL DMA engines must be copied to an accessible memory type before it can be processed by the CRYPTOCELL subsystem. Maximum DMA transaction size is limited to  $2^{16}$ -1 bytes.

The CRYPTOCELL DMA engine can also run in Bypass mode, meaning data is read and written without being piped through a cryptographic engine. Thus CRYPTOCELL can act as a general purpose DMA engine for moving data.

Operating the DMA engines in Bypass mode involve the following steps:

- 1. Enable DMA engines clock using register DMA\_CLK on page 150.
- 2. Configure cryptographic control for Bypass mode using register CRYPTO\_CTL on page 133.
- 3. Set the the output destination address and size of the receiving buffer.
- 4. Start the DMA transaction by configuring the input source address and the number of bytes to transfer.
- **5.** Status of the DMA transaction can be monitored by either polling register DOUT\_DMA\_MEM\_BUSY on page 139, or by unmasking the interrupt for field DOUT\_TO\_MEM\_MASK in register IMR on page 143.

See DIN DMA engine on page 134 and DOUT DMA engine on page 138 for more information.

#### 6.1.8 Power and clock

Power and clock management of the CRYPTOCELL subsystem is handled automatically in hardware, as long as the neccessary conditions are fulfilled by software.

# **Clock gating**

CRYPTOCELL implements separate clock domains for each cryptographic engine. Internal clock gating control is handled through the MISC interface on page 149, as well as register RNG\_CLK on page 129. The registers of a cryptographic engine are only accessible when its clock is enabled.

87



#### **Power gating**

CRYPTOCELL must be disabled to ensure lowest possible power consumption when the subsystem is not needed.

The CRYPTOCELL subsystem power is controlled through register ENABLE on page 90. Even though external clock input is gated away automatically by hardware, the CRYPTOCELL subsystem power will still be enabled. To initiate a full power-down sequence software must perform the following steps:

- 1. Make sure there are no pending tasks
- 2. Clear all pending interrupts in register RNG\_ICR on page 125 and register ICR on page 144.
- 3. Disable CRYPTOCELL subsystem using register ENABLE on page 90.

# 6.1.9 Interrupt handling

CRYPTOCELL triggers interrupt once processing is complete.

See register IRR on page 143 for more information on which CRYPTOCELL subsystem components are able to trigger an interrupt request.

To clear the IRQ line when an interrupt has occurred, the relevant interrupt bit in register ICR on page 144 must be cleared. Interrupt sources can be masked using register IMR on page 143. If an interrupt source is masked, no interrupt request will be triggered.

In addition if field RNG\_INT in register IRR on page 143 is asserted, the relevant RNG engine interrupt bit in register RNG\_ICR on page 125 must be cleared *before* clearing that interrupt bit in register ICR on page 144 as described above.

The figure below shows how the CRYPTOCELL subsystem interrupt handling is designed and how it is connected to the NVIC module in the CPU.

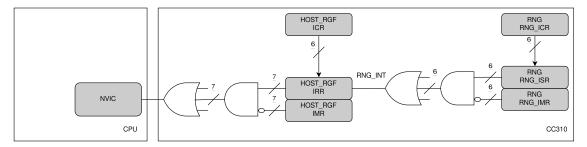



Figure 14: CRYPTOCELL interrupt handling

## 6.1.10 Standards

Arm TrustZone CryptoCell 310 (CRYPTOCELL) is compliant with the protocol specifications and standards shown in the following table.



| Algorithm family | Identification code     | Document title                                                                                                                            |
|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| TRNG             | NIST SP 800-90B         | Recommendation for the Entropy Sources Used for Random Bit Generation                                                                     |
|                  | BSI AIS-31              | Functionality Classes and Evaluation Methodology for True Random Number Generators                                                        |
|                  | FIPS 140-2              | Security Requirements for Cryptographic Modules                                                                                           |
| PRNG             | NIST SP 800-90A         | Recommendation for Random Number Generation Using Deterministic Random Bit Generators                                                     |
| Stream cipher    | Chacha                  | ChaCha, a variant of Salsa20, Daniel J. Bernstein, January 28th 2008                                                                      |
| MAC              | Poly1305                | The Poly1305-AES message-authentication code, Daniel J. Bernstein                                                                         |
| Koy agrooment    | SRP                     | Cryptography in NaCl, Daniel J. Bernstein  The Secure Parate Password Protectal Thomas Wu. Nevember 11th 1997                             |
| Key agreement    |                         | The Secure Remote Password Protocol, Thomas Wu, November 11th 1997                                                                        |
| Key derivation   | NIST SP 800-108         | Recommendation for Key Derivation Using Pseudorandom Functions.                                                                           |
| AES              | FIPS-197                | Advanced Encryption Standard (AES). Compliant with 128 bits key size only                                                                 |
|                  | NIST SP 800-38A         | Recommendation for Block Cipher Modes of Operation - Methods and Techniques                                                               |
|                  | NIST SP 800-38B         | Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication                                                      |
|                  | NIST SP 800-38C         | Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality                                   |
|                  | ISO/IEC 9797-1          | AES CBC-MAC per ISO/IEC 9797-1 MAC algorithm 1                                                                                            |
|                  | IEEE 802.15.4-2011      | IEEE Standard for Local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area                                       |
|                  |                         | Networks (LR-WPANs), Annex B.4: Specification of generic CCM* mode of operation                                                           |
| Hash             | FIPS 180-4              | Secure Hash Standard (SHA1, SHA-224, SHA-256)                                                                                             |
|                  | RFC2104                 | HMAC: Keyed-Hashing for Message Authentication                                                                                            |
| RSA              | PKCS#1                  | Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications v1.5/2.1. RSA signature                                      |
|                  |                         | verification supported up to key sizes of 2048 bits. RSA key generation supported up to key sizes of 2048 bits.                           |
| Diffie-Hellman   | ANSI X9.42              | Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography            |
|                  | PKCS#3                  | Diffie-Hellman Key-Agreement Standard                                                                                                     |
| ECC              | ANSI X9.63              | Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using                                       |
|                  |                         | Elliptic Curve Cryptography                                                                                                               |
|                  | IEEE 1363               | Standard Specifications for Public-Key Cryptography                                                                                       |
|                  | ANSI X9.62              | Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)                       |
|                  | Ed25519                 | Edwards-curve, Ed25519: high-speed high-security signatures, Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang |
|                  | Curve25519              | Montgomery curve, Curve25519: new Diffie-Hellman speed records, Daniel J. Bernstein                                                       |
|                  | FIPS 186-4              | Digital Signature Standard (DSS)                                                                                                          |
|                  | SEC 2                   | Recommended Elliptic Curve Domain Parameters, Certicom Research                                                                           |
|                  | NIST SP 800-56A rev. 2  | Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography                                              |
|                  | 14131 3F 600-30A 16V. 2 | necommendation for rain-wise key Establishment schemes osing Discrete Logarithm Cryptography                                              |

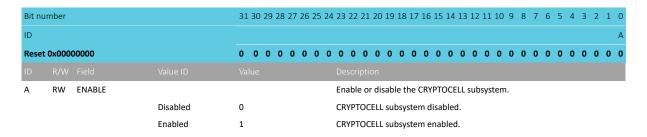
Table 16: CRYPTOCELL cryptography standards

# 6.1.11 Registers

# Instances

| Instance   | Base address | TrustZone |     |     | Split access | Description                       |
|------------|--------------|-----------|-----|-----|--------------|-----------------------------------|
|            |              | Мар       | Att | DMA |              |                                   |
| CRYPTOCELL | 0x50840000   | HF        | S   | NSA | No           | CRYPTOCELL 310 security subsystem |

# Register overview


| Register | Offset | TZ | Description                  |
|----------|--------|----|------------------------------|
| ENABLE   | 0x500  |    | Enable CRYPTOCELL subsystem. |



#### 6.1.11.1 ENABLE

Address offset: 0x500

Enable CRYPTOCELL subsystem.



## 6.1.12 Accelerators

This chapter contains register interfaces for each of the hardware accelerator engines.

#### 6.1.12.1 AES engine

The Advanced Encryption Standard (AES) hardware engine is designed according to FIPS197 for use in encrypt/decrypt and sign/verify operations for 128 bits key sizes.

The following cipher modes are supported:

- ECB
- CBC
- CBC-MAC
- CMAC
- CTR
- CCM
- CCM\*

#### Note:

To ensure proper operation when writing 128 bits AES keys, the write-only key registers of the AES engine must be written in ascending order, starting with:

- AES\_KEY\_0[0]
- AES\_KEY\_0[1]
- AES\_KEY\_0[2]
- AES\_KEY\_0[3]



# 6.1.12.1.1 Cryptographic flow

The following section describe a simple cryptographic flow for this engine.

```
uint8 t buf dst[16] = { 0 };
uint8_t buf_src[16] = { 0x81, 0x02, 0xF2, 0x40, 0xD5, 0xB9, 0x44, 0x59,
                       0xA2, 0xEB, 0x6F, 0xF2, 0x49, 0xF5, 0xEB, 0x94 };
/* Enable CRYPTOCELL subsystem */
NRF CRYPTOCELL->ENABLE = CRYPTOCELL ENABLE Enabled;
/* Enable engine and DMA clock */
NRF CC MISC->AES CLK = CC MISC AES CLK ENABLE Enable;
NRF CC MISC->DMA CLK = CC MISC DMA CLK ENABLE Enable;
/* Wait until crypto engine is Idle */
while (NRF CC CTL->CRYPTO BUSY == CC CTL CRYPTO BUSY STATUS Busy) { }
/* Configure AES as cryptographic flow */
NRF CC CTL->CRYPTO CTL = CC CTL CRYPTO CTL MODE AESActive;
/\star Configure AES engine control for decryption using ECB mode (default) \star/
NRF CC AES->AES CONTROL = CC AES AES CONTROL DEC KEYO Decrypt;
/* Load the AES key value into the engine */
NRF CC AES->AES KEY 0[0] = 0 \times 51515151;
NRF_CC_AES->AES_KEY_0[1] = 0x52525252;
NRF_CC_AES->AES_KEY_0[2] = 0x53535353;
NRF CC AES->AES KEY 0[3] = 0x5454545454;
/* Configure default init vector */
NRF CC AES->AES IV 0[0] = 0x0;
NRF CC AES->AES IV 0[1] = 0x0;
NRF CC AES->AES IV 0[2] = 0x0;
NRF CC AES->AES IV 0[3] = 0x0;
/* Configure DMA output destination address */
NRF CC DOUT->DST MEM ADDR = (uint32 t) buf dst;
NRF CC DOUT->DST MEM SIZE = (uint32 t) sizeof(buf dst);
/st Configure DMA input source address to start the cryptographic operation st/
NRF_CC_DIN->SRC_MEM_ADDR = (uint32_t) buf_src;
NRF_CC_DIN->SRC_MEM_SIZE = (uint32_t) sizeof(buf_src);
/* Wait on DOUT DMA interrupt */
while(!(NRF CC HOST RGF->IRR & CC HOST RGF IRR DOUT TO MEM INT Msk)) {}
```



#### 6.1.12.1.2 Registers

#### **Instances**

| Instance | Base address | TrustZone | TrustZone S |     |    | Description           |
|----------|--------------|-----------|-------------|-----|----|-----------------------|
|          |              | Мар       | Att         | DMA |    |                       |
| CC_AES   | 0x50841000   | HF        | S           | NSA | No | CRYPTOCELL AES engine |


# **Register overview**

| Register             | Offset | TZ | Description                                                                                         |
|----------------------|--------|----|-----------------------------------------------------------------------------------------------------|
| AES_KEY_0[n]         | 0x400  |    | AES key value to use. The initial AES_KEY_0[0] register holds the least significant bits [31:0] of  |
|                      |        |    | the key value.                                                                                      |
| AES_IV_0[n]          | 0x440  |    | AES Initialization Vector (IV) to use. The initial AES_IV_0[0] register holds the least significant |
|                      |        |    | bits [31:0] of the IV.                                                                              |
| AES_CTR[n]           | 0x460  |    | AES counter (CTR) to use. The initial AES_CTR[0] register holds the least significant bits [31:0]   |
|                      |        |    | of the CTR.                                                                                         |
| AES_BUSY             | 0x470  |    | Status register for AES engine activity.                                                            |
| AES_SK               | 0x478  |    | Writing to this address trigger sampling of the HW key to the AES_KEY_0 register                    |
| AES_CMAC_INIT        | 0x47C  |    | Writing to this address triggers the AES engine to generate K1 and K2 for AES-CMAC                  |
|                      |        |    | operations.                                                                                         |
| AES_REMAINING_BYTES  | 0x4BC  |    | This register should be set with the amount of remaining bytes until the end of the current         |
|                      |        |    | AES operation.                                                                                      |
| AES_CONTROL          | 0x4C0  |    | Control the AES engine behavior.                                                                    |
| AES_HW_FLAGS         | 0x4C8  |    | Hardware configuration of the AES engine. Reset value holds the supported features.                 |
| AES_CTR_NO_INCREMENT | 0x4D8  |    | This register enables the AES CTR no increment mode in which the counter mode is not                |
|                      |        |    | incremented between two blocks                                                                      |
| AES_SW_RESET         | 0x4F4  |    | Reset the AES engine.                                                                               |
| AES_CMAC_SIZEO_KICK  | 0x524  |    | Writing to this address triggers the AES engine to perform a CMAC operation with size 0. The $$     |
|                      |        |    | CMAC result can be read from the AES_IV_0 register.                                                 |

#### 6.1.12.1.2.1 AES\_KEY\_0[n] (n=0..7)

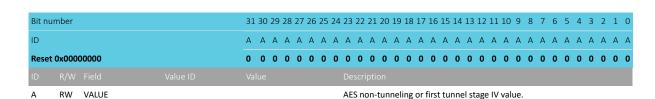
Address offset:  $0x400 + (n \times 0x4)$ 

AES key value to use. The initial AES\_KEY\_0[0] register holds the least significant bits [31:0] of the key value.



#### 6.1.12.1.2.2 AES\_IV\_0[n] (n=0..3)

Address offset:  $0x440 + (n \times 0x4)$ 


AES Initialization Vector (IV) to use. The initial AES\_IV\_0[0] register holds the least significant bits [31:0] of the IV.

AES\_IV\_0 must be configured according to the selected AES mode:

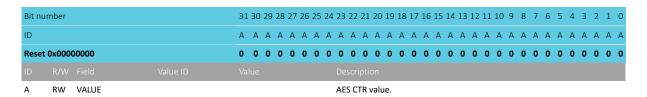
• AES CBC/CBC-MAC : Loaded with the IV.

This register is a 'R/W change' register, as the written register values changes during processing.

NORDIC\*



6.1.12.1.2.3 AES\_CTR[n] (n=0..3)


Address offset:  $0x460 + (n \times 0x4)$ 

AES counter (CTR) to use. The initial AES CTR[0] register holds the least significant bits [31:0] of the CTR.

AES\_CTR must be configured according to the selected AES mode:

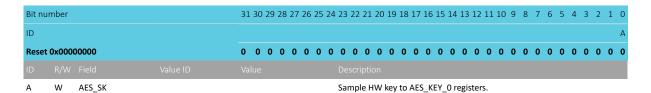
• AES CTR: Loaded with the counter value.

This register is a 'R/W change' register, as the written register values changes during processing.



#### 6.1.12.1.2.4 AES\_BUSY

Address offset: 0x470


Status register for AES engine activity.



## 6.1.12.1.2.5 AES\_SK

Address offset: 0x478

Writing to this address trigger sampling of the HW key to the AES\_KEY\_O register

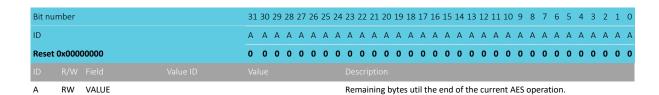


#### 6.1.12.1.2.6 AES\_CMAC\_INIT

Address offset: 0x47C

Writing to this address triggers the AES engine to generate K1 and K2 for AES-CMAC operations.




| Α     | W       | ENABLE |                   |       | Gene | erate I | (1 and | K2 f  | or th | ie AE | S-CN | ИΑС | ope  | ratio | ns. |   |   |   |   |     |   |   |
|-------|---------|--------|-------------------|-------|------|---------|--------|-------|-------|-------|------|-----|------|-------|-----|---|---|---|---|-----|---|---|
| ID    |         |        |                   |       |      |         |        |       |       |       |      |     |      |       |     |   |   |   |   |     |   |   |
| Rese  | t 0x000 | 00000  | 0 0 0 0 0 0       | 0 0   | 0 (  | 0       | 0 0    | 0 0   | 0     | 0 (   | 0    | 0   | 0    | 0 0   | 0   | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 |
| ID    |         |        |                   |       |      |         |        |       |       |       |      |     |      |       |     |   |   |   |   |     |   | Α |
| Bit n | umber   |        | 31 30 29 28 27 26 | 25 24 | 23 2 | 2 21 2  | 0 19   | 18 17 | 7 16  | 15 1  | 4 13 | 12  | 11 1 | .0 9  | 8   | 7 | 6 | 5 | 4 | 3 2 | 1 | 0 |

#### 6.1.12.1.2.7 AES\_REMAINING\_BYTES

Address offset: 0x4BC

This register should be set with the amount of remaining bytes until the end of the current AES operation.

The AES engine counts down from this value to determine the last block or the block before the last blocks in mode AES CMAC and mode AES CCM.



#### 6.1.12.1.2.8 AES\_CONTROL

Address offset: 0x4C0

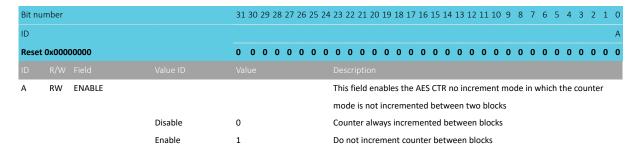
Control the AES engine behavior.

| Bit nu | mber  |                  |         | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                |
|--------|-------|------------------|---------|-------------------------|--------------------------------------------------------------------------------|
| ID     |       |                  |         | E D                     | C C B B B A                                                                    |
| Reset  | 0x000 | 00000            |         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                        |
|        |       |                  |         |                         | Description                                                                    |
| Α      | RW    | DEC_KEY0         |         |                         | Set AES encrypt or decrypt mode in non-tunneling operations.                   |
|        |       |                  | Encrypt | 0                       | Perform AES encryption                                                         |
|        |       |                  | Decrypt | 1                       | Perform AES decryption                                                         |
| В      | RW    | MODE_KEY0        |         |                         | Set the AES mode.                                                              |
|        |       |                  | ECB     | 0x0                     | Electronic codebook mode                                                       |
|        |       |                  | CBC     | 0x1                     | Cipher block chaining mode                                                     |
|        |       |                  | CTR     | 0x2                     | Counter mode                                                                   |
|        |       |                  | CBC_MAC | 0x3                     | Cipher Block Chaining Message Authentication Code                              |
|        |       |                  | CMAC    | 0x7                     | Cipher-based Message Authentication Code                                       |
| С      | RW    | NK_KEYO          |         |                         | Set the AES key length.                                                        |
|        |       |                  | 128Bits | 0x0                     | 128 bits key length                                                            |
| D      | RW    | AES_XOR_CRYPTOKE | EY      |                         | This field determines the value that is written to AES_KEY_0, when AES_SK      |
|        |       |                  |         |                         | is kicked.                                                                     |
|        |       |                  | Disable | 0                       | The value that is written to AES_KEY_0 is the value of the HW cryptokey as     |
|        |       |                  |         |                         | is.                                                                            |
|        |       |                  | Enable  | 1                       | The value that is written to AES_KEY_0 is the value of the HW cryptokey XOR $$ |
|        |       |                  |         |                         | with the current value of AES_KEY_0.                                           |
| E      | RW    | DIRECT_ACCESS    |         |                         | Using direct access and not the DIN-DOUT DMA interface                         |
|        |       |                  | Disable | 0                       | Access using the DIN-DOUT DMA interface                                        |
|        |       |                  | Enable  | 1                       | Access using direct access                                                     |
|        |       |                  |         |                         |                                                                                |

#### 6.1.12.1.2.9 AES\_HW\_FLAGS

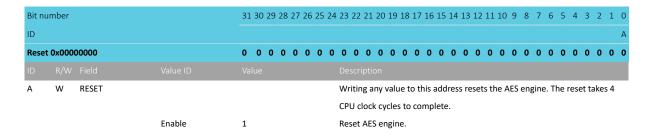
Address offset: 0x4C8




Hardware configuration of the AES engine. Reset value holds the supported features.



#### 6.1.12.1.2.10 AES\_CTR\_NO\_INCREMENT

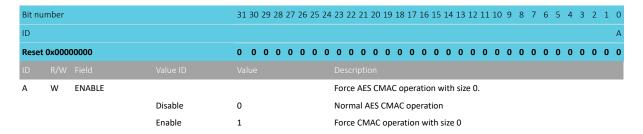

Address offset: 0x4D8

This register enables the AES CTR no increment mode in which the counter mode is not incremented between two blocks



#### 6.1.12.1.2.11 AES\_SW\_RESET

Address offset: 0x4F4 Reset the AES engine.




#### 6.1.12.1.2.12 AES\_CMAC\_SIZEO\_KICK

Address offset: 0x524



Writing to this address triggers the AES engine to perform a CMAC operation with size 0. The CMAC result can be read from the AES\_IV\_0 register.



#### 6.1.12.2 CHACHA engine

The ChaCha algorithm is a family of stream ciphers.

The ChaCha family of stream ciphers can be used as both a stand-alone algorithm, and in combination with the Poly1305 authenticator to form an Authenticated Encryption with Associated Data (AEAD) algorithm as defined in RFC7539 for IETF protocols.

The CHACHA engine provide acceleration for the stream encryption, while the PKA engine is used for acceleration of the Poly1305 authenticator. The core of the ChaCha algorithm is a hash function which is based on rotation operations. In the default configuration the hash function consist of 20 rounds of rotation permutations. The implementation support ChaCha stream ciphers using key sizes up to 256 bits in 8, 12 and 20 rounds. The ChaCha20/Poly1305 combination is perfectly suited for embedded environments, and can achieve much higher throughput than AES using similar power consumption and execution time.

**Note:** To ensure proper operation when writing 128 bits CHACHA keys, the write-only key registers of the CHACHA engine must be written in ascending order, starting with:

- CHACHA\_KEY[0]
- CHACHA\_KEY[1]
- CHACHA\_KEY[2]
- CHACHA\_KEY[3]

For 256 bits CHACHA keys, this must be followed by:

- CHACHA\_KEY[4]
- CHACHA KEY[5]
- CHACHA\_KEY[6]
- CHACHA\_KEY[7]



# 6.1.12.2.1 Cryptographic flow

The following section describe a simple cryptographic flow for this engine.

```
uint8 t buf dst[16] = { 0 };
uint8_t buf_src[16] = { 0x18, 0x35, 0x9B, 0x75, 0x18, 0x6F, 0x33, 0xBE,
                        0x22, 0x0A, 0x3D, 0xB7, 0x66, 0xFD, 0x98, 0x35 };
/* Enable CRYPTOCELL subsystem */
NRF CRYPTOCELL->ENABLE = CRYPTOCELL ENABLE Enabled;
/* Enable engine and DMA clock */
NRF CC MISC->CHACHA CLK = CC MISC CHACHA CLK ENABLE Enable;
NRF CC MISC->DMA CLK = CC MISC DMA CLK ENABLE Enable;
/* Wait until crypto engine is Idle */
while (NRF CC CTL->CRYPTO BUSY == CC CTL CRYPTO BUSY STATUS Busy) { }
/* Configure CHACHA as cryptographic flow */
NRF CC CTL->CRYPTO CTL = CC CTL CRYPTO CTL MODE ChaChaActive;
/* Configure testing NONCE */
NRF CC CHACHA->CHACHA IV[0] = 0xBBBBAAAA;
NRF CC CHACHA->CHACHA IV[1] = 0x22221111;
/* Load the CHACHA test key value into the engine */
NRF_CC_CHACHA->CHACHA_KEY[0] = 0x51515151;
NRF_CC_CHACHA->CHACHA_KEY[1] = 0x52525252;
NRF CC CHACHA->CHACHA KEY[2] = 0x5353535353;
NRF CC CHACHA->CHACHA KEY[3] = 0x5454545454;
NRF_CC_CHACHA->CHACHA_KEY[4] = 0x51515151;
NRF CC CHACHA->CHACHA KEY[5] = 0 \times 5252525252;
NRF CC CHACHA->CHACHA KEY[6] = 0x5353535353;
NRF CC CHACHA->CHACHA KEY[7] = 0x5454545454;
/* Configure CHACHA mode - using default (0x0), adding new message init ^{\star}/
NRF CC CHACHA->CHACHA CONTROL =
 (CC CHACHA CHACHA CONTROL INIT Enable <<
  CC CHACHA CHACHA CONTROL INIT Pos);
/* Configure DMA output destination address */
NRF_CC_DOUT->DST_MEM_ADDR = (uint32_t) buf_dst;
NRF_CC_DOUT->DST_MEM_SIZE = (uint32_t) sizeof(buf_dst);
/\star Configure DMA input source address to start the cryptographic operation \star/
NRF CC DIN->SRC MEM ADDR = (uint32 t) buf src;
NRF_CC_DIN->SRC_MEM_SIZE = (uint32_t) sizeof(buf_src);
/* Wait on DOUT DMA interrupt */
while(!(NRF CC HOST RGF->IRR & CC HOST RGF IRR DOUT TO MEM INT Msk)) {}
```



# 6.1.12.2.2 Registers

# Instances

| Instance  | Base address | TrustZone | TrustZone |     |    | Description              |
|-----------|--------------|-----------|-----------|-----|----|--------------------------|
|           |              | Мар       | Att       | DMA |    |                          |
| CC_CHACHA | 0x50841000   | HF        | S         | NSA | No | CRYPTOCELL CHACHA engine |

# **Register overview**

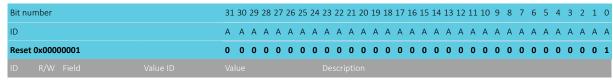
| Register               | Offset | TZ | Description                                                                                    |
|------------------------|--------|----|------------------------------------------------------------------------------------------------|
| CHACHA_CONTROL         | 0x380  |    | Control the CHACHA engine behavior.                                                            |
| CHACHA_VERSION         | 0x384  |    | CHACHA engine HW version                                                                       |
| CHACHA_KEY[n]          | 0x388  |    | CHACHA key value to use. The initial CHACHA_KEY[0] register holds the least significant bits   |
|                        |        |    | [31:0] of the key value.                                                                       |
| CHACHA_IV[n]           | 0x3A8  |    | CHACHA Initialization Vector (IV) to use. The IV is also known as the nonce.                   |
| CHACHA_BUSY            | 0x3B0  |    | Status register for CHACHA engine activity.                                                    |
| CHACHA_HW_FLAGS        | 0x3B4  |    | Hardware configuration of the CHACHA engine. Reset value holds the supported features.         |
| CHACHA_BLOCK_CNT_LSB   | 0x3B8  |    | Store the LSB value of the block counter, in order to support suspend/resume of operation      |
| CHACHA_BLOCK_CNT_MSB   | 0x3BC  |    | Store the MSB value of the block counter, in order to support suspend/resume of operation      |
| CHACHA_SW_RESET        | 0x3C0  |    | Reset the CHACHA engine.                                                                       |
| CHACHA_POLY1305_KEY[n] | 0x3C4  |    | The auto-generated key to use in Poly1305 MAC calculation.                                     |
|                        |        |    | The initial CHACHA_POLY1305_KEY[0] register holds the least significant bits [31:0] of the key |
|                        |        |    | value.                                                                                         |
| CHACHA_ENDIANNESS      | 0x3E4  |    | CHACHA engine data order configuration.                                                        |
| CHACHA_DEBUG           | 0x3E8  |    | Debug register for the CHACHA engine                                                           |

# 6.1.12.2.2.1 CHACHA\_CONTROL

Address offset: 0x380

Control the CHACHA engine behavior.

| Bit nu | ımber |                  |         | 31 | 30 2 | 29 2 | 28 27 | 7 26 | 6 2 | 5 24 | 4 2 | 3 2   | 2 2   | 21 2 | 0 1  | 9 1   | 8 17  | 7 16  | 15   | 14   | 13   | 12   | 11  | 10    | 9    | 8    | 7    | 6    | 5    | 4 3  | 3 2 | 1 | 0 |
|--------|-------|------------------|---------|----|------|------|-------|------|-----|------|-----|-------|-------|------|------|-------|-------|-------|------|------|------|------|-----|-------|------|------|------|------|------|------|-----|---|---|
| ID     |       |                  |         |    |      |      |       |      |     |      |     |       |       |      |      |       |       |       |      |      |      |      |     | G     | F    |      |      |      | Е    | E [  | ) C | В | Α |
| Reset  | 0x000 | 00000            |         | 0  | 0    | 0    | 0 0   | 0    | ) ( | 0 0  | 0   | 0     | ) (   | 0 (  | 0 (  | ) (   | 0     | 0     | 0    | 0    | 0    | 0    | 0   | 0     | 0    | 0    | 0    | 0    | 0    | 0 (  | 0   | 0 | 0 |
| ID     |       |                  |         |    |      |      |       |      |     |      |     |       |       |      |      |       |       |       |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
| Α      | RW    | CHACHA_OR_SALSA  |         |    |      |      |       |      |     |      | R   | un    | eng   | gine | e in | Cha   | Cha   | a or  | Sal  | sa n | 100  | le   |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | ChaCha  | 0  |      |      |       |      |     |      | R   | un    | eng   | gine | in   | Cha   | Cha   | a m   | ode  |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | Salsa   | 1  |      |      |       |      |     |      | R   | un    | eng   | gine | e in | Sal   | sa n  | nod   | е    |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
| В      | RW    | INIT             |         |    |      |      |       |      |     |      | P   | erfo  | orm   | n in | itia | lizat | ion   | for   | a n  | ew   | me   | ssag | ge  |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | Disable | 0  |      |      |       |      |     |      | N   | 1ess  | sag   | ge a | Irea | dy    | initi | aliz  | ed   |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | Enable  | 1  |      |      |       |      |     |      | In  | nitia | alize | e ne | ew   | mes   | sag   | e     |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
| С      | RW    | GEN_KEY_POLY1305 |         |    |      |      |       |      |     |      | G   | ene   | erat  | te t | he   | key   | to ι  | ıse   | in P | oly1 | .30  | 5 m  | ess | age   | au   | the  | ntic | atio | on ( | code | 2   |   |   |
|        |       |                  |         |    |      |      |       |      |     |      | Cá  | alcu  | ulat  | ion  |      |       |       |       |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | Disable | 0  |      |      |       |      |     |      | D   | o n   | ot    | gen  | era  | te F  | oly   | 130   | 5 ke | ey   |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | Enable  | 1  |      |      |       |      |     |      | G   | ene   | erat  | te P | oly  | 130   | 15 ke | еу    |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
| D      | RW    | KEY_LEN          |         |    |      |      |       |      |     |      | K   | ey I  | en    | gth  | sel  | ecti  | on.   |       |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | 256Bits | 0  |      |      |       |      |     |      | U   | se 2  | 256   | 5 bi | ts k | ey I  | eng   | th    |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
|        |       |                  | 128Bits | 1  |      |      |       |      |     |      | U   | se :  | 128   | 3 bi | ts k | ey I  | eng   | th    |      |      |      |      |     |       |      |      |      |      |      |      |     |   |   |
| E      | RW    | NUM_OF_ROUNDS    |         |    |      |      |       |      |     |      | Se  | et n  | nun   | nbe  | r of | pe    | rmu   | itati | on   | rou  | nds  | , de | fau | lt va | alue | e is | 20.  |      |      |      |     |   |   |
|        |       |                  | Default | 0  |      |      |       |      |     |      | U   | se 2  | 20    | rou  | nds  | of    | rota  | itio  | n (d | efa  | ult) |      |     |       |      |      |      |      |      |      |     |   |   |




| Bit nu | ımber        |          | 31 30 29 28 27 | 7 26 25 24 2 | 3 22 21 20  | 19 18 :    | 17 16 1   | 5 14   | 13 12 | 11 10 | 9 | 8 | 7 | 6 5 | 4 | 3 | 2 | 1 0 |
|--------|--------------|----------|----------------|--------------|-------------|------------|-----------|--------|-------|-------|---|---|---|-----|---|---|---|-----|
| ID     |              |          |                |              |             |            |           |        |       | G     | F |   |   | Ε   | Ε | D | С | ВА  |
| Reset  | 0x00000000   |          | 0 0 0 0 0      | 0000         | 0 0 0       | 0 0        | 0 0       | 0 0    | 0 0   | 0 0   | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 0 |
| ID     |              |          |                |              |             |            |           |        |       |       |   |   |   |     |   |   |   |     |
|        |              | 12Rounds | 1              | U            | se 12 roun  | ds of ro   | tation    |        |       |       |   |   |   |     |   |   |   |     |
|        |              | 8Rounds  | 2              | U            | se 8 round  | ls of rota | ation     |        |       |       |   |   |   |     |   |   |   |     |
| F      | RW RESET_BLO | CK_CNT   |                | R            | eset block  | counter    | for nev   | w mes  | sages |       |   |   |   |     |   |   |   |     |
|        |              | Disable  | 0              | U            | se current  | block co   | ounter    | value  |       |       |   |   |   |     |   |   |   |     |
|        |              | Enable   | 1              | R            | eset block  | counter    | value t   | o zero | )     |       |   |   |   |     |   |   |   |     |
| G      | RW USE_IV_96 | BIT      |                | U            | se 96 bits  | Initializa | tion Ve   | ctor ( | IV)   |       |   |   |   |     |   |   |   |     |
|        |              | Disable  | 0              | U            | se default  | size IV c  | of 64 bit | :      |       |       |   |   |   |     |   |   |   |     |
|        |              | Enable   | 1              | Т            | he IV is 96 | bits       |           |        |       |       |   |   |   |     |   |   |   |     |

#### 6.1.12.2.2.2 CHACHA\_VERSION

Address offset: 0x384

CHACHA engine HW version



A R CHACHA\_VERSION

#### 6.1.12.2.2.3 CHACHA\_KEY[n] (n=0..7)

Address offset:  $0x388 + (n \times 0x4)$ 

CHACHA key value to use. The initial CHACHA\_KEY[0] register holds the least significant bits [31:0] of the key value.



#### 6.1.12.2.2.4 CHACHA\_IV[n] (n=0..1)

Address offset:  $0x3A8 + (n \times 0x4)$ 

CHACHA Initialization Vector (IV) to use. The IV is also known as the nonce.

The size of the nonce is controlled from register CHACHA\_CONTROL on page 98.

For 64 bits IV size the nonce value must be encoded using:

- CHACHA\_IV[0]: Bits [31:0] of the nonce
- CHACHA\_IV[1]: Bits [63:32] of the nonce

For 96 bits IV size the nonce value must be encoded using:

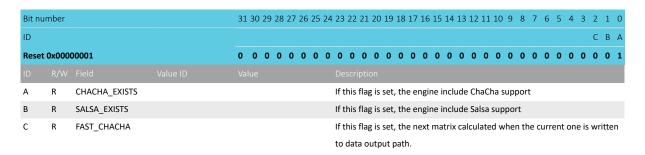
- CHACHA\_BLOCK\_CNT\_MSB on page 100 : Bits [31:0] of the nonce
- CHACHA\_IV[0]: Bits [63:32] of the nonce
- CHACHA\_IV[1]: Bits [95:64] of the nonce



| Reset 0x0000000000                                                           | 0 0 0 0 0 0 0 0 0 0 |
|------------------------------------------------------------------------------|---------------------|
| <del></del>                                                                  | 0 0 0 0 0 0 0 0 0   |
| AAAAAAAAAAAAAAA                                                              |                     |
| A A A A A A A A A A A A A A A A A A A                                        | A A A A A A A A A   |
| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 0 |

#### 6.1.12.2.2.5 CHACHA\_BUSY

Address offset: 0x3B0

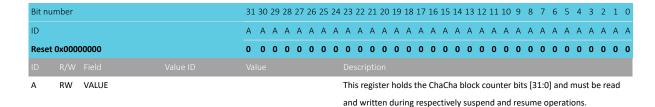

Status register for CHACHA engine activity.

| Bit n | umber   |        |      | 31 30 29 2 | 8 27 26 | 5 25 24 | 1 23 2 | 22 21 | 20 19 | 9 18 :  | 17 1 | 6 15 | 14 1 | 13 12 | 11 | 10 ! | 9 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0 |
|-------|---------|--------|------|------------|---------|---------|--------|-------|-------|---------|------|------|------|-------|----|------|-----|---|---|---|---|-----|-----|---|
| ID    |         |        |      |            |         |         |        |       |       |         |      |      |      |       |    |      |     |   |   |   |   |     |     | Α |
| Rese  | t 0x000 | 00000  |      | 0 0 0      | 0 0 0   | 0 0     | 0      | 0 0   | 0 0   | 0       | 0 0  | 0    | 0    | 0 0   | 0  | 0 (  | 0 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 |
| ID    |         |        |      |            |         |         |        |       |       |         |      |      |      |       |    |      |     |   |   |   |   |     |     |   |
| Α     | R       | STATUS |      |            |         |         | СНА    | СНА е | engin | e sta   | tus. |      |      |       |    |      |     |   |   |   |   |     |     |   |
|       |         |        | Idle | 0          |         |         | СНА    | СНА е | engin | e is io | dle  |      |      |       |    |      |     |   |   |   |   |     |     |   |
|       |         |        | Busy | 1          |         |         | СНА    | СНА є | engin | e is b  | usy  |      |      |       |    |      |     |   |   |   |   |     |     |   |

#### 6.1.12.2.2.6 CHACHA\_HW\_FLAGS

Address offset: 0x3B4

Hardware configuration of the CHACHA engine. Reset value holds the supported features.



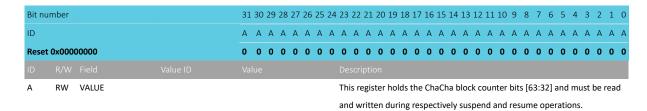

#### 6.1.12.2.2.7 CHACHA\_BLOCK\_CNT\_LSB

Address offset: 0x3B8

Store the LSB value of the block counter, in order to support suspend/resume of operation

The two first words (n) in the last row of the cipher matrix are the block counter. At the end of each block (512b), the block counter for the next block is written by HW to register CHACHA\_BLOCK\_CNT\_LSB on page 100 and register CHACHA\_BLOCK\_CNT\_MSB on page 100. If starting a new message the block counter must also be reset.




#### 6.1.12.2.2.8 CHACHA\_BLOCK\_CNT\_MSB

Address offset: 0x3BC



Store the MSB value of the block counter, in order to support suspend/resume of operation

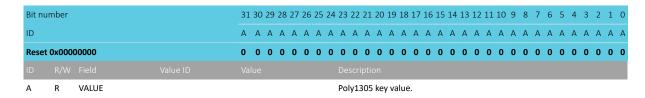
For the description of register CHACHA\_BLOCK\_CNT\_MSB on page 100, see register CHACHA\_BLOCK\_CNT\_LSB on page 100.



#### 6.1.12.2.2.9 CHACHA\_SW\_RESET

Address offset: 0x3C0

Reset the CHACHA engine.


| Bit nu | ımber   |       |        | 31 30 2 | 29 28 | 3 27 | 26 2! | 5 24 | 1 23 | 22    | 21 2 | 20 19 | 9 18  | 17    | 16 1  | .5 14 | 13    | 12   | 11 1 | 0 9 | 8   | 7    | 6    | 5  | 4   | 3   | 2    | 1 0  |
|--------|---------|-------|--------|---------|-------|------|-------|------|------|-------|------|-------|-------|-------|-------|-------|-------|------|------|-----|-----|------|------|----|-----|-----|------|------|
| ID     |         |       |        |         |       |      |       |      |      |       |      |       |       |       |       |       |       |      |      |     |     |      |      |    |     |     |      | Α    |
| Rese   | t 0x000 | 00000 |        | 0 0     | 0 0   | 0    | 0 0   | 0    | 0    | 0     | 0    | 0 0   | 0     | 0     | 0 (   | 0 0   | 0     | 0    | 0 (  | 0   | 0   | 0    | 0    | 0  | 0   | 0   | 0    | 0 0  |
| ID     |         |       |        |         |       |      |       |      |      |       |      |       |       |       |       |       |       |      |      |     |     |      |      |    |     |     |      |      |
| Α      | W       | RESET |        |         |       |      |       |      | Wr   | itin  | g an | y val | lue t | o th  | is ac | ddre  | ss re | sets | the  | CHA | ACH | A ei | ngir | ne | The | res | et t | akes |
|        |         |       |        |         |       |      |       |      | 4 C  | PU    | cloc | k cy  | cles  | to c  | omp   | lete  |       |      |      |     |     |      |      |    |     |     |      |      |
|        |         |       | Enable | 1       |       |      |       |      | Res  | set ( | СНА  | CHA   | eng   | gine. |       |       |       |      |      |     |     |      |      |    |     |     |      |      |

#### 6.1.12.2.2.10 CHACHA\_POLY1305\_KEY[n] (n=0..7)

Address offset:  $0x3C4 + (n \times 0x4)$ 

The auto-generated key to use in Poly1305 MAC calculation.

The initial CHACHA\_POLY1305\_KEY[0] register holds the least significant bits [31:0] of the key value.



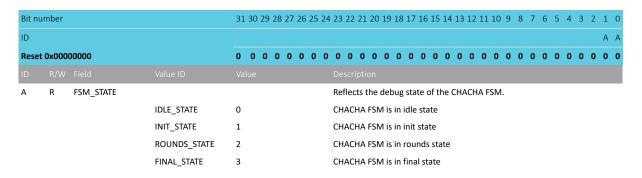
#### 6.1.12.2.2.11 CHACHA\_ENDIANNESS

Address offset: 0x3E4

CHACHA engine data order configuration.

| Bit nu | ımber |                  |         | 31 | 30 | 29 2 | 8 2 | 27 2 | 6 2 | 25 24 | 1 23 | 3 22  | 21   | 20    | 19  | 18 1 | 7 1  | 6 1   | 5 14  | 13   | 12    | 11  | 10 9  | 9 8  | 3 7 | 6    | 5    | 4    | 3    | 2   | 1 0  |
|--------|-------|------------------|---------|----|----|------|-----|------|-----|-------|------|-------|------|-------|-----|------|------|-------|-------|------|-------|-----|-------|------|-----|------|------|------|------|-----|------|
| ID     |       |                  |         |    |    |      |     |      |     |       |      |       |      |       |     |      |      |       |       |      |       |     |       |      |     |      |      | Ε    | D    | С   | В А  |
| Reset  | 0x000 | 00000            |         | 0  | 0  | 0    | 0   | 0 0  | )   | 0 0   | 0    | 0     | 0    | 0     | 0   | 0    | 0 (  | 0     | 0     | 0    | 0     | 0   | 0 (   | 0 (  | 0   | 0    | 0    | 0    | 0    | 0   | 0 0  |
| ID     |       |                  |         |    |    |      |     |      |     |       |      |       |      |       |     |      |      |       |       |      |       |     |       |      |     |      |      |      |      |     |      |
| Α      | RW    | CHACHA_DIN_WORD  | D_ORDER |    |    |      |     |      |     |       | Cl   | hang  | e t  | he v  | vor | d or | der  | of t  | ne ir | npu  | t da  | ta. |       |      |     |      |      |      |      |     |      |
|        |       |                  | Default | 0  |    |      |     |      |     |       | U    | se de | efa  | ult v | vor | d or | der  | for   | 128-  | bits | s inp | ut, | whe   | ere  | wor | ds a | re c | orde | ered | as  |      |
|        |       |                  |         |    |    |      |     |      |     |       | fo   | llow  | s: v | w0,   | w1, | w2,  | w3   |       |       |      |       |     |       |      |     |      |      |      |      |     |      |
|        |       |                  | Reverse | 1  |    |      |     |      |     |       | Re   | ever  | ses  | the   | wo  | rd o | rde  | r foi | 128   | 8-bi | ts in | pu  | t, wł | nere | wc  | rds  | are  | re-  | ord  | ere | d as |
|        |       |                  |         |    |    |      |     |      |     |       | fo   | llow  | s: v | w3,   | w2, | w1,  | w0   | ١.    |       |      |       |     |       |      |     |      |      |      |      |     |      |
| В      | RW    | CHACHA_DIN_BYTE_ | ORDER   |    |    |      |     |      |     |       | Cl   | hang  | e t  | he b  | yte | ord  | er c | of th | e in  | put  | dat   | a.  |       |      |     |      |      |      |      |     |      |






| Bit nu | umber   |                |                | 31 | 30 : | 29 2 | 8 27 | 26 | 25 2 | 4 2 | 23 2  | 2 2:          | 1 20  | 19    | 18    | 17   | 16          | 15   | 14 :  | L3 1  | .2 1 | 1 10  | ) 9  | 8     | 7    | 6    | 5    | 4    | 3     | 2 1   | . 0  |
|--------|---------|----------------|----------------|----|------|------|------|----|------|-----|-------|---------------|-------|-------|-------|------|-------------|------|-------|-------|------|-------|------|-------|------|------|------|------|-------|-------|------|
| ID     |         |                |                |    |      |      |      |    |      |     |       |               |       |       |       |      |             |      |       |       |      |       |      |       |      |      |      | Ε    | D     | C E   | 3 A  |
| Reset  | t 0x000 | 00000          |                | 0  | 0    | 0 (  | 0 0  | 0  | 0 (  | 0   | 0 (   | 0             | 0     | 0     | 0     | 0    | 0           | 0    | 0     | 0     | 0 (  | 0     | 0    | 0     | 0    | 0    | 0    | 0    | 0     | 0 (   | 0    |
| ID     |         |                |                |    |      |      |      |    |      |     |       |               |       |       |       |      |             |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
|        |         |                | Default        | 0  |      |      |      |    |      | ι   | Jse   | defa          | ault  | byt   | e or  | der  | wit         | hin  | ea    | ch ii | npu  | t wo  | rd,  | wh    | ere  | byte | es a | re o | orde  | red   | as   |
|        |         |                |                |    |      |      |      |    |      | f   | ollo  | ws:           | во,   | В1,   | B2,   | вз   |             |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
|        |         |                | Reverse        | 1  |      |      |      |    |      | F   | Reve  | rse           | the   | byt   | e o   | rde  | r wi        | thir | n ea  | ch i  | npu  | t wo  | ord, | wh    | ere  | byt  | es a | are  | re-o  | rde   | red  |
|        |         |                |                |    |      |      |      |    |      | a   | s fo  | llov          | vs: E | 33, I | B2, I | В1,  | во.         |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
| С      | RW      | CHACHA_CORE_MA | TRIX_LBE_ORDER |    |      |      |      |    |      | (   | Char  | nge           | the   | qua   | irtei | of   | a m         | atr  | ix o  | rde   | r in | the   | eng  | ine   |      |      |      |      |       |       |      |
|        |         |                | Default        | 0  |      |      |      |    |      | ι   | Jse   | defa          | ault  | qua   | artei | rof  | ma          | trix | ord   | ler,  | whe  | ere o | quai | rter  | s ar | e or | der  | red  | as fo | ollov | NS:  |
|        |         |                |                |    |      |      |      |    |      | c   | q0, c | <b>1</b> 1, c | η2, c | η3. I | Each  | ı qı | ıartı       | er r | epr   | esei  | nts  | a 12  | 8-b  | its s | ecti | on   | of t | he   | mat   | ix.   |      |
|        |         |                | Reverse        | 1  |      |      |      |    |      | F   | Reve  | rse           | the   | ord   | der o | of n | natr        | ix q | uar   | ters  | , w  | here  | qu   | arte  | rs a | re r | re-o | rde  | red   | as    |      |
|        |         |                |                |    |      |      |      |    |      | f   | ollo  | ws:           | q3,   | q2,   | q1,   | q0   | . Ea        | ch d | quai  | ter   | rep  | rese  | nts  | a 1   | 28-  | bits | sec  | tio  | n of  | the   |      |
|        |         |                |                |    |      |      |      |    |      | r   | natr  | ix.           |       |       |       |      |             |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
| D      | RW      | CHACHA_DOUT_W  | ORD_ORDER      |    |      |      |      |    |      | (   | Char  | nge           | the   | wo    | rd o  | rde  | r of        | the  | e ou  | tpu   | t da | ıta.  |      |       |      |      |      |      |       |       |      |
|        |         |                | Default        | 0  |      |      |      |    |      | ι   | Jses  | det           | faul  | t wo  | ord ( | ord  | er fo       | or 1 | .28-  | bits  | ou   | tput  | , wl | here  | w    | ords | are  | e or | dere  | d a   | 5    |
|        |         |                |                |    |      |      |      |    |      | f   | ollo  | ws:           | w0,   | w1    | ., w2 | 2, w | /3.         |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
|        |         |                | Reverse        | 1  |      |      |      |    |      | F   | Reve  | rse           | the   | wo    | rd o  | rde  | er fo       | r 1  | 28-l  | oits  | out  | put,  | wh   | ere   | wo   | rds  | are  | re-  | orde  | ered  | as   |
|        |         |                |                |    |      |      |      |    |      | f   | ollo  | ws:           | w3,   | w2    | , w.  | 1, w | <i>1</i> 0. |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
| E      | RW      | CHACHA_DOUT_BY | TE_ORDER       |    |      |      |      |    |      | (   | Char  | nge           | the   | byt   | e or  | der  | of          | the  | out   | put   | da   | ta.   |      |       |      |      |      |      |       |       |      |
|        |         |                | Default        | 0  |      |      |      |    |      | ι   | Jse   | defa          | ault  | byt   | e or  | der  | wit         | hin  | ea    | ch o  | utp  | ut v  | vord | d, w  | her  | e by | /tes | are  | ord   | lere  | d as |
|        |         |                |                |    |      |      |      |    |      | f   | ollo  | ws:           | во,   | В1,   | В2,   | ВЗ   |             |      |       |       |      |       |      |       |      |      |      |      |       |       |      |
|        |         |                | Reverse        | 1  |      |      |      |    |      | F   | Reve  | rse           | the   | byt   | e o   | rde  | r wi        | thir | ı ea  | ch d  | outp | out v | vor  | d, w  | her  | e by | ytes | s ar | e re  |       |      |
|        |         |                |                |    |      |      |      |    |      | c   | orde  | red           | as f  | ollo  | ws:   | ВЗ   | , B2        | , B: | L, B( | ).    |      |       |      |       |      |      |      |      |       |       |      |

## 6.1.12.2.2.12 CHACHA\_DEBUG

Address offset: 0x3E8

Debug register for the CHACHA engine



# 6.1.12.3 HASH engine

The HASH engine is designed according to FIPS 180-4, and support both the SHA1 and SHA2 family of digest algorithms up to 256 bits.

The following SHA modes are supported:

- SHA-1
- SHA-224
- SHA-256



#### Note:

To ensure proper operation, the FIPS 180-4 defined initial hash values written to the registers of the HASH engine must be written in descending order, starting with:

- HASH\_H[7] for SHA-256, and SHA-224.
- HASH\_H[6] for SHA-256, and SHA-224.
- HASH\_H[5] for SHA-256, and SHA-224.
- HASH\_H[4] for SHA-256, SHA-224, and SHA-1.
- HASH\_H[3] for SHA-256, SHA-224, and SHA-1.
- HASH\_H[2] for SHA-256, SHA-224, and SHA-1.
- HASH\_H[1] for SHA-256, SHA-224, and SHA-1.
- HASH\_H[0] for SHA-256, SHA-224, and SHA-1.



#### 6.1.12.3.1 Cryptographic flow

The following section describe a simple cryptographic flow for this engine.

```
uint8 t buf src[32] = {
      0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA,
      0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA,
      0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA,
      0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA };
/* Enable CRYPTOCELL subsystem */
NRF CRYPTOCELL->ENABLE = CRYPTOCELL ENABLE ENABLE Enabled;
/\star Enable engine and DMA clock \star/
NRF CC MISC->HASH CLK = CC MISC HASH CLK ENABLE Enable;
NRF_CC_MISC->DMA_CLK = CC_MISC_DMA_CLK_ENABLE_Enable;
/* Wait until hash engine is Idle */
while (NRF CC CTL->HASH BUSY == CC CTL HASH BUSY STATUS Busy) {}
/* Clear all interrupts */
NRF_CC_HOST_RGF->ICR = 0xFFFFFFFF;
/* Configure HASH as cryptographic flow */
NRF_CC_CTL->CRYPTO_CTL = CC_CTL_CRYPTO_CTL_MODE_HashActive;
/* Configure engine for SHA256 */
NRF CC HASH->HASH CONTROL = CC HASH HASH CONTROL MODE SHA256;
/* Configure initial SHA256 values */
NRF_CC_HASH->HASH_H[7] = 0x5BE0CD19;
NRF CC HASH->HASH H[6] = 0x1F83D9AB;
NRF CC HASH->HASH H[5] = 0 \times 9B05688C;
NRF_CC_HASH->HASH_H[4] = 0x510E527F;
NRF CC HASH->HASH H[3] = 0xA54FF53A;
NRF_CC_HASH->HASH_H[2] = 0x3C6EF372;
NRF CC HASH->HASH H[1] = 0xBB67AE85;
NRF CC HASH->HASH H[0] = 0x6A09E667;
/* Configure DMA input source address to start the cryptographic operation */
NRF_CC_DIN->SRC_MEM_ADDR = (uint32_t) buf_src;
NRF CC DIN->SRC MEM SIZE = (uint32 t) sizeof(buf src);
/* Wait on DIN DMA interrupt indicating data has been fetched */
while(!(NRF CC HOST RGF->IRR & CC HOST RGF IRR MEM TO DIN INT Msk)) {}
/* Wait until hash engine is Idle */
while (NRF CC CTL->HASH BUSY == CC CTL HASH BUSY STATUS Busy) {}
/* Calculated SHA256 digest now available in
NRF CC HASH->HASH H[0] to NRF CC HASH->HASH H[7] */
```

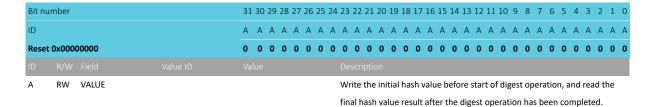


#### 6.1.12.3.2 Registers

#### Instances

| Instance | Base address | TrustZone | :   |     | Split access | Description            |
|----------|--------------|-----------|-----|-----|--------------|------------------------|
|          |              | Мар       | Att | DMA |              |                        |
| CC_HASH  | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL HASH engine |

## **Register overview**


| Register        | Offset | TZ | Description                                                                                       |
|-----------------|--------|----|---------------------------------------------------------------------------------------------------|
| HASH_H[n]       | 0x640  |    | HASH_H value registers. The initial HASH_H[0] register holds the least significant bits [31:0] of |
|                 |        |    | the value.                                                                                        |
| HASH_PAD_AUTO   | 0x684  |    | Configure the HASH engine to automatically pad data at the end of the DMA transfer to             |
|                 |        |    | complete the digest operation.                                                                    |
| HASH_INIT_STATE | 0x694  |    | Configure HASH engine initial state registers.                                                    |
| HASH_VERSION    | 0x7B0  |    | HASH engine HW version                                                                            |
| HASH_CONTROL    | 0x7C0  |    | Control the HASH engine behavior.                                                                 |
| HASH_PAD        | 0x7C4  |    | Enable the hardware padding feature of the HASH engine.                                           |
| HASH_PAD_FORCE  | 0x7C8  |    | Force the hardware padding operation to trigger if the input data length is zero bytes.           |
| HASH_CUR_LEN_0  | 0x7CC  |    | Bits [31:0] of the number of bytes that have been digested so far.                                |
| HASH_CUR_LEN_1  | 0x7D0  |    | Bits [63:32] of the number of bytes that have been digested so far.                               |
| HASH_HW_FLAGS   | 0x7DC  |    | Hardware configuration of the HASH engine. Reset value holds the supported features.              |
| HASH_SW_RESET   | 0x7E4  |    | Reset the HASH engine.                                                                            |
| HASH_ENDIANNESS | 0x7E8  |    | Configure the endianness of HASH data and padding generation.                                     |

#### 6.1.12.3.2.1 HASH\_H[n] (n=0..7)

Address offset:  $0x640 + (n \times 0x4)$ 

HASH\_H value registers. The initial HASH\_H[0] register holds the least significant bits [31:0] of the value.

This register is a 'R/W change' register, as the written register values changes during processing.



#### 6.1.12.3.2.2 HASH\_PAD\_AUTO

Address offset: 0x684

Configure the HASH engine to automatically pad data at the end of the DMA transfer to complete the digest operation.

This feature can only be used if HASH\_PAD on page 107 is enabled, and must be disabled after a digest operation is completed. In the event of zero bytes input data length the hardware padding must be manually triggered using register HASH\_PAD\_FORCE on page 107.

| Bit nu | mber   |       |         | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|-------|---------|-------------------------|-----------------------------------------------------------------|
| ID     |        |       |         |                         | А                                                               |
| Reset  | 0x0000 | 00000 |         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |        |       |         |                         | Description                                                     |
| Α      | W      | HWPAD |         |                         | Enable automatic padding in hardware.                           |
|        |        |       |         |                         | Disable this register when the digest operation is completed.   |
|        |        |       | Disable | 0                       | Do not enable automatic hardware padding.                       |
|        |        |       | Enable  | 1                       | Enable automatic hardware padding.                              |

#### 6.1.12.3.2.3 HASH\_INIT\_STATE

Address offset: 0x694

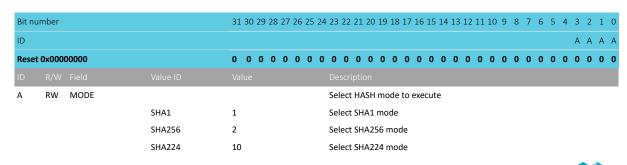
Configure HASH engine initial state registers.

Data fetched using the DIN DMA engine will be loaded into initial hash value registers HASH\_H[n] (n=0..7) on page 105 or used as IV for AES MAC.

| Bit nu | ımber |       |         | 31 | 30 | 29 | 28 | 27 | 26 | 5 2! | 5 24 | 4 23 | 3 22 | 2 2 2 | 1 20 | 19   | 18   | 3 17 | 16   | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7   | 6    | 5    | 4    | 3              | 2 | 1 0 |
|--------|-------|-------|---------|----|----|----|----|----|----|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|----------------|---|-----|
| ID     |       |       |         |    |    |    |    |    |    |      |      |      |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |     |      |      |      |                |   | Α   |
| Reset  | 0x000 | 00000 |         | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0              | 0 | 0 0 |
| ID     |       |       |         |    |    |    |    |    |    |      |      |      |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |     |      |      |      |                |   |     |
| Α      | W     | LOAD  |         |    |    |    |    |    |    |      |      | Eı   | nabl | le le | oad  | ing  | of   | dat  | a to | ini  | tial | sta  | te r | egis | ter  | s. D | iges | t/I | V fo | or F | IASI | <del>1</del> / |   |     |
|        |       |       |         |    |    |    |    |    |    |      |      | Α    | ES_  | MΑ    | C.   |      |      |      |      |      |      |      |      |      |      |      |      |     |      |      |      |                |   |     |
|        |       |       |         |    |    |    |    |    |    |      |      | D    | isab | le 1  | this | reg  | gist | er v | /hei | ı lo | adi  | ng d | of d | ata  | usi  | ng [ | DIN  | D۱  | ΛA i | is d | lone | ١.             |   |     |
|        |       |       | Disable | 0  |    |    |    |    |    |      |      | D    | isab | le l  | oac  | ding | of   | dat  | a to | ini  | tial | sta  | te r | egi  | ster | rs.  |      |     |      |      |      |                |   |     |
|        |       |       | Enable  | 1  |    |    |    |    |    |      |      | Eı   | nab  | le le | oad  | ing  | of   | dat  | a to | ini  | tial | sta  | te r | egis | ter  | s.   |      |     |      |      |      |                |   |     |

## 6.1.12.3.2.4 HASH\_VERSION

Address offset: 0x7B0

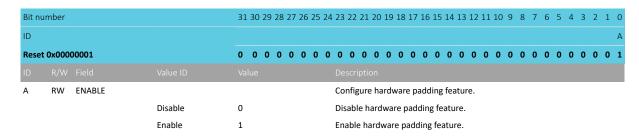

HASH engine HW version

| Bit nu | mber  |                |        | 31 3 | 0 29 2 | 28 27 | 26 25 | 24  | 23 2: | 2 21 2 | 20 19  | 18 1 | 17 16 | 15 | 14 | 13 | 12 11 | . 10 | 9 | 8 | 7 ( | 6  | 5 4 | 3 | 2 | 1 | 0 |
|--------|-------|----------------|--------|------|--------|-------|-------|-----|-------|--------|--------|------|-------|----|----|----|-------|------|---|---|-----|----|-----|---|---|---|---|
| ID     |       |                |        |      |        |       |       |     |       |        |        |      |       | С  | С  | С  | СВ    | В    | В | В | A A | Δ. | A A | Α | Α | Α | Α |
| Reset  | 0x000 | 00000          |        | 0 (  | 0 0    | 0 0   | 0 0   | 0   | 0 0   | 0      | 0 0    | 0    | 0 0   | 0  | 0  | 0  | 0 0   | 0    | 0 | 0 | 0 ( | 0  | 0 0 | 0 | 0 | 0 | 0 |
| ID     |       |                |        |      |        |       |       |     |       |        |        |      |       |    |    |    |       |      |   |   |     |    |     |   |   |   |   |
| Α      | R     | PATCH          |        |      |        |       |       |     |       |        |        |      |       |    |    |    |       |      |   |   |     |    |     |   |   |   |   |
| В      | R     | MINOR_VERSION_ | NUMBER |      |        |       |       | ı   | Minc  | r ver  | sion r | numb | er    |    |    |    |       |      |   |   |     |    |     |   |   |   |   |
| С      | R     | MAJOR_VERSION_ | NUMBER |      |        |       |       | - 1 | Majo  | r vers | sion r | numb | er    |    |    |    |       |      |   |   |     |    |     |   |   |   |   |

#### 6.1.12.3.2.5 HASH\_CONTROL

Address offset: 0x7C0

Control the HASH engine behavior.

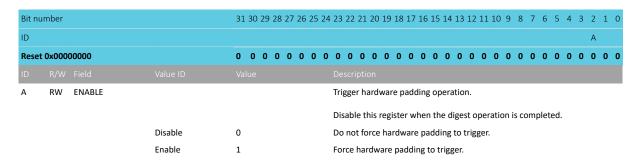





#### 6.1.12.3.2.6 HASH\_PAD

Address offset: 0x7C4

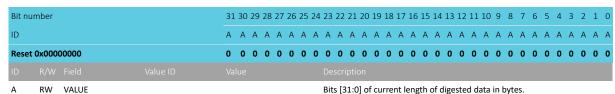
Enable the hardware padding feature of the HASH engine.




#### 6.1.12.3.2.7 HASH\_PAD\_FORCE

Address offset: 0x7C8

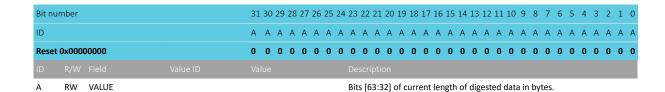
Force the hardware padding operation to trigger if the input data length is zero bytes.


This feature can only be used if HASH\_PAD on page 107 is enabled, and must be disabled after a digest operation is completed.



#### 6.1.12.3.2.8 HASH\_CUR\_LEN\_0

Address offset: 0x7CC


Bits [31:0] of the number of bytes that have been digested so far.



#### 6.1.12.3.2.9 HASH\_CUR\_LEN\_1

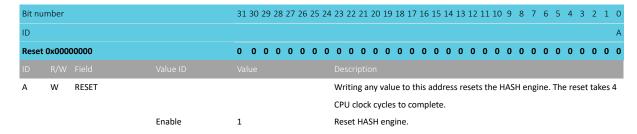
Address offset: 0x7D0

Bits [63:32] of the number of bytes that have been digested so far.





## 6.1.12.3.2.10 HASH\_HW\_FLAGS

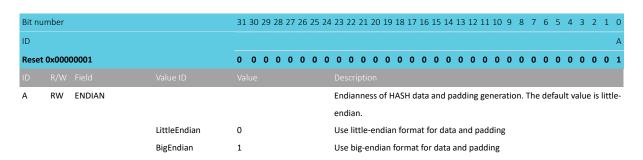

Address offset: 0x7DC

Hardware configuration of the HASH engine. Reset value holds the supported features.

| Bit number       |   |                          |        | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                  |
|------------------|---|--------------------------|--------|-------------------------|----------------------------------------------------------------------------------|
| ID               |   |                          |        |                         | J I H G F E D C C C B B B B A A A A                                              |
| Reset 0x00012001 |   |                          |        | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0                                          |
| ID               |   |                          |        |                         | Description                                                                      |
| Α                | R | CW                       |        |                         | Indicates the number of concurrent words the hash is using to compute            |
|                  |   |                          |        |                         | signature.                                                                       |
|                  |   |                          | One    | 1                       | One concurrent word used by hash during signature generation                     |
|                  |   |                          | Two    | 2                       | Two concurrent words used by hash during signature generation                    |
| В                | R | СН                       |        |                         | Indicate if Hi adders are present for each Hi value or 1 adder is shared for all |
|                  |   |                          |        |                         | Hi.                                                                              |
|                  |   |                          | One    | 0                       | One Hi value is updated at a time.                                               |
|                  |   |                          | All    | 1                       | All Hi values are updated at the same time.                                      |
| С                | R | DW                       |        |                         | Determine the granularity of word size.                                          |
|                  |   |                          | 32Bits | 0                       | 32 bits word data.                                                               |
|                  |   |                          | 64Bits | 1                       | 64 bits word data.                                                               |
| D                | R | SHA_512_EXISTS           |        |                         | If this flag is set, the engine include SHA-512 support.                         |
| E                | R | PAD_EXISTS               |        |                         | If this flag is set, the engine include pad block support.                       |
| F                | R | MD5_EXISTS               |        |                         | If this flag is set, the engine include MD5 support.                             |
| G                | R | HMAC_EXISTS              |        |                         | If this flag is set, the engine include HMAC support.                            |
| Н                | R | SHA_256_EXISTS           |        |                         | If this flag is set, the engine include SHA-256 support.                         |
| I                | R | HASH_COMPARE_EXISTS      |        |                         | If this flag is set, the engine include compare digest logic.                    |
| J                | R | DUMP_HASH_TO_DOUT_EXISTS |        |                         | If this flag is set, the engine include HASH to DOUT support.                    |

## 6.1.12.3.2.11 HASH\_SW\_RESET

Address offset: 0x7E4 Reset the HASH engine.




## 6.1.12.3.2.12 HASH\_ENDIANNESS

Address offset: 0x7E8

Configure the endianness of HASH data and padding generation.





## 6.1.12.4 PKA engine

The Public Key Accelerator (PKA) engine is designed to accelerate asymmetric cryptographic algorithms.

The PKA design is a general purpose bignum modular ALU capable of supporting operand sizes between 128-3136 bits in the following operations:

- Modular exponentiation/inversion
- Modular/regular addition/subtraction
- · Modular/regular increment/decrement
- Modular/regular multiplication/division
- Logical operations (AND, OR, XOR, SHIFT)

The PKA engine can be used to hardware accelerate various arithmentic regular and modular mathematical operations involving very large numbers which are used in both RSA and Elliptic Curve Cryptographic (ECC) public-key cryptosystems.

#### 6.1.12.4.1 Virtual memory mapping

The PKA engine uses virtual register mapping to facilitate flexible data management across a variety of cryptographic algorithms.

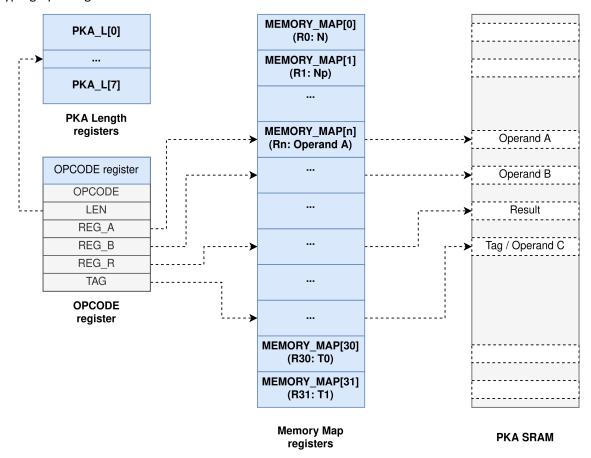



Figure 15: Virtual register mapping



All virtual registers must be defined and configured in the dedicated PKA SRAM on page 113 before they can be accessed by the PKA engine during processing. This SRAM acts as a private memory pool for the PKA engine, where all other access is blocked during processing. The virtual registers are used as input for the PKA calculation and as a placeholder for intermediate and final results.

The PKA engine can be configured to perform multiple operations on virtual operand registers and store the result of the operation in a virtual result or intermediate result register. During the next iteration the PKA engine can then use an intermediate result register from a previous operation as a virtual operand register for further calculations. This re-mapping strategy enables the PKA engine to efficiently handle complex cryptographic operations.

In total there are 32 virtual registers that can be mapped to different PKA SRAM regions using register MEMORY\_MAP[n] (n=0..31) on page 115, denoted as virtual register R0 - R31. Four of these 32 virtual registers are special registers, and their register index mapping can be changed using register N\_NP\_T0\_T1\_ADDR on page 116:

- N holds the modulus number, by default mapped to virtual register R0. This register is used by the PKA engine for modular operations, and its modulus N value does not change during processing.
- Np holds the inverse modulus number, by default mapped to virtual register R1. This register is used by the PKA engine for the Barrett reduction algorithm, and its inverse modulus Np value does not change during processing.
- T0 temporary register, by default mapped to virtual register R30. This register is for internal use by the PKA engine.
- T1 temporary register, by default mapped to virtual register R31. This register is for internal use by the PKA engine.

All virtual registers must be 64 bits word size aligned, and the size of the virtual registers must be at least the size of the largest operand plus an extra 64 bits for internal PKA calculations. These extra 64 bits must be initialized to zero. This is applicable for all virtual registers R0 - R31. The configured virtual register size does not define the size of the operation, it only limits the largest operand size that can be used with the corresponding virtual register.

The memory map configuration can be altered dynamically by the PKA engine, depending on the operation. Not all virtual registers need to be configured for each operation. It is recommended to re-write the memory map configuration after a reset.

#### 6.1.12.4.2 Engine operations

The PKA engine can perform multiple operations on operands stored in virtual registers.

PKA processing is triggered by writing to register OPCODE on page 116. This register contains both the PKA operation to perform, and which virtual register indexes to use as operand inputs, tag, and intermediate or final result output of the operation. Register PKA\_DONE on page 118 will indicate Processing until the PKA operation is done, after which the result can be read from the result register in PKA SRAM.

The following OPCODE virtual register indexes must be configured prior to starting the PKA engine:

- Field REG R configure which virtual register to use for storing an intermediate or final result.
- Field REG\_A and REG\_B configure which virtual registers to use as operand input. The operand input fields can be interpreted by the PKA engine as constants instead of virtual register indexes by setting fields CONST\_A and CONST\_B for certain operations, as documented in the table below.
- The size of the operands are set in field LEN, which must point to one of the pre-configured operand sizes in bits configured in register PKA L[n] (n=0..7) on page 117.

#### 6.1.12.4.2.1 OPCODE overview

Supported PKA operation codes and the corresponding required virtual register configurations.



| OPCODE        | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminate     | Terminate ongoing PKA operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Addinc        | Add or Increment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | • ADD: REG_R = REG_A + REG_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | • INC: REG_R = REG_A + 0x1, when REG_B and CONST_B are 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SubDecNeg     | Subtract, Decrement, or Negate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | • SUB: REG R = REG A - REG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | • DEC: REG R = REG A - 0x1, when REG B and CONST B are 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | • NEG: REG R = 0x0 - REG B, when REG A is 0x0 and CONST A is 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ModAddInc     | Modular Add or Modular Increment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | • ModADD: REG R = (REG A + REG B) % REG N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | ModINC: REG R = (REG A + 0x1) % REG N, when REG B and CONST B are 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ModSubDecNeg  | Modular Subtract, Modular Decrement, or Modular Negate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | • ModSUB: REG R = (REG A - REG B) % REG N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | ModDEC: REG R = (REG A - 0x1) % REG N, when REG B and CONST B is 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ModNEG: REG R = (0x0 - REG B) % REG N, when REG A is 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ANDTSTOCLRO   | And, Test bit 0, or Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | • AND: REG R = REG A & REG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | • TSTO: REG R = REG A & 0x1, when REG B is 0x1, and CONST B is 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | • CLR: REG R = 0x0, when REG B is 0x0 and CONST B is 0x1. REG A is ignored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ORCOPYSET0    | Or, Copy, or Set bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | • OR: REG R = REG A   REG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | • COPY: REG R = REG A, when REG B is 0x0 and CONST B is 0x1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | • SETO: REG R = REG A   0x1, when REG B and CONST B is 0x1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| XORFLPOINVCMP | XOR, Flip bit 0, Invert, or Compare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | • XOR: REG R = REG A XOR REG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | • FLPO: REG R = REG A XOR 0x1, when REG B and CONST B is 0x1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | • INV: REG R = REG A XOR 0xfffffffff, when REG B is 0x1F and CONST B is 0x1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | CMP: REG A XOR REG B, when DISCARD R is 0x1, result of comparison is provided by the ALU OUT ZERO flag in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | PKA_STATUS register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SHR0          | Shift right 0. This operation performs a logical right shift on the contents of REG_A by a specified number of bit positions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | stores the result in $\mathtt{REG}_R$ . The leftmost bits of $\mathtt{REG}_R$ that are vacated by the shift operation are filled with zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | REG_R = REG_A >> s, CONST_B must be set to 0x1. To perform s shifts, REG_B should be set to s - 1 (where 1 <=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | s <= 31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SHR1          | Shift right 1. This operation performs a logical right shift on the contents of REG_A by a specified number of bit positions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | stores the result in $REG_R$ . The leftmost bits of $REG_R$ that are vacated by the shift operation are filled with ones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | $ \label{eq:reg_reg} \texttt{REG\_R} \ = \ \texttt{REG\_A} \ >> \ \ \texttt{s} \text{, } \texttt{CONST\_B} \text{ must be set to } \texttt{0x1}. \text{ To perform } \texttt{s} \text{ shifts, } \texttt{REG\_B} \text{ should be set to } \texttt{s} \ - \ 1 \text{ (where } 1 \ <= \ 1 \text{ (where } 1 \ )) )$ |
|               | s <= 31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SHLO          | Shift left 0. This operation performs a logical left shift on the contents of REG_A by a specified number of bit positions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | stores the result in REG_R. The leftmost bits of REG_R that are vacated by the shift operation are filled with zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | REG_R = REG_A << s, CONST_B must be set to 0x1. To perform s shifts, REG_B should be set to s - 1 (where 1 <=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SHL1          | s <= 31).  Shift left 1. This operation performs a logical left shift on the contents of REG A by a specified number of bit positions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | stores the result in REG_R. The leftmost bits of REG_R that are vacated by the shift operation are filled with ones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | REG_R = REG_A << s, CONST_B must be set to 0x1. To perform s shifts, REG_B should be set to s - 1 (where 1 <= s <= 31).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MulLow        | Multiply Low. This operation performs a multiplication of the values in REG_A and REG_B and stores the result in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | destination register REG_R. Any bits of the product that exceed the operand size are discarded, effectively keeping only the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

4512\_092 v1.1 111

least significant bits (LSBs) that fit within the operand size.



| OPCODE    | Operation                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <pre>REG_R = (REG_A * REG_B) &amp; operand size mask</pre>                                                                                                                                                                                               |
| ModMul    | Modular Multiply.                                                                                                                                                                                                                                        |
|           | REG_R = (REG_A * REG_B) % REG_N                                                                                                                                                                                                                          |
| ModMulN   | The output of this operation is a number that is potentially larger than the modulus $\mathrm{N}$ , but guaranteed to be smaller than $2\mathrm{N}$ .                                                                                                    |
|           | $ Assuming \ \texttt{REG\_A} \ \text{and} \ \texttt{REG\_B} \ \text{are already reduced modulo} \ \texttt{N} \ \text{or are less than} \ \texttt{N}, \ \text{the operation is simply} \ \texttt{REG\_R} \ = \ (\texttt{REG\_A} \ \ \star \ \texttt{N}) $ |
|           | REG_B).                                                                                                                                                                                                                                                  |
| ModExp    | Modular Exponentiation.                                                                                                                                                                                                                                  |
|           | REG_R = (REG_A ^ REG_B) % REG_N                                                                                                                                                                                                                          |
| Division  | $Integer\ Division.\ This\ operation\ performs\ integer\ division\ of\ the\ value\ in\ {\tt REG\_A}\ by\ the\ value\ in\ {\tt REG\_B}.\ The\ quotient\ of\ the$                                                                                          |
|           | division is stored in REG_R, and the remainder is stored back in REG_A.                                                                                                                                                                                  |
|           | • REG_R = REG_A / REG_B                                                                                                                                                                                                                                  |
|           | • REG_A = REG_A % REG_B                                                                                                                                                                                                                                  |
|           | If REG_B is zero (0x0), the operation is invalid, and the divide by zero bit in the status register is set to indicate a division error.                                                                                                                 |
| ModInv    | Modular Inversion.                                                                                                                                                                                                                                       |
|           | REG_R = 1/REG_B % REG_N                                                                                                                                                                                                                                  |
| ModDiv    | Modular division is done by calculating the modular inverse of the divisor, check that the inverse value exists by examining the                                                                                                                         |
|           | GCD, and then use modular multiplication to multiply the inverse result by the divided.                                                                                                                                                                  |
|           | $REG_A = (REG_A * REG_B^(-1)) % REG_N$                                                                                                                                                                                                                   |
| MulHigh   | Multiply High. This operation multiplies REG_A by REG_B and captures the high-order bits of the result that exceed the                                                                                                                                   |
|           | $operand\ size.\ It\ places\ these\ significant\ bits,\ along\ with\ an\ additional\ {\tt PKA\_WORD}\ number\ of\ bits,\ into\ the\ destination\ register$                                                                                               |
|           | REG_R.                                                                                                                                                                                                                                                   |
|           | <pre>REG_R = (REG_A * REG_B) &gt;&gt; operand size</pre>                                                                                                                                                                                                 |
| ModMLAC   | Modular Multiplication Acceleration. Performs a modular multiplication and addition. REG_C is defined using the operation                                                                                                                                |
|           | tag.                                                                                                                                                                                                                                                     |
|           | REG_R = ((REG_A * REG_B) + REG_C) % REG_N                                                                                                                                                                                                                |
| ModMLACNR | Modular Multiplication Acceleration No Reduction. Same as ModMLAC, but this omits the final reduction of the result.                                                                                                                                     |
| Reduction | $Reduction. \ This \ operation \ performs \ a \ modular \ reduction, \ where \ the \ result \ REG\_R \ is \ the \ remainder \ of \ REG\_A \ divided \ by$                                                                                                |
|           | $\texttt{REG\_N}. \ \textbf{The length of the operation is flexible and can be chosen based on the specific requirements of the use case.}$                                                                                                              |
|           | REG_R = REG_A % REG_N                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                          |

Table 17: PKA OPCODE descriptions

#### 6.1.12.4.3 Pipeline configuration

The following section describe how the PKA engine is used to accelerate asymmetric cryptographic algorithms.

The PKA engine supports pipelined operations; the pipeline depth is one opcode, thus the next operation can be set up while the previous operation is executing. Register PKA\_PIPE on page 118 will indicate if the pipeline is ready for a new opcode and register PKA\_DONE on page 118 will indicate when the PKA operation has been completed and no operation is waiting in the pipeline.

- 1. Enable CRYPTOCELL subsystem as described in Cryptographic flow on page 85.
- 2. Initialize the PKA engine to accommodate the maximum bit size of all intended operations
  - **a.** Configure registers PKA\_L[n] (n=0..7) on page 117 for all required operand bit sizes. The desired operand length is selected using field LEN in register OPCODE on page 116.
  - **b.** Define the PKA SRAM memory map partitioning using register MEMORY\_MAP[n] (n=0..31) on page 115 for register N, Np, T0, and T1, as well as any other virtual registers intended to be used in the operations. The PKA SRAM memory map partitioning must allow for the max operand bit size plus an additional 64 bits reserved for PKA engine internal calculations.
- 3. For all operations



- a. Load the PKA SRAM virtual registers  ${\tt N}$  and  ${\tt Np}$  as required
- b. Load the remaining PKA SRAM virtual registers as required
- c. Execute the operation by writing register OPCODE on page 116
- **d.** Prepare the next opcode once register PKA\_PIPE on page 118 is ready.
- e. Handle any status bits in register PKA\_STATUS on page 117
- **f.** Re-use intermediate results of the previous operation as needed.
- **4.** Wait for the operation to complete by either polling register PKA\_DONE on page 118, or by unmasking the interrupt for field PKA MASK in register IMR on page 143
- **5.** Read the result from the result register.

#### 6.1.12.4.4 PKA SRAM

The 4 kB PKA SRAM memory connected to the PKA engine is used exclusively by the engine during cryptographic operations. All access to this memory is blocked while the PKA engine is processing.

The PKA SRAM memory is not directly mapped to the device memory map. Instead, any read or write operation to this memory region must be done using the PKA engine on page 109.

Writing data to the PKA SRAM involves the following steps:

- 1. Set the Address Offset: Specify the starting byte address for writing by setting register PKA\_SRAM\_WADDR on page 118. An offset value of  $0 \times 0$  points to the first 32-bits word in the PKA SRAM memory. An offset value of  $0 \times 10$  points to the fourth 32-bits word in the PKA SRAM memory.
- 2. Write Data: After setting the address offset, data is written to register PKA\_SRAM\_WDATA on page 119. The address will automatically increment after each write, allowing writes to the next word without needing to set the offset again.

Reading data from the PKA SRAM involves the following steps:

- 1. Set the Read Address: Specify the starting byte address for reading by setting register PKA SRAM RADDR on page 119
- **2. Read Data**: Retrieve the data from register PKA\_SRAM\_RDATA on page 119. Similar to the write address, the read address will auto-increment with each read, setting it to the next word.

**Note:** Before switching from writing to reading operations (or vice versa), the PKA SRAM write buffer must be cleared. This is done using register PKA\_SRAM\_WCLEAR on page 119. Clearing the buffer ensures that the next operation starts cleanly without any leftover data from the previous operation.



## 6.1.12.4.5 Cryptographic flow

The following section describe a simple cryptographic flow for this engine.

```
/* Enable CRYPTOCELL and its PKA engine */
NRF CRYPTOCELL->ENABLE = CRYPTOCELL ENABLE ENABLE Enabled;
NRF CC MISC->PKA CLK = CC MISC PKA CLK ENABLE Enable;
/* Define the operand bit size as 2048 */
NRF CC PKA->PKA L[1] = 0x800;
/* Define the 32-bits PKA SRAM address of the selected R4 and R5 */
NRF CC PKA->MEMORY MAP[4] = 0x108;
NRF CC PKA->MEMORY MAP[5] = 0x14A;
/* Initialize the SRAM registers with one word of data */
NRF CC PKA->PKA SRAM WADDR = NRF CC PKA->MEMORY MAP[4];
NRF CC PKA->PKA SRAM WDATA = 0x5;
NRF CC PKA->PKA SRAM WADDR = NRF CC PKA->MEMORY MAP[5];
NRF CC PKA->PKA SRAM WDATA = 0x2;
/* Execute subtract, OPCODE SubDecNeg: R4 = R4 - R5 */
NRF CC PKA->OPCODE =
    (4 << CC PKA OPCODE REG R Pos) |
    (5 << CC_PKA_OPCODE_REG_B_Pos) |
    (4 << CC PKA OPCODE REG A Pos) |
    (1 << CC PKA OPCODE LEN Pos) |
    (CC PKA OPCODE OPCODE SubDecNeg << CC PKA OPCODE OPCODE Pos);
/* Wait for operation to complete, result will be in R4 */
while (!NRF CC PKA->PKA DONE) { }
```

This cryptographic flow example perform a subtract operation with the following assumptions:

- All PKA SRAM registers, including the special virtual registers N, Np, T0, and T1, have been cleared before the operation is run.
- The operation is using index 1 in register PKA\_L[n] (n=0..7) on page 117, which is set to accommodate an operand size of 2048 bits.
- Register R4 and R5 have been selected to run this operation. Register R4 is used both as the operand A register and the result register.
- The memory map is configured to allow operands of 2048 bits plus an additional 64 bits for the internal PKA engine calculations. The configuration of the MEMORY\_MAP[n] (n=0..31) on page 115 for virtual register N, Np, T0, and T1 is not included in the example. The memory map is thus configured with 66 words per register, leading to the following:



| Virtual register | Memory map register | PKA SRAM address |
|------------------|---------------------|------------------|
| N (R0)           | MEMORY_MAP[0]       | 0x0              |
| Np (R1)          | MEMORY_MAP[1]       | 0x42             |
|                  |                     |                  |
| R4               | MEMORY_MAP[4]       | 0x108            |
| R5               | MEMORY_MAP[5]       | 0x14A            |
|                  |                     |                  |

# 6.1.12.4.6 Registers

#### **Instances**

| Instance | Base address | TrustZone | :   |     | Split access | Description           |
|----------|--------------|-----------|-----|-----|--------------|-----------------------|
|          |              | Мар       | Att | DMA |              |                       |
| CC_PKA   | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL PKA engine |

# **Register overview**

| Offset | TZ                                                              | Description                                                                                   |
|--------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0x0    |                                                                 | Register for mapping the virtual register R[n] to a physical address in the PKA SRAM.         |
| 0x80   |                                                                 | Operation code to be executed by the PKA engine.                                              |
|        |                                                                 | Writing to this register triggers the PKA operation.                                          |
| 0x84   |                                                                 | This register defines the N, Np, T0, and T1 virtual register index.                           |
| 0x88   |                                                                 | This register holds the status for the PKA pipeline.                                          |
| 0x8C   |                                                                 | Reset the PKA engine.                                                                         |
| 0x90   |                                                                 | This register holds the operands bit size.                                                    |
| 0xB0   |                                                                 | Status register indicating if the PKA pipeline is ready to receive a new OPCODE.              |
| 0xB4   |                                                                 | Status register indicating if the PKA operation has been completed.                           |
| 0xC4   |                                                                 | PKA engine HW version. Reset value holds the version.                                         |
| 0xD4   |                                                                 | Start address in PKA SRAM for subsequent write transactions.                                  |
| 0xD8   |                                                                 | Write data to PKA SRAM. Writing to this register triggers a DMA transaction writing data into |
|        |                                                                 | PKA SRAM. The DMA address offset is automatically incremented during write.                   |
| 0xDC   |                                                                 | Read data from PKA SRAM. Reading from this register triggers a DMA transaction read data      |
|        |                                                                 | from PKA SRAM. The DMA address offset is automatically incremented during read.               |
| 0xE0   |                                                                 | Register for clearing PKA SRAM write buffer.                                                  |
| 0xE4   |                                                                 | Start address in PKA SRAM for subsequent read transactions.                                   |
|        | 0x0 0x80 0x80 0x84 0x88 0x8C 0x90 0xB0 0xB4 0xC4 0xD4 0xD8 0xDC | 0x0 0x80 0x80 0x84 0x88 0x8C 0x90 0xB0 0xB4 0xC4 0xD4 0xD8                                    |

# 6.1.12.4.6.1 MEMORY\_MAP[n] (n=0..31)

Address offset:  $0x0 + (n \times 0x4)$ 

Register for mapping the virtual register R[n] to a physical address in the PKA SRAM.

| Α     | RW      | ADDR  |       |       |        |        | Th   | e ph | ysica | al wo | rd ad | dres | s us | ed f | or th | e vi | tual | regi | ster |   |   |   |   |     |     |
|-------|---------|-------|-------|-------|--------|--------|------|------|-------|-------|-------|------|------|------|-------|------|------|------|------|---|---|---|---|-----|-----|
| ID    |         |       |       |       |        |        |      |      |       |       |       |      |      |      |       |      |      |      |      |   |   |   |   |     |     |
| Rese  | t 0x000 | 00000 | 0 0   | 0 0   | 0 0    | 0 (    | 0 0  | 0    | 0 0   | 0     | 0 0   | 0    | 0    | 0 (  | 0     | 0    | 0 0  | 0    | 0    | 0 | 0 | 0 | 0 | 0   | 0   |
| ID    |         |       |       |       |        |        |      |      |       |       |       |      |      |      |       |      | A    | A    | Α    | Α | Α | Α | Α | A . | 4   |
| Bit n | umber   |       | 31 30 | 29 28 | 8 27 2 | 6 25 2 | 4 23 | 22 : | 21 20 | 0 19  | 18 1  | 7 16 | 15   | 14 1 | 3 12  | 11   | 10 9 | 8    | 7    | 6 | 5 | 4 | 3 | 2   | 1 0 |

The physical word address used for the virtual register.



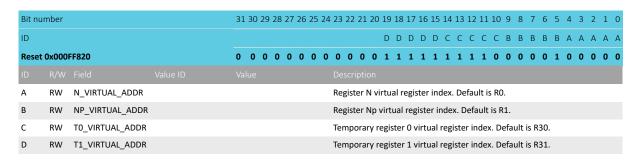


## 6.1.12.4.6.2 OPCODE

Address offset: 0x80

Operation code to be executed by the PKA engine.

Writing to this register triggers the PKA operation.


| Bit nu | ımber |           |               | 31 3 | 0 29 | 28 | 27 | 26 | 5 25 | 24 | 4 23 | 22 | 2 21  | . 2 | 0  | 19      | 18           | 3 1 | 7 1              | 6   | 15  | 5 1  | 4 :  | 13  | 12   | 1    | 1 1  | 10   | 9    | 8    | 7    | 6    | 5    | 4   | 3     | 2   | 1 | 1 0 |
|--------|-------|-----------|---------------|------|------|----|----|----|------|----|------|----|-------|-----|----|---------|--------------|-----|------------------|-----|-----|------|------|-----|------|------|------|------|------|------|------|------|------|-----|-------|-----|---|-----|
| ID     |       |           |               | 1    | 1 1  | 1  | 1  | Н  | Н    | Н  | l G  | F  | F     | F   | F  | F       | F            | E   |                  | )   | D   | [    | )    | D   | D    | (    |      | В    | В    | В    | В    | В    | Α    | Α   | Α     | Д   |   | 4 A |
|        | 0x000 | 00000     |               |      |      |    |    |    |      |    | 0    |    |       |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| ID     |       | Field     |               | Valu |      |    |    |    |      |    |      |    | ripti |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| A      | RW    | TAG       |               |      |      |    |    |    |      |    |      |    | s the |     |    | era     | tio          | n   | tag              | OI  | r t | he   | or   | ne  | ran  | ıd ı | Cv   | irti | ual  | rei  | rist | er i | nd   | eх  |       |     |   |     |
| В      | RW    | REG_R     |               |      |      |    |    |    |      |    |      |    | t re  |     |    |         |              |     | -                |     |     |      |      |     |      |      |      |      |      |      | ,    |      |      |     |       |     |   |     |
| С      | RW    | DISCARD_R |               |      |      |    |    |    |      |    |      |    | ield  | -   |    |         |              |     |                  | -   |     |      |      |     |      | of F | REC  | 3 F  | ₹.   |      |      |      |      |     |       |     |   |     |
|        |       |           | Register      | 0x0  |      |    |    |    |      |    |      |    | R is  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | Discard       | 0x1  |      |    |    |    |      |    |      |    | t is  |     |    |         |              |     |                  |     | ح   | ,    | ٠.   |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| D      | RW    | REG_B     |               |      |      |    |    |    |      |    |      |    | and   |     |    |         |              |     | gist             | er  | ir  | nde  | x.   |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| E      | RW    | CONST_B   |               |      |      |    |    |    |      |    |      |    | ield  |     |    |         |              |     | -                |     |     |      |      |     | n c  | of F | REC  | 3 E  | 3.   |      |      |      |      |     |       |     |   |     |
| _      |       |           | Register      | 0x0  |      |    |    |    |      |    |      |    | B is  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | Constant      | 0x1  |      |    |    |    |      |    |      |    | B is  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| F      | RW    | REG_A     | Constant      | 0.12 |      |    |    |    |      |    |      |    | and   |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| G      | RW    | CONST_A   |               |      |      |    |    |    |      |    |      |    | ield  |     |    |         |              |     | -                |     |     |      |      |     | n c  | of F | RFC  | 5 A  | ۱    |      |      |      |      |     |       |     |   |     |
| Ū      |       | 66.16.2   | Register      | 0x0  |      |    |    |    |      |    |      |    | A is  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | Constant      | 0x1  |      |    |    |    |      |    |      |    | A is  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
| Н      | RW    | LEN       | Constant      | 0.12 |      |    |    |    |      |    |      |    | engt  |     |    |         |              |     |                  |     |     |      |      |     | ılue | e 50 | erv  | es   | as   | an   | PK   | A le | ng   | th  | regi  | ste | r |     |
|        |       |           |               |      |      |    |    |    |      |    |      |    | . E.  |     |    |         |              | Ċ   |                  |     |     |      |      |     |      |      |      |      |      |      |      |      | Ū    |     | •     |     |   |     |
|        |       |           |               |      |      |    |    |    |      |    |      |    | ands  | _   | •  |         |              |     |                  |     | -   |      | -    |     |      | ٠, ٠ |      | `    | .[•] |      |      |      |      |     | 0     |     |   |     |
|        | RW    | OPCODE    |               |      |      |    |    |    |      |    |      |    | atio  |     | cc | nde     | to           | be  | э <sub>Р</sub> у | œ   | ٠IJ | tec  | l h  | v · | the  | PI   | KΑ   | en   | øir  | ne   |      |      |      |     |       |     |   |     |
| •      |       | 0.0001    | Terminate     | 0x0  |      |    |    |    |      |    |      |    | inat  |     |    |         |              |     |                  |     | -   |      | . ~  | ,   |      |      |      | ٠    | ъ    |      |      |      |      |     |       |     |   |     |
|        |       |           | AddInc        | 0x4  |      |    |    |    |      |    |      |    | or In |     |    |         |              | ٠   |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | SubDecNeg     | 0x5  |      |    |    |    |      |    |      |    | act,  |     |    |         |              | nt  |                  | - N | J۵  | σat  | 6    |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModAddInc     | 0x6  |      |    |    |    |      |    |      |    | ular  |     |    |         |              |     |                  |     |     |      |      | er  | nt   |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModSubDecNeg  | 0x7  |      |    |    |    |      |    |      |    | ular  |     |    |         |              |     |                  |     |     |      |      |     |      | nt   | or   | M    | ndı  | ulai | · Na | בסב  | te   |     |       |     |   |     |
|        |       |           | ANDTSTOCLRO   | 0x8  |      |    |    |    |      |    |      |    | rm .  |     |    |         |              |     |                  |     |     |      |      | ٠.  |      | ,    | 0.   |      | ou.  | uiui |      | Би   | ···  |     |       |     |   |     |
|        |       |           | ORCOPYSET0    | 0x9  |      |    |    |    |      |    |      |    | rm    |     |    |         |              |     |                  |     |     | s    |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | XORFLPOINVCMP | 0xA  |      |    |    |    |      |    |      |    | rm :  |     |    |         |              |     |                  |     |     |      | or ( | ro  | mr   | ar   | e    |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | SHR0          | 0xC  |      |    |    |    |      |    |      |    | righ  |     |    |         |              |     |                  |     | ٠.  | ٠, ٠ |      | -   |      |      | _    |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | SHR1          | 0xD  |      |    |    |    |      |    |      |    | righ  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | SHLO          | 0xE  |      |    |    |    |      |    |      |    | left  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | SHL1          | 0xF  |      |    |    |    |      |    |      |    | left  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | MulLow        | 0x10 | )    |    |    |    |      |    |      |    | ply   |     | •  |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModMul        | 0x11 |      |    |    |    |      |    |      |    | ular  |     |    | ·       |              |     |                  | tic | วท  |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModMulN       | 0x12 |      |    |    |    |      |    |      |    | ular  |     |    |         |              |     |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModExp        | 0x13 |      |    |    |    |      |    |      |    | ular  |     |    |         | •            |     |                  |     |     |      | ıtic | on  |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | Division      | 0x14 |      |    |    |    |      |    |      |    | on o  |     | •  |         |              |     |                  |     | ٦   |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModInv        | 0x15 |      |    |    |    |      |    |      |    | ular  | •   |    |         |              |     | ger              | ati | iο  | n    |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModDiv        | 0x16 |      |    |    |    |      |    |      |    | ular  |     |    |         |              |     |                  |     |     | •    |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | MulHigh       | 0x17 |      |    |    |    |      |    |      |    | ply   |     |    |         |              |     |                  |     | •   |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModMLAC       | 0x18 |      |    |    |    |      |    |      |    | ular  |     | -  |         |              |     |                  | ar  | CF  | ler  | at   | io  | n    |      |      |      |      |      |      |      |      |     |       |     |   |     |
|        |       |           | ModMLACNR     | 0x19 |      |    |    |    |      |    |      |    | ular  |     |    |         |              |     |                  |     |     |      |      |     |      | /he  | ere  | fir  | nal  | rec  | luc  | tior | ı is | on  | nitte | -d  |   |     |
|        |       |           | Reduction     | 0x16 |      |    |    |    |      |    |      |    | ctio  |     |    | ·       |              |     |                  |     | -   |      | -    |     | •    |      | ٠. د |      |      |      |      |      | . 13 | J11 |       | - 4 |   |     |
|        |       |           | neddelloll    | OVII | -    |    |    |    |      |    | nec  | uu |       |     | ~1 | y C 1 6 | <i>a</i> (1) | J11 |                  |     |     |      |      |     |      |      |      |      |      |      |      |      |      |     |       |     |   |     |

6.1.12.4.6.3 N\_NP\_T0\_T1\_ADDR

Address offset: 0x84



This register defines the N, Np, T0, and T1 virtual register index.



#### 6.1.12.4.6.4 PKA\_STATUS

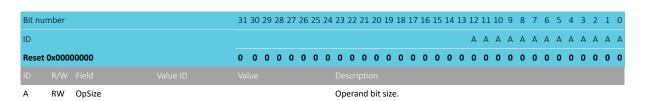
Address offset: 0x88

This register holds the status for the PKA pipeline.

| Bit nu | mber  |                 | 31 3 | 0 29 | 28 27 | 26 25 | 24 2 | 3 22  | 21 2    | 20 19 | 18     | 17     | 16 1  | L5 1  | 4 13  | 12   | 11    | 10   | 9    | 8 7   | ' 6  | 5    | 4    | 3    | 2 1 | 1 0 |
|--------|-------|-----------------|------|------|-------|-------|------|-------|---------|-------|--------|--------|-------|-------|-------|------|-------|------|------|-------|------|------|------|------|-----|-----|
| ID     |       |                 |      |      |       |       |      |       |         | K K   | K      | K      | K     | J I   | Н     | G    | F     | Ε    | D    | C E   | В    | В    | В    | Α    | A A | A A |
| Reset  | 0x000 | 01000           | 0    | 0 0  | 0 0   | 0 0   | 0 (  | 0     | 0       | 0 0   | 0      | 0      | 0     | 0 0   | 0     | 1    | 0     | 0    | 0    | 0 (   | 0    | 0    | 0    | 0    | 0 ( | 0 0 |
| ID     |       |                 |      |      |       |       |      |       |         |       |        |        |       |       |       |      |       |      |      |       |      |      |      |      |     |     |
| Α      | R     | ALU_MSB_4BITS   |      |      |       |       | Т    | he m  | nost s  | igni  | ficar  | nt 4-  | bits  | of t  | he o  | per  | and   | upo  | date | ed in | shi  | ft o | pera | tior | ۱.  |     |
| В      | R     | ALU_LSB_4BITS   |      |      |       |       | Т    | he le | east s  | ignif | ican   | t 4-l  | bits  | of th | ne o  | pera | and   | upd  | late | d in  | shit | t op | era  | tion |     |     |
| С      | R     | ALU_SIGN_OUT    |      |      |       |       | li   | ndica | ates t  | he N  | 1SB s  | sign   | of t  | he la | ast c | per  | atio  | n.   |      |       |      |      |      |      |     |     |
| D      | R     | ALU_CARRY       |      |      |       |       | H    | lolds | the     | carry | of t   | the I  | ast   | ALU   | ope   | rati | on.   |      |      |       |      |      |      |      |     |     |
| E      | R     | ALU_CARRY_MOD   |      |      |       |       | H    | lolds | the     | carry | of t   | the I  | ast   | mod   | lular | ор   | erat  | ion. |      |       |      |      |      |      |     |     |
| F      | R     | ALU_SUB_IS_ZERO |      |      |       |       | h    | ndica | ates t  | he la | ist si | ubtr   | acti  | on o  | pera  | atio | n sig | n.   |      |       |      |      |      |      |     |     |
| G      | R     | ALU_OUT_ZERO    |      |      |       |       | li   | ndica | ates if | fthe  | resu   | ult o  | f AL  | U O   | UT i  | s ze | ro.   |      |      |       |      |      |      |      |     |     |
| Н      | R     | ALU_MODOVRFLW   |      |      |       |       | Ν    | /lodu | ılar o  | verfl | ow 1   | flag.  |       |       |       |      |       |      |      |       |      |      |      |      |     |     |
| I      | R     | DIV_BY_ZERO     |      |      |       |       | li   | ndica | ation   | if th | e div  | /isio  | n is  | don   | e by  | zer  | o.    |      |      |       |      |      |      |      |     |     |
| J      | R     | MODINV_OF_ZERO  |      |      |       |       | li   | ndica | ates t  | he n  | nodu   | ılar i | inve  | rse   | of ze | ero. |       |      |      |       |      |      |      |      |     |     |
| K      | R     | OPCODE          |      |      |       |       | C    | рсо   | de of   | the   | last   | ope    | ratio | on    |       |      |       |      |      |       |      |      |      |      |     |     |

#### 6.1.12.4.6.5 PKA\_SW\_RESET

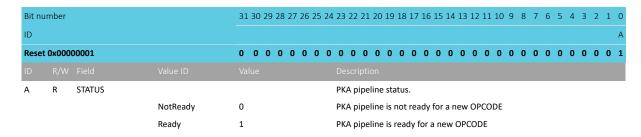
Address offset: 0x8C Reset the PKA engine.




## 6.1.12.4.6.6 PKA\_L[n] (n=0..7)

Address offset:  $0x90 + (n \times 0x4)$ 

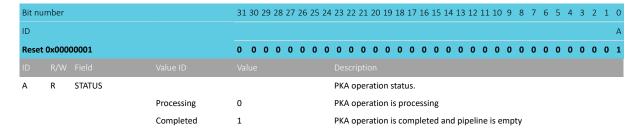
This register holds the operands bit size.






#### 6.1.12.4.6.7 PKA\_PIPE

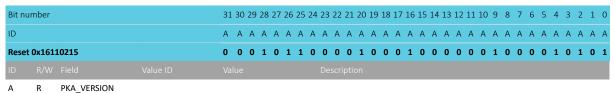
Address offset: 0xB0


Status register indicating if the PKA pipeline is ready to receive a new OPCODE.



#### 6.1.12.4.6.8 PKA\_DONE

Address offset: 0xB4


Status register indicating if the PKA operation has been completed.



#### 6.1.12.4.6.9 PKA\_VERSION

Address offset: 0xC4

PKA engine HW version. Reset value holds the version.



#### \_

## 6.1.12.4.6.10 PKA\_SRAM\_WADDR

Address offset: 0xD4

Start address in PKA SRAM for subsequent write transactions.



| A   A   A   A   A   A   A   A   A   A                                                    |       |
|------------------------------------------------------------------------------------------|-------|
|                                                                                          |       |
| ID A A A A A A A A A A A A A A A A A A A                                                 | 0 0 0 |
|                                                                                          | AAA   |
| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 | 2 1 0 |

#### 6.1.12.4.6.11 PKA\_SRAM\_WDATA

Address offset: 0xD8

Write data to PKA SRAM. Writing to this register triggers a DMA transaction writing data into PKA SRAM. The DMA address offset is automatically incremented during write.

|        | W       | DATA   |   |      |    |      |      |      |      |      |      |      |    |    | PKA  |      |      |    |    |      |      |      |     |   |   |   |   |     |     |   |
|--------|---------|--------|---|------|----|------|------|------|------|------|------|------|----|----|------|------|------|----|----|------|------|------|-----|---|---|---|---|-----|-----|---|
| ID     | R/W     |        |   |      |    |      |      |      |      | Dε   | scri | ptic |    |    |      |      |      |    |    |      |      |      |     |   |   |   |   |     |     |   |
| Rese   | t 0x000 | 000000 | 0 | 0    | 0  | 0    | 0    | 0 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0 (  | 0    | 0    | 0  | 0  | 0    | 0    | 0 (  | 0   | 0 | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID     |         |        | Δ | . А  | Α  | Α    | Α,   | А Д  | . Δ  | Α    | Α    | Α    | Α  | Α  | A A  | A A  | . A  | Α  | Α  | Α    | Α    | A A  | A A | Α | Α | Α | Α | А А | . A | Α |
| Bit nu | umber   |        | 3 | 1 30 | 29 | 28 : | 27 2 | 26 2 | 5 24 | 4 23 | 22   | 21   | 20 | 19 | 18 1 | 7 16 | 5 15 | 14 | 13 | 12 3 | 11 1 | 10 9 | 8   | 7 | 6 | 5 | 4 | 3 2 | 1   | 0 |

#### 6.1.12.4.6.12 PKA\_SRAM\_RDATA

Address offset: 0xDC

Read data from PKA SRAM. Reading from this register triggers a DMA transaction read data from PKA SRAM. The DMA address offset is automatically incremented during read.

| Δ     | R       | DATA  |    |    |    |    |    |    |    |    | Dat | a to | n re | ad | fro | m P | ΚΔ   | SRA  | NA   |     |      |      |    |    |   |   |   |   |   |     |     |   |   |
|-------|---------|-------|----|----|----|----|----|----|----|----|-----|------|------|----|-----|-----|------|------|------|-----|------|------|----|----|---|---|---|---|---|-----|-----|---|---|
| ID    |         |       |    |    |    |    |    |    |    |    |     |      |      |    |     |     |      |      |      |     |      |      |    |    |   |   |   |   |   |     |     |   |   |
| Rese  | t 0x000 | 00000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0    | 0  | 0   | 0   | 0    | 0    | 0    | 0   | 0    | 0    | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID    |         |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α    | Α  | Α   | Α   | Α    | Α.   | Α.   | A   | Α.   | Д    | Α  | Α  | Α | Α | Α | Α | Α | Α,  | Δ Δ | A | Α |
| Bit n | umber   |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21   | 20 | 19  | 18  | 17 : | 16 1 | L5 1 | 4 1 | 13 1 | .2 1 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3 2 | 1 | 0 |

#### 6.1.12.4.6.13 PKA\_SRAM\_WCLEAR

Address offset: 0xE0

Register for clearing PKA SRAM write buffer.

| ID R     |       |      |    |    |    |    |    |    |    |    |    |    |    |    |    |      |      |     |     |     |      |      |    |    |   |   |   |   |   |   |   |   |     |
|----------|-------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|------|------|-----|-----|-----|------|------|----|----|---|---|---|---|---|---|---|---|-----|
| Reset 0x | (0000 | 0000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0 (  | ) ( | ) ( | 0   | 0    | 0    | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID       |       |      | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α    | Α /  | Δ / | ۸ ۸ | Д   | Α    | Α .  | Α  | Α. | Α | Α | Α | Α | Α | Α | Α | Α | A A |
| Bit numb | ber   |      | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 1 | 17 1 | 6 1 | 5 1 | 4 1 | 13 : | 12 1 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |

### 6.1.12.4.6.14 PKA\_SRAM\_RADDR

Address offset: 0xE4

Start address in PKA SRAM for subsequent read transactions.

| Bit nu | ımber |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21  | 20    | 19  | 18 1 | 7 1  | 6 15 | 5 14 | 13   | 12  | 11  | 10  | 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2 : | 1 0 |
|--------|-------|-------|----|----|----|----|----|----|----|----|-----|------|-----|-------|-----|------|------|------|------|------|-----|-----|-----|---|---|---|---|---|---|-----|-----|-----|
| ID     |       |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α   | Α     | Α   | Α.   | 4 Δ  | \ A  | A    | Α    | Α   | Α   | Α   | Α | Α | Α | Α | Α | Α | Α . | Α / | А А |
| Reset  | 0x000 | 00000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0     | 0   | 0    | 0 0  | 0    | 0    | 0    | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0 ( | 0 0 |
| ID     |       |       |    |    |    |    |    |    |    |    |     |      |     |       |     |      |      |      |      |      |     |     |     |   |   |   |   |   |   |     |     |     |
| Α      | W     | ADDR  |    |    |    |    |    |    |    |    | PK. | A SI | RAN | ∕l st | art | add  | ress | for  | rea  | d tı | ans | act | ion |   |   |   |   |   |   |     |     |     |



## 6.1.12.5 RNG engine

CRYPTOCELL implements a Random Number Generator (RNG) engine which uses a True Random Number Generator (TRNG) for its entropy collection.

The TRNG is a full entropy design compliant with:

- FIPS 140-2: Security requirements for Cryptographic Modules
- BSI AIS-31: Functionality Classes and Evaluation Methodology for True Random Number Generators
- NIST SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation

where a ring-oscillator is used as the noise source.

The entropy collected using the RNG engine can in turn be used for seeding a Pseudo Random Number Generator (PRNG) as defined in NIST SP 800-90A: *Recommendation for Random Number Generation Using Deterministic Random Bit Generators*.

NIST SP 800-90A define three Deterministic Random Bit Generator (DRBG) that are considered cryptographically secure pseudorandom number generators for use in cryptography: Hash DRBG, HMAC DRBG, and CTR DRBG.

The CRYPTOCELL DRBG implementation is a combination of hardware and software, where CTR DRBG is implemented using the the AES engine running AES encryption in counter (CTR) mode as the underlying cipher. This DRBG instance is seeded with random entropy from the RNG engine.

#### 6.1.12.5.1 Ring oscillator length configuration

The RNG engine must be configured with specific parameters to ensure correct operation in order to output random bits with sufficient entropy.

The noise source used for collecting entropy is based on inverter timing jitter that is collected from a dedicated on-chip free-running ring oscillator. The ring oscillator length, i.e. the number of inverters in the chain, can be configured using register TRNG\_CONFIG on page 126.

In total there are four different ring oscillator lengths that can be selected, referred to as ROSC1 through ROSC4. For each of these four configurable lengths a corresponding sample count value is provided in register TRNG90B.ROSC1 on page 41 through register TRNG90B.ROSC4 on page 42.

The sampling frequency is configured using register SAMPLE\_CNT on page 127, and the programmed value defines the number of CPU clock cycles between two consecutive ring oscillator samples. The configured sample count value is the minimum number of clock cycles that is enough to get independent outputs from the ring oscillator and must match that of the configured ROSC length.

The following steps describe how to set the RNG engine parameters described above:

- 1. Enable RNG engine clock using register RNG\_CLK on page 129.
- 2. Reset the RNG engine using register RNG\_SW\_RESET on page 128.
- **3.** Re-enable RNG engine clock and select a device-specific sample count from registers TRNG90B.ROSC1 on page 41 through TRNG90B.ROSC4 on page 42 starting with the smallest one, and program the value into register SAMPLE CNT on page 127.
- **4.** Perform a readback of the selected sample count value.
- **5.** Set the corresponding ROSC length in register TRNG\_CONFIG on page 126 to match the selected sample count selection.
- 6. Enable the noise source using register NOISE\_SOURCE on page 126.
- 7. Wait until event EHR\_VALID\_INT in register RNG\_ISR on page 125 trigger to indicate successful collection of 192 bits of random data. The result can be read from registers EHR\_DATA[n] (n=0..5) on page 126.
- **8.** If events AUTOCORR\_ERR\_INT, CRNGT\_ERR\_INT, or VNC\_ERR\_INT in register RNG\_ISR on page 125 trigger, the RNG engine must be re-configured starting from step 2 above. Increase the ROSC length by a factor of one, and pick the corresponding sample count value from FICR. This step must be



repeated until the collection of 192 bits of random data can be collected without an error event being triggered.

It is recommended to always try the shortest ROSC length first, allowing the RNG engine to complete the entropy collection in a shorter time and keep the ring oscillator turned off for longer periods in order to save power.

#### 6.1.12.5.2 RNG SRAM

The 2 kB SRAM memory connected to the RNG engine can be used for storing a large pool of random entropy.

The RNG SRAM memory is not directly mapped to the device memory map. Instead, any read or write operation using word granularity to this memory region must be done using RNG SRAM interface on page 148. Larger payloads than word granularity can be processed using the DIN DMA engine on page 134 and DOUT DMA engine on page 138.

Before any RNG SRAM read or write transaction can be performed, the CRYPTOCELL must be enabled.

Writing data to the RNG SRAM involves the following steps:

- 1. Set the Address Offset: Specify the starting byte address for writing by setting register SRAM\_ADDR on page 148. An offset value of  $0 \times 0$  points to the first 32-bits word in the RNG SRAM memory. An offset value of  $0 \times 10$  points to the fourth 32-bits word in the RNG SRAM memory.
- 2. Write Data: When register SRAM\_DATA\_READY on page 149 indicates DMA engine is idle, data is written to register SRAM\_DATA on page 148. The address will automatically increment after each write, allowing writes to the next word without needing to set the offset again.

Reading data from the RNG SRAM involves the following steps:

- Set the Read Address: Specify the starting byte address for reading by setting register SRAM\_ADDR on page 148
- **2. Discard first read**: Read and discard the first value from register SRAM\_DATA on page 148, as it will contain the previous value pointed to by register SRAM\_ADDR on page 148.
- **3. Read Data**: When register SRAM\_DATA\_READY on page 149 indicates DMA engine is idle, retrieve the data from register SRAM\_DATA on page 148. Similar to the write address, the read address will auto-increment with each read, setting it to the next word.

**Note:** Once the address register reaches the last RNG SRAM address, the automatic address incrementation halts. Any subsequent read or write transaction will cause the DMA engine to continue operating on the last 32-bits word in the RNG SRAM memory.

#### 6.1.12.5.3 TRNG hardware tests

The RNG engine has a number of built-in hardware tests for making sure the collected entropy from the TRNG is of sufficient quality.

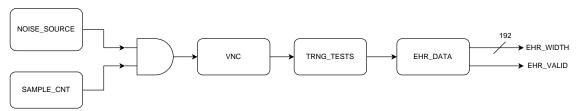



Figure 16: CRYPTOCELL True Random Number Generator

The TRNG collects random bits from the noise source according to the programmed sample counter value in register SAMPLE\_CNT on page 127. The sampled bits are post-processed in a von Neumann corrector (VNC) before being subjected to a continuous random number generation test (CRNGT) and autocorrelation test.



192 bits of random data can be read from the entropy holding registers EHR\_DATA[n] (n=0..5) on page 126 once interrupt EHR\_VALID\_INT in register RNG\_ISR on page 125 trigger. If this interrupt is masked away in register RNG\_IMR on page 124, the status register TRNG\_VALID on page 126 contains field EHR\_DATA which can be polled when the random data is valid. Reading the most significant word from EHR\_DATA registers will reset register TRNG\_VALID and a new 192 bits collection period will start.

#### Note:

To ensure proper operation when reading 192 bits of random data from the EHR\_DATA registers of the RNG engine the data must be read in ascending order, starting with:

- EHR DATA[0]
- EHR\_DATA[1]
- EHR DATA[2]
- EHR\_DATA[3]
- EHR\_DATA[4]
- EHR DATA[5]

#### 6.1.12.5.3.1 von Neumann Corrector

The von Neumann Corrector (VNC) is designed to balance the succession of '1' and '0' bits being output by the TRNG noise source.

The input bits to the VNC is tested for bit equality, meaning a sequence of 32 consequtive bits with the same bit value will trigger event VNC ERR INT in register RNG\_ISR on page 125.

If no error event is triggered, the input bits will be balanced using the VNC as shown in the figure below, and the resulting output bits will be subjected to additional TRNG tests. The VNC produce output only if the noise source is active, see register NOISE\_SOURCE on page 126.

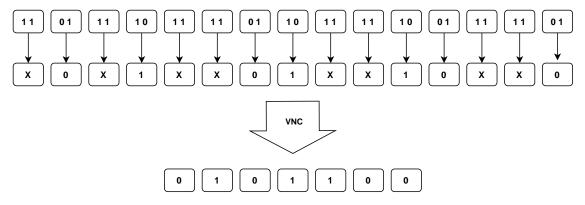



Figure 17: CRYPTOCELL von Neumann corrector

The VNC statistically output one bit for each 4 input bits sampled, meaning the average output rate of the TRNG is 1/(SAMPLE CNT \* 4) bits per CPU clock cycle.

#### 6.1.12.5.3.2 Continuous random number generation test

The Continuous random number generation test (CRNGT) process the balanced output of random data from the von Neumann corrector.

In the event that two consecutive blocks of 16 collected bits are equal, the CRNGT will trigger event CRNGT ERR INT in register RNG\_ISR on page 125.

#### 6.1.12.5.3.3 Autocorrelation test

The Autocorrelation test determine if there over time is a bias in the random bit sequences towards certain values or patterns, or if the bits in the sequence are truly independent.



If a bias in the collected bit stream is detected, the output will be discarded and the error flagged in register AUTOCORR\_STATISTIC on page 127. If a bias is detected four consecutive times in a row, the autocorrelation test will trigger event AUTOCORR\_ERR\_INT in register RNG\_ISR on page 125. In this situation the TRNG will cease to function until manually reset using register RNG\_SW\_RESET on page 128.

## 6.1.12.5.4 Cryptographic flow

The following section describe a simple cryptographic flow for this engine.

```
/* Enable CRYPTOCELL subsystem */
NRF_CRYPTOCELL->ENABLE = CRYPTOCELL_ENABLE_ENABLE_Enabled;
/* Enable engine clock */
NRF CC RNG->RNG CLK = CC RNG RNG CLK ENABLE Enable;
/* Reset engine */
NRF_CC_RNG->RNG_SW_RESET = CC_RNG_RNG_SW_RESET_RESET_Enable;
/* Configure sampling rate between consecutive bits */
   NRF CC RNG->RNG CLK = CC RNG RNG CLK ENABLE Enable;
    NRF_CC_RNG->SAMPLE_CNT = NRF_FICR->TRNG90B.ROSC1;
} while ( NRF CC RNG->SAMPLE CNT != NRF FICR->TRNG90B.ROSC1 );
/* Configure ROSC length */
NRF CC RNG->TRNG CONFIG = CC RNG TRNG CONFIG ROSC LEN ROSC1;
/* Enable noise source */
NRF_CC_RNG->NOISE_SOURCE = CC_RNG_NOISE_SOURCE_ENABLE_Enabled;
/* Wait for random data to be sampled */
while ((NRF_CC_RNG->RNG_ISR & CC_RNG_RNG_ISR_EHR_VALID_INT_Msk) == 0) {}
/* 192 bits of random data now available in
   NRF CC RNG->EHR DATA[0] to NRF CC RNG->EHR DATA[5] */
```

#### 6.1.12.5.5 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description           |
|----------|--------------|-----------|-----|-----|--------------|-----------------------|
|          |              | Мар       | Att | DMA |              |                       |
| CC_RNG   | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL RNG engine |

#### **Register overview**

| Register | Offset | TZ | Description                                                                                     |
|----------|--------|----|-------------------------------------------------------------------------------------------------|
| RNG_IMR  | 0x100  |    | Interrupt mask register. Each bit of this register holds the mask of a single interrupt source. |



| Register            | Offset | TZ | Description                                                                                          |
|---------------------|--------|----|------------------------------------------------------------------------------------------------------|
| RNG_ISR             | 0x104  |    | Interrupt status register. Each bit of this register holds the interrupt status of a single          |
|                     |        |    | interrupt source. If corresponding RNG_IMR bit is unmasked, an interrupt is generated.               |
| RNG_ICR             | 0x108  |    | Interrupt clear register. Writing a 1 bit into a field in this register will clear the corresponding |
|                     |        |    | bit in RNG_ISR.                                                                                      |
| TRNG_CONFIG         | 0x10C  |    | TRNG ring oscillator length configuration                                                            |
| TRNG_VALID          | 0x110  |    | This register indicates if TRNG entropy collection is valid.                                         |
| EHR_DATA[n]         | 0x114  |    | The entropy holding registers (EHR) hold 192-bits random data collected by the TRNG.                 |
|                     |        |    | The initial EHR DATA[0] register holds the least significant bits [31:0] of the random data          |
|                     |        |    | value.                                                                                               |
| NOISE_SOURCE        | 0x12C  |    | This register controls the ring oscillator circuit used as a noise source.                           |
| SAMPLE_CNT          | 0x130  |    | Sample count defining the number of CPU clock cycles between two consecutive noise source            |
|                     |        |    | samples.                                                                                             |
| AUTOCORR_STATISTIC  | 0x134  |    | Statistics counter for autocorrelation test activations. Statistics collection is stopped if one of  |
|                     |        |    | the counters reach its limit of all ones.                                                            |
| TRNG_DEBUG          | 0x138  |    | Debug register for the TRNG. This register is used to bypass TRNG tests in hardware.                 |
| RNG_SW_RESET        | 0x140  |    | Reset the RNG engine.                                                                                |
| RNG_BUSY            | 0x1B8  |    | Status register for RNG engine activity.                                                             |
| TRNG_RESET          | 0x1BC  |    | Reset the TRNG, including internal counter of collected bits and registers EHR_DATA and              |
|                     |        |    | TRNG_VALID.                                                                                          |
| RNG_HW_FLAGS        | 0x1C0  |    | Hardware configuration of RNG engine. Reset value holds the supported features.                      |
| RNG_CLK             | 0x1C4  |    | Control clock for the RNG engine.                                                                    |
| RNG_DMA             | 0x1C8  |    | Writing to this register enables the RNG DMA engine.                                                 |
| RNG_DMA_ROSC_LEN    | 0x1CC  |    | This register defines which ring oscillator length configuration should be used when using the       |
|                     |        |    | RNG DMA engine.                                                                                      |
| RNG_DMA_SRAM_ADDR   | 0x1D0  |    | This register defines the start address in TRNG SRAM for the TRNG data to be collected by the        |
|                     |        |    | RNG DMA engine.                                                                                      |
| RNG_DMA_SAMPLES_NUM | 0x1D4  |    | This register defines the number of 192-bits samples that the RNG DMA engine collects per            |
|                     |        |    | run.                                                                                                 |
| RNG_WATCHDOG_VAL    | 0x1D8  |    | This register defines the maximum number of CPU clock cycles per TRNG collection of 192-             |
|                     |        |    | bits samples. If the number of cycles for a collection exceeds this threshold the WATCHDOG           |
|                     |        |    | interrupt is triggered.                                                                              |
| RNG_DMA_BUSY        | 0x1DC  |    | Status register for RNG DMA engine activity.                                                         |

# 6.1.12.5.5.1 RNG\_IMR

Address offset: 0x100

Interrupt mask register. Each bit of this register holds the mask of a single interrupt source.

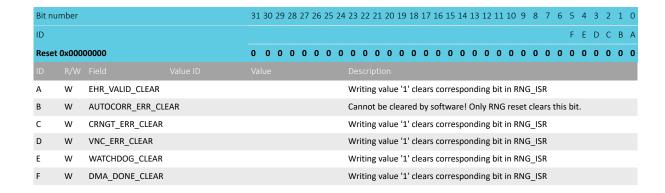
| Bit nu | ımber |                |            | 31 30 | 29 28 | 8 27 2 | 6 25 2 | 24 23 | 3 22  | 21 2  | 20 1   | 9 18  | 17 3   | 16 15 | 5 14  | 13   | 12 1   | 1 10   | 9     | 8    | 7    | 6    | 5 . | 4 3 | 2 | 1 | 0 |
|--------|-------|----------------|------------|-------|-------|--------|--------|-------|-------|-------|--------|-------|--------|-------|-------|------|--------|--------|-------|------|------|------|-----|-----|---|---|---|
| ID     |       |                |            |       |       |        |        |       |       |       |        |       |        |       |       |      |        |        |       |      |      |      | F   | E C | C | В | Α |
| Reset  | 0x000 | 0003F          |            | 0 0   | 0 0   | 0      | 0 0    | 0 0   | 0     | 0     | 0 0    | 0     | 0      | 0 0   | 0     | 0    | 0 (    | 0      | 0     | 0    | 0    | 0    | 1   | 1 1 | 1 | 1 | 1 |
| ID     |       |                |            |       |       |        |        |       |       |       |        |       |        |       |       |      |        |        |       |      |      |      |     |     |   |   |   |
| Α      | RW    | EHR_VALID_MASK |            |       |       |        |        | Se    | ee RI | NG_   | ISR f  | or ex | plar   | atio  | n on  | thi  | s inte | erru   | pt.   |      |      |      |     |     |   |   |   |
|        |       |                | IRQEnable  | 0     |       |        |        | Do    | o no  | ot ma | sk E   | HR ir | nterr  | upt i | .e. i | ntei | rupt   | is g   | ene   | rate | d    |      |     |     |   |   |   |
|        |       |                | IRQDisable | 1     |       |        |        | М     | ask   | EHR   | inte   | rrup  | t i.e. | no i  | nter  | rup  | t is g | ene    | rate  | d    |      |      |     |     |   |   |   |
| В      | RW    | AUTOCORR_ERR_M | ASK        |       |       |        |        | Se    | ee RI | NG_   | ISR f  | or ex | plar   | atio  | n on  | thi  | s inte | erru   | pt.   |      |      |      |     |     |   |   |   |
|        |       |                | IRQEnable  | 0     |       |        |        | Do    | o no  | ot ma | ask a  | utoc  | orre   | latio | n int | erri | upt i. | e. ir  | iteri | upt  | is ę | ene  | rat | ed  |   |   |   |
|        |       |                | IRQDisable | 1     |       |        |        | М     | ask   | auto  | ocorr  | elati | on ir  | nterr | upt i | i.e. | no ir  | terr   | upt   | is g | ene  | rate | d   |     |   |   |   |
| С      | RW    | CRNGT_ERR_MASK |            |       |       |        |        | Se    | ee RI | NG_   | ISR f  | or ex | plar   | atio  | n on  | thi  | s inte | erru   | pt.   |      |      |      |     |     |   |   |   |
|        |       |                | IRQEnable  | 0     |       |        |        | Do    | o no  | ot ma | ask tl | he CF | RNG    | Terr  | or in | iter | rupt   | i.e. i | inte  | rrup | t is | gen  | era | ted |   |   |   |
|        |       |                | IRQDisable | 1     |       |        |        | М     | ask   | the   | CRN    | GT e  | rror   | inter | rupt  | i.e  | . no i | nter   | rup   | t is | gen  | erat | ed  |     |   |   |   |
| D      | RW    | VNC_ERR_MASK   |            |       |       |        |        | Se    | ee RI | NG_   | ISR f  | or ex | plar   | atio  | n on  | thi  | s inte | erru   | pt.   |      |      |      |     |     |   |   |   |
|        |       |                |            |       |       |        |        |       |       |       |        |       |        |       |       |      |        |        |       |      |      |      |     |     |   |   |   |



| Bit nu | mber  |               |            | 31 3 | 30 29 | 28 | 27 2 | 6 2 | 5 24 | 1 23 | 22    | 21 2 | 20 1  | 9 1   | 8 17  | 16   | 15 1  | L4 1 | .3 1 | 2 11  | . 10   | 9     | 8     | 7     | 6     | 5 4  | 1 3   | 2    | 1   | 0 |
|--------|-------|---------------|------------|------|-------|----|------|-----|------|------|-------|------|-------|-------|-------|------|-------|------|------|-------|--------|-------|-------|-------|-------|------|-------|------|-----|---|
| ID     |       |               |            |      |       |    |      |     |      |      |       |      |       |       |       |      |       |      |      |       |        |       |       |       |       | F I  | E D   | С    | В   | Α |
| Reset  | 0x000 | 0003F         |            | 0    | 0 0   | 0  | 0 (  | 0 0 | 0    | 0    | 0     | 0    | 0 (   | 0 0   | 0     | 0    | 0     | 0    | 0 (  | 0     | 0      | 0     | 0     | 0     | 0     | 1 :  | l 1   | 1    | 1   | 1 |
| ID     |       |               |            |      |       |    |      |     |      |      |       |      |       |       |       |      |       |      |      |       |        |       |       |       |       |      |       |      |     |   |
|        |       |               | IRQEnable  | 0    |       |    |      |     |      | Do   | no    | t ma | sk t  | he v  | /on   | Veu  | man   | ın c | orre | ctor  | err    | or ii | nter  | rup   | t i.e | . in | terr  | upt  | is  |   |
|        |       |               |            |      |       |    |      |     |      | ger  | nera  | ated | l     |       |       |      |       |      |      |       |        |       |       |       |       |      |       |      |     |   |
|        |       |               | IRQDisable | 1    |       |    |      |     |      | Ma   | isk 1 | the  | von   | Neu   | ıma   | nn c | orre  | cto  | r er | ror i | nter   | rup   | t i.e | . nc  | int   | erri | ıpt i | S    |     |   |
|        |       |               |            |      |       |    |      |     |      | ger  | nera  | ated | l     |       |       |      |       |      |      |       |        |       |       |       |       |      |       |      |     |   |
| E      | RW    | WATCHDOG_MASK |            |      |       |    |      |     |      | See  | e RN  | NG_  | ISR f | for e | expla | nati | on (  | on t | his  | inte  | rrup   | t.    |       |       |       |      |       |      |     |   |
|        |       |               | IRQEnable  | 0    |       |    |      |     |      | Do   | no    | t ma | sk t  | he v  | wato  | hdo  | g int | terr | upt  | i.e.  | inte   | rrup  | ot is | ger   | era   | ted  |       |      |     |   |
|        |       |               | IRQDisable | 1    |       |    |      |     |      | Ma   | isk 1 | the  | wato  | chdo  | og ir | terr | upt   | i.e. | no   | inte  | rrup   | t is  | gen   | era   | ted   |      |       |      |     |   |
| F      | RW    | DMA_DONE_MASK |            |      |       |    |      |     |      | See  | e RN  | NG_  | ISR f | for e | expla | nati | on (  | on t | his  | inte  | rrup   | t.    |       |       |       |      |       |      |     |   |
|        |       |               | IRQEnable  | 0    |       |    |      |     |      | Do   | no    | t ma | sk t  | he F  | RNG   | DM   | A co  | mp   | leti | on ii | nter   | rup   | t i.e | . int | erri  | upt  | is ge | ener | ate | d |
|        |       |               | IRQDisable | 1    |       |    |      |     |      | Ma   | sk 1  | the  | RNG   | DN    | ЛА с  | omp  | leti  | on i | nte  | rup   | t i.e. | . no  | int   | erru  | pt i  | s ge | ner   | atec | ł   |   |

#### 6.1.12.5.5.2 RNG\_ISR

Address offset: 0x104


Interrupt status register. Each bit of this register holds the interrupt status of a single interrupt source. If corresponding RNG\_IMR bit is unmasked, an interrupt is generated.

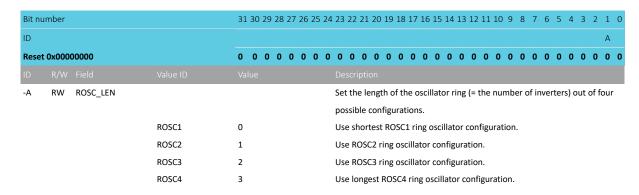
| Bit nu | ımber |                  | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0              |
|--------|-------|------------------|-------------------------|------------------------------------------------------------------------------|
| ID     |       |                  |                         | F E D C B A                                                                  |
| Reset  | 0x000 | 00000            | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |
| ID     |       |                  |                         | Description                                                                  |
| Α      | R     | EHR_VALID_INT    |                         | 192-bits have been collected and are ready to be read.                       |
| В      | R     | AUTOCORR_ERR_INT |                         | Autocorrelation error. Failure occurs when autocorrelation test has failed   |
|        |       |                  |                         | four times in a row. Once set, the TRNG ceases to function until next reset. |
| С      | R     | CRNGT_ERR_INT    |                         | Continuous random number generator test error. Failure occurs when two       |
|        |       |                  |                         | consecutive blocks of 16 collected bits are equal.                           |
| D      | R     | VNC_ERR_INT      |                         | von Neumann corrector error. Failure occurs if 32 consecutive collected bits |
|        |       |                  |                         | are identical, ZERO, or ONE.                                                 |
| E      | R     | WATCHDOG_INT     |                         | Maximum number of CPU clock cycles per sample have been exceeded. See        |
|        |       |                  |                         | RNG_WATCHDOG_VAL for more information.                                       |
| F      | R     | DMA_DONE_INT     |                         | RNG DMA to SRAM is completed.                                                |

## 6.1.12.5.5.3 RNG\_ICR

Address offset: 0x108

Interrupt clear register. Writing a 1 bit into a field in this register will clear the corresponding bit in RNG\_ISR.

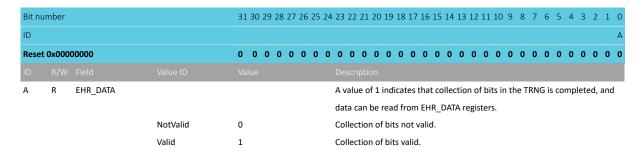







#### 6.1.12.5.5.4 TRNG\_CONFIG

Address offset: 0x10C


TRNG ring oscillator length configuration

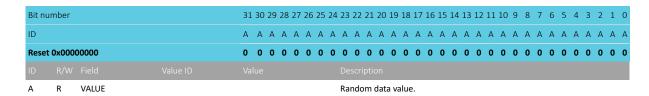


#### 6.1.12.5.5.5 TRNG\_VALID

Address offset: 0x110

This register indicates if TRNG entropy collection is valid.

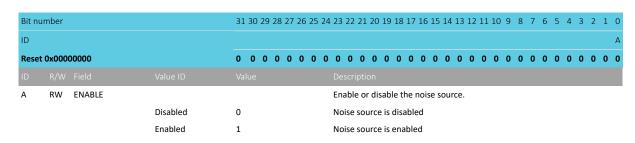



#### 6.1.12.5.5.6 EHR\_DATA[n] (n=0..5)

Address offset:  $0x114 + (n \times 0x4)$ 

The entropy holding registers (EHR) hold 192-bits random data collected by the TRNG.

The initial EHR\_DATA[0] register holds the least significant bits [31:0] of the random data value.

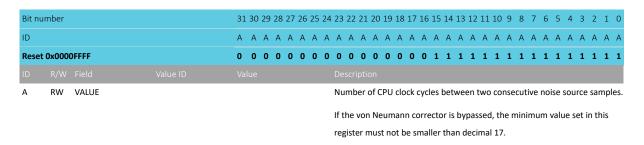

These registers are readable if register TRNG\_VALID on page 126 is Valid. Reading register EHR\_DATA[5] will clear the content, reset TRNG\_VALID, and start a new 192 bits collection period.



#### 6.1.12.5.5.7 NOISE\_SOURCE

Address offset: 0x12C

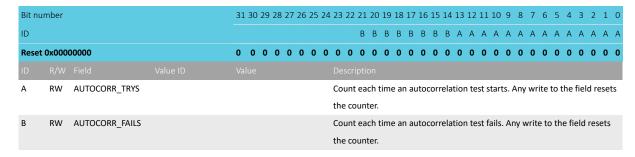
This register controls the ring oscillator circuit used as a noise source.




#### 6.1.12.5.5.8 SAMPLE\_CNT

Address offset: 0x130

Sample count defining the number of CPU clock cycles between two consecutive noise source samples.


After selecting the desired ring oscillator length configuration in TRNG\_CONFIG on page 126 this register must be set to the corresponding value from FICR.TRNG90B.ROSC1-4.



#### 6.1.12.5.5.9 AUTOCORR\_STATISTIC

Address offset: 0x134

Statistics counter for autocorrelation test activations. Statistics collection is stopped if one of the counters reach its limit of all ones.



#### 6.1.12.5.5.10 TRNG\_DEBUG

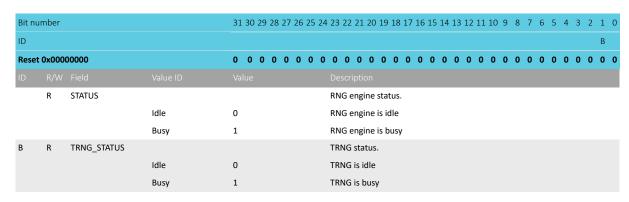
Address offset: 0x138

Debug register for the TRNG. This register is used to bypass TRNG tests in hardware.



| Bit nu | mber  |                 |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0         |
|--------|-------|-----------------|----------|-------------------------|-------------------------------------------------------------------------|
| ID     |       |                 |          |                         | СВА                                                                     |
| Reset  | 0x000 | 00000           |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                 |
| ID     |       |                 |          |                         |                                                                         |
| Α      | RW    | VNC_BYPASS      |          |                         | Bypass the von Neumann corrector post-processing test, including the 32 |
|        |       |                 |          |                         | consecutive bits test.                                                  |
|        |       |                 | Disabled | 0                       | von Neumann corrector post-processing is active                         |
|        |       |                 | Enabled  | 1                       | Bypass the von Neumann corrector                                        |
| В      | RW    | CRNGT_BYPASS    |          |                         | Bypass the Continuous Random Number Generator Test (CRNGT).             |
|        |       |                 | Disabled | 0                       | CRNGT is active                                                         |
|        |       |                 | Enabled  | 1                       | Bypass CRNGT                                                            |
| С      | RW    | AUTOCORR_BYPASS |          |                         | Bypass the autocorrelation test.                                        |
|        |       |                 | Disabled | 0                       | Autocorrelation test is active                                          |
|        |       |                 | Enabled  | 1                       | Bypass the autocorrelation test                                         |

## 6.1.12.5.5.11 RNG\_SW\_RESET


Address offset: 0x140 Reset the RNG engine.

| Bit n | umber   |       |        | 31 30 29 | 28 27 2 | 26 25 | 24 23 | 22 2  | 21 20 | 19    | 18 1  | 7 16   | 15 1  | 4 13  | 12 1 | 1 10  | 9   | 8  | 7    | 6 5  | 5 4  | - 3 | 2    | 1 0 |
|-------|---------|-------|--------|----------|---------|-------|-------|-------|-------|-------|-------|--------|-------|-------|------|-------|-----|----|------|------|------|-----|------|-----|
| ID    |         |       |        |          |         |       |       |       |       |       |       |        |       |       |      |       |     |    |      |      |      |     |      | А   |
| Rese  | t 0x000 | 00000 |        | 0 0 0    | 0 0     | 0 0   | 0 0   | 0     | 0 0   | 0     | 0 0   | 0      | 0 0   | 0     | 0 (  | 0     | 0   | 0  | 0    | 0 (  | 0 0  | 0   | 0    | 0 0 |
| ID    |         |       |        |          |         |       |       |       |       |       |       |        |       |       |      |       |     |    |      |      |      |     |      |     |
| Α     | W       | RESET |        |          |         |       | Wı    | iting | any   | valu  | e to  | this a | addre | ss re | sets | the f | RNG | en | gine | . Th | e re | set | take | s 4 |
|       |         |       |        |          |         |       | СР    | U clo | ock c | ycles | to co | omp    | lete. |       |      |       |     |    |      |      |      |     |      |     |
|       |         |       | Enable | 1        |         |       | Re    | set R | RNG   | engir | ne.   |        |       |       |      |       |     |    |      |      |      |     |      |     |

#### 6.1.12.5.5.12 RNG\_BUSY

Address offset: 0x1B8

Status register for RNG engine activity.



## 6.1.12.5.5.13 TRNG\_RESET

Address offset: 0x1BC

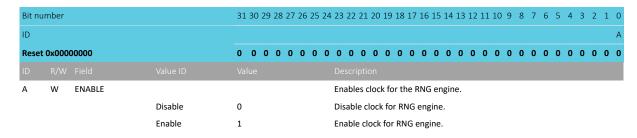
Reset the TRNG, including internal counter of collected bits and registers EHR\_DATA and TRNG\_VALID.



| Bit nu | mber  |       |        | 31 30 29 28 27 26 2 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0    |
|--------|-------|-------|--------|---------------------|------------------------------------------------------------------------|
| ID     |       |       |        |                     | A                                                                      |
| Reset  | 0x000 | 00000 |        | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                |
| ID     |       |       |        |                     |                                                                        |
| Α      | W     | RESET |        |                     | Writing any value to this address resets the internal bits counter and |
|        |       |       |        |                     | registers EHR_DATA and TRNG_VALID. Register NOISE_SOURCE must be       |
|        |       |       |        |                     | disabled in order for the reset to take place.                         |
|        |       |       | Enable | 1                   | Reset TRNG.                                                            |

## 6.1.12.5.5.14 RNG\_HW\_FLAGS

Address offset: 0x1C0

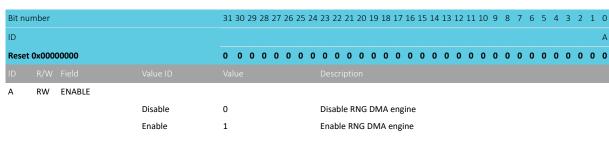

Hardware configuration of RNG engine. Reset value holds the supported features.

| Bit nu | mber  |                  |         | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|-------|------------------|---------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID     |       |                  |         |                         | HGFEDCBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reset  | 0x000 | 0000F            |         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ID     |       |                  |         |                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Α      | R     | EHR_WIDTH        |         |                         | Data width supported by the entropy collector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |       |                  | 128Bits | 0                       | 128 bits EHR width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |       |                  | 192Bits | 1                       | 192 bits EHR width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| В      | R     | CRNGT_EXISTS     |         |                         | If this flag is set, the engine include support for continuous random number $% \left( 1\right) =\left( 1\right) \left( 1$ |
|        |       |                  |         |                         | generator test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С      | R     | AUTOCORR_EXISTS  |         |                         | If this flag is set, the engine include support for autocorrelation test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D      | R     | BYPASS_EXISTS    |         |                         | If this flag is set, the engine include support for bypassing TRNG tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E      | R     | PRNG_EXISTS      |         |                         | If this flag is set, the engine include a pseudo-random number generator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F      | R     | KAT_EXISTS       |         |                         | If this flag is set, the engine include support for known answer tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| G      | R     | RESEEDING_EXISTS |         |                         | If this flag is set, the engine include support for automatic reseeding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Н      | R     | RNG_USE_5_SBOXE  | S       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |       |                  | Disable | 0                       | 20 SBOX AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |       |                  | Enable  | 1                       | 5 SBOX AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## 6.1.12.5.5.15 RNG\_CLK

Address offset: 0x1C4

Control clock for the RNG engine.

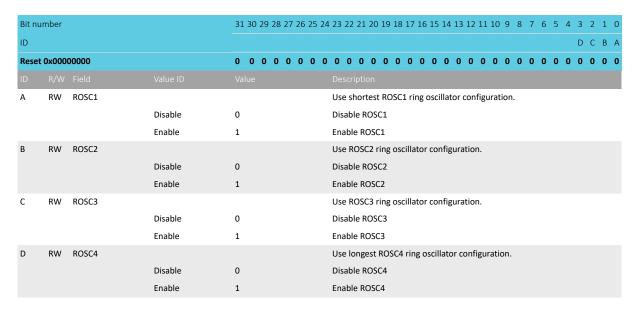



## 6.1.12.5.5.16 RNG\_DMA

Address offset: 0x1C8

Writing to this register enables the RNG DMA engine.

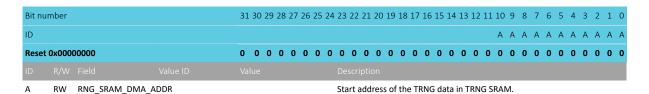





This value is cleared when the RNG DMA engine completes its operation.

#### 6.1.12.5.5.17 RNG\_DMA\_ROSC\_LEN

Address offset: 0x1CC

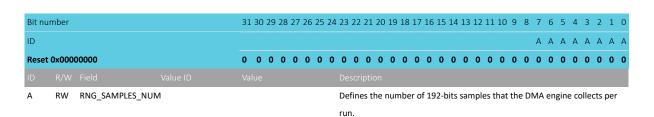

This register defines which ring oscillator length configuration should be used when using the RNG DMA engine.



#### 6.1.12.5.5.18 RNG\_DMA\_SRAM\_ADDR

Address offset: 0x1D0

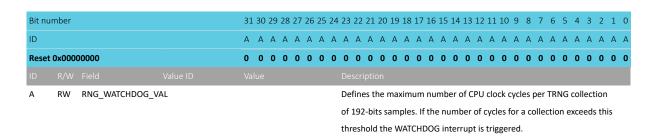
This register defines the start address in TRNG SRAM for the TRNG data to be collected by the RNG DMA engine.




## 6.1.12.5.5.19 RNG\_DMA\_SAMPLES\_NUM

Address offset: 0x1D4

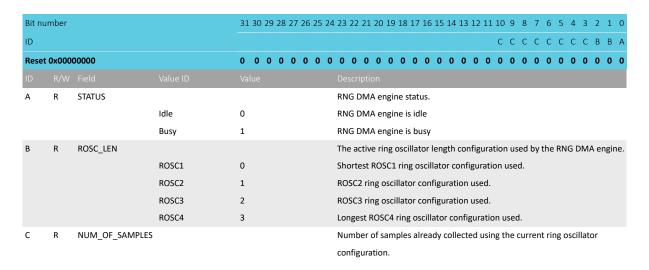
This register defines the number of 192-bits samples that the RNG DMA engine collects per run.






#### 6.1.12.5.5.20 RNG\_WATCHDOG\_VAL

Address offset: 0x1D8


This register defines the maximum number of CPU clock cycles per TRNG collection of 192-bits samples. If the number of cycles for a collection exceeds this threshold the WATCHDOG interrupt is triggered.



#### 6.1.12.5.5.21 RNG\_DMA\_BUSY

Address offset: 0x1DC

Status register for RNG DMA engine activity.



## 6.1.13 Host integration

This chapter describes host registers used to control CRYPTOCELL behavior.

#### 6.1.13.1 AHB interface

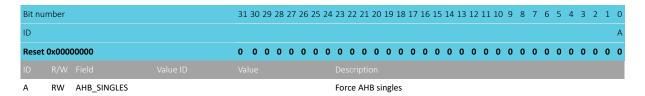
The AHB interface controls CRYPTOCELL bus master behavior.



#### 6.1.13.1.1 Registers

#### Instances

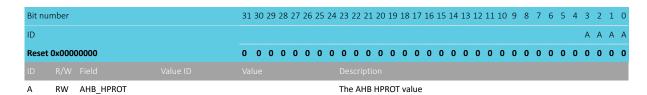
| Instance | Base address | TrustZone | :   |     | Split access | Description              |
|----------|--------------|-----------|-----|-----|--------------|--------------------------|
|          |              | Мар       | Att | DMA |              |                          |
| CC_AHB   | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL AHB interface |


## **Register overview**

| Register       | Offset | TZ | Description                                                                            |
|----------------|--------|----|----------------------------------------------------------------------------------------|
| AHBM_SINGLES   | 0xB00  |    | This register forces the AHB transactions from CRYPTOCELL master to be always singles. |
| AHBM_HPROT     | 0xB04  |    | This register holds the AHB HPROT value                                                |
| AHBM_HMASTLOCK | 0xB08  |    | This register holds AHB HMASTLOCK value                                                |
| AHBM_HNONSEC   | 0xB0C  |    | This register holds AHB HNONSEC value                                                  |

#### 6.1.13.1.1.1 AHBM\_SINGLES

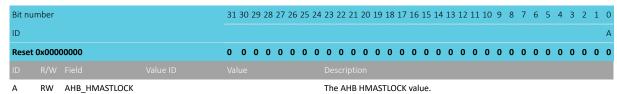
Address offset: 0xB00


This register forces the AHB transactions from CRYPTOCELL master to be always singles.



#### 6.1.13.1.1.2 AHBM\_HPROT

Address offset: 0xB04


This register holds the AHB HPROT value



#### 6.1.13.1.1.3 AHBM\_HMASTLOCK

Address offset: 0xB08

This register holds AHB HMASTLOCK value





#### 6.1.13.1.1.4 AHBM\_HNONSEC

Address offset: 0xB0C

This register holds AHB HNONSEC value



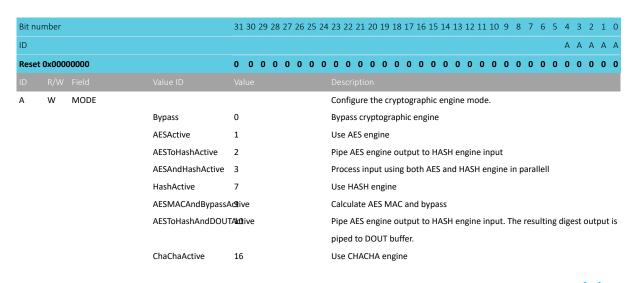
#### 6.1.13.2 CTL interface

The CTL interface controls the cryptographic flow and provide busy status for individual components in the CRYPTOCELL subsystem.

## 6.1.13.2.1 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description              |
|----------|--------------|-----------|-----|-----|--------------|--------------------------|
|          |              | Мар       | Att | DMA |              |                          |
| CC_CTL   | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL CTL interface |


## **Register overview**

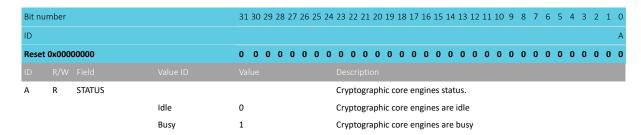
| Register    | Offset | TZ | Description                                              |
|-------------|--------|----|----------------------------------------------------------|
| CRYPTO_CTL  | 0x900  |    | Defines the cryptographic flow.                          |
| CRYPTO_BUSY | 0x910  |    | Status register for cryptographic cores engine activity. |
| HASH_BUSY   | 0x91C  |    | Status register for HASH engine activity.                |
| CONTEXT_ID  | 0x930  |    | A general-purpose read/write register.                   |

#### 6.1.13.2.1.1 CRYPTO\_CTL

Address offset: 0x900

Defines the cryptographic flow.

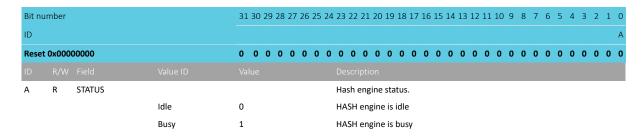





#### 6.1.13.2.1.2 CRYPTO\_BUSY

Address offset: 0x910

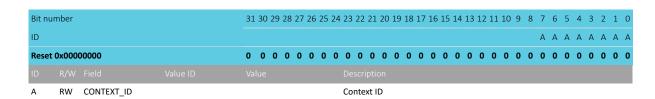
Status register for cryptographic cores engine activity.


This register will be asserted whenever register AES\_BUSY on page 93 or register HASH\_BUSY on page 134 is asserted or when register DIN\_FIFO\_EMPTY on page 138 indicate that the DIN FIFO is not empty.



#### 6.1.13.2.1.3 HASH\_BUSY

Address offset: 0x91C


Status register for HASH engine activity.



#### 6.1.13.2.1.4 CONTEXT\_ID

Address offset: 0x930

A general-purpose read/write register.



#### 6.1.13.3 DIN DMA engine

The Data IN (DIN) DMA engine transfers data into the CRYPTOCELL subsystem and its various cryptographic engines.

The DIN DMA engine provides a comprehensive interface for to facilitate the transfer of data from the CPU or memory to the cryptographic engines. It includes a variety of registers that control direct data buffering, DMA operations, and data flow management.

Maximum DMA transaction size is limited to  $2^{16}$ -1 bytes. If a DMA transaction is configured with a payload size above the maximum DMA transaction size limit, the DMA engine must be reset before being functional again using register DIN\_SW\_RESET on page 137.

The flow demonstrated in Cryptographic flow on page 91 shows how the DIN DMA engine is configured to provide data to the AES engine using registers SRC\_MEM\_ADDR on page 136 and

NORDIC\*

SRC\_MEM\_SIZE on page 136 to define the input source address and number of input bytes, respectively.

#### 6.1.13.3.1 Registers

#### Instances

| Instance | Base address | TrustZone | :   |     | Split access | Description               |
|----------|--------------|-----------|-----|-----|--------------|---------------------------|
|          |              | Мар       | Att | DMA |              |                           |
| CC_DIN   | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL DIN DMA engine |

## **Register overview**

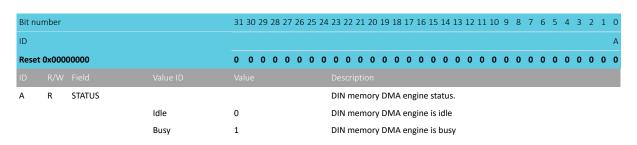
| Register                | Offset | TZ | Description                                                                                   |
|-------------------------|--------|----|-----------------------------------------------------------------------------------------------|
| DIN_BUFFER              | 0xC00  |    | Used by CPU to write data directly to the DIN buffer, which is then sent to the cryptographic |
|                         |        |    | engines for processing.                                                                       |
| DIN_DMA_MEM_BUSY        | 0xC20  |    | Status register for DIN DMA engine activity when accessing memory.                            |
| SRC_MEM_ADDR            | 0xC28  |    | Data source address in memory.                                                                |
| SRC_MEM_SIZE            | 0xC2C  |    | The number of bytes to be read from memory. Writing to this register triggers the DMA         |
|                         |        |    | operation.                                                                                    |
| SRC_SRAM_ADDR           | 0xC30  |    | Data source address in RNG SRAM.                                                              |
| SRC_SRAM_SIZE           | 0xC34  |    | The number of bytes to be read from RNG SRAM. Writing to this register triggers the DMA       |
|                         |        |    | operation.                                                                                    |
| DIN_DMA_SRAM_BUSY       | 0xC38  |    | Status register for DIN DMA engine activity when accessing RNG SRAM.                          |
| DIN_DMA_SRAM_ENDIANNESS | 0xC3C  |    | Configure the endianness of DIN DMA transactions towards RNG SRAM.                            |
| DIN_SW_RESET            | 0xC44  |    | Reset the DIN DMA engine.                                                                     |
| DIN_CPU_DATA            | 0xC48  |    | Specifies the number of bytes the CPU will write to the DIN_BUFFER, ensuring the              |
|                         |        |    | cryptographic engine processes the correct amount of data.                                    |
| DIN_WRITE_ALIGN         | 0xC4C  |    | Indicates that the next CPU write to the DIN_BUFFER is the last in the sequence. This is      |
|                         |        |    | needed only when the data size is NOT modulo 4 (e.g. HASH padding).                           |
| DIN_FIFO_EMPTY          | 0xC50  |    | Register indicating if DIN FIFO is empty and if more data can be accepted.                    |
| DIN_FIFO_RESET          | 0xC58  |    | Reset the DIN FIFO, effectively clearing the FIFO for new data.                               |

#### 6.1.13.3.1.1 DIN\_BUFFER

Address offset: 0xC00

Used by CPU to write data directly to the DIN buffer, which is then sent to the cryptographic engines for processing.

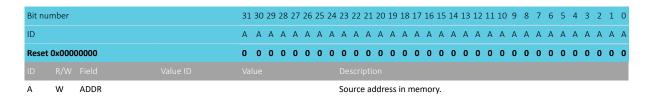
The number of bytes to write is defined in DIN CPU DATA on page 137.




#### 6.1.13.3.1.2 DIN\_DMA\_MEM\_BUSY

Address offset: 0xC20

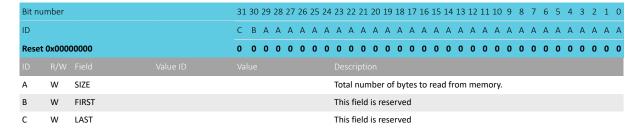
Status register for DIN DMA engine activity when accessing memory.






#### 6.1.13.3.1.3 SRC\_MEM\_ADDR

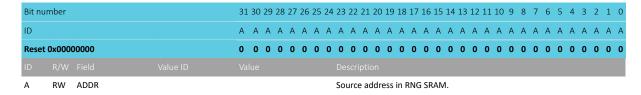
Address offset: 0xC28


Data source address in memory.



#### 6.1.13.3.1.4 SRC\_MEM\_SIZE

Address offset: 0xC2C

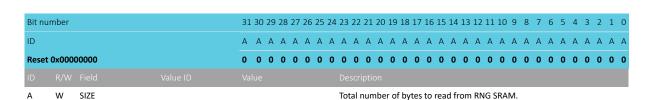

The number of bytes to be read from memory. Writing to this register triggers the DMA operation.



#### 6.1.13.3.1.5 SRC\_SRAM\_ADDR

Address offset: 0xC30

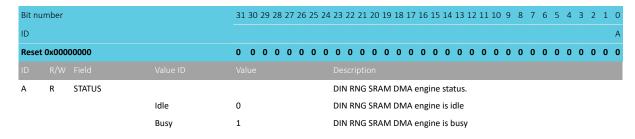
Data source address in RNG SRAM.




#### 6.1.13.3.1.6 SRC\_SRAM\_SIZE

Address offset: 0xC34

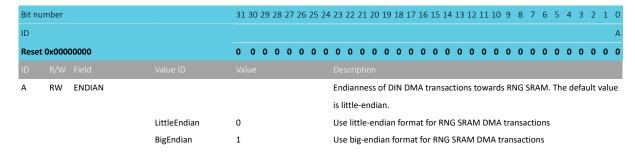
The number of bytes to be read from RNG SRAM. Writing to this register triggers the DMA operation.






#### 6.1.13.3.1.7 DIN\_DMA\_SRAM\_BUSY

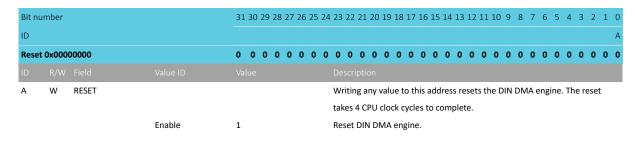
Address offset: 0xC38


Status register for DIN DMA engine activity when accessing RNG SRAM.



#### 6.1.13.3.1.8 DIN\_DMA\_SRAM\_ENDIANNESS

Address offset: 0xC3C


Configure the endianness of DIN DMA transactions towards RNG SRAM.



#### 6.1.13.3.1.9 DIN\_SW\_RESET

Address offset: 0xC44

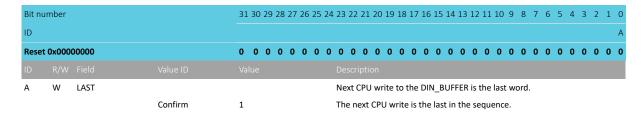
Reset the DIN DMA engine.



#### 6.1.13.3.1.10 DIN\_CPU\_DATA

Address offset: 0xC48

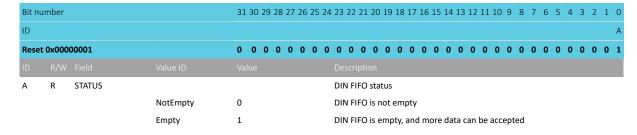
Specifies the number of bytes the CPU will write to the DIN\_BUFFER, ensuring the cryptographic engine processes the correct amount of data.




| Bit nu | ımber |       |  | 31 30 2 | 29 28 | 27 26 | 25 24 | 23 : | 22 2  | 1 20 | 19 18 | 3 17  | 16   | 15 1 | L4 1  | 3 12  | 11   | 10   | 9   | 8 7 | 6    | 5    | 4   | 3 2  | 2 1   | 0 |
|--------|-------|-------|--|---------|-------|-------|-------|------|-------|------|-------|-------|------|------|-------|-------|------|------|-----|-----|------|------|-----|------|-------|---|
| ID     |       |       |  |         |       |       |       |      |       |      |       |       |      | Α    | Α /   | 4 A   | Α    | Α    | A   | Д Д | . A  | Α    | Α   | A A  | A A   | Α |
| Reset  | 0x000 | 00000 |  | 0 0     | 0 0   | 0 0   | 0 0   | 0    | 0 (   | 0    | 0 0   | 0     | 0    | 0    | 0 (   | 0 0   | 0    | 0    | 0   | 0 0 | 0    | 0    | 0   | 0 (  | 0     | 0 |
| ID     |       |       |  |         |       |       |       |      |       |      |       |       |      |      |       |       |      |      |     |     |      |      |     |      |       |   |
| Α      | W     | SIZE  |  |         |       |       |       | Wh   | en u  | sing | CPU d | direc | t wr | ite  | to tl | ne D  | IN_I | BUFF | ER, | the | size | of i | npu | t da | ta ir | 1 |
|        |       |       |  |         |       |       |       |      | es sh | ould | be w  | ritte | n to | thi  | s re  | giste | r.   |      |     |     |      |      |     |      |       |   |

#### 6.1.13.3.1.11 DIN\_WRITE\_ALIGN

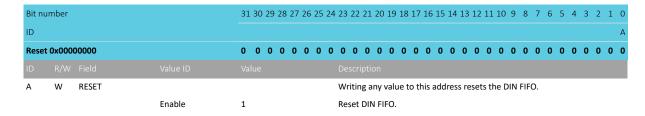
Address offset: 0xC4C


Indicates that the next CPU write to the DIN\_BUFFER is the last in the sequence. This is needed only when the data size is NOT modulo 4 (e.g. HASH padding).



#### 6.1.13.3.1.12 DIN\_FIFO\_EMPTY

Address offset: 0xC50


Register indicating if DIN FIFO is empty and if more data can be accepted.



#### 6.1.13.3.1.13 DIN\_FIFO\_RESET

Address offset: 0xC58

Reset the DIN FIFO, effectively clearing the FIFO for new data.



#### 6.1.13.4 DOUT DMA engine

The Data OUT (DOUT) DMA engine transfers data from the CRYPTOCELL subsystem and its various cryptographic engines.

The DOUT DMA engine provides a comprehensive interface for to facilitate the transfer of data to the CPU or memory from the cryptographic engines. It includes a variety of registers that control direct data buffering, DMA operations, and data flow management.



Maximum DMA transaction size is limited to  $2^{16}$ -1 bytes. If a DMA transaction is configured with a payload size above the maximum DMA transaction size limit, the DMA engine must be reset before being functional again using register DOUT\_SW\_RESET on page 142.

The flow demonstrated in Cryptographic flow on page 91 shows how the DOUT DMA engine is configured to output data from the AES engine using registers DST\_MEM\_ADDR on page 140 and DST\_MEM\_SIZE on page 140 to define the output source address and number of output bytes, respectively.

## 6.1.13.4.1 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                |
|----------|--------------|-----------|-----|-----|--------------|----------------------------|
|          |              | Мар       | Att | DMA |              |                            |
| CC_DOUT  | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL DOUT DMA engine |

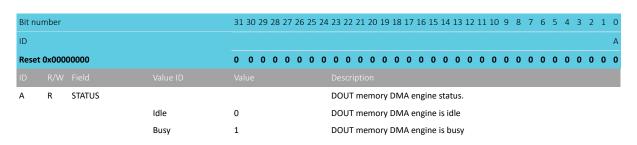
## **Register overview**

| Register                 | Offset | TZ | Description                                                                                 |
|--------------------------|--------|----|---------------------------------------------------------------------------------------------|
| DOUT_BUFFER              | 0xC00  |    | Cryptographic results directly accessible by the CPU.                                       |
| DOUT_DMA_MEM_BUSY        | 0xD20  |    | Status register for DOUT DMA engine activity when accessing memory.                         |
| DST_MEM_ADDR             | 0xD28  |    | Data destination address in memory.                                                         |
| DST_MEM_SIZE             | 0xD2C  |    | The number of bytes to be written to memory.                                                |
| DST_SRAM_ADDR            | 0xD30  |    | Data destination address in RNG SRAM.                                                       |
| DST_SRAM_SIZE            | 0xD34  |    | The number of bytes to be written to RNG SRAM.                                              |
| DOUT_DMA_SRAM_BUSY       | 0xD38  |    | Status register for DOUT DMA engine activity when accessing RNG SRAM.                       |
| DOUT_DMA_SRAM_ENDIANNESS | 0xD3C  |    | Configure the endianness of DOUT DMA transactions towards RNG SRAM.                         |
| DOUT_READ_ALIGN          | 0xD44  |    | Indication that the next CPU read from the DOUT_BUFFER is the last in the sequence. This is |
|                          |        |    | needed only when the data size is NOT modulo 4 (e.g. HASH padding).                         |
| DOUT_FIFO_EMPTY          | 0xD50  |    | Register indicating if DOUT FIFO is empty or if more data will come.                        |
| DOUT_SW_RESET            | 0xD58  |    | Reset the DOUT DMA engine.                                                                  |

#### 6.1.13.4.1.1 DOUT\_BUFFER

Address offset: 0xC00

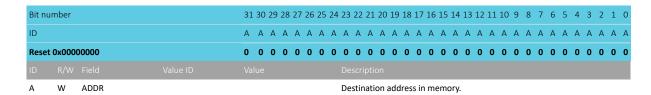
Cryptographic results directly accessible by the CPU.


| Bit nu | umber   |       | 31 | 30 | 29 2 | 28 2 | 7 2 | 6 25 | 24 | 23  | 22    | 21 : | 20 1  | 19 1 | .8 1 | 7 16 | 5 15 | 5 14 | 13 | 12   | 11   | 10 | 9   | 8   | 7    | 6   | 5    | 4    | 3    | 2   | 1 0 |
|--------|---------|-------|----|----|------|------|-----|------|----|-----|-------|------|-------|------|------|------|------|------|----|------|------|----|-----|-----|------|-----|------|------|------|-----|-----|
| ID     |         |       | Α  | Α  | Α    | A A  | A A | A A  | Α  | Α   | Α     | Α    | Α     | A A  | Δ ,  | A A  | Α    | Α    | Α  | Α    | Α    | Α  | Α   | Α   | Α    | Α   | Α    | Α    | Α.   | Α , | А А |
| Rese   | t 0x000 | 00000 | 0  | 0  | 0    | 0 (  | 0 0 | 0    | 0  | 0   | 0     | 0    | 0     | 0 (  | 0 (  | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0   | 0   | 0    | 0   | 0    | 0    | 0    | 0   | 0 0 |
| ID     |         |       |    |    |      |      |     |      |    |     |       |      |       |      |      |      |      |      |    |      |      |    |     |     |      |     |      |      |      |     |     |
| Α      | R       | DATA  |    |    |      |      |     |      |    | Thi | is ac | ddre | ess o | can  | be ι | ısec | by   | the  | СР | U to | o re | ad | dat | a d | irec | tly | fror | n tl | he D | OU  | Т   |
|        |         |       |    |    |      |      |     |      |    | hu  | ffor  |      |       |      |      |      |      |      |    |      |      |    |     |     |      |     |      |      |      |     |     |

## 6.1.13.4.1.2 DOUT\_DMA\_MEM\_BUSY

Address offset: 0xD20

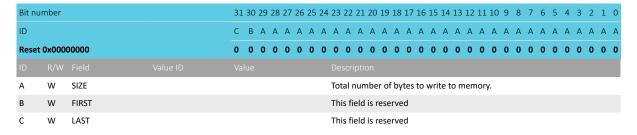
Status register for DOUT DMA engine activity when accessing memory.






#### 6.1.13.4.1.3 DST\_MEM\_ADDR

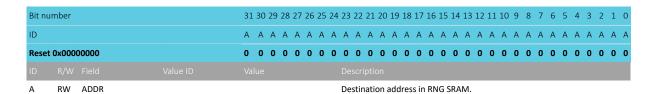
Address offset: 0xD28


Data destination address in memory.



#### 6.1.13.4.1.4 DST\_MEM\_SIZE

Address offset: 0xD2C

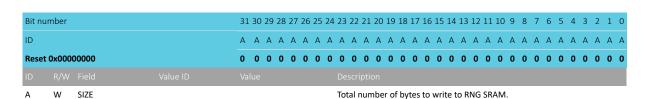

The number of bytes to be written to memory.



#### 6.1.13.4.1.5 DST\_SRAM\_ADDR

Address offset: 0xD30

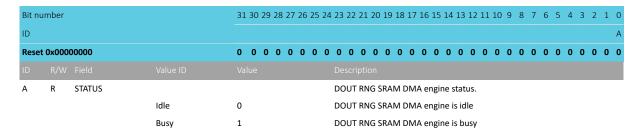
Data destination address in RNG SRAM.




#### 6.1.13.4.1.6 DST\_SRAM\_SIZE

Address offset: 0xD34

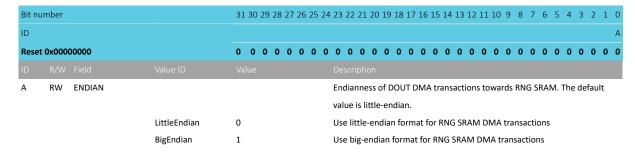
The number of bytes to be written to RNG SRAM.






#### 6.1.13.4.1.7 DOUT\_DMA\_SRAM\_BUSY

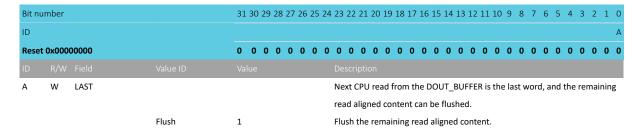
Address offset: 0xD38


Status register for DOUT DMA engine activity when accessing RNG SRAM.



#### 6.1.13.4.1.8 DOUT\_DMA\_SRAM\_ENDIANNESS

Address offset: 0xD3C


Configure the endianness of DOUT DMA transactions towards RNG SRAM.



#### 6.1.13.4.1.9 DOUT\_READ\_ALIGN

Address offset: 0xD44

Indication that the next CPU read from the DOUT\_BUFFER is the last in the sequence. This is needed only when the data size is NOT modulo 4 (e.g. HASH padding).



#### 6.1.13.4.1.10 DOUT\_FIFO\_EMPTY

Address offset: 0xD50

Register indicating if DOUT FIFO is empty or if more data will come.

| Bit no | umber   |        |          | 31 30 29 28 27 26 | 25 24 | 23 22 | 21 20   | 19 18 | 3 17 1 | .6 15 | 14   | 13 12 | 2 11  | 10 9   | 8   | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0 |
|--------|---------|--------|----------|-------------------|-------|-------|---------|-------|--------|-------|------|-------|-------|--------|-----|---|---|---|---|-----|-----|---|
| ID     |         |        |          |                   |       |       |         |       |        |       |      |       |       |        |     |   |   |   |   |     |     | Α |
| Rese   | t 0x000 | 00001  |          | 0 0 0 0 0 0       | 0 0   | 0 0   | 0 0     | 0 0   | 0 (    | 0 0   | 0    | 0 0   | 0     | 0 (    | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0   | 1 |
| ID     |         |        |          |                   |       |       |         |       |        |       |      |       |       |        |     |   |   |   |   |     |     |   |
| Α      | R       | STATUS |          |                   |       | DOUT  | FIFO st | tatus |        |       |      |       |       |        |     |   |   |   |   |     |     |   |
|        |         |        | NotEmpty | 0                 |       | DOUT  | FIFO is | not e | empty  | , and | d mo | re da | ıta w | ill co | me  |   |   |   |   |     |     |   |
|        |         |        | Empty    | 1                 |       | DOUT  | FIFO is | emp   | ty     |       |      |       |       |        |     |   |   |   |   |     |     |   |

#### 6.1.13.4.1.11 DOUT\_SW\_RESET

Address offset: 0xD58

Reset the DOUT DMA engine.

| Bit nu | ımber   |       |        | 31 30 | 29 28 | 8 27 2 | 26 25 | 24 2 | 23 2 | 2 21  | 20    | 19 1  | 18 1   | 7 16  | 15   | 14 : | 13 1 | 2 11  | . 10 | 9  | 8   | 7  | 6  | 5    | 4 3   | 2    | 1   | 0 |
|--------|---------|-------|--------|-------|-------|--------|-------|------|------|-------|-------|-------|--------|-------|------|------|------|-------|------|----|-----|----|----|------|-------|------|-----|---|
| ID     |         |       |        |       |       |        |       |      |      |       |       |       |        |       |      |      |      |       |      |    |     |    |    |      |       |      |     | Α |
| Rese   | t 0x000 | 00000 |        | 0 0   | 0 0   | 0      | 0 0   | 0    | 0 (  | 0     | 0     | 0     | 0 0    | 0     | 0    | 0    | 0 (  | 0     | 0    | 0  | 0   | 0  | 0  | 0    | 0 0   | 0    | 0   | 0 |
| ID     |         |       |        |       |       |        |       |      |      |       |       |       |        |       |      |      |      |       |      |    |     |    |    |      |       |      |     |   |
| Α      | W       | RESET |        |       |       |        |       | ١    | Writ | ing a | any v | alue  | e to 1 | this  | addı | ess  | rese | ets t | he D | OU | T D | MA | en | gine | e. Th | e re | set |   |
|        |         |       |        |       |       |        |       | t    | ake  | s 4 C | PU d  | clock | к сус  | les t | о со | mp   | lete |       |      |    |     |    |    |      |       |      |     |   |
|        |         |       | Enable | 1     |       |        |       | F    | Rese | t DC  | DUT   | DMA   | A en   | gine  |      |      |      |       |      |    |     |    |    |      |       |      |     |   |

# 6.1.13.5 HOST register interface

The HOST\_RGF interface contains registers for CRYPTOCELL interrupt handling, configuring CRYPTOCELL lifecycle state and CRYPTOCELL key management where different cryptographic key inputs can be connected to the AES engine.

Use of the CRYPTOCELL  $K_{PRTL}$  key or the device root key  $K_{DR}$  is selected using this interface. Availability and configuration of these two key types are typically controlled from an immutable bootloader. Once CRYPTOCELL has been correctly configured it will be possible for an application to either use session keys directly or perform cryptographic operations with the device root key key  $K_{DR}$  without having access to the key value.

## 6.1.13.5.1 Registers

#### **Instances**

| Instance    | Base address | TrustZone |     |     | Split access | Description                        |
|-------------|--------------|-----------|-----|-----|--------------|------------------------------------|
|             |              | Мар       | Att | DMA |              |                                    |
| CC_HOST_RGF | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL HOST register interface |

## **Register overview**

| Register       | Offset | TZ | Description                                                                                          |
|----------------|--------|----|------------------------------------------------------------------------------------------------------|
| IRR            | 0xA00  |    | Interrupt request register. Each bit of this register holds the interrupt status of a single         |
|                |        |    | interrupt source. If corresponding IMR bit is unmasked, an interrupt is generated.                   |
| IMR            | 0xA04  |    | Interrupt mask register. Each bit of this register holds the mask of a single interrupt source.      |
| ICR            | 0xA08  |    | Interrupt clear register. Writing a 1 bit into a field in this register will clear the corresponding |
|                |        |    | bit in IRR.                                                                                          |
| ENDIANNESS     | 0xA0C  |    | This register defines the endianness of the Host-accessible registers, and can only be written       |
|                |        |    | once.                                                                                                |
| HOST_SIGNATURE | 0xA24  |    | This register holds the CRYPTOCELL subsystem signature. See reset value.                             |





| Register            | Offset | TZ | Description                                                                                     |
|---------------------|--------|----|-------------------------------------------------------------------------------------------------|
| HOST_BOOT           | 0xA28  |    | Hardware configuration of the CRYPTOCELL subsystem. Reset value holds the supported             |
|                     |        |    | features.                                                                                       |
| HOST_CRYPTOKEY_SEL  | 0xA38  |    | AES hardware key select.                                                                        |
| HOST_IOT_KPRTL_LOCK | 0xA4C  |    | This write-once register is the K_PRTL lock register. When this register is set, K_PRTL cannot  |
|                     |        |    | be used and a zeroed key will be used instead. The value of this register is saved in the       |
|                     |        |    | CRYPTOCELL AO power domain.                                                                     |
| HOST_IOT_KDR0       | 0xA50  |    | This register holds bits 31:0 of K_DR. The value of this register is saved in the CRYPTOCELL AO |
|                     |        |    | power domain. Reading from this address returns the K_DR valid status indicating if K_DR is     |
|                     |        |    | successfully retained.                                                                          |
| HOST_IOT_KDR1       | 0xA54  |    | This register holds bits 63:32 of K_DR. The value of this register is saved in the CRYPTOCELL   |
|                     |        |    | AO power domain.                                                                                |
| HOST_IOT_KDR2       | 0xA58  |    | This register holds bits 95:64 of K_DR. The value of this register is saved in the CRYPTOCELL   |
|                     |        |    | AO power domain.                                                                                |
| HOST_IOT_KDR3       | 0xA5C  |    | This register holds bits 127:96 of K_DR. The value of this register is saved in the CRYPTOCELL  |
|                     |        |    | AO power domain.                                                                                |
| HOST_IOT_LCS        | 0xA60  |    | Controls life-cycle state (LCS) for CRYPTOCELL subsystem                                        |

#### 6.1.13.5.1.1 IRR

Address offset: 0xA00

Interrupt request register. Each bit of this register holds the interrupt status of a single interrupt source. If corresponding IMR bit is unmasked, an interrupt is generated.


| Bit nu | ımber |                 |    | 31 30 29 2 | 28 27 26 | 25 24 | 23 22 2 | 21 20 1 | 19 18   | 17 1  | l6 15  | 14 1   | 3 12   | 11 10  | 9      | 8     | 7 6    | 5     | 4 3    | 3 2   | 1 0    |
|--------|-------|-----------------|----|------------|----------|-------|---------|---------|---------|-------|--------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|
| ID     |       |                 |    |            |          |       |         |         |         |       |        |        |        | G      | F      | E [   | ) С    | В     | Α      |       |        |
| Reset  | 0x000 | 00000           |    | 0 0 0      | 0 0 0    | 0 0   | 0 0 0   | 0 0     | 0 0     | 0     | 0 0    | 0 (    | 0 0    | 0 0    | 0      | 0 (   | 0      | 0     | 0 (    | 0     | 0 0    |
| ID     |       |                 |    |            |          |       | Descrip |         |         |       |        |        |        |        |        |       |        |       |        |       |        |
| Α      | R     | SRAM_TO_DIN_INT |    |            |          |       | The RN  | G SRA   | M to    | DIN   | DMA    | done   | inter  | rupt   | tatu   | s. Tł | nis ir | terr  | upt i  | s ass | serted |
|        |       |                 |    |            |          |       | when a  | ll data | was     | deliv | ered   | from   | RNG    | SRAN   | l to I | OIN   | ouffe  | er.   |        |       |        |
| В      | R     | DOUT_TO_SRAM_IN | IT |            |          |       | The DO  | UT to   | RNG     | SRAN  | M DN   | IA do  | ne int | errup  | t sta  | itus. | This   | inte  | rrup   | t is  |        |
|        |       |                 |    |            |          |       | asserte | d whe   | n all o | data  | was c  | delive | red fr | om D   | OUT    | buf   | fer t  | o RN  | G SF   | RAM   |        |
| С      | R     | MEM_TO_DIN_INT  |    |            |          |       | The me  | mory    | to DII  | N DIV | 1A do  | ne in  | terru  | ot sta | us.    | This  | inte   | rrup  | is a   | sser  | ted    |
|        |       |                 |    |            |          |       | when a  | ll data | was     | deliv | ered   | from   | mem    | ory to | DIN    | l bu  | fer.   |       |        |       |        |
| D      | R     | DOUT_TO_MEM_IN  | Т  |            |          |       | The DO  | UT to   | mem     | ory [ | AMC    | done   | inter  | upt s  | tatu   | s. Th | is in  | terru | ıpt is | ass   | erted  |
|        |       |                 |    |            |          |       | when a  | ll data | was     | deliv | ered   | from   | DOU.   | 「buff  | er to  | me    | mor    | у.    |        |       |        |
| E      | R     | AHB_ERR_INT     |    |            |          |       | The AH  | B erro  | r inte  | rrup  | t stat | us.    |        |        |        |       |        |       |        |       |        |
| F      | R     | PKA_INT         |    |            |          |       | The PK  | A end   | of op   | erati | on in  | terru  | ot sta | us.    |        |       |        |       |        |       |        |
| G      | R     | RNG_INT         |    |            |          |       | The RN  | G inte  | rrupt   | statı | JS.    |        |        |        |        |       |        |       |        |       |        |

#### 6.1.13.5.1.2 IMR

Address offset: 0xA04

Interrupt mask register. Each bit of this register holds the mask of a single interrupt source.

| Bit nu | ımber   |               |            | 31 30 29 28 | 3 27 2 | 6 25 | 24 2 | 23 22 | 2 21  | 20 1  | .9 1 | 8 17 | 16 1  | .5 14 | 13    | 12 11 | . 10  | 9    | 8    | 7 (  | 5 5        | 4    | 3     | 2    | 1 0 |
|--------|---------|---------------|------------|-------------|--------|------|------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|------|------|------|------------|------|-------|------|-----|
| ID     |         |               |            |             |        |      |      |       |       |       |      |      |       |       |       |       | G     | F    | E [  | ) (  | В          | Α    |       |      |     |
| Rese   | t 0x01F | FFFFF         |            | 0 0 0 0     | 0 (    | 0 0  | 1    | 1 1   | . 1   | 1 :   | 1 1  | . 1  | 1     | 1 1   | 1     | 1 1   | 1     | 1    | 1 :  | L    | l <b>1</b> | 1    | 1     | 1    | 1 1 |
| ID     |         |               |            |             |        |      |      |       |       |       |      |      |       |       |       |       |       |      |      |      |            |      |       |      |     |
| Α      | RW      | SRAM_TO_DIN_M | ASK        |             |        |      | 1    | Γhe F | RNG   | SRAN  | M to | DIN  | I DM  | A do  | ne in | terru | ıpt n | nas  | k.   |      |            |      |       |      |     |
|        |         |               | IRQEnable  | 0           |        |      | [    | Do n  | ot m  | ask F | RNG  | SRA  | M to  | DIN   | DM    | A dor | ne in | teri | rupt | i.e. | inte       | rru  | ot is |      |     |
|        |         |               |            |             |        |      | ٤    | gene  | rated | d     |      |      |       |       |       |       |       |      |      |      |            |      |       |      |     |
|        |         |               | IRQDisable | 1           |        |      | ſ    | Mask  | RNO   | G SR  | AM   | to D | IN DI | MA d  | one   | inter | rupt  | i.e. | no i | nte  | rrup       | t is | gen   | erat | ed  |

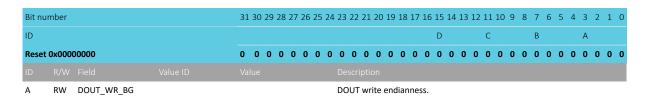




| Bit nu | ımber |                |            | 31 3 | 0 29 2 | 28 27 | 26 2 | 25 24 | 1 23 | 22 2 | 21 20 | 19    | 18    | 17    | 16 1  | .5 1  | 4 1   | 3 1  | 2 1:       | 1 10  | 9     | 8     | 7     | 6    | 5    | 4     | 3     | 2 1  | L 0  |
|--------|-------|----------------|------------|------|--------|-------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|------|------------|-------|-------|-------|-------|------|------|-------|-------|------|------|
| ID     |       |                |            |      |        |       |      |       |      |      |       |       |       |       |       |       |       |      |            | G     | F     | Ε     | D     | С    | В    | Α     |       |      |      |
| Rese   | 0x01F | FFFFF          |            | 0 (  | 0 0    | 0 0   | 0    | 0 1   | 1    | 1    | 1 1   | 1     | 1     | 1     | 1     | 1     | 1 1   | L 1  | l <b>1</b> | 1     | 1     | 1     | 1     | 1    | 1    | 1     | 1     | 1 1  | l 1  |
| ID     |       |                |            |      |        |       |      |       |      |      |       |       |       |       |       |       |       |      |            |       |       |       |       |      |      |       |       |      |      |
| В      | RW    | DOUT_TO_SRAM_N | 1ASK       |      |        |       |      |       | The  | DO   | UT t  | o RI  | NG S  | RA    | M D   | MA    | do    | ne i | nte        | rrup  | t m   | nask  |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k D0  | TUC   | to    | RNG   | SR    | AM    | D١   | 1A c       | lone  | int   | terr  | upt   | i.e  | int  | err   | upt i | S    |      |
|        |       |                |            |      |        |       |      |       | gen  | erat | ted   |       |       |       |       |       |       |      |            |       |       |       |       |      |      |       |       |      |      |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk D | OUT   | to    | RNG   | SR    | AM    | DΝ    | 1A d  | one  | e int      | erru  | ıpt   | i.e.  | no    | inte | erru | ıpt i | is ge | nera | ated |
| С      | RW    | MEM_TO_DIN_MAS | SK .       |      |        |       |      |       | The  | me   | emor  | y to  | DIN   | I DI  | MA c  | lon   | e in  | ter  | upt        | ma    | sk.   |       |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k m   | emo   | ry 1  | to D  | IN I  | )M    | A do | one        | inte  | rru   | pt i. | e. i  | nte  | rru  | pt is | ger   | era  | ted  |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk n | nemo  | ory 1 | to D  | IN [  | OMA   | do    | ne i  | inte | rru        | pt i. | e. n  | o ir  | ter   | rup  | t is | ger   | nera  | ted  |      |
| D      | RW    | DOUT_TO_MEM_M  | ASK        |      |        |       |      |       | The  | DO   | UT t  | o m   | emo   | ory   | DM    | A d   | one   | int  | erru       | pt n  | nas   | k.    |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k D0  | TUC   | to    | men   | nor   | y Di  | MA   | dor        | e in  | iter  | rup   | t i.e | . in | ter  | rup   | t is  |      |      |
|        |       |                |            |      |        |       |      |       | gen  | erat | ted   |       |       |       |       |       |       |      |            |       |       |       |       |      |      |       |       |      |      |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk D | TUO   | to    | mer   | nor   | y DN  | ЛΑ    | don   | e ir | iter       | rupt  | i.e   | . no  | int   | err  | upt  | is g  | gene  | rate | d    |
| Ε      | RW    | AHB_ERR_MASK   |            |      |        |       |      |       | The  | AH   | B eri | ror i | nter  | rup   | ot m  | ask   |       |      |            |       |       |       |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k Al  | НВ е  | rro   | r int | erri  | upt   | i.e. | inte       | rrup  | ot is | ge    | ner   | ate  | d    |       |       |      |      |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk A | нв е  | erro  | r int | errı  | upt i | .e.   | no i  | nte  | rrup       | t is  | ger   | nera  | ted   |      |      |       |       |      |      |
| F      | RW    | PKA_MASK       |            |      |        |       |      |       | The  | PK/  | A en  | d of  | оре   | erat  | ion i | nte   | rru   | ot r | nasl       | ζ.    |       |       |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k Pk  | (A e  | nd o  | of op | er    | atio  | n in | terr       | upt   | i.e.  | int   | errı  | ıpt  | is g | ene   | erate | d    |      |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk P | KA e  | nd o  | of o  | pera  | atior | in    | terr  | upt  | i.e.       | no    | inte  | erru  | pt i  | s ge | ene  | rate  | ed    |      |      |
| G      | RW    | RNG_MASK       |            |      |        |       |      |       | The  | RN   | G int | terri | upt   | mas   | sk.   |       |       |      |            |       |       |       |       |      |      |       |       |      |      |
|        |       |                | IRQEnable  | 0    |        |       |      |       | Do   | not  | mas   | k RN  | NG i  | nter  | rrup  | t i.e | e. in | teri | upt        | is g  | ene   | erat  | ed    |      |      |       |       |      |      |
|        |       |                | IRQDisable | 1    |        |       |      |       | Ma   | sk R | NG i  | ntei  | rrup  | t i.e | e. no | int   | erru  | ıpt  | is g       | enei  | rate  | d     |       |      |      |       |       |      |      |

#### 6.1.13.5.1.3 ICR

Address offset: 0xA08


Interrupt clear register. Writing a 1 bit into a field in this register will clear the corresponding bit in IRR.

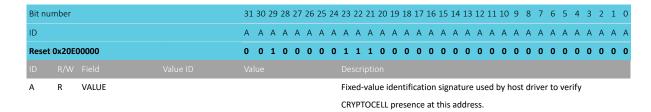
| Bit nu | ımber |                    | 31 3 | 0 29 | 28 2 | 27 2 | 26 2 | 5 24                                         | 23  | 22                                          | 21   | 20 1  | 9 1   | 8 17  | 16    | 15   | 14 : | 13 : | 12 1 | 1 10 | 9    | 8    | 7  | 6   | 5   | 4  | 3    | 2 | 1 0 |
|--------|-------|--------------------|------|------|------|------|------|----------------------------------------------|-----|---------------------------------------------|------|-------|-------|-------|-------|------|------|------|------|------|------|------|----|-----|-----|----|------|---|-----|
| ID     |       |                    |      |      |      |      |      |                                              |     |                                             |      |       |       |       |       |      |      |      |      | G    | F    | Ε    | D  | С   | В   | Α  |      |   |     |
| Reset  | 0x000 | 00000              | 0 (  | 0    | 0    | 0 (  | 0 (  | 0                                            | 0   | 0                                           | 0    | 0     | 0 0   | 0     | 0     | 0    | 0    | 0    | 0 (  | 0    | 0    | 0    | 0  | 0   | 0   | 0  | 0    | 0 | 0 0 |
| ID     |       |                    |      |      |      |      |      |                                              |     |                                             |      |       |       |       |       |      |      |      |      |      |      |      |    |     |     |    |      |   |     |
| Α      | W     | SRAM_TO_DIN_CLEAR  |      |      |      |      |      |                                              | The | e RI                                        | NG S | SRAI  | M to  | DIN   | N DN  | 1A ( | don  | e in | terr | upt  | clea | ır.  |    |     |     |    |      |   |     |
| В      | W     | DOUT_TO_SRAM_CLEAR |      |      |      |      |      |                                              | The | e D                                         | OUT  | to    | RNG   | SRA   | AM I  | OM   | A do | one  | inte | rru  | pt c | ear  |    |     |     |    |      |   |     |
| С      | W     | MEM_TO_DIN_CLEAR   |      |      |      |      |      |                                              |     | The memory to DIN DMA done interrupt clear. |      |       |       |       |       |      |      |      |      |      |      |      |    |     |     |    |      |   |     |
| D      | W     | DOUT_TO_MEM_CLEAR  |      |      |      |      |      | The DOUT to memory DMA done interrupt clear. |     |                                             |      |       |       |       |       |      |      |      |      |      |      |      |    |     |     |    |      |   |     |
| E      | W     | AHB_ERR_CLEAR      |      |      |      |      |      |                                              | The | e Al                                        | нв є | erro  | rint  | erru  | pt c  | lear |      |      |      |      |      |      |    |     |     |    |      |   |     |
| F      | W     | PKA_CLEAR          |      |      |      |      |      |                                              | The | e Pl                                        | KA e | nd o  | of op | oera  | tion  | int  | erru | ıpt  | clea | r.   |      |      |    |     |     |    |      |   |     |
| G      | W     | RNG_CLEAR          |      |      |      |      |      |                                              | The | e RI                                        | NG i | nter  | rup   | t cle | ar. F | legi | ster | RN   | IG_I | SR i | n th | e RI | NG | eng | ine | mu | st b | e |     |
|        |       |                    |      |      |      |      |      |                                              | cle | are                                         | d be | efore | e thi | s int | terru | ıpt  | can  | be   | clea | red. |      |      |    |     |     |    |      |   |     |

#### 6.1.13.5.1.4 ENDIANNESS

Address offset: 0xA0C

This register defines the endianness of the Host-accessible registers, and can only be written once.






| Bit nu | ımber |             |              | 31 3 | 0 29 | 28 2 | 7 26 | 25 24 | 1 23 | 22   | 21   | 20 1 | 9 1  | 8 1  | 7 1   | 6 15  | 5 1  | 4 13   | 12   | 11   | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 : | 1 0 |
|--------|-------|-------------|--------------|------|------|------|------|-------|------|------|------|------|------|------|-------|-------|------|--------|------|------|----|---|---|---|---|---|---|-----|-----|-----|
| ID     |       |             |              |      |      |      |      |       |      |      |      |      |      |      |       | D     | )    |        |      | С    |    |   |   | В |   |   |   | Α   |     |     |
| Reset  | 0x000 | 00000       |              | 0 (  | 0 0  | 0 (  | 0 0  | 0 0   | 0    | 0    | 0    | 0 (  | ) (  | 0 (  | ) (   | 0     | 0    | 0      | 0    | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | ) ( | 0   |
|        |       |             |              |      |      |      |      |       |      |      |      |      |      |      |       |       |      |        |      |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | LittleEndian | 0    |      |      |      |       | Со   | nfig | ure  | DOL  | JT · | writ | e a   | s lit | tle- | end    | ian  |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | BigEndian    | 1    |      |      |      |       | Со   | nfig | ure  | DOL  | JT · | writ | e a   | s bi  | g-e  | ndia   | n    |      |    |   |   |   |   |   |   |     |     |     |
| В      | RW    | DIN_RD_BG   |              |      |      |      |      |       | DII  | V re | ad e | endi | anr  | ness |       |       |      |        |      |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | LittleEndian | 0    |      |      |      |       | Со   | nfig | ure  | DIN  | rea  | ad a | s lit | ttle- | en   | dian   |      |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | BigEndian    | 1    |      |      |      |       | Со   | nfig | ure  | DIN  | rea  | ad a | s b   | ig-e  | ndi  | an     |      |      |    |   |   |   |   |   |   |     |     |     |
| С      | RW    | DOUT_WR_WBG |              |      |      |      |      |       | DC   | UT   | wri  | te w | orc  | l en | dia   | nne   | SS.  |        |      |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | LittleEndian | 0    |      |      |      |       | Со   | nfig | ure  | DOL  | JT · | writ | e w   | ord   | l as | little | e-eı | ndia | n  |   |   |   |   |   |   |     |     |     |
|        |       |             | BigEndian    | 1    |      |      |      |       | Со   | nfig | ure  | DOL  | JT · | writ | e w   | ord   | l as | big-   | end  | lian |    |   |   |   |   |   |   |     |     |     |
| D      | RW    | DIN_RD_WBG  |              |      |      |      |      |       | DII  | V re | ad v | word | l er | ndia | nne   | ess.  |      |        |      |      |    |   |   |   |   |   |   |     |     |     |
|        |       |             | LittleEndian | 0    |      |      |      |       | Со   | nfig | ure  | DIN  | rea  | ad v | vor   | d as  | litt | le-e   | ndi  | an   |    |   |   |   |   |   |   |     |     |     |
|        |       |             | BigEndian    | 1    |      |      |      |       | Со   | nfig | ure  | DIN  | rea  | ad v | vor   | d as  | big  | g-en   | dia  | 1    |    |   |   |   |   |   |   |     |     |     |
|        |       |             |              |      |      |      |      |       |      |      |      |      |      |      |       |       |      |        |      |      |    |   |   |   |   |   |   |     |     |     |

### 6.1.13.5.1.5 HOST\_SIGNATURE

Address offset: 0xA24

This register holds the CRYPTOCELL subsystem signature. See reset value.



### 6.1.13.5.1.6 HOST\_BOOT

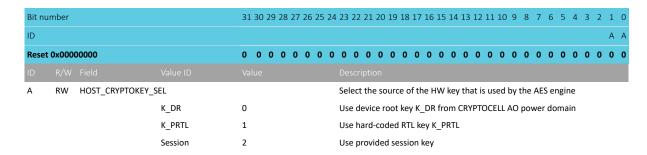
Address offset: 0xA28

Hardware configuration of the CRYPTOCELL subsystem. Reset value holds the supported features.

| Bit n | umber   |                    |           | 31 | . 30 | 29 | 28 | 27 2 | 26 25 | 24 | 23   | 22  | 21 2 | 20 1  | 9 18  | 3 17   | 16    | 15 1 | 14 1 | L3 1  | L2 1 | 11 1  | .0 9 | 9 8 | 7    | 6 | 5 | 4 | 3 2 | 2 1 | . 0 |
|-------|---------|--------------------|-----------|----|------|----|----|------|-------|----|------|-----|------|-------|-------|--------|-------|------|------|-------|------|-------|------|-----|------|---|---|---|-----|-----|-----|
| ID    |         |                    |           |    | b    | а  | Z  | Υ    | x w   | V  | U    | Т   | S    | R C   | Į P   | 0      | N     | M    | L    | K     | J    | 1 1   | H (  | G F | F    | F | Ε |   | D ( | СВ  | 3 A |
| Rese  | t 0x462 | 2982C              |           | 0  | 1    | 0  | 0  | 0    | 1 1   | 0  | 0    | 0   | 1    | 0 0   | 0     | 1      | 0     | 1    | 0    | 0     | 1    | 1     | 0 (  | 0   | 0    | 0 | 1 | 0 | 1 1 | L 0 | 0   |
| ID    |         |                    |           |    |      |    |    |      |       |    |      |     |      |       |       |        |       |      |      |       |      |       |      |     |      |   |   |   |     |     |     |
| Α     | R       | POWER_GATING_EXIS  | STS_LOCAL |    |      |    |    |      |       |    | If t | his | flag | is se | t, fu | ıll po | owe   | r ga | ting | g is  | imp  | olen  | nen  | ted |      |   |   |   |     |     |     |
| В     | R       | LARGE_RKEK_LOCAL   |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, la | rge    | RKE   | K is | sup  | ро    | rte  | d     |      |     |      |   |   |   |     |     |     |
| С     | R       | HASH_IN_FUSES_LOC  | CAL       |    |      |    |    |      |       |    | If t | his | flag | is se | t, H  | ASH    | in f  | use  | s is | sup   | ро   | rte   | ł    |     |      |   |   |   |     |     |     |
| D     | R       | EXT_MEM_SECURED_   | _LOCAL    |    |      |    |    |      |       |    | If t | his | flag | is se | t, ex | kteri  | nal s | ecu  | ire  | mei   | mo   | ry is | su   | рро | rted |   |   |   |     |     |     |
| Е     | R       | RKEK_ECC_EXISTS_LO | CAL_N     |    |      |    |    |      |       |    | If t | his | flag | is se | t, RI | KEK    | ECC   | is s | up   | oort  | ted  |       |      |     |      |   |   |   |     |     |     |
| F     | R       | SRAM_SIZE_LOCAL    |           |    |      |    |    |      |       |    | SR   | AM  | size |       |       |        |       |      |      |       |      |       |      |     |      |   |   |   |     |     |     |
| G     | R       | DSCRPTR_EXISTS_LOC | CAL       |    |      |    |    |      |       |    | If t | his | flag | is se | t, D  | escr   | ipto  | rs a | re s | sup   | por  | ted   |      |     |      |   |   |   |     |     |     |
| Н     | R       | PAU_EXISTS_LOCAL   |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, P  | AU is  | sup   | оро  | rte  | d     |      |       |      |     |      |   |   |   |     |     |     |
| 1     | R       | RNG_EXISTS_LOCAL   |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne RI  | NG 6  | eng  | ine  | is p  | res  | ent   |      |     |      |   |   |   |     |     |     |
| J     | R       | PKA_EXISTS_LOCAL   |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne Pl  | KA e  | ngi  | ne i | is pı | rese | ent   |      |     |      |   |   |   |     |     |     |
| K     | R       | RC4_EXISTS_LOCAL   |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne Ro  | C4 e  | ngi  | ne i | s pı  | rese | ent   |      |     |      |   |   |   |     |     |     |
| L     | R       | SHA_512_PRSNT_LOC  | CAL       |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne H   | ASH   | en   | gine | e su  | pp   | orts  | SH   | A51 | 2    |   |   |   |     |     |     |
| М     | R       | SHA_256_PRSNT_LOC  | CAL       |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne H   | ASH   | en   | gine | e su  | pp   | orts  | SH   | A25 | 6    |   |   |   |     |     |     |
| N     | R       | MD5_PRSNT_LOCAL    |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne H   | ASH   | en   | gine | e su  | pp   | orts  | M    | )5  |      |   |   |   |     |     |     |
| 0     | R       | HASH_EXISTS_LOCAL  |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne H   | ASH   | en   | gine | e is  | pre  | sen   | t    |     |      |   |   |   |     |     |     |
| Р     | R       | C2_EXISTS_LOCAL    |           |    |      |    |    |      |       |    | If t | his | flag | is se | t, th | ne C   | 2 en  | gin  | e is | pre   | ser  | nt    |      |     |      |   |   |   |     |     |     |
|       |         |                    |           |    |      |    |    |      |       |    |      |     |      |       |       |        |       |      |      |       |      |       |      |     |      |   |   |   |     |     |     |



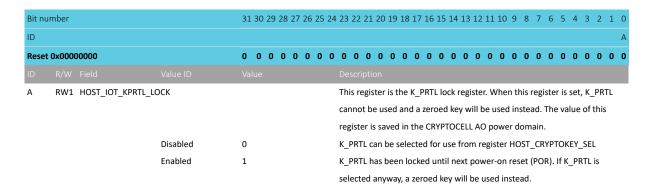



| Dit no  | ımber |                               | 21 | 20 | 20.1 | 20.5 | 27 26 | c 2 | г 24 | 1 22 | 2 22 | 21   | 20   | 10   | 10  | 17   | 1.0 | 1 [  | 1 /             | 12    | 12   | 11   | 10   | 0    | 0   | 7    | _   | г     | 1   | 2    | 2   | 1 | 0 |
|---------|-------|-------------------------------|----|----|------|------|-------|-----|------|------|------|------|------|------|-----|------|-----|------|-----------------|-------|------|------|------|------|-----|------|-----|-------|-----|------|-----|---|---|
| DIL IIL | mber  |                               | 21 | 30 | 29 2 | 20 2 | 2/ 20 | 0 2 | 5 24 | + Z3 | 5 22 | 21   | 20   | 19   | 10  | 1/   | 10  | 15   | 14              | 13    | 12   | 11   | 10   | 9    | _   |      | О   | 5     | 4   | 3    | 2   | 1 | U |
| ID      |       |                               |    | b  | а    | Z    | Y X   | V   | V V  | U    | T    | S    | R    | Q    | Р   | 0    | N   | М    | L               | K     | J    | 1    | Н    | G    | F   | F    | F   | Ε     |     | D    | С   | В | Α |
| Reset   | 0x462 | 2982C                         | 0  | 1  | 0    | 0    | 0 1   | . 1 | 1 0  | 0    | 0    | 1    | 0    | 0    | 0   | 1    | 0   | 1    | 0               | 0     | 1    | 1    | 0    | 0    | 0   | 0    | 0   | 1     | 0   | 1    | 1   | 0 | 0 |
| ID      |       |                               |    |    |      |      |       |     |      |      |      |      |      |      |     |      |     |      |                 |       |      |      |      |      |     |      |     |       |     |      |     |   |   |
| Q       | R     | DES_EXISTS_LOCAL              |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e DE | S e | eng  | ine             | is p  | res  | en   | t    |      |     |      |     |       |     |      |     |   |   |
| R       | R     | AES_XCBC_MAC_EXISTS_LOCAL     |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | S X  | СВС | C-M  | AC              | mc    | de   | is s | upp  | por  | ted |      |     |       |     |      |     |   |   |
| S       | R     | AES_CMAC_EXISTS_LOCAL         |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | S CI | MA  | C n  | nod             | le is | su   | ppo  | orte | ed   |     |      |     |       |     |      |     |   |   |
| Т       | R     | AES_CCM_EXISTS_LOCAL          |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | s co | CM  | mo   | ode             | is s  | sup  | por  | ted  | ı    |     |      |     |       |     |      |     |   |   |
| U       | R     | AES_XEX_HW_T_CALC_LOCAL       |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | S XI | ΙXΞ | mo   | de <sup>·</sup> | T-va  | alue | e ca | lcu  | lati | on  | in H | lW  | is s  | upp | ort  | ed  |   |   |
| V       | R     | AES_XEX_EXISTS_LOCAL          |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | S XI | ΙXΞ | mo   | de i            | is sı | Jpp  | ort  | ed   |      |     |      |     |       |     |      |     |   |   |
| W       | R     | CTR_EXISTS_LOCAL              |    |    |      |      |       |     |      | If   | this | flag | g is | set, | ΑE  | s c  | ΓRι | mo   | de i            | is sı | ирр  | ort  | ed   |      |     |      |     |       |     |      |     |   |   |
| Χ       | R     | AES_DIN_BYTE_RESOLUTION_LOCAL |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e AE | S e | ngi  | ine             | dat   | a ir | npu  | t su | ıpp  | ort | byt  | e s | ize   | res | olut | ion |   |   |
| Υ       | R     | TUNNELING_ENB_LOCAL           |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e AE | S e | engi | ine             | sup   | ро   | rts  | tun  | nel  | ing | ор   | era | tior  | าร  |      |     |   |   |
| Z       | R     | SUPPORT_256_192_KEY_LOCAL     |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e AE | S e | engi | ine             | sup   | ро   | rts  | 192  | 2/2  | 56  | oits | key | y siz | zes |      |     |   |   |
| a       | R     | ONLY_ENCRYPT_LOCAL            |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e AE | Se  | ngi  | ine             | onl   | y sı | upp  | ort  | en   | cry | ptic | n   |       |     |      |     |   |   |
| b       | R     | AES_EXISTS_LOCAL              |    |    |      |      |       |     |      | If   | this | flag | g is | set, | the | e AE | S e | ngi  | ine             | is p  | res  | ent  | t    |      |     |      |     |       |     |      |     |   |   |
|         |       |                               |    |    |      |      |       |     |      |      |      |      |      |      |     |      |     |      |                 |       |      |      |      |      |     |      |     |       |     |      |     |   |   |

#### 6.1.13.5.1.7 HOST\_CRYPTOKEY\_SEL

Address offset: 0xA38

AES hardware key select.

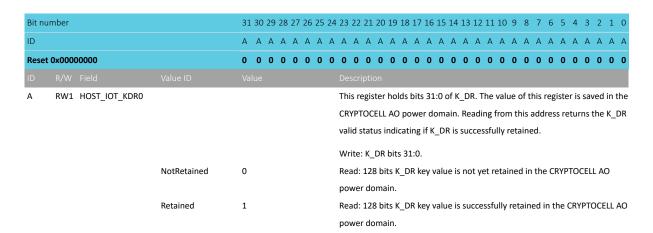

If the HOST\_IOT\_KPRTL\_LOCK register is set, and the HOST\_CRYPTOKEY\_SEL register set to 1, then the HW key that is connected to the AES engine is zero



#### 6.1.13.5.1.8 HOST\_IOT\_KPRTL\_LOCK

Address offset: 0xA4C

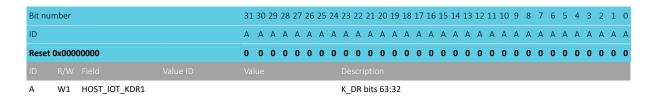
This write-once register is the K\_PRTL lock register. When this register is set, K\_PRTL cannot be used and a zeroed key will be used instead. The value of this register is saved in the CRYPTOCELL AO power domain.




#### 6.1.13.5.1.9 HOST\_IOT\_KDR0

Address offset: 0xA50

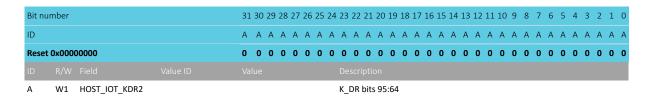



This register holds bits 31:0 of K\_DR. The value of this register is saved in the CRYPTOCELL AO power domain. Reading from this address returns the K\_DR valid status indicating if K\_DR is successfully retained.



#### 6.1.13.5.1.10 HOST\_IOT\_KDR1

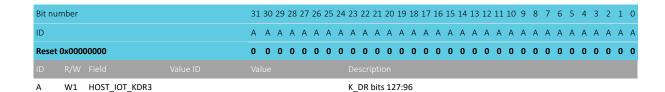
Address offset: 0xA54


This register holds bits 63:32 of K\_DR. The value of this register is saved in the CRYPTOCELL AO power domain.



### 6.1.13.5.1.11 HOST\_IOT\_KDR2

Address offset: 0xA58


This register holds bits 95:64 of K\_DR. The value of this register is saved in the CRYPTOCELL AO power domain.



#### 6.1.13.5.1.12 HOST\_IOT\_KDR3

Address offset: 0xA5C

This register holds bits 127:96 of K\_DR. The value of this register is saved in the CRYPTOCELL AO power domain.







### 6.1.13.5.1.13 HOST\_IOT\_LCS

Address offset: 0xA60

Controls life-cycle state (LCS) for CRYPTOCELL subsystem

| Bit nu | umber   |              |             | 31 | 30 2 | 29 2 | 8 27 | 7 26 | 25 | 24 | 23   | 22   | 21   | 20    | 19   | 18 1  | L7 1  | 6 1   | 5 14 | 13   | 12    | 11   | 10    | 9     | 8 7  | 7 6  | 5 5  | 4    | 3    | 2 | 1 | 0 |
|--------|---------|--------------|-------------|----|------|------|------|------|----|----|------|------|------|-------|------|-------|-------|-------|------|------|-------|------|-------|-------|------|------|------|------|------|---|---|---|
| ID     |         |              |             |    |      |      |      |      |    |    |      |      |      |       |      |       |       |       |      |      |       |      |       |       | В    |      |      |      |      | Α | Α | Α |
| Rese   | t 0x000 | 00002        |             | 0  | 0    | 0 (  | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0     | 0    | 0     | 0 (   | ) (   | 0    | 0    | 0     | 0    | 0     | 0     | 0 (  | ) (  | 0    | 0    | 0    | 0 | 1 | 0 |
| ID     |         |              |             |    |      |      |      |      |    |    |      |      |      |       |      |       |       |       |      |      |       |      |       |       |      |      |      |      |      |   |   |   |
| Α      | RW1     | LCS          |             |    |      |      |      |      |    |    | Life | -су  | cle  | sta   | te v | alue  | e. Tl | nis f | ield | is v | vrite | e-or | nce p | oer   | rese | t.   |      |      |      |   |   |   |
|        |         |              | DebugEnable | 0  |      |      |      |      |    |    | CC3  | 310  | ор   | era   | tes  | in d  | ebu   | g m   | ode  |      |       |      |       |       |      |      |      |      |      |   |   |   |
|        |         |              | Secure      | 2  |      |      |      |      |    |    | CC3  | 310  | ор   | era   | tes  | in s  | ecu   | e m   | ode  | 9    |       |      |       |       |      |      |      |      |      |   |   |   |
| В      | R       | LCS_IS_VALID |             |    |      |      |      |      |    |    | Rea  | ıd-c | only | y fie | ld.  | Indi  | cate  | s if  | CRY  | PTO  | OCE   | LL L | .CS h | ias l | bee  | า รเ | ıcce | ssfu | ılly |   |   |   |
|        |         |              |             |    |      |      |      |      |    |    | con  | figu | ure  | d si  | nce  | las   | t res | et.   |      |      |       |      |       |       |      |      |      |      |      |   |   |   |
|        |         |              | Invalid     | 0  |      |      |      |      |    |    | Vali | d L  | .CS  | not   | yet  | ret   | aine  | d ir  | th   | e CF | RYP   | OC   | ELL   | ΑO    | pov  | /er  | don  | nair | 1    |   |   |   |
|        |         |              | Valid       | 1  |      |      |      |      |    |    | Vali | d L  | .CS  | suc   | ces  | sfull | y re  | tair  | ed   | in t | he C  | RYI  | PTO   | CELI  | L AC | ро   | wei  | r do | mai  | n |   |   |

### 6.1.13.6 RNG SRAM interface

The RNG\_SRAM interface enable reading and writing data to RNG SRAM.

### 6.1.13.6.1 Registers

#### **Instances**

| Instance    | Base address | TrustZone |     |     | Split access | Description                   |
|-------------|--------------|-----------|-----|-----|--------------|-------------------------------|
|             |              | Мар       | Att | DMA |              |                               |
| CC_RNG_SRAM | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL RNG SRAM interface |

### **Register overview**

| Register        | Offset TZ | Z | Description                                                                       |
|-----------------|-----------|---|-----------------------------------------------------------------------------------|
| SRAM_DATA       | 0xF00     |   | Read/Write data from RNG SRAM                                                     |
| SRAM_ADDR       | 0xF04     |   | First address given to RNG SRAM DMA for read/write transactions from/to RNG SRAM. |
| SRAM_DATA_READY | 0xF08     |   | RNG SRAM DMA engine is ready to read/write from/to RNG SRAM.                      |

### 6.1.13.6.1.1 SRAM\_DATA

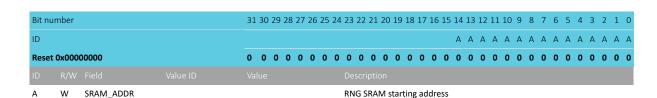
Address offset: 0xF00

Read/Write data from RNG SRAM

| Α     | RW      | SRAM_DATA |    |      |      |       |      |      |    | 32 | bits | D۱ | ИΑι  | reac | l/wr | ite f | rom | /to | RN | G S  | RAN  | 1. A | 're | ad' | or  | 'wri | te' d | pei | atio | n t | О |
|-------|---------|-----------|----|------|------|-------|------|------|----|----|------|----|------|------|------|-------|-----|-----|----|------|------|------|-----|-----|-----|------|-------|-----|------|-----|---|
| ID    |         |           |    |      |      |       |      |      |    |    |      |    |      |      |      |       |     |     |    |      |      |      |     |     |     |      |       |     |      |     |   |
| Rese  | t 0x000 | 00000     | 0  | 0    | 0    | 0 0   | 0    | 0    | 0  | 0  | 0    | 0  | 0    | 0    | 0 0  | 0     | 0   | 0   | 0  | 0    | 0    | 0 (  | 0 ( | ) ( | ) ( | 0    | 0     | 0   | 0    | 0   | 0 |
| ID    |         |           | А  | Α    | Α.   | А А   | A    | Α    | Α  | Α  | Α    | Α  | Α    | Α ,  | 4 А  | Α     | Α   | Α   | Α  | Α    | A    | Δ ,  | Δ , | Α Α | ۸ ۸ | Δ Δ  | Α     | Α   | Α    | Α   | Α |
| Bit n | umber   |           | 31 | 30 2 | 29 2 | 28 27 | 7 26 | 5 25 | 24 | 23 | 22   | 21 | 20 : | 19 1 | 8 17 | 7 16  | 15  | 14  | 13 | 12 : | 11 1 | .0 9 | 9 8 | 3 7 | 7   | 5 5  | 4     | 3   | 2    | 1   | 0 |

32 bits DMA read/write from/to RNG SRAM. A 'read' or 'write' operation to this register will trigger the DMA address to be automatically incremented.  $\label{eq:decomposition}$ 

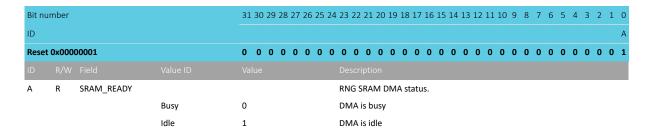
### 6.1.13.6.1.2 SRAM\_ADDR


Address offset: 0xF04

4512\_092 v1.1

First address given to RNG SRAM DMA for read/write transactions from/to RNG SRAM.

148






#### 6.1.13.6.1.3 SRAM\_DATA\_READY

Address offset: 0xF08

RNG SRAM DMA engine is ready to read/write from/to RNG SRAM.



### 6.1.13.7 MISC interface

The MISC interface controls clocks for the individual engines within the CRYPTOCELL subsystem.

Each cryptographic engine has an individual register for performing clock gating. Engine clock status is displayed in register CLK\_STATUS on page 150.

**Note:** Clock control for the RNG engine on page 120 is handled by register RNG\_CLK on page 129 and not through the MISC interface.

### 6.1.13.7.1 Registers

#### **Instances**

| Instance | Base address | TrustZone | •   |     | Split access | Description               |
|----------|--------------|-----------|-----|-----|--------------|---------------------------|
|          |              | Мар       | Att | DMA |              |                           |
| CC_MISC  | 0x50841000   | HF        | S   | NSA | No           | CRYPTOCELL MISC interface |

### **Register overview**

| Register   | Offset | TZ | Description                          |
|------------|--------|----|--------------------------------------|
| AES_CLK    | 0x810  |    | Clock control for the AES engine.    |
| HASH_CLK   | 0x818  |    | Clock control for the HASH engine.   |
| PKA_CLK    | 0x81C  |    | Clock control for the PKA engine.    |
| DMA_CLK    | 0x820  |    | Clock control for the DMA engines.   |
| CLK_STATUS | 0x824  |    | CRYPTOCELL clocks status register.   |
| CHACHA_CLK | 0x858  |    | Clock control for the CHACHA engine. |

#### 6.1.13.7.1.1 AES\_CLK

Address offset: 0x810

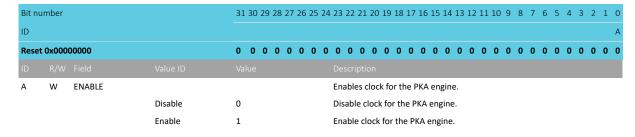
Clock control for the AES engine.



| Bit number       | 31 30 29 28 | 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|------------------|-------------|---------------------------------------------------------------------------|
| ID               |             | A                                                                         |
| Reset 0x00000000 | 0 0 0 0     | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                                 |
| ID R/W Field Va  |             | Description                                                               |
| A W ENABLE       |             | Enables clock for the AES engine.                                         |
| Di               | sable 0     | Disable clock for the AES engine.                                         |
| En               | able 1      | Enable clock for the AES engine.                                          |

### 6.1.13.7.1.2 HASH\_CLK

Address offset: 0x818


Clock control for the HASH engine.

| Bit nu | ımber |        |         | 31 30 29 28 27 26 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|--------|---------|-------------------|---------------------------------------------------------------------|
| ID     |       |        |         |                   | A                                                                   |
| Reset  | 0x000 | 00000  |         | 0 0 0 0 0 0       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID     |       |        |         |                   |                                                                     |
| Α      | W     | ENABLE |         |                   | Enables clock for the HASH engine.                                  |
|        |       |        | Disable | 0                 | Disable clock for the HASH engine.                                  |
|        |       |        | Enable  | 1                 | Enable clock for the HASH engine.                                   |

### 6.1.13.7.1.3 PKA\_CLK

Address offset: 0x81C

Clock control for the PKA engine.



### 6.1.13.7.1.4 DMA\_CLK

Address offset: 0x820

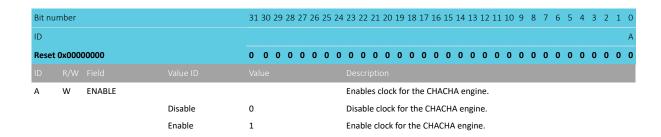
Clock control for the DMA engines.

| Bit nu | umber   |        |         | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|--------|---------|----------------------|------------------------------------------------------------------|
| ID     |         |        |         |                      | A                                                                |
| Rese   | t 0x000 | 00000  |         | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID     |         |        |         |                      |                                                                  |
| Α      | W       | ENABLE |         |                      | Enables clock for the DMA engines.                               |
|        |         |        | Disable | 0                    | Disable clock for the DMA engines.                               |
|        |         |        | Enable  | 1                    | Enable clock for the DMA engines.                                |

### 6.1.13.7.1.5 CLK\_STATUS

Address offset: 0x824

CRYPTOCELL clocks status register.




| Bit nu | ımber |            |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |            |          |                         | E D C B A                                                       |
| Reset  | 0x000 | 00100      |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
|        |       |            |          |                         |                                                                 |
| Α      | R     | AES_CLK    |          |                         | Status of AES engine clock.                                     |
|        |       |            | Disabled | 0                       | Clock for AES engine is disabled                                |
|        |       |            | Enabled  | 1                       | Clock for AES engine is enabled                                 |
| В      | R     | HASH_CLK   |          |                         | Status of HASH engine clock.                                    |
|        |       |            | Disabled | 0                       | Clock for HASH engine is disabled                               |
|        |       |            | Enabled  | 1                       | Clock for HASH engine is enabled                                |
| С      | R     | PKA_CLK    |          |                         | Status of PKA engine clock.                                     |
|        |       |            | Disabled | 0                       | Clock for PKA engine is disabled                                |
|        |       |            | Enabled  | 1                       | Clock for PKA engine is enabled                                 |
| D      | R     | CHACHA_CLK |          |                         | Status of CHACHA engine clock.                                  |
|        |       |            | Disabled | 0                       | Clock for CHACHA engine is disabled                             |
|        |       |            | Enabled  | 1                       | Clock for CHACHA engine is enabled                              |
| E      | R     | DMA_CLK    |          |                         | Status of DMA engines clock.                                    |
|        |       |            | Disabled | 0                       | Clocks for DMA engines are disabled                             |
|        |       |            | Enabled  | 1                       | Clocks for DMA engines are enabled                              |

#### 6.1.13.7.1.6 CHACHA\_CLK

Address offset: 0x858

Clock control for the CHACHA engine.



# 6.2 DPPI - Distributed programmable peripheral interconnect

The distributed programmable peripheral interconnect (DPPI) enables peripherals to interact autonomously with each other by using tasks and events, without any intervention from the CPU. DPPI allows precise synchronization between peripherals when real-time application constraints exist and eliminates the need for CPU involvement to implement behavior which can be predefined using the DPPI.

**Note:** For more information on tasks, events, publish/subscribe, interrupts, and other concepts, see Peripheral interface on page 15.

The DPPI has the following features:

- · Peripheral tasks can subscribe to channels
- Peripheral events can be published on channels
- Publish/subscribe pattern enabling multiple connection options that include the following:
  - One-to-one
  - One-to-many

NOPDIC

- Many-to-one
- Many-to-many

The DPPI consists of several PPIBus modules, which are connected to a fixed number of DPPI channels and a DPPI configuration (DPPIC).




Figure 18: DPPI overview

### 6.2.1 Subscribing to and publishing on channels

The PPIBus can route peripheral events onto the channels (publishing), or route events from the channels into peripheral tasks (subscribing).

All peripherals include the following:

- One subscribe register per task
- One publish register per event

Publish and subscribe registers use a channel index field to determine the channel to which the event is published or tasks subscribed. In addition, there is an enable bit for the subscribe and publish registers that needs to be enabled before the subscription or publishing takes effect.

Writing non-existing channel index (CHIDX) numbers into a peripheral's publish or subscribe registers will yield unexpected results.

One event can trigger multiple tasks by subscribing different tasks to the same channel. Similarly, one task can be triggered by multiple events by publishing different events to the same channel. For advanced use cases, multiple events and multiple tasks can connect to the same channel forming a many-to-many connection. If multiple events are published on the same channel at the same time, the events are merged and only one event is routed through the DPPI.



How peripheral events are routed onto different channels based on publish registers is illustrated in the following figure.

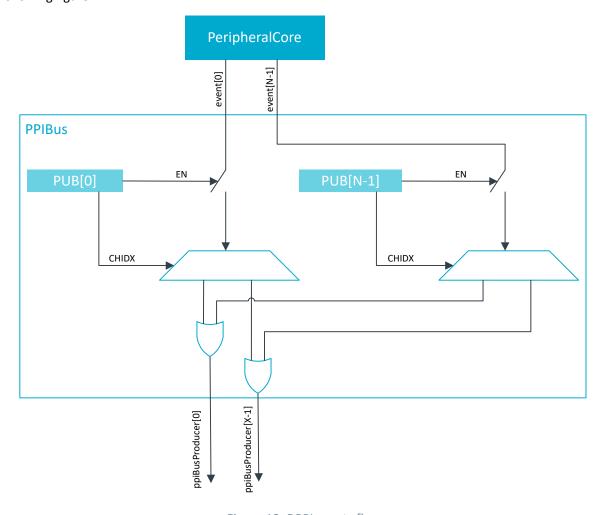



Figure 19: DPPI events flow

The following figure illustrates how peripheral tasks are triggered from different channels based on subscribe registers.



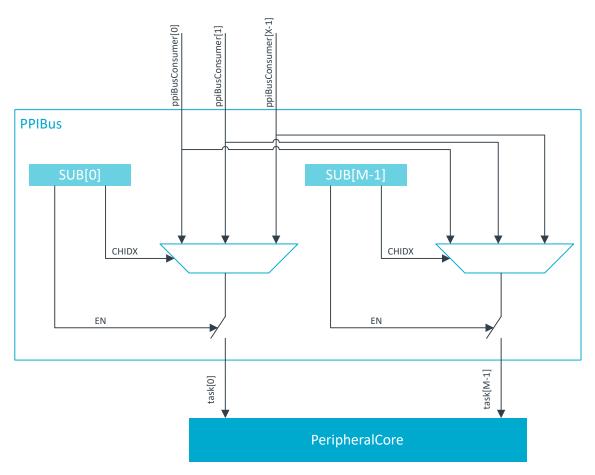



Figure 20: DPPI tasks flow

### 6.2.2 DPPI configuration (DPPIC)

Enabling and disabling of channels globally is handled through the DPPI configuration (DPPIC). Connection (connect/disconnect) between a channel and a peripheral is handled locally by the PPIBus.

There are two ways of enabling and disabling global channels using the DPPI configuration:

- Enable or disable channels individually using registers CHEN, CHENSET, and CHENCLR.
- Enable or disable channels in channel groups using the groups' tasks ENABLE and DISABLE. It needs to be defined which channels belong to which channel groups before these tasks are triggered.

**Note:** ENABLE tasks are prioritized over DISABLE tasks. When a channel belongs to two or more groups, for example group m and n, and the tasks CHG[m].EN and CHG[n].DIS occur simultaneously (m and n can be equal or different), the CHG[m].EN task on that channel is prioritized.

The DPPI configuration tasks (for example CHG[0].EN) can be triggered through DPPI like any other task, which means they can be linked to a DPPI channel through the subscribe registers.

In order to write to CHG[x], the corresponding CHG[x].EN and CHG[x].DIS subscribe registers must be disabled. Writes to CHG[x] are ignored if any of the two subscribe registers are enabled.

### 6.2.3 Connection examples

DPPI offers several connection options. Examples are given for how to create one-to-one and many-to-many connections.



#### One-to-one connection

This example shows how to create a one-to-one connection between TIMER compare register and SAADC start task.

The channel configuration is set up first. TIMERO will publish its COMPAREO event on channel 0, and SAADC will subscribe its START task to events on the same channel. After that, the channel is enabled through the DPPIC.

### Many-to-many connection

The example shows how to create a many-to-many connection, showcasing the DPPIC's channel group functionality.

A channel group that includes only channel 0 is set up first. Then the GPIOTE and TIMERO configure their INO and COMPAREO events respectively to be published on channel 0, while the SAADC configures its START task to subscribe to events on channel 0. Through DPPIC, the CHGO DISABLE task is configured to subscribe to events on channel 0. After an event is received on channel 0 it will be disabled. Finally, channel 0 is enabled using the DPPIC task to enable a channel group.

# 6.2.4 Special considerations for a system implementing TrustZone for Cortex-M processors

DPPI is implemented with split security, meaning it handles both secure and non-secure accesses. In a system implementing the TrustZone for Cortex-M technology, DPPI channels can be defined as secure or non-secure using the SPU.

A peripheral configured as non-secure will only be able to subscribe to or publish on non-secure DPPI channels. A peripheral configured as secure will be able to access all DPPI channels. DPPI handles both secure and non-secure accesses, but behaves differently depending on the access type:

• A non-secure peripheral access can only configure and control the DPPI channels defined as non-secure in the SPU.DPPI.PERM[] register(s)



A secure peripheral access can control all the DPPI channels, independently of the SPU.DPPI.PERM[]
register(s)

A group of channels can be created, making it possible to simultaneously enable or disable all channels within the group. The security attribute of a group of channels (secure or non-secure) is defined as follows:

- If all channels (enabled or not) within a group are non-secure, then the group is considered non-secure
- If at least one of the channels (enabled or not) within the group is secure, then the group is considered secure

A non-secure access to a DPPI register, or a bit field, controlling a channel marked as secure in SPU.DPPI[].PERM register(s) will be ignored. Write accesses will have no effect, and read accesses will always return a zero value.

No exceptions are triggered when non-secure accesses target a register or a bit field controlling a secure channel. For example, if the bit  $\pm$  is set in the SPU.DPPI[0].PERM register (declaring DPPI channel i as secure), then:

- Non-secure write accesses to registers CHEN, CHENSET, and CHENCLR cannot write bit  $\mathtt{i}$  of these registers
- Non-secure write accesses to TASK\_CHG[j].EN and TASK\_CHG[j].DIS registers are ignored if the channel group j contains at least one channel defined as secure (it can be the channel i itself or any channel declared as secure)
- Non-secure read accesses to registers CHEN, CHENSET, and CHENCLR always read 0 for the bit at
  position i

For the channel configuration registers (CHG[]), access from non-secure code is only possible if the included channels are all non-secure, whether the channels are enabled or not. If a CHG[g] register included one or more secure channel(s), then the group g is considered as secure, and only secure transfers can read to or write from CHG[g]. A non-secure write access is ignored, and a non-secure read access returns 0.

The DPPI can subscribe to secure and non-secure channels through the SUBSCRIBE\_CHG[] registers, in order to trigger the task for enabling or disabling groups of channels. An event from a secure channel will be ignored if the group subscribing to this channel is non-secure. A secure group can subscribe to a non-secure channel or a secure channel.

### 6.2.5 Registers

#### **Instances**

| Instance   | Base address | TrustZone | e   |     | Split access | Description        |
|------------|--------------|-----------|-----|-----|--------------|--------------------|
|            |              | Мар       | Att | DMA |              |                    |
| DPPIC : S  | 0x50017000   | ШЕ        | NC  | NIA | Vos          | DDDI configuration |
| DPPIC : NS | 0x40017000   | HF        | NS  | NA  | Yes          | DPPI configuration |



### **Register overview**

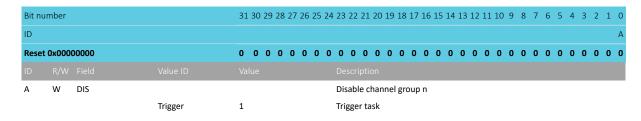
| Register             | Offset | TZ | Description                                                                |
|----------------------|--------|----|----------------------------------------------------------------------------|
| TASKS_CHG[n].EN      | 0x000  |    | Enable channel group n                                                     |
| TASKS_CHG[n].DIS     | 0x004  |    | Disable channel group n                                                    |
| SUBSCRIBE_CHG[n].EN  | 0x080  |    | Subscribe configuration for task CHG[n].EN                                 |
| SUBSCRIBE_CHG[n].DIS | 0x084  |    | Subscribe configuration for task CHG[n].DIS                                |
| CHEN                 | 0x500  |    | Channel enable register                                                    |
| CHENSET              | 0x504  |    | Channel enable set register                                                |
| CHENCLR              | 0x508  |    | Channel enable clear register                                              |
| CHG[n]               | 0x800  |    | Channel group n                                                            |
|                      |        |    | Note: Writes to this register are ignored if either SUBSCRIBE_CHG[n].EN or |
|                      |        |    | SUBSCRIBE_CHG[n].DIS is enabled                                            |

### 6.2.5.1 TASKS\_CHG[n] (n=0..5)

Channel group tasks

6.2.5.1.1 TASKS\_CHG[n].EN (n=0..5)

Address offset:  $0x000 + (n \times 0x8)$ 


Enable channel group n

| Bit ni | umber   |       |         | 31 30 2 | 9 28 2 | 27 26 2 | 5 24 | 1 23 | 22 2   | 1 20 | 19  | 18 1 | 7 16 | 15 | 14 | 13 12 | 2 11 | 10 | 9 8 | 7 | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|--------|---------|-------|---------|---------|--------|---------|------|------|--------|------|-----|------|------|----|----|-------|------|----|-----|---|---|---|---|-----|-----|---|
| ID     |         |       |         |         |        |         |      |      |        |      |     |      |      |    |    |       |      |    |     |   |   |   |   |     |     | Α |
| Rese   | t 0x000 | 00000 |         | 0 0 0   | 0 (    | 0 0 (   | 0    | 0    | 0 (    | 0    | 0   | 0 0  | 0    | 0  | 0  | 0 0   | 0    | 0  | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID     |         |       |         |         |        |         |      |      |        |      |     |      |      |    |    |       |      |    |     |   |   |   |   |     |     |   |
| Α      | W       | EN    |         |         |        |         |      | Ena  | able ( | chan | nel | grou | p n  |    |    |       |      |    |     |   |   |   |   |     |     |   |
|        |         |       | Trigger | 1       |        |         |      | Trig | ger    | task |     |      |      |    |    |       |      |    |     |   |   |   |   |     |     |   |

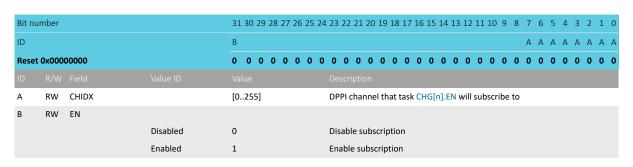
### 6.2.5.1.2 TASKS\_CHG[n].DIS (n=0..5)

Address offset:  $0x004 + (n \times 0x8)$ 

Disable channel group n



### 6.2.5.2 SUBSCRIBE\_CHG[n] (n=0..5)


Subscribe configuration for tasks

6.2.5.2.1 SUBSCRIBE\_CHG[n].EN (n=0..5)

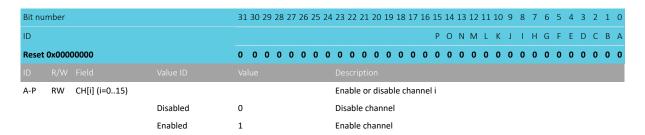
Address offset:  $0x080 + (n \times 0x8)$ 

Subscribe configuration for task CHG[n].EN





### 6.2.5.2.2 SUBSCRIBE\_CHG[n].DIS (n=0..5)


Address offset:  $0x084 + (n \times 0x8)$ 

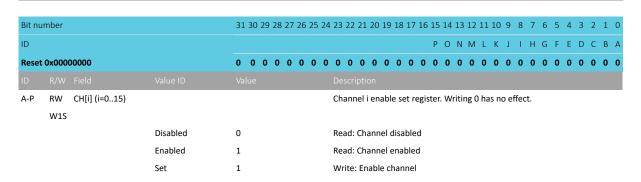
Subscribe configuration for task CHG[n].DIS

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A A                                               |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task CHG[n].DIS will subscribe to           |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       |          |                         |                                                               |

### 6.2.5.3 CHEN

Address offset: 0x500 Channel enable register



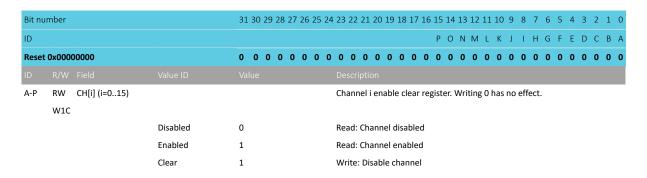

### **6.2.5.4 CHENSET**

Address offset: 0x504

Channel enable set register

Note: Read: Reads value of CHi field in CHEN register






#### **6.2.5.5 CHENCLR**

Address offset: 0x508

Channel enable clear register

Note: Read: Reads value of CHi field in CHEN register



### 6.2.5.6 CHG[n] (n=0..5)

Address offset:  $0x800 + (n \times 0x4)$ 

Channel group n

Note: Writes to this register are ignored if either SUBSCRIBE\_CHG[n].EN or SUBSCRIBE\_CHG[n].DIS is

enabled



# 6.3 EGU — Event generator unit

Event generator unit (EGU) provides support for interlayer signaling. This means providing support for atomic triggering of both CPU execution and hardware tasks, from both firmware (by CPU) and hardware (by PPI). This feature can, for instance, be used for triggering CPU execution at a lower priority execution from a higher priority execution, or to handle a peripheral's interrupt service routine (ISR) execution at a lower priority for some of its events. However, triggering any priority from any priority is possible.

Listed here are the main EGU features:



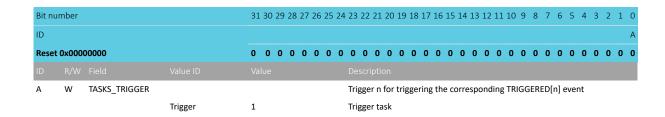
- Software-enabled interrupt triggering
- Separate interrupt vectors for every EGU instance
- Up to 16 separate event flags per interrupt for multiplexing

Each instance of EGU implements a set of tasks which can individually be triggered to generate the corresponding event, for example, the corresponding event for TASKS\_TRIGGER[n] is EVENTS\_TRIGGERED[n]. See Instances on page 160 for a list of EGU instances.

### 6.3.1 Registers

#### **Instances**

| Instance  | Base address | TrustZone |     |      | Split access | Description            |
|-----------|--------------|-----------|-----|------|--------------|------------------------|
|           |              | Мар       | Att | DMA  |              |                        |
| EGU0:S    | 0x5001B000   | US        | NS  | NA   | No           | Event generator unit 0 |
| EGU0: NS  | 0x4001B000   | 03        | 145 | NA.  | NO           | Event generator unit o |
| EGU1:S    | 0x5001C000   | US        | NS  | NA   | No           | Event generator unit 1 |
| EGU1: NS  | 0x4001C000   | 03        | NS  | IVA  | NO           | Event generator unit 1 |
| EGU2:S    | 0x5001D000   | US        | NS  | NA   | No           | Event generator unit 2 |
| EGU2 : NS | 0x4001D000   | 03        | NS  | NA . | NO           | Event generator unit 2 |
| EGU3:S    | 0x5001E000   | US        | NS  | NA   | No           | Event generator unit 3 |
| EGU3: NS  | 0x4001E000   | 03        | NS  | IVA  | NO           | Event generator unit 3 |
| EGU4:S    | 0x5001F000   | US        | NS  | NA   | No           | Event generator unit 4 |
| EGU4 : NS | 0x4001F000   | 03        | INS | INA  | NO           | Event generator unit 4 |
| EGU5: S   | 0x50020000   | US        | NS  | NA   | No           | Event generator unit E |
| EGU5: NS  | 0x40020000   | US        | INS | NA   | NO           | Event generator unit 5 |

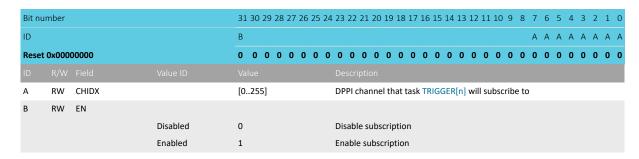

### **Register overview**

| Register             | Offset | TZ | Description                                                              |
|----------------------|--------|----|--------------------------------------------------------------------------|
| TASKS_TRIGGER[n]     | 0x000  |    | Trigger n for triggering the corresponding TRIGGERED[n] event            |
| SUBSCRIBE_TRIGGER[n] | 0x080  |    | Subscribe configuration for task TRIGGER[n]                              |
| EVENTS_TRIGGERED[n]  | 0x100  |    | Event number n generated by triggering the corresponding TRIGGER[n] task |
| PUBLISH_TRIGGERED[n] | 0x180  |    | Publish configuration for event TRIGGERED[n]                             |
| INTEN                | 0x300  |    | Enable or disable interrupt                                              |
| INTENSET             | 0x304  |    | Enable interrupt                                                         |
| INTENCLR             | 0x308  |    | Disable interrupt                                                        |

### 6.3.1.1 TASKS\_TRIGGER[n] (n=0..15)

Address offset:  $0x000 + (n \times 0x4)$ 

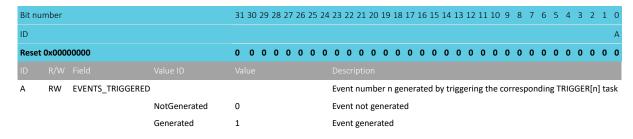
Trigger n for triggering the corresponding TRIGGERED[n] event






### 6.3.1.2 SUBSCRIBE\_TRIGGER[n] (n=0..15)

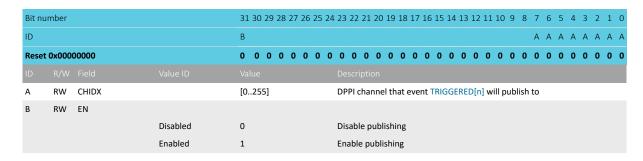
Address offset:  $0x080 + (n \times 0x4)$ 


Subscribe configuration for task TRIGGER[n]



### 6.3.1.3 EVENTS\_TRIGGERED[n] (n=0..15)

Address offset:  $0x100 + (n \times 0x4)$ 

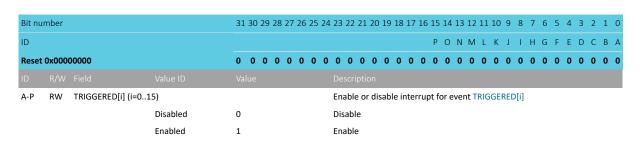

Event number n generated by triggering the corresponding TRIGGER[n] task



### 6.3.1.4 PUBLISH\_TRIGGERED[n] (n=0..15)

Address offset:  $0x180 + (n \times 0x4)$ 

Publish configuration for event TRIGGERED[n]




### 6.3.1.5 INTEN

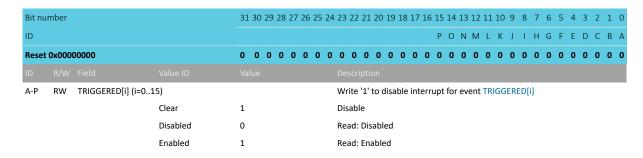
Address offset: 0x300

Enable or disable interrupt





### **6.3.1.6 INTENSET**


Address offset: 0x304 Enable interrupt

| Bit nu | mber   |                  |          | 31 30 29 28 27 26 2 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|------------------|----------|---------------------|--------------------------------------------------------------------|
| ID     |        |                  |          |                     | P O N M L K J I H G F E D C B A                                    |
| Reset  | 0x0000 | 00000            |          | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |
| ID     |        |                  |          |                     | Description                                                        |
| A-P    | RW     | TRIGGERED[i] (i= | 015)     |                     | Write '1' to enable interrupt for event TRIGGERED[i]               |
|        |        |                  | Set      | 1                   | Enable                                                             |
|        |        |                  | Disabled | 0                   | Read: Disabled                                                     |
|        |        |                  | Enabled  | 1                   | Read: Enabled                                                      |

#### 6.3.1.7 INTENCLR

Address offset: 0x308

Disable interrupt



### 6.3.2 Electrical specification

### 6.3.2.1 EGU Electrical Specification

| Symbol               | Description                                                         | Min. | Тур. | Max. | Units  |
|----------------------|---------------------------------------------------------------------|------|------|------|--------|
| t <sub>EGU,EVT</sub> | Latency between setting an EGU event flag and the system setting an |      | 1    |      | cycles |
|                      | interrupt                                                           |      |      |      |        |

# 6.4 GPIO — General purpose input/output

The general purpose input/output pins (GPIOs) are grouped as one or more ports with each port having up to 32 GPIOs.



The number of ports and GPIOs per port may vary with product variant and package. Refer to Registers on page 167 and Pin assignments on page 518 for more information about the number of GPIOs that are supported.

GPIO has the following user-configurable features:

- Up to 32 GPIO pins per GPIO port
- · Configurable output drive strength
- Internal pull-up and pull-down resistors
- Wake-up from high or low level triggers on all pins
- Trigger interrupt on state changes on any pin
- All pins can be used by the PPI task/event system
- One or more GPIO outputs can be controlled through PPI and GPIOTE channels
- All pins can be individually mapped to interface blocks for layout flexibility
- · GPIO state changes captured on SENSE signal can be stored by LATCH register
- Support for secure and non-secure attributes for pins in conjunction with the system protection unit (SPU — System protection unit on page 322)

GPIO port and the GPIO pin details on page 163 illustrates the GPIO port containing 32 individual pins, where PINO is illustrated in more detail as a reference. All signals on the left side in the illustration are used by other peripherals in the system and therefore not directly available to the CPU.

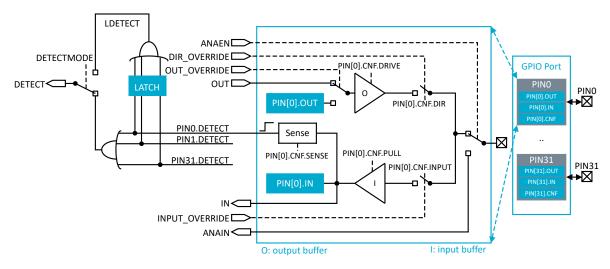



Figure 21: GPIO port and the GPIO pin details

### 6.4.1 Pin configuration

The GPIO port peripheral implements up to 32 pins, PIN0 through PIN31. Each of these pins can be individually configured in the PIN CNF[n] registers (n=0..31).

The following parameters can be configured through these registers:

- Direction
- Drive strength
- Enabling of pull-up and pull-down resistors
- Pin sensing
- Input buffer disconnect
- · Analog input (for selected pins)

**Note:** All write-capable registers are retained registers, see POWER — Power control on page 67 for more information.



The input buffer of a GPIO pin can be disconnected from the pin to enable power savings when the pin is not used as an input, see GPIO port and the GPIO pin details on page 163. Inputs must be connected to get a valid input value in the IN register, and for the sense mechanism to get access to the pin.

Other peripherals in the system can connect to GPIO pins and override their output value and configuration, or read their analog or digital input value. See GPIO port and the GPIO pin details on page 163.

Selected pins also support analog input signals, see ANAIN in GPIO port and the GPIO pin details on page 163. The assignment of the analog pins can be found in Pin assignments on page 518.

The following delays should be taken into considerations:

- There is a delay of 2 CPU clock cycles from the GPIO pad to the IN register.
- The GPIO pad must be low (or high depending on the SENSE polarity) for 3 CPU clock cycles after DETECT has gone high to generate a new DETECT signal.

**Note:** When a pin is configured as digital input, care has been taken to minimize increased current consumption when the input voltage is between  $V_{IL}$  and  $V_{IH}$ . However, it is a good practice to ensure that the external circuitry does not drive that pin to levels between  $V_{IL}$  and  $V_{IH}$  for a long period of time.

#### 6.4.2 Pin sense mechanism

Pins sensitivity can be individually configured, through the SENSE field in the PIN\_CNF[n] register, to detect either a high level or a low level on their input.

When the correct level is detected on any such configured pin, the sense mechanism will set the DETECT signal high. Each pin has a separate DETECT signal. Default behavior, defined by the DETECTMODE register, is that the DETECT signals from all pins in the GPIO port are combined into one common DETECT signal that is routed throughout the system, which then can be utilized by other peripherals. This mechanism is functional in both System ON and System OFF modes.

DETECTMODE and DETECTMODE\_SEC are provided to handle secure and non-secure pins.

DETECTMODE\_SEC register is available to control the behavior associated to pin marked as secure, while the DETECTMODE register is restricted to pin marked as non-secure. Please refer to GPIO security on page 165 for more details.

Make sure that a pin is in a level that cannot trigger the sense mechanism before enabling it. The DETECT signal will go high immediately if the SENSE condition configured in the PIN\_CNF registers is met when the sense mechanism is enabled. This will trigger a PORT event if the DETECT signal was low before enabling the sense mechanism.

The DETECT signal is also used by power and clock management system to exit from System OFF mode, and by GPIOTE to generate the PORT event. In addition GPIOTE\_SEC is used for PORT event related to secure pins). See POWER — Power control on page 67 and GPIOTE — GPIO tasks and events on page 172 for more information about how the DETECT signal is used.

When a pin's PINx.DETECT signal goes high, a flag will be set in the LATCH register. For example, when the PINO.DETECT signal goes high, bit 0 in the LATCH register will be set to '1'. If the CPU performs a clear operation on a bit in the LATCH register when the associated PINx.DETECT signal is high, the bit in the LATCH register will not be cleared. The LATCH register will only be cleared if the CPU explicitly clears it by writing a '1' to the bit that shall be cleared, i.e. the LATCH register will not be affected by a PINx.DETECT signal being set low.

The LDETECT signal will be set high when one or more bits in the LATCH register are '1'. The LDETECT signal will be set low when all bits in the LATCH register are successfully cleared to '0'.



If one or more bits in the LATCH register are '1' after the CPU has performed a clear operation on the LATCH registers, a rising edge will be generated on the LDETECT signal. This is illustrated in DETECT signal behavior on page 165.

**Note:** The CPU can read the LATCH register at any time to check if a SENSE condition has been met on one or more of the GPIO pins, even if that condition is no longer met at the time the CPU queries the LATCH register. This mechanism will work even if the LDETECT signal is not used as the DETECT signal.

The LDETECT signal is by default not connected to the GPIO port's DETECT signal, but via the DETECTMODE register it is possible to change from default behavior to DETECT signal being derived directly from the LDETECT signal instead. See GPIO port and the GPIO pin details on page 163. DETECT signal behavior on page 165 illustrates the DETECT signal behavior for these two alternatives.

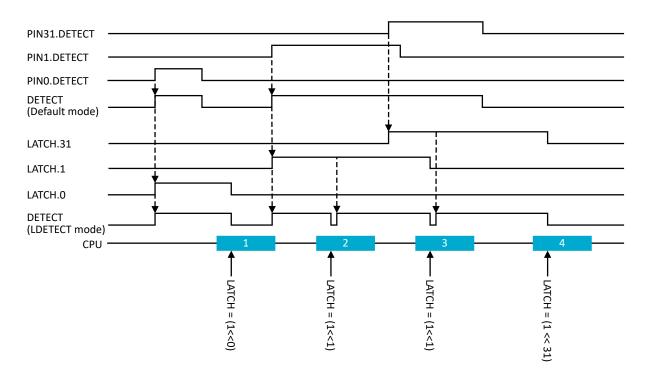



Figure 22: DETECT signal behavior

### 6.4.3 GPIO security

The general purpose input/output (GPIO) peripheral is implemented as a *split-security* peripheral. If marked as non-secure, it can be accessed by both secure and non-secure accesses but will behave differently depending on the access type.

A non-secure peripheral access will only be able to configure and control pins defined as non-secure in the system protection unit (SPU) GPIOPORT.PERM[] register(s).

A non-secure access to a register or a bitfield controlling a pin marked as secure in GPIO.PERM[] register(s) will be ignored. Write access will have no effect and read access will return a zero value.

No exception is triggered when a non-secure access targets a register or bitfield controlling a secure pin. For example, if the bit i is set in the SPU.GPIO.PERM[0] register (declaring Pin P0.i as secure), then

- non-secure write accesses to OUT, OUTSET, OUTCLR, DIR, DIRSET, DIRCLR and LATCH registers will not be able to write to bit i of those registers
- non-secure write accesses to registers PIN[i].OUT and PIN CNF[i] will be ignored



- non-secure read accesses to registers OUT, OUTSET, OUTCLR, IN, DIR, DIRSET, DIRCLR and LATCH will always read a '0' for the bit at position  $\dot{\text{1}}$
- non-secure read accesses to registers PIN[i].OUT, PIN[i].OUT and PIN CNF[i] will always return 0

The GPIO.DETECTMODE and GPIO.DETECTMODE\_SEC registers are handled differently than the other registers mentioned before. When accessed by a secure access, the DETECTMODE\_SEC register control the source for the DETECT\_SEC signal for the pins marked as secure. When accessed by a non-secure access, the DETECTMODE\_SEC is read as zero and write accesses are ignored. The GPIO.DETECTMODE register controls the source for the DETECT\_NSEC signal for the pins defined as non-secure.

The DETECT\_NSEC signal is routed to the GPIOTE peripheral, allowing generation of events and interrupts from pins marked as non-secure. The DETECT\_SEC signal is routed to the GPIOTESEC peripheral, allowing generation of events and interrupts from pins marked as secure. Principle of direct pin access on page 166 illustrates how the DETECT\_NSEC and DETECT\_SEC signals are generated from the GPIO PIN[].DETECT signals.

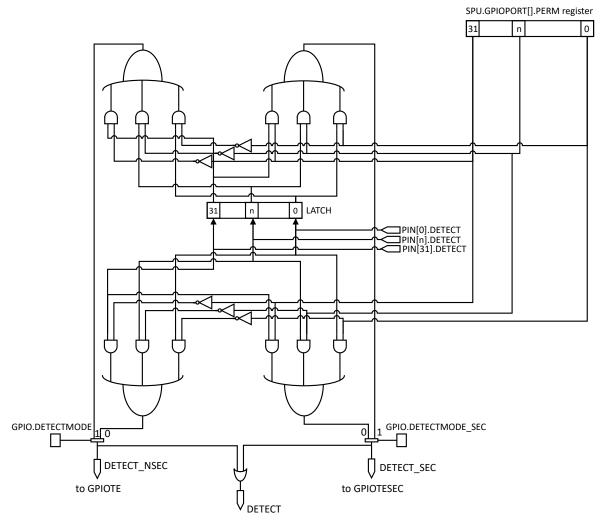



Figure 23: Principle of direct pin access



# 6.4.4 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                      |
|----------|--------------|-----------|-----|-----|--------------|----------------------------------|
|          |              | Мар       | Att | DMA |              |                                  |
| P0 : S   | 0x50842500   | HF        | NS  | NA  | Yes          | General purpose input and output |
| PO: NS   | 0x40842500   | ПГ        | INO | IVA | ies          | General purpose input and output |

### **Register overview**

| Register       | Offset | TZ | Description                                                                              |
|----------------|--------|----|------------------------------------------------------------------------------------------|
| OUT            | 0x004  |    | Write GPIO port                                                                          |
|                |        |    | This register is retained.                                                               |
| OUTSET         | 0x008  |    | Set individual bits in GPIO port                                                         |
| OUTCLR         | 0x00C  |    | Clear individual bits in GPIO port                                                       |
| IN             | 0x010  |    | Read GPIO port                                                                           |
| DIR            | 0x014  |    | Direction of GPIO pins                                                                   |
|                |        |    | This register is retained.                                                               |
| DIRSET         | 0x018  |    | DIR set register                                                                         |
| DIRCLR         | 0x01C  |    | DIR clear register                                                                       |
| LATCH          | 0x020  |    | Latch register indicating what GPIO pins that have met the criteria set in the           |
|                |        |    | PIN_CNF[n].SENSE registers                                                               |
|                |        |    | This register is retained.                                                               |
| DETECTMODE     | 0x024  |    | Select between default DETECT signal behavior and LDETECT mode (For non-secure pin only) |
|                |        |    | This register is retained.                                                               |
| DETECTMODE_SEC | 0x028  |    | Select between default DETECT signal behavior and LDETECT mode (For secure pin only)     |
|                |        |    | This register is retained.                                                               |
| PIN_CNF[n]     | 0x200  |    | Configuration of GPIO pins                                                               |
|                |        |    | This register is retained.                                                               |

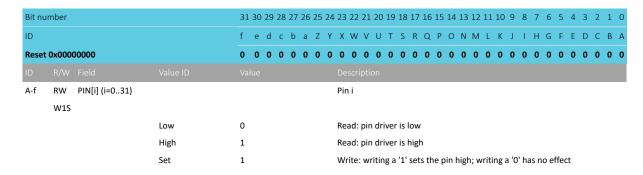
### 6.4.4.1 OUT (Retained)

Address offset: 0x004

Write GPIO port

This register is retained.

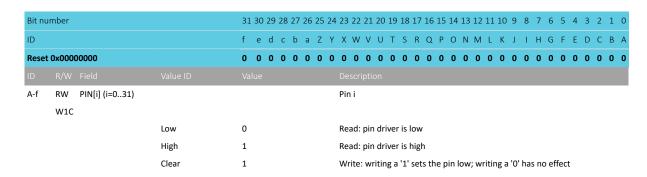
| Bit nu | ımber |                |      | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22  | 21  | 20   | 19  | 18 | L7 1 | 6 1 | 5 1 | 4 1 | .3 : | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|----------------|------|----|----|----|----|----|----|----|----|-----|-----|-----|------|-----|----|------|-----|-----|-----|------|----|----|----|---|---|---|---|---|---|---|---|-----|
| ID     |       |                |      | f  | е  | d  | С  | b  | а  | Z  | Υ  | Χ   | W   | V   | U    | Т   | S  | R (  | ς Ι | P ( | ) I | N    | M  | L  | K  | J | 1 | Н | G | F | Ε | D | С | В А |
| Reset  | 0x000 | 00000          |      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0    | 0   | 0  | 0 (  | 0 ( | ) ( | 0   | 0    | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |                |      |    |    |    |    |    |    |    |    |     |     |     |      |     |    |      |     |     |     |      |    |    |    |   |   |   |   |   |   |   |   |     |
| A-f    | RW    | PIN[i] (i=031) |      |    |    |    |    |    |    |    |    | Pir | i   |     |      |     |    |      |     |     |     |      |    |    |    |   |   |   |   |   |   |   |   |     |
|        |       |                | Low  | 0  |    |    |    |    |    |    |    | Pir | dri | ver | is l | ow  |    |      |     |     |     |      |    |    |    |   |   |   |   |   |   |   |   |     |
|        |       |                | High | 1  |    |    |    |    |    |    |    | Pir | dri | ver | is h | igh | 1  |      |     |     |     |      |    |    |    |   |   |   |   |   |   |   |   |     |


### 6.4.4.2 OUTSET

Address offset: 0x008

Set individual bits in GPIO port

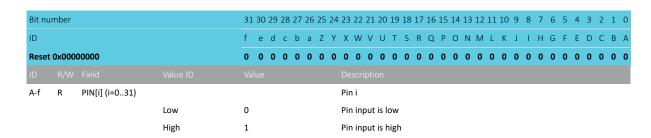



Read: reads value of OUT register.



### 6.4.4.3 OUTCLR

Address offset: 0x00C


Clear individual bits in GPIO port Read: reads value of OUT register.

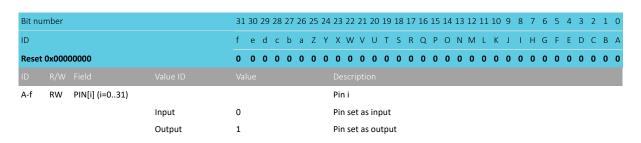


#### 6.4.4.4 IN

Address offset: 0x010

Read GPIO port





### 6.4.4.5 DIR (Retained)

Address offset: 0x014

Direction of GPIO pins

This register is retained.



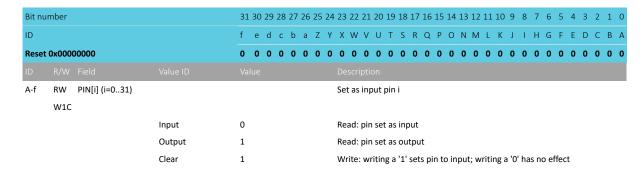


#### 6.4.4.6 DIRSET

Address offset: 0x018

DIR set register

Read: reads value of DIR register.


| Bit nu | ımber |                |        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 2  | 21 2  | 20 1  | 9 1   | 8 1   | 7 1   | 5 15 | 5 14 | 13  | 12  | 11  | 10   | 9     | 8    | 7  | 6    | 5    | 4  | 3   | 2 : | 1 0 |
|--------|-------|----------------|--------|----|----|----|----|----|----|----|----|-----|-------|-------|-------|-------|-------|-------|------|------|-----|-----|-----|------|-------|------|----|------|------|----|-----|-----|-----|
| ID     |       |                |        | f  | e  | d  | С  | b  | а  | Z  | Υ  | Χ   | W     | V     | U .   | Т :   | S F   | R C   | P    | 0    | N   | М   | L   | K    | J     | 1    | Н  | G    | F    | Е  | D ( | C I | ВА  |
| Reset  | 0x000 | 00000          |        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0     | 0 (   | 0 (   | 0 (   | 0 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0     | 0    | 0  | 0    | 0    | 0  | 0 ( | 0 ( | 0 0 |
| ID     |       |                |        |    |    |    |    |    |    |    |    | Des |       |       |       |       |       |       |      |      |     |     |     |      |       |      |    |      |      |    |     |     |     |
| A-f    | RW    | PIN[i] (i=031) |        |    |    |    |    |    |    |    |    | Set | as o  | outp  | out   | pin   | i     |       |      |      |     |     |     |      |       |      |    |      |      |    |     |     |     |
|        | W1S   |                |        |    |    |    |    |    |    |    |    |     |       |       |       |       |       |       |      |      |     |     |     |      |       |      |    |      |      |    |     |     |     |
|        |       |                | Input  | 0  |    |    |    |    |    |    |    | Rea | ıd: p | oin s | set a | as ii | npu   | it    |      |      |     |     |     |      |       |      |    |      |      |    |     |     |     |
|        |       |                | Output | 1  |    |    |    |    |    |    |    | Rea | ıd: p | oin s | set a | as c  | outp  | out   |      |      |     |     |     |      |       |      |    |      |      |    |     |     |     |
|        |       |                | Set    | 1  |    |    |    |    |    |    | ,  | Wri | te:   | writ  | ting  | a ':  | 1' se | ets p | in 1 | to c | utp | ut; | wri | ting | ; a ' | 0' h | as | no ( | effe | ct |     |     |     |

#### 6.4.4.7 DIRCLR

Address offset: 0x01C

DIR clear register

Read: reads value of DIR register.

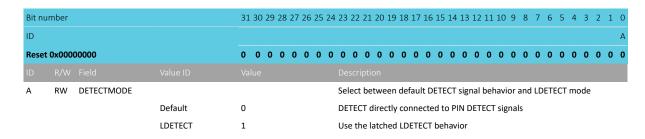


### 6.4.4.8 LATCH (Retained)

Address offset: 0x020

Latch register indicating what GPIO pins that have met the criteria set in the PIN\_CNF[n].SENSE registers This register is retained.



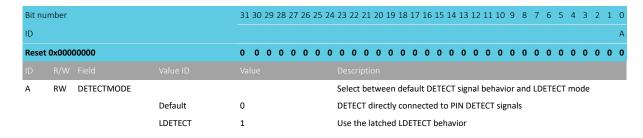

| Bit nu | mber  |                |            | 31 | . 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21    | 20   | 19   | 18 1 | L7 1 | 16 1  | L5 1 | L4 1 | L3 1 | 12 1 | 1 1  | .0 9  | 9 8 | 7           | 6    | 5     | 4   | 3    | 2     | 1 0 |
|--------|-------|----------------|------------|----|------|----|----|----|----|----|----|-----|------|-------|------|------|------|------|-------|------|------|------|------|------|-------|-----|-------------|------|-------|-----|------|-------|-----|
| ID     |       |                |            | f  | е    | d  | С  | b  | а  | Z  | Υ  | Χ   | W    | ٧     | U    | Т    | S    | R (  | Q I   | P (  | 0    | N I  | M I  | L    | K J   | ı   | Н           | G    | F     | Ε   | D    | С     | ВА  |
| Reset  | 0x000 | 00000          |            | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0     | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0 (  | 0 (  | 0 0   | 0   | 0           | 0    | 0     | 0   | 0    | 0     | 0 0 |
| ID     |       |                |            |    |      |    |    |    |    |    |    |     |      |       |      |      |      |      |       |      |      |      |      |      |       |     |             |      |       |     |      |       |     |
| A-f    | RW    | PIN[i] (i=031) |            |    |      |    |    |    |    |    |    | Sta | itus | on    | wh   | eth  | er F | INI  | i] ha | as r | net  | cri  | teri | a se | et in | PII | <b>\</b> _C | NF[i | i].SE | NSI | E re | giste | er. |
|        |       |                |            |    |      |    |    |    |    |    |    | Wr  | ite  | '1' t | to c | lear | r.   |      |       |      |      |      |      |      |       |     |             |      |       |     |      |       |     |
|        |       |                | NotLatched | 0  |      |    |    |    |    |    |    | Cri | teri | a ha  | as n | ot   | bee  | n m  | et    |      |      |      |      |      |       |     |             |      |       |     |      |       |     |
|        |       |                | Latched    | 1  |      |    |    |    |    |    |    | Cri | teri | a ha  | as b | eer  | n m  | et   |       |      |      |      |      |      |       |     |             |      |       |     |      |       |     |

### 6.4.4.9 DETECTMODE (Retained)

Address offset: 0x024

Select between default DETECT signal behavior and LDETECT mode (For non-secure pin only)

This register is retained.

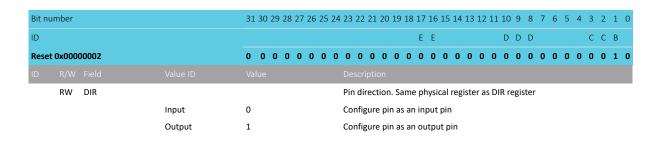



### 6.4.4.10 DETECTMODE\_SEC (Retained)

Address offset: 0x028

Select between default DETECT signal behavior and LDETECT mode (For secure pin only)

This register is retained.




### 6.4.4.11 PIN\_CNF[n] (n=0..31) (Retained)

Address offset:  $0x200 + (n \times 0x4)$ 

Configuration of GPIO pins

This register is retained.





| Bit nu | ımber |       |            | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0            |
|--------|-------|-------|------------|-------------------------|--------------------------------------------------------------------------|
| ID     |       |       |            |                         | E E DDD CCB                                                              |
| Reset  | 0x000 | 00002 |            | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                  |
| ID     |       |       |            |                         | Description                                                              |
| В      | RW    | INPUT |            |                         | Connect or disconnect input buffer                                       |
|        |       |       | Connect    | 0                       | Connect input buffer                                                     |
|        |       |       | Disconnect | 1                       | Disconnect input buffer                                                  |
| С      | RW    | PULL  |            |                         | Pull configuration                                                       |
|        |       |       | Disabled   | 0                       | No pull                                                                  |
|        |       |       | Pulldown   | 1                       | Pull down on pin                                                         |
|        |       |       | Pullup     | 3                       | Pull up on pin                                                           |
| D-     | RW    | DRIVE |            |                         | Drive configuration                                                      |
|        |       |       | S0S1       | 0                       | Standard '0', standard '1'                                               |
|        |       |       | H0S1       | 1                       | High drive '0', standard '1'                                             |
|        |       |       | S0H1       | 2                       | Standard '0', high drive '1'                                             |
|        |       |       | H0H1       | 3                       | High drive '0', high 'drive '1"                                          |
|        |       |       | DOS1       | 4                       | Disconnect '0', standard '1' (normally used for wired-or connections)    |
|        |       |       | D0H1       | 5                       | Disconnect '0', high drive '1' (normally used for wired-or connections)  |
|        |       |       | SOD1       | 6                       | Standard '0', disconnect '1' (normally used for wired-and connections)   |
|        |       |       | H0D1       | 7                       | High drive '0', disconnect '1' (normally used for wired-and connections) |
| E      | RW    | SENSE |            |                         | Pin sensing mechanism                                                    |
|        |       |       | Disabled   | 0                       | Disabled                                                                 |
|        |       |       | High       | 2                       | Sense for high level                                                     |
|        |       |       | Low        | 3                       | Sense for low level                                                      |

# 6.4.5 Electrical specification

# 6.4.5.1 GPIO Electrical Specification

**Note:** VDD in the following table refers to VDD\_GPIO.

| Symbol                | Description                                                              | Min.      | Тур. | Max.      | Units |
|-----------------------|--------------------------------------------------------------------------|-----------|------|-----------|-------|
| V <sub>IH</sub>       | Input high voltage                                                       | 0.7 x VDD |      | VDD       | V     |
| $V_{IL}$              | Input low voltage                                                        | VSS       |      | 0.3 x VDD | V     |
| V <sub>OH,SD</sub>    | Output high voltage, standard drive, 0.5 mA, VDD $\geq$ 1.7 V            | VDD-0.4   |      | VDD       | V     |
| V <sub>OH,HDH</sub>   | Output high voltage, high drive, 5 mA, VDD $\geq$ 2.7 V                  | VDD-0.4   |      | VDD       | V     |
| $V_{OH,HDL}$          | Output high voltage, high drive, 3 mA, VDD $\geq$ 1.7 V                  | VDD-0.4   |      | VDD       | V     |
| $V_{OL,SD}$           | Output low voltage, standard drive, 0.5 mA, VDD $\geq$ 1.7 V             | VSS       |      | VSS+0.4   | V     |
| V <sub>OL,HDH</sub>   | Output low voltage, high drive, 5 mA, VDD $\geq$ 2.7 V                   | VSS       |      | VSS+0.4   | V     |
| $V_{OL,HDL}$          | Output low voltage, high drive, 3 mA, VDD $\geq$ 1.7 V                   | VSS       |      | VSS+0.4   | V     |
| I <sub>OL,SD</sub>    | Current at VSS + 0.4 V, output set low, standard drive, VDD $\geq$ 1.7 V | 1         | 2    | 4         | mA    |
| I <sub>OL,HDH</sub>   | Current at VSS + 0.4 V, output set low, high drive, VDD $\geq$ 2.7 V     | 6         | 10   | 15        | mA    |
| I <sub>OL,HDL</sub>   | Current at VSS + 0.4 V, output set low, high drive, VDD $\geq$ 1.7 V     | 3         |      |           | mA    |
| I <sub>OH,SD</sub>    | Current at VDD - 0.4 V, output set high, standard drive, VDD ≥1.7        | 1         | 2    | 4         | mA    |
| I <sub>OH,HDH</sub>   | Current at VDD - 0.4 V, output set high, high drive, VDD $\geq$ 2.7 V    | 6         | 9    | 14        | mA    |
| I <sub>OH,HDL</sub>   | Current at VDD - 0.4 V, output set high, high drive, VDD $\geq$ 1.7 V    | 3         |      |           | mA    |
| t <sub>RF,15pF</sub>  | Rise/fall time, standard drive mode, 10 to 90%, 15 pF load <sup>1</sup>  | 6         | 9    | 19        | ns    |
| t <sub>RF,25pF</sub>  | Rise/fall time, standard drive mode, 10 to 90%, 25 pF load <sup>1</sup>  | 10        | 13   | 30        | ns    |
| t <sub>RF,50pF</sub>  | Rise/fall time, standard drive mode, 10 to 90%, 50 pF load <sup>1</sup>  | 18        | 25   | 61        | ns    |
| t <sub>HRF,15pF</sub> | Rise/Fall time, high drive mode, 10 to 90%, 15 pF load <sup>1</sup>      | 2         | 4    | 8         | ns    |

<sup>1</sup> Rise and fall times based on simulations

| Symbol                | Description                                                         | Min. | Тур. | Max. | Units |
|-----------------------|---------------------------------------------------------------------|------|------|------|-------|
| t <sub>HRF,25pF</sub> | Rise/Fall time, high drive mode, 10 to 90%, 25 pF load <sup>1</sup> | 3    | 5    | 11   | ns    |
| t <sub>HRF,50pF</sub> | Rise/Fall time, high drive mode, 10 to 90%, 50 pF load <sup>1</sup> | 5    | 8    | 19   | ns    |
| R <sub>PU</sub>       | Pull-up resistance                                                  | 11   | 13   | 16   | kΩ    |
| R <sub>PD</sub>       | Pull-down resistance                                                | 11   | 13   | 16   | kΩ    |
| C <sub>PAD</sub>      | Pad capacitance                                                     |      | 3    |      | pF    |

### 6.5 GPIOTE — GPIO tasks and events

The GPIO tasks and events (GPIOTE) module provides functionality for accessing GPIO pins using tasks and events. Each GPIOTE channel can be assigned to one pin.

A GPIOTE block enables GPIOs to generate events on pin state change which can be used to carry out tasks through the PPI system. A GPIO can also be driven to change state on system events using the PPI system. Tasks and events are briefly introduced in Peripheral interface on page 15, and GPIO is described in more detail in GPIO — General purpose input/output on page 162.

Low power detection of pin state changes is possible when in System ON or System OFF.

| Instance | Number of GPIOTE channels |
|----------|---------------------------|
| GPIOTE   | 8                         |

Table 18: GPIOTE properties

Up to three tasks can be used in each GPIOTE channel for performing write operations to a pin. Two tasks are fixed (SET and CLR), and one (OUT) is configurable to perform following operations:

- Set
- Clear
- Toggle

An event can be generated in each GPIOTE channel from one of the following input conditions:

- Rising edge
- · Falling edge
- Any change

#### 6.5.1 Pin events and tasks

The GPIOTE module has a number of tasks and events that can be configured to operate on individual GPIO pins.

The tasks SET[n], CLR[n], and OUT[n] can write to individual pins, and events IN[n] can be generated from input changes of individual pins.

The SET task will set the pin selected in GPIOTE.CONFIG[n]. PSEL to high. The CLR task will set the pin low.

The effect of the OUT task on the pin is configurable in CONFIG[n].POLARITY. It can set the pin high, set it low, or toggle it.

Tasks and events are configured using the CONFIG[n] registers. One CONFIG[n] register is associated with a set of SET[n], CLR[n], and OUT[n] tasks and IN[n] events.

As long as a SET[n], CLR[n], and OUT[n] task or an IN[n] event is configured to control pin **n**, the pin's output value will only be updated by the GPIOTE module. The pin's output value, as specified in the GPIO, will be ignored as long as the pin is controlled by GPIOTE. Attempting to write to the pin as a normal GPIO pin will have no effect. When the GPIOTE is disconnected from a pin, the associated pin gets the output and configuration values specified in the GPIO module, see MODE field in CONFIG[n] register.

NORDIC

When conflicting tasks are triggered simultaneously (i.e. during the same clock cycle) in one channel, the priority of the tasks is as described in the following table.

| Priority | Task |
|----------|------|
| 1        | оит  |
| 2        | CLR  |
| 3        | SET  |

Table 19: Task priorities

When setting the CONFIG[n] registers, MODE=Disabled does not have the same effect as MODE=Task and POLARITY=None. In the latter case, a CLR or SET task occurring at the exact same time as OUT will end up with no change on the pin, based on the priorities described in the table above.

When a GPIOTE channel is configured to operate on a pin as a task, the initial value of that pin is configured in the OUTINIT field of CONFIG[n].

#### 6.5.2 Port event

PORT is an event that can be generated from multiple input pins using the GPIO DETECT signal.

The event will be generated on the rising edge of the DETECT signal. See GPIO — General purpose input/output on page 162 for more information about the DETECT signal.

The GPIO DETECT signal will not wake the system up again if the system is put into System ON IDLE while the DETECT signal is high. Clear all DETECT sources before entering sleep. If the LATCH register is used as a source, a new rising edge will be generated on DETECT if any bit in LATCH is still high after clearing all or part of the register. This could occur if one of the PINx.DETECT signals is still high, for example. See Pin sense mechanism on page 164 for more information.

Setting the system to System OFF while DETECT is high will cause a wakeup from System OFF reset.

This feature can be used to wake up the CPU from a WFI or WFE type sleep in System ON when all peripherals and the CPU are idle, meaning the lowest power consumption in System ON mode.

To prevent spurious interrupts from the PORT event while configuring the sources, the following steps must be performed:

- 1. Disable interrupts on the PORT event (through INTENCLR.PORT).
- 2. Configure the sources (PIN CNF[n].SENSE).
- **3.** Clear any potential event that could have occurred during configuration (write 0 to EVENTS\_PORT).
- 4. Enable interrupts (through INTENSET.PORT).

### 6.5.3 Tasks and events pin configuration

Each GPIOTE channel is associated with one physical GPIO pin through the CONFIG.PSEL field.

When Event mode is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will be configured as an input, overriding the DIR setting in GPIO. Similarly, when Task mode is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will be configured as an output overriding the DIR setting and OUT value in GPIO. When Disabled is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will use its configuration from the PIN[n].CNF registers in GPIO. CONFIG.MODE must be disabled in order to be able to change the value of the PSEL field.

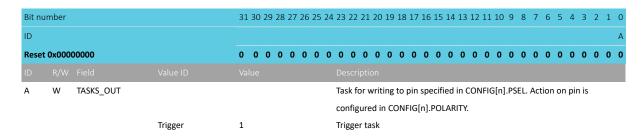
**Note:** A pin can only be assigned to one GPIOTE channel at a time. Failing to do so may result in unpredictable behavior.



### 6.5.4 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                      |
|----------|--------------|-----------|-----|-----|--------------|----------------------------------|
|          |              | Мар       | Att | DMA |              |                                  |
| GPIOTE0  | 0x5000D000   | HF        | S   | NA  | No           | Secure GPIO tasks and events     |
| GPIOTE1  | 0x40031000   | HF        | NS  | NA  | No           | Non Secure GPIO tasks and events |

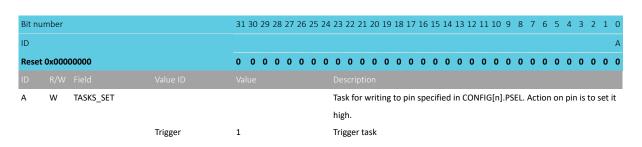

### **Register overview**

| Register         | Offset | TZ | Description                                                                           |
|------------------|--------|----|---------------------------------------------------------------------------------------|
| TASKS_OUT[n]     | 0x000  |    | Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is configured in   |
|                  |        |    | CONFIG[n].POLARITY.                                                                   |
| TASKS_SET[n]     | 0x030  |    | Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it high. |
| TASKS_CLR[n]     | 0x060  |    | Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it low.  |
| SUBSCRIBE_OUT[n] | 0x080  |    | Subscribe configuration for task OUT[n]                                               |
| SUBSCRIBE_SET[n] | 0x0B0  |    | Subscribe configuration for task SET[n]                                               |
| SUBSCRIBE_CLR[n] | 0x0E0  |    | Subscribe configuration for task CLR[n]                                               |
| EVENTS_IN[n]     | 0x100  |    | Event generated from pin specified in CONFIG[n].PSEL                                  |
| EVENTS_PORT      | 0x17C  |    | Event generated from multiple input GPIO pins with SENSE mechanism enabled            |
| PUBLISH_IN[n]    | 0x180  |    | Publish configuration for event IN[n]                                                 |
| PUBLISH_PORT     | 0x1FC  |    | Publish configuration for event PORT                                                  |
| INTENSET         | 0x304  |    | Enable interrupt                                                                      |
| INTENCLR         | 0x308  |    | Disable interrupt                                                                     |
| CONFIG[n]        | 0x510  |    | Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event                    |

### 6.5.4.1 TASKS\_OUT[n] (n=0..7)

Address offset:  $0x000 + (n \times 0x4)$ 

Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is configured in CONFIG[n].POLARITY.




### 6.5.4.2 TASKS\_SET[n] (n=0..7)

Address offset:  $0x030 + (n \times 0x4)$ 

Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it high.





### 6.5.4.3 TASKS\_CLR[n] (n=0..7)

Address offset:  $0x060 + (n \times 0x4)$ 

Task for writing to pin specified in CONFIG[n]. PSEL. Action on pin is to set it low.

| Bit nu | umber   |           |         | 31 30 29 28 27 26 25 24 23 23 | 2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                  |
|--------|---------|-----------|---------|-------------------------------|----------------------------------------------------------------------------|
| ID     |         |           |         |                               | A                                                                          |
| Reset  | t 0x000 | 00000     |         | 0 0 0 0 0 0 0 0 0             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                    |
| ID     |         |           |         |                               | ription                                                                    |
| Α      | W       | TASKS_CLR |         | Task                          | for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it |
|        |         |           |         | low.                          |                                                                            |
|        |         |           | Trigger | 1 Trigg                       | er task                                                                    |

### 6.5.4.4 SUBSCRIBE\_OUT[n] (n=0..7)

Address offset:  $0x080 + (n \times 0x4)$ 

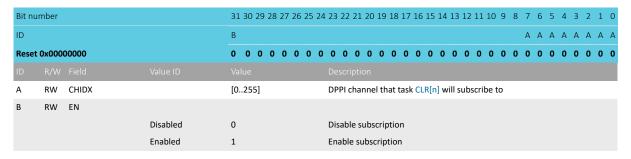
Subscribe configuration for task OUT[n]

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                      | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                        |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                 | DPPI channel that task OUT[n] will subscribe to                 |
| В      | RW    | EN    |          |                        |                                                                 |
|        |       |       | Disabled | 0                      | Disable subscription                                            |
|        |       |       | Enabled  | 1                      | Enable subscription                                             |

### 6.5.4.5 SUBSCRIBE\_SET[n] (n=0..7)

Address offset:  $0x0B0 + (n \times 0x4)$ 

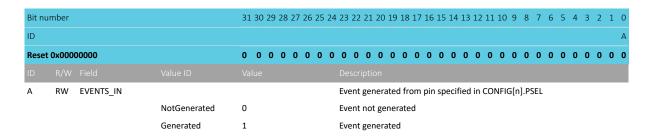
Subscribe configuration for task SET[n]


| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         | Description                                                     |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task SET[n] will subscribe to                 |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable subscription                                            |
|        |         |       | Enabled  | 1                       | Enable subscription                                             |

### 6.5.4.6 SUBSCRIBE\_CLR[n] (n=0..7)

Address offset:  $0x0E0 + (n \times 0x4)$ 

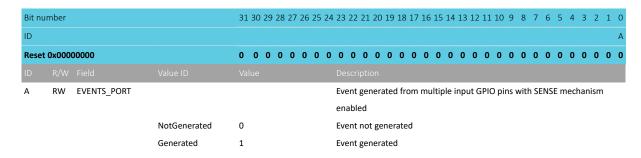



#### Subscribe configuration for task CLR[n]



### 6.5.4.7 EVENTS\_IN[n] (n=0..7)

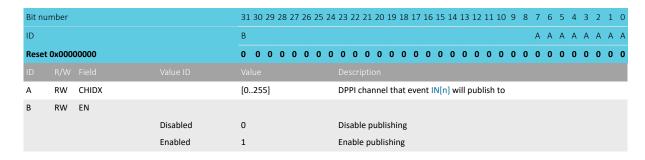
Address offset:  $0x100 + (n \times 0x4)$ 


Event generated from pin specified in CONFIG[n].PSEL



### 6.5.4.8 EVENTS\_PORT

Address offset: 0x17C


Event generated from multiple input GPIO pins with SENSE mechanism enabled



### 6.5.4.9 PUBLISH\_IN[n] (n=0..7)

Address offset: 0x180 + (n × 0x4)

Publish configuration for event IN[n]





### 6.5.4.10 PUBLISH\_PORT

Address offset: 0x1FC

Publish configuration for event PORT

| Bit number |         |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------|---------|-------|----------|-------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| ID         |         |       |          | В                       | A A A A A A A A                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset      | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ID         |         |       |          |                         |                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Α          | RW      | CHIDX |          | [0255]                  | DPPI channel that event PORT will publish to                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| В          | RW      | EN    |          |                         |                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |         |       | Disabled | 0                       | Disable publishing                                            |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |         |       | Enabled  | 1                       | Enable publishing                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 6.5.4.11 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu           | mber |              |          | 31 | 30 29 | 28 | 27 2 | 6 25                                          | 24            | 23          | 22    | 21 2   | 20 19 | 9 18 | 17 1 | 16 1 | 5 14 | 13  | 12    | 11 1 | 10 9 | 8 | 7 | 6 | 5 | 4 3 | 2   | 1 | 0 |
|------------------|------|--------------|----------|----|-------|----|------|-----------------------------------------------|---------------|-------------|-------|--------|-------|------|------|------|------|-----|-------|------|------|---|---|---|---|-----|-----|---|---|
| ID               |      |              |          | 1  |       |    |      |                                               |               |             |       |        |       |      |      |      |      |     |       |      |      |   | Н | G | F | E C | ) С | В | Α |
| Reset 0x00000000 |      |              |          |    | 0 0   | 0  | 0 0  | 0                                             | 0             | 0           | 0     | 0      | 0 0   | 0    | 0    | 0 (  | 0    | 0   | 0     | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID               |      |              |          |    |       |    |      |                                               |               | Description |       |        |       |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
| A-H              | RW   | IN[i] (i=07) |          |    |       |    |      | Write '1' to enable interrupt for event IN[i] |               |             |       |        |       |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
|                  |      |              | Set      | 1  |       |    |      |                                               |               | Ena         | able  | 2      |       |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
|                  |      |              | Disabled | 0  |       |    |      |                                               |               | Rea         | ad: [ | Disa   | bled  |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
|                  |      |              | Enabled  | 1  |       |    |      |                                               | Read: Enabled |             |       |        |       |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
| 1                | RW   | PORT         |          |    |       |    |      |                                               |               | Wr          | ite ' | '1' to | o ena | able | inte | rrup | t fo | eve | ent F | OR   | Т    |   |   |   |   |     |     |   |   |
|                  |      |              | Set      | 1  |       |    |      |                                               |               | Ena         | able  | 2      |       |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
|                  |      |              | Disabled | 0  |       |    |      |                                               |               | Rea         | ad: [ | Disa   | bled  |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |
|                  |      |              | Enabled  | 1  |       |    |      |                                               |               | Rea         | ad: E | Enal   | bled  |      |      |      |      |     |       |      |      |   |   |   |   |     |     |   |   |

### 6.5.4.12 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | mber             |              |          | 31 30 | 29 2 | 8 27 | 7 26 | 25 2                                           | 4 23 | 3 22           | 21 2          | 20 19 | 9 18 | 3 17 | 16 1  | 5 1   | 4 13 | 12  | 11  | 10 ! | 9 8 | 7 | 6 | 5 | 4   | 3 2 | 1 | 0 |
|--------|------------------|--------------|----------|-------|------|------|------|------------------------------------------------|------|----------------|---------------|-------|------|------|-------|-------|------|-----|-----|------|-----|---|---|---|-----|-----|---|---|
| ID     |                  |              |          | 1     |      |      |      |                                                |      |                |               |       |      |      |       |       |      |     |     |      |     | Н | G | F | E I | ) C | В | Α |
| Reset  | Reset 0x00000000 |              |          |       | 0 (  | 0    | 0    | 0 0                                            | 0    | 0              | 0             | 0 0   | 0    | 0    | 0 (   | 0 0   | 0    | 0   | 0   | 0    | 0   | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID     |                  |              |          |       |      |      |      |                                                |      | Description    |               |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
| A-H    | RW               | IN[i] (i=07) |          |       |      |      |      | Write '1' to disable interrupt for event IN[i] |      |                |               |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
|        | Clear            |              |          |       | 1    |      |      |                                                |      | Disable        |               |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
|        |                  |              | Disabled | 0     |      |      |      |                                                |      | Read: Disabled |               |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
|        |                  |              | Enabled  | 1     |      |      |      |                                                |      |                | Read: Enabled |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
| 1      | RW               | PORT         |          |       |      |      |      |                                                | W    | rite           | '1' to        | o dis | able | inte | errup | ot fo | r ev | ent | POF | RT   |     |   |   |   |     |     |   |   |
|        |                  |              | Clear    | 1     |      |      |      |                                                | Di   | sabl           | le            |       |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
|        |                  |              | Disabled | 0     |      |      |      |                                                | Re   | ead:           | Disa          | bled  | ł    |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |
|        |                  |              | Enabled  | 1     |      |      |      |                                                | Re   | ead:           | Enal          | bled  |      |      |       |       |      |     |     |      |     |   |   |   |     |     |   |   |



### 6.5.4.13 CONFIG[n] (n=0..7)

Address offset: 0x510 + (n × 0x4)

Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event



# 6.6 IPC — Interprocessor communication

The interprocessor communication (IPC) peripheral is used to send and receive events between MCUs in the system.



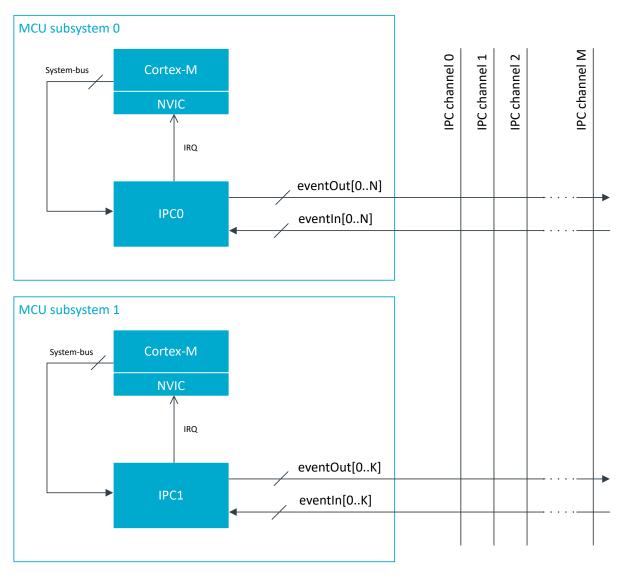



Figure 24: IPC block diagram

### **Functional description**

IPC block diagram on page 179 illustrates the interprocessor communication (IPC) peripheral. In a multi-MCU system, each MCU has one dedicated IPC peripheral. The IPC peripheral can be used to send and receive events to and from other IPC peripherals. An instance of the IPC peripheral can have multiple SEND tasks and RECEIVE events. A single SEND task can be configured to signal an event on one or more IPC channels, and a RECEIVE event can be configured to listen on one or more IPC channels. The IPC channels that are triggered in a SEND task can be configured through the SEND\_CNF registers, and the IPC channels that trigger a RECEIVE event are configured through the RECEIVE\_CNF registers. The figure below illustrates how the SEND\_CNF and RECEIVE\_CNF registers work. Both the SEND task and the RECEIVE event can be connected to all IPC channels.



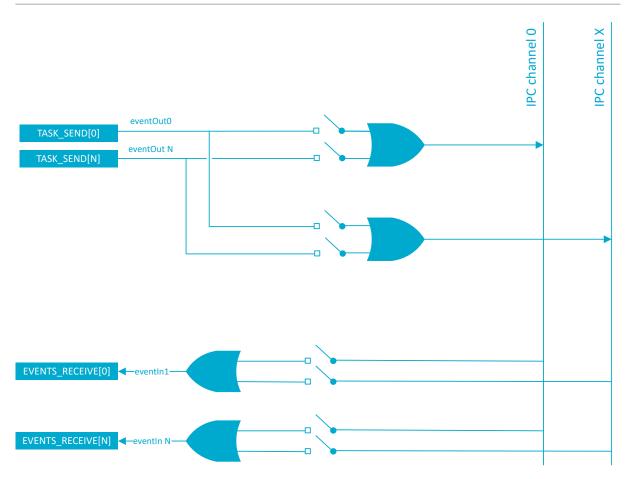



Figure 25: IPC registers SEND\_CNF and RECEIVE\_CNF

A SEND task can be viewed as broadcasting events onto one or more IPC channels, and a RECEIVE event can be seen as subscribing to a subset of IPC channels. It is possible for multiple IPCs to trigger events onto the same channel at the same time. When two or more events on the same channel occur within  $t_{IPC}$ , the events may be merged into a single event seen from the IPC receiver. One of the events can therefore be lost. To prevent this, the user must ensure that events on the same IPC channel do not occur within  $t_{IPC}$  of each other. When implementing firmware data structures, such as queues or mailboxes, this can be done by using one channel for acknowledgements.

An IPC event often does not contain any data itself, it is used to signal other MCUs that something has occurred. Data can be shared through shared memory, for example in the form of a software implemented mailbox, or command/event queues. It is up to software to assign a logical functionality to an IPC channel. For instance, one IPC channel can be used to signal that a command is ready to be executed, and any processor in the system can subscribe to that particular channel and decode/execute the command.

#### **General purpose memory**

The GPMEM registers can be used freely to store information. These registers are accessed like any other of the IPC peripheral's registers.

### 6.6.1 IPC and PPI connections

The IPC SEND tasks and RECEIVE events can be connected through PPI channels. This makes it possible to relay events from peripherals in one MCU to another, without CPU involvement.

Figure below illustrates a timer COMPARE event that is relayed from one MCU to IPC using PPI, then back into a timer CAPTURE event in another MCU.



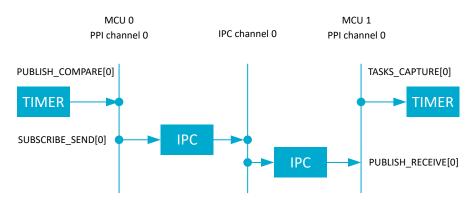
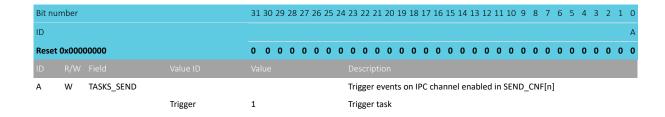



Figure 26: Example of PPI and IPC connections

# 6.6.2 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description                  |
|----------|--------------|-----------|-----|-----|--------------|------------------------------|
|          |              | Мар       | Att | DMA |              |                              |
| IPC : S  | 0x5002A000   | LIC       | NS  | NA  | No           | Interpressor communication   |
| IPC : NS | 0x4002A000   | US        | CVI | IVA | INU          | Interprocessor communication |

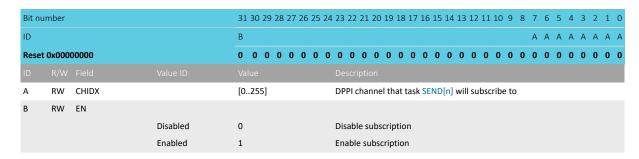

## **Register overview**

| Register           | Offset | TZ | Description                                                                 |
|--------------------|--------|----|-----------------------------------------------------------------------------|
| TASKS_SEND[n]      | 0x000  |    | Trigger events on IPC channel enabled in SEND_CNF[n]                        |
| SUBSCRIBE_SEND[n]  | 0x080  |    | Subscribe configuration for task SEND[n]                                    |
| EVENTS_RECEIVE[n]  | 0x100  |    | Event received on one or more of the enabled IPC channels in RECEIVE_CNF[n] |
| PUBLISH_RECEIVE[n] | 0x180  |    | Publish configuration for event RECEIVE[n]                                  |
| INTEN              | 0x300  |    | Enable or disable interrupt                                                 |
| INTENSET           | 0x304  |    | Enable interrupt                                                            |
| INTENCLR           | 0x308  |    | Disable interrupt                                                           |
| INTPEND            | 0x30C  |    | Pending interrupts                                                          |
| SEND_CNF[n]        | 0x510  |    | Send event configuration for TASKS_SEND[n]                                  |
| RECEIVE_CNF[n]     | 0x590  |    | Receive event configuration for EVENTS_RECEIVE[n]                           |
| GPMEM[n]           | 0x610  |    | General purpose memory                                                      |

## 6.6.2.1 TASKS SEND[n] (n=0..7)

Address offset:  $0x000 + (n \times 0x4)$ 

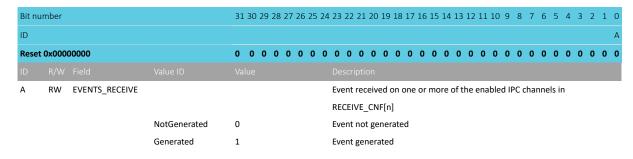
Trigger events on IPC channel enabled in SEND\_CNF[n]






## 6.6.2.2 SUBSCRIBE\_SEND[n] (n=0..7)

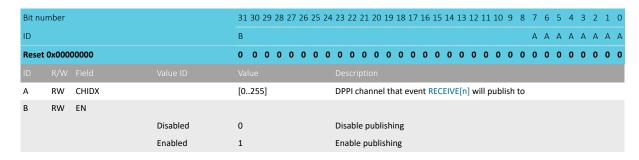
Address offset:  $0x080 + (n \times 0x4)$ 


Subscribe configuration for task SEND[n]



## 6.6.2.3 EVENTS\_RECEIVE[n] (n=0..7)

Address offset:  $0x100 + (n \times 0x4)$ 


Event received on one or more of the enabled IPC channels in RECEIVE\_CNF[n]



## 6.6.2.4 PUBLISH\_RECEIVE[n] (n=0..7)

Address offset:  $0x180 + (n \times 0x4)$ 

Publish configuration for event RECEIVE[n]



#### 6.6.2.5 INTEN

Address offset: 0x300

Enable or disable interrupt



| Bit nu | mber  |                   |          | 31 3 | 0 29 | 28 2 | 7 20 | 5 25 | 24 | 23   | 22 2 | 21 2 | 0 1  | .9 1 | 8 1 | 7 16 | 5 15 | 5 14  | 13   | 12   | 11  | 10  | 9 8 | 3 7 | 6   | 5 | 4 | 3 2 | 2 | 1 0 |
|--------|-------|-------------------|----------|------|------|------|------|------|----|------|------|------|------|------|-----|------|------|-------|------|------|-----|-----|-----|-----|-----|---|---|-----|---|-----|
| ID     |       |                   |          |      |      |      |      |      |    |      |      |      |      |      |     |      |      |       |      |      |     |     |     | H   | I G | F | Ε | D ( | 0 | ВА  |
| Reset  | 0x000 | 00000             |          | 0 (  | 0 0  | 0 (  | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0 (  | ) ( | 0    | 0    | 0     | 0    | 0    | 0   | 0   | 0 ( | 0   | 0   | 0 | 0 | 0 ( | 0 | 0 0 |
| ID     |       |                   |          |      |      |      |      |      |    |      |      |      |      |      |     |      |      |       |      |      |     |     |     |     |     |   |   |     |   |     |
| A-H    | RW    | RECEIVE[i] (i=07) |          |      |      |      |      |      |    | Ena  | ble  | or o | disa | ble  | int | erru | pt 1 | for e | evei | nt R | ECE | IVE | i]  |     |     |   |   |     |   |     |
|        |       |                   | Disabled | 0    |      |      |      |      |    | Disa | able | 9    |      |      |     |      |      |       |      |      |     |     |     |     |     |   |   |     |   |     |
|        |       |                   | Enabled  | 1    |      |      |      |      |    | Ena  | ble  |      |      |      |     |      |      |       |      |      |     |     |     |     |     |   |   |     |   |     |

## **6.6.2.6 INTENSET**

Address offset: 0x304 Enable interrupt

| Bit nu | mber   |                   |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|-------------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |        |                   |          |                         | H G F E D C B A                                               |
| Reset  | 0x0000 | 00000             |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |        |                   |          |                         | Description                                                   |
| А-Н    | RW     | RECEIVE[i] (i=07) |          |                         | Write '1' to enable interrupt for event RECEIVE[i]            |
|        |        |                   | Set      | 1                       | Enable                                                        |
|        |        |                   | Disabled | 0                       | Read: Disabled                                                |
|        |        |                   | Enabled  | 1                       | Read: Enabled                                                 |

# 6.6.2.7 INTENCLR

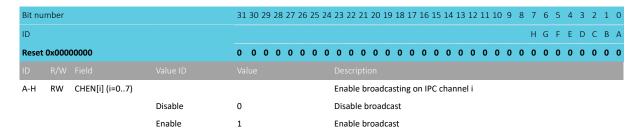
Address offset: 0x308

Disable interrupt

| Bit nu | mber  |                   |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |                   |          |                         | HGFEDCBA                                                      |
| Reset  | 0x000 | 00000             |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |                   |          |                         | Description                                                   |
| A-H    | RW    | RECEIVE[i] (i=07) |          |                         | Write '1' to disable interrupt for event RECEIVE[i]           |
|        |       |                   | Clear    | 1                       | Disable                                                       |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |

## 6.6.2.8 INTPEND

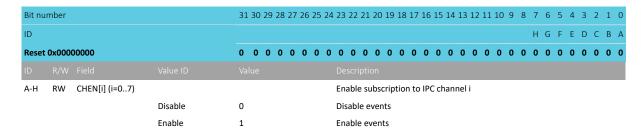
Address offset: 0x30C Pending interrupts


| Bit nu | mber  |                   |            | 31 30 29 | 28 27 | 26 25 | 24 23 | 3 22  | 21 2  | 0 19   | 18 17 | 7 16   | 15 14 | 4 13  | 12 1  | 1 10  | 9   | 8 7   | 6 | 5 | 4 | 3 2 | 1 | 0 |
|--------|-------|-------------------|------------|----------|-------|-------|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-----|-------|---|---|---|-----|---|---|
| ID     |       |                   |            |          |       |       |       |       |       |        |       |        |       |       |       |       |     | Н     | G | F | Е | D C | В | Α |
| Reset  | 0x000 | 00000             |            | 0 0 0    | 0 0   | 0 0   | 0 0   | 0     | 0 0   | 0      | 0 0   | 0      | 0 0   | 0     | 0 0   | 0     | 0   | 0 0   | 0 | 0 | 0 | 0 0 | 0 | 0 |
| ID     |       |                   |            |          |       |       |       |       |       |        |       |        |       |       |       |       |     |       |   |   |   |     |   |   |
| А-Н    | R     | RECEIVE[i] (i=07) |            |          |       |       | Re    | ead p | oendi | ing st | atus  | of int | erru  | pt fo | r eve | nt RE | CEI | /E[i] |   |   |   |     |   |   |
|        |       |                   | NotPending | 0        |       |       | Re    | ead:  | Not p | oendi  | ing   |        |       |       |       |       |     |       |   |   |   |     |   |   |
|        |       |                   | Pending    | 1        |       |       | Re    | ead:  | Pend  | ling   |       |        |       |       |       |       |     |       |   |   |   |     |   |   |

# 6.6.2.9 SEND\_CNF[n] (n=0..7)

Address offset:  $0x510 + (n \times 0x4)$ 



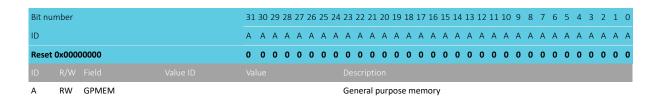

#### Send event configuration for TASKS\_SEND[n]



## 6.6.2.10 RECEIVE CNF[n] (n=0..7)

Address offset:  $0x590 + (n \times 0x4)$ 

Receive event configuration for EVENTS\_RECEIVE[n]




### 6.6.2.11 GPMEM[n] (n=0..3)

Address offset:  $0x610 + (n \times 0x4)$ 

General purpose memory

Retained only in System ON mode



## 6.6.3 Electrical specification

## 6.6.3.1 IPC Electrical Specification

| Symbol           | Description                                       | Min. | Тур. | Max. | Units |
|------------------|---------------------------------------------------|------|------|------|-------|
| t <sub>IPC</sub> | Time window during which IPC events can be merged |      |      | 165  | μs    |

# 6.7 I2S — Inter-IC sound interface

The I2S (Inter-IC Sound) module, supports the original two-channel I2S format, and left or right-aligned formats. It implements EasyDMA for sample transfer directly to and from RAM without CPU intervention.

The I2S peripheral has the following main features:

• Master and Slave mode



- · Simultaneous bi-directional (TX and RX) audio streaming
- · Original I2S and left- or right-aligned format
- 8, 16 and 24-bit sample width
- Low-jitter Master Clock generator
- Various sample rates

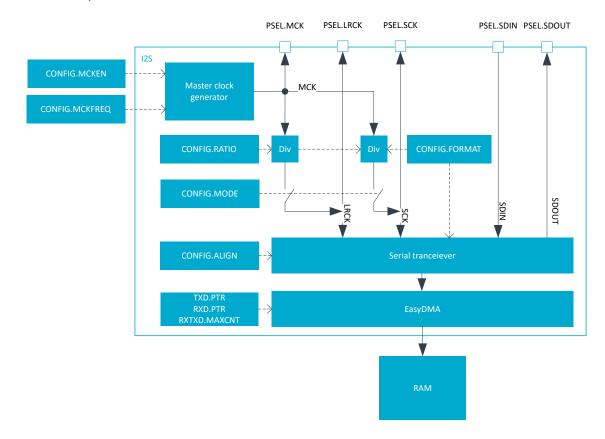



Figure 27: I2S master

### 6.7.1 Mode

The I2S protocol specification defines two modes of operation, Master and Slave.

The I2S mode decides which of the two sides (Master or Slave) shall provide the clock signals LRCK and SCK, and these signals are always supplied by the Master to the Slave.

# 6.7.2 Transmitting and receiving

The I2S module supports both transmission (TX) and reception (RX) of serial data. In both cases the serial data is shifted synchronously to the clock signals SCK and LRCK.

TX data is written to the SDOUT pin on the falling edge of SCK, and RX data is read from the SDIN pin on the rising edge of SCK. The most significant bit (MSB) is always transmitted first.

**Note:** When starting a transmission in master mode, two frames (two left-and-right sample pairs) of value zero will be transmitted after triggering the START task, prior to the RXTXD.MAXCNT samples specified by the TXD.PTR pointer.

TX and RX are available in both Master and Slave modes and can be enabled/disabled independently in the CONFIG.TXEN on page 199 and CONFIG.RXEN on page 199.

Transmission and/or reception is started by triggering the START task. When started and transmission is enabled (in CONFIG.TXEN on page 199), the TXPTRUPD event will be generated for every

NORDIC\*

RXTXD.MAXCNT on page 202 number of transmitted data words (containing one or more samples). Similarly, when started and reception is enabled (in CONFIG.RXEN on page 199), the RXPTRUPD event will be generated for every RXTXD.MAXCNT on page 202 received data words.

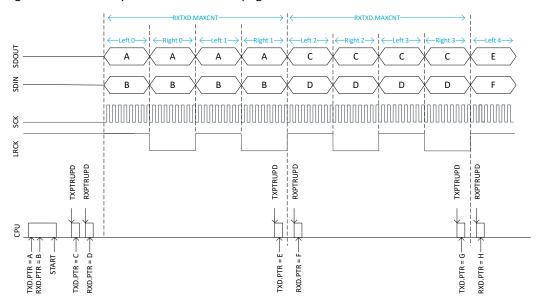



Figure 28: Transmitting and receiving. CONFIG.FORMAT = Aligned, CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Stereo, RXTXD.MAXCNT = 1.

## 6.7.3 Left right clock (LRCK)

The Left Right Clock (LRCK), often referred to as "word clock", "sample clock" or "word select" in I2S context, is the clock defining the frames in the serial bit streams sent and received on SDOUT and SDIN, respectively.

In I2S mode, each frame contains one left and right sample pair, with the left sample being transferred during the low half period of LRCK followed by the right sample being transferred during the high period of LRCK.

In Aligned mode, each frame contains one left and right sample pair, with the left sample being transferred during the high half period of LRCK followed by the right sample being transferred during the low period of LRCK.

Consequently, the LRCK frequency is equivalent to the audio sample rate.

When operating in Master mode, the LRCK is generated from the MCK, and the frequency of LRCK is then given as:

```
LRCK = MCK / CONFIG.RATIO
```

LRCK always toggles around the falling edge of the serial clock SCK.

# 6.7.4 Serial clock (SCK)

The serial clock (SCK), often referred to as the serial bit clock, pulses once for each data bit being transferred on the serial data lines SDIN and SDOUT.

When operating in Master mode the SCK is generated from the MCK, and the frequency of SCK is then given as:

```
SCK = 2 * LRCK * CONFIG.SWIDTH
```

The falling edge of the SCK falls on the toggling edge of LRCK.



When operating in Slave mode SCK is provided by the external I2S master.

## 6.7.5 Master clock (MCK)

The master clock (MCK) is the clock from which LRCK and SCK are derived when operating in Master mode.

The MCK is generated by an internal MCK generator. This generator always needs to be enabled when in Master mode, but the generator can also be enabled when in Slave mode. Enabling the generator when in slave mode can be useful in the case where the external Master is not able to generate its own master clock.

The MCK generator is enabled/disabled in the register CONFIG.MCKEN on page 199, and the generator is started or stopped by the START or STOP tasks.

In Master mode the LRCK and the SCK frequencies are closely related, as both are derived from MCK and set indirectly through CONFIG.RATIO on page 200 and CONFIG.SWIDTH on page 201.

When configuring these registers, the user is responsible for fulfilling the following requirements:

1. SCK frequency can never exceed the MCK frequency, which can be formulated as:

```
CONFIG.RATIO >= 2 * CONFIG.SWIDTH
```

2. The MCK/LRCK ratio shall be a multiple of 2 \* CONFIG.SWIDTH, which can be formulated as:

```
Integer = (CONFIG.RATIO / (2 * CONFIG.SWIDTH))
```

The MCK signal can be routed to an output pin (specified in PSEL.MCK) to supply external I2S devices that require the MCK to be supplied from the outside.

When operating in Slave mode, the I2S module does not use the MCK and the MCK generator does not need to be enabled.

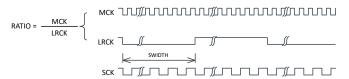



Figure 29: Relation between RATIO, MCK and LRCK.

| Desired LRCK<br>[Hz] | CONFIG.SWID | CONFIG.RATIO | CONFIG.MCKF | MCK [Hz]  | LRCK [Hz] | LRCK error [%] |
|----------------------|-------------|--------------|-------------|-----------|-----------|----------------|
| 16000                | 16Bit       | 32X          | 32MDIV63    | 507936.5  | 15873.0   | -0.8           |
| 16000                | 16Bit       | 64X          | 32MDIV31    | 1032258.1 | 16129.0   | 0.8            |
| 16000                | 16Bit       | 256X         | 32MDIV8     | 4000000.0 | 15625.0   | -2.3           |
| 32000                | 16Bit       | 32X          | 32MDIV31    | 1032258.1 | 32258.1   | 0.8            |
| 32000                | 16Bit       | 64X          | 32MDIV16    | 2000000.0 | 31250.0   | -2.3           |
| 44100                | 16Bit       | 32X          | 32MDIV23    | 1391304.3 | 43478.3   | -1.4           |
| 44100                | 16Bit       | 64X          | 32MDIV11    | 2909090.9 | 45454.5   | 3.1            |

Table 20: Configuration examples



## 6.7.6 Width, alignment, and format

The CONFIG.SWIDTH register primarily defines the sample width of the data written to memory. In master mode, it then also sets the amount of bits per frame. In Slave mode it controls padding/trimming if required. Left, right, transmitted, and received samples always have the same width. The CONFIG.FORMAT register specifies the position of the data frames with respect to the LRCK edges in both Master and Slave modes.

When using I2S format, the first bit in a half-frame (containing one left or right sample) gets sampled on the second rising edge of the SCK after a LRCK edge. When using Aligned mode, the first bit in a half-frame gets sampled on the first rising edge of SCK following a LRCK edge.

For data being received on SDIN the sample value can be either right or left-aligned inside a half-frame, as specified in CONFIG.ALIGN on page 201. CONFIG.ALIGN on page 201 affects only the decoding of the incoming samples (SDIN), while the outgoing samples (SDOUT) are always left-aligned (or justified).

When using left-alignment, each half-frame starts with the MSB of the sample value (both for data being sent on SDOUT and received on SDIN).

When using right-alignment, each half-frame of data being received on SDIN ends with the LSB of the sample value, while each half-frame of data being sent on SDOUT starts with the MSB of the sample value (same as for left-alignment).

In Master mode, the size of a half-frame (in number of SCK periods) equals the sample width (in number of bits), and in this case the alignment setting does not care as each half-frame in any case will start with the MSB and end with the LSB of the sample value.

In slave mode, however, the sample width does not need to equal the frame size. This means you might have extra or fewer SCK pulses per half-frame than what the sample width specified in CONFIG.SWIDTH requires.

In the case where we use **left-alignment** and the number of SCK pulses per half-frame is **higher** than the sample width, the following will apply:

- For data received on SDIN, all bits after the LSB of the sample value will be discarded.
- For data sent on SDOUT, all bits after the LSB of the sample value will be 0.

In the case where we use **left-alignment** and the number of SCK pulses per frame is **lower** than the sample width, the following will apply:

Data sent and received on SDOUT and SDIN will be truncated with the LSBs being removed first.

In the case where we use **right-alignment** and the number of SCK pulses per frame is **higher** than the sample width, the following will apply:

- For data received on SDIN, all bits before the MSB of the sample value will be discarded.
- For data sent on SDOUT, all bits after the LSB of the sample value will be 0 (same behavior as for left-alignment).

In the case where we use **right-alignment** and the number of SCK pulses per frame is **lower** than the sample width, the following will apply:

- Data received on SDIN will be sign-extended to "sample width" number of bits before being written to memory.
- Data sent on SDOUT will be truncated with the LSBs being removed first (same behavior as for left-alignment).

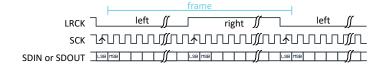



Figure 30: I2S format. CONFIG.SWIDTH equaling half-frame size.



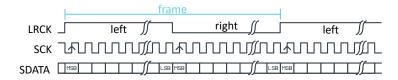



Figure 31: Aligned format. CONFIG.SWIDTH equaling half-frame size.

## 6.7.7 EasyDMA

The I2S module implements EasyDMA for accessing internal Data RAM without CPU intervention.

The source and destination pointers for the TX and RX data are configured in TXD.PTR on page 202 and RXD.PTR on page 202. The memory pointed to by these pointers will only be read or written when TX or RX are enabled in CONFIG.TXEN on page 199 and CONFIG.RXEN on page 199.

The addresses written to the pointer registers TXD.PTR on page 202 and RXD.PTR on page 202 are double-buffered in hardware, and these double buffers are updated for every RXTXD.MAXCNT on page 202 words (containing one or more samples) read/written from/to memory. The events TXPTRUPD and RXPTRUPD are generated whenever the TXD.PTR and RXD.PTR are transferred to these double buffers.

If TXD.PTR on page 202 is not pointing to the Data RAM region when transmission is enabled, or RXD.PTR on page 202 is not pointing to the Data RAM region when reception is enabled, an EasyDMA transfer may result in a HardFault and/or memory corruption. See Memory on page 21 for more information about the different memory regions.

Due to the nature of I2S, where the number of transmitted samples always equals the number of received samples (at least when both TX and RX are enabled), one common register RXTXD.MAXCNT on page 202 is used for specifying the sizes of these two memory buffers. The size of the buffers is specified in a number of 32-bit words. Such a 32-bit memory word can either contain four 8-bit samples, two 16-bit samples or one right-aligned 24-bit sample sign extended to 32 bit.

In stereo mode (CONFIG.CHANNELS=Stereo), the samples are stored as "left and right sample pairs" in memory. Figure Memory mapping for 8 bit stereo. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Stereo. on page 189, Memory mapping for 16 bit stereo. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Stereo. on page 190 and Memory mapping for 24 bit stereo. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS = Stereo. on page 190 show how the samples are mapped to memory in this mode. The mapping is valid for both RX and TX.

In mono mode (CONFIG.CHANNELS=Left or Right), RX sample from only one channel in the frame is stored in memory, the other channel sample is ignored. Illustrations Memory mapping for 8 bit mono. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Left. on page 190, Memory mapping for 16 bit mono, left channel only. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Left. on page 190 and Memory mapping for 24 bit mono, left channel only. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS = Left. on page 191 show how RX samples are mapped to memory in this mode.

For TX, the same outgoing sample read from memory is transmitted on both left and right in a frame, resulting in a mono output stream.

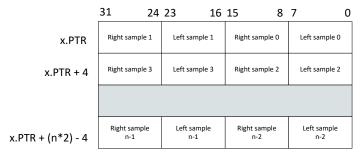



Figure 32: Memory mapping for 8 bit stereo. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Stereo.



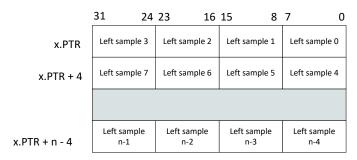



Figure 33: Memory mapping for 8 bit mono. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Left.

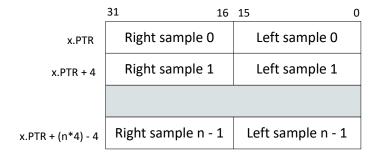



Figure 34: Memory mapping for 16 bit stereo. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Stereo.

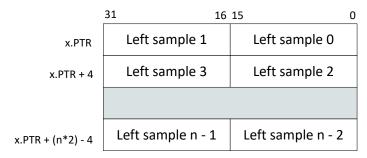



Figure 35: Memory mapping for 16 bit mono, left channel only. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Left.

|                   | 31        | 23 0               |
|-------------------|-----------|--------------------|
| x.PTR             | Sign ext. | Left sample 0      |
| x.PTR + 4         | Sign ext. | Right sample 0     |
|                   |           |                    |
| x.PTR + (n*8) - 8 | Sign ext. | Left sample n - 1  |
| x.PTR + (n*8) - 4 | Sign ext. | Right sample n - 1 |

Figure 36: Memory mapping for 24 bit stereo. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS = Stereo.



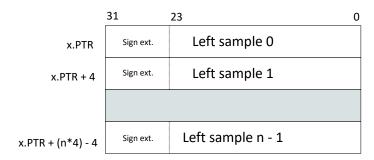



Figure 37: Memory mapping for 24 bit mono, left channel only. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS = Left.

## 6.7.8 Module operation

Described here is a typical operating procedure for the I2S module.

1. Configure the I2S module using the CONFIG registers

```
// Enable reception
NRF I2S->CONFIG.RXEN = (I2S_CONFIG_RXEN_RXEN_Enabled <<
                                       12S CONFIG RXEN RXEN Pos);
// Enable transmission
NRF I2S->CONFIG.TXEN = (I2S_CONFIG_TXEN_TXEN_Enabled <<
                                       12S_CONFIG_TXEN_TXEN_Pos);
// Enable MCK generator
NRF_I2S->CONFIG.MCKEN = (I2S_CONFIG_MCKEN_MCKEN_Enabled <<
                                       I2S CONFIG MCKEN MCKEN Pos);
// MCKFREQ = 4 MHz
NRF I2S->CONFIG.MCKFREQ = I2S CONFIG MCKFREQ MCKFREQ 32MDIV8 <<
                                       I2S CONFIG MCKFREQ MCKFREQ Pos;
// Ratio = 256
NRF I2S->CONFIG.RATIO = I2S CONFIG RATIO RATIO 256X <<
                                       I2S CONFIG RATIO RATIO Pos;
// MCKFREQ = 4 MHz and Ratio = 256 gives sample rate = 15.625 \text{ ks/s}
// Sample width = 16 bit
NRF I2S->CONFIG.SWIDTH = I2S CONFIG SWIDTH SWIDTH 16Bit <<
                                       I2S CONFIG SWIDTH SWIDTH Pos;
// Alignment = Left
NRF I2S->CONFIG.ALIGN = I2S CONFIG ALIGN ALIGN Left <<
                                       12S_CONFIG_ALIGN_ALIGN_Pos;
// Format = I2S
NRF I2S->CONFIG.FORMAT = I2S CONFIG FORMAT FORMAT I2S <<
                                       12S CONFIG FORMAT FORMAT Pos;
NRF I2S->CONFIG.CHANNELS = I2S CONFIG CHANNELS CHANNELS Stereo <<
                                       12S CONFIG CHANNELS CHANNELS Pos;
```



2. Map IO pins using the PINSEL registers

```
// MCK routed to pin 0
NRF_I2S->PSEL.MCK = (0 << I2S_PSEL_MCK_PIN_Pos) |
                   (I2S_PSEL_MCK_CONNECT_Connected <<
                                                I2S PSEL MCK CONNECT Pos);
// SCK routed to pin 1
NRF I2S->PSEL.SCK = (1 << I2S PSEL SCK PIN Pos) |
                    (I2S PSEL SCK CONNECT Connected <<
                                                12S_PSEL_SCK_CONNECT_Pos);
// LRCK routed to pin 2
NRF I2S->PSEL.LRCK = (2 << I2S PSEL LRCK PIN Pos) |
                     (I2S PSEL LRCK CONNECT Connected <<
                                                12S_PSEL_LRCK_CONNECT_Pos);
// SDOUT routed to pin 3
NRF I2S->PSEL.SDOUT = (3 << I2S PSEL SDOUT PIN Pos) |
                     (I2S_PSEL_SDOUT_CONNECT_Connected <<
                                                12S_PSEL_SDOUT_CONNECT_Pos);
// SDIN routed on pin 4
NRF_I2S->PSEL.SDIN = (4 << I2S_PSEL_SDIN_PIN_POs) |
                     (I2S PSEL SDIN CONNECT Connected <<
                                                 12S PSEL SDIN CONNECT Pos);
```

3. Configure TX and RX data pointers using the TXD, RXD and RXTXD registers

```
NRF_I2S->TXD.PTR = my_tx_buf;
NRF_I2S->RXD.PTR = my_rx_buf;
NRF_I2S->TXD.MAXCNT = MY_BUF_SIZE;
```

4. Enable the I2S module using the ENABLE register

```
NRF_I2S->ENABLE = 1;
```

5. Start audio streaming using the START task

```
NRF_I2S->TASKS_START = 1;
```

6. Handle received and transmitted data when receiving the TXPTRUPD and RXPTRUPD events

```
if(NRF_I2S->EVENTS_TXPTRUPD != 0)
{
    NRF_I2S->TXD.PTR = my_next_tx_buf;
    NRF_I2S->EVENTS_TXPTRUPD = 0;
}

if(NRF_I2S->EVENTS_RXPTRUPD != 0)
{
    NRF_I2S->RXD.PTR = my_next_rx_buf;
    NRF_I2S->EVENTS_RXPTRUPD = 0;
}
```



# 6.7.9 Pin configuration

The MCK, SCK, LRCK, SDIN and SDOUT signals associated with the I2S module are mapped to physical pins according to the pin numbers specified in the PSEL.x registers.

These pins are acquired whenever the I2S module is enabled through the register ENABLE on page 198.

When a pin is acquired by the I2S module, the direction of the pin (input or output) will be configured automatically, and any pin direction setting done in the GPIO module will be overridden. The directions for the various I2S pins are shown below in GPIO configuration before enabling peripheral (master mode) on page 193 and GPIO configuration before enabling peripheral (slave mode) on page 193.

To secure correct signal levels on the pins when the system is in OFF mode, and when the I2S module is disabled, these pins must be configured in the GPIO peripheral directly.

| I2S signal | I2S pin                    | Direction | Output value   | Comment |
|------------|----------------------------|-----------|----------------|---------|
| MCK        | As specified in PSEL.MCK   | Output    | 0              |         |
| LRCK       | As specified in PSEL.LRCK  | Output    | 0              |         |
| SCK        | As specified in PSEL.SCK   | Output    | 0              |         |
| SDIN       | As specified in PSEL.SDIN  | Input     | Not applicable |         |
| SDOUT      | As specified in PSEL.SDOUT | Output    | 0              |         |

Table 21: GPIO configuration before enabling peripheral (master mode)

| I2S signal | I2S pin                    | Direction | Output value   | Comment |
|------------|----------------------------|-----------|----------------|---------|
| MCK        | As specified in PSEL.MCK   | Output    | 0              |         |
| LRCK       | As specified in PSEL.LRCK  | Input     | Not applicable |         |
| SCK        | As specified in PSEL.SCK   | Input     | Not applicable |         |
| SDIN       | As specified in PSEL.SDIN  | Input     | Not applicable |         |
| SDOUT      | As specified in PSEL.SDOUT | Output    | 0              |         |

Table 22: GPIO configuration before enabling peripheral (slave mode)

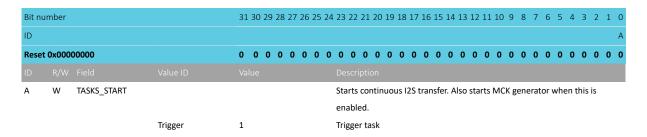
# 6.7.10 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description    |  |  |  |  |
|----------|--------------|-----------|-----|-----|--------------|----------------|--|--|--|--|
|          |              | Мар       | Att | DMA |              |                |  |  |  |  |
| 12S : S  | 0x50028000   | US        | NS  | SA  | No           | Inter-IC Sound |  |  |  |  |
| 12S : NS | 0x40028000   | 03        | INS | 3A  | INU          | inter-ic sound |  |  |  |  |

#### **Register overview**

| Register        | Offset | TZ | Description                                                                               |
|-----------------|--------|----|-------------------------------------------------------------------------------------------|
| TASKS_START     | 0x000  |    | Starts continuous I2S transfer. Also starts MCK generator when this is enabled.           |
| TASKS_STOP      | 0x004  |    | Stops I2S transfer. Also stops MCK generator. Triggering this task will cause the STOPPED |
|                 |        |    | event to be generated.                                                                    |
| SUBSCRIBE_START | 0x080  |    | Subscribe configuration for task START                                                    |
| SUBSCRIBE_STOP  | 0x084  |    | Subscribe configuration for task STOP                                                     |
| EVENTS_RXPTRUPD | 0x104  |    | The RXD.PTR register has been copied to internal double-buffers. When the I2S module is   |
|                 |        |    | started and RX is enabled, this event will be generated for every RXTXD.MAXCNT words that |
|                 |        |    | are received on the SDIN pin.                                                             |

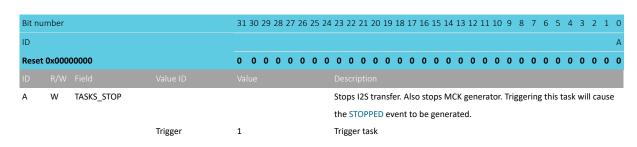



| Register         | Offset | TZ | Description                                                                               |
|------------------|--------|----|-------------------------------------------------------------------------------------------|
| EVENTS_STOPPED   | 0x108  |    | 12S transfer stopped.                                                                     |
| EVENTS_TXPTRUPD  | 0x114  |    | The TDX.PTR register has been copied to internal double-buffers. When the I2S module is   |
|                  |        |    | started and TX is enabled, this event will be generated for every RXTXD.MAXCNT words that |
|                  |        |    | are sent on the SDOUT pin.                                                                |
| PUBLISH_RXPTRUPD | 0x184  |    | Publish configuration for event RXPTRUPD                                                  |
| PUBLISH_STOPPED  | 0x188  |    | Publish configuration for event STOPPED                                                   |
| PUBLISH_TXPTRUPD | 0x194  |    | Publish configuration for event TXPTRUPD                                                  |
| INTEN            | 0x300  |    | Enable or disable interrupt                                                               |
| INTENSET         | 0x304  |    | Enable interrupt                                                                          |
| INTENCLR         | 0x308  |    | Disable interrupt                                                                         |
| ENABLE           | 0x500  |    | Enable I2S module.                                                                        |
| CONFIG.MODE      | 0x504  |    | I2S mode.                                                                                 |
| CONFIG.RXEN      | 0x508  |    | Reception (RX) enable.                                                                    |
| CONFIG.TXEN      | 0x50C  |    | Transmission (TX) enable.                                                                 |
| CONFIG.MCKEN     | 0x510  |    | Master clock generator enable.                                                            |
| CONFIG.MCKFREQ   | 0x514  |    | Master clock generator frequency.                                                         |
| CONFIG.RATIO     | 0x518  |    | MCK / LRCK ratio.                                                                         |
| CONFIG.SWIDTH    | 0x51C  |    | Sample width.                                                                             |
| CONFIG.ALIGN     | 0x520  |    | Alignment of sample within a frame.                                                       |
| CONFIG.FORMAT    | 0x524  |    | Frame format.                                                                             |
| CONFIG.CHANNELS  | 0x528  |    | Enable channels.                                                                          |
| RXD.PTR          | 0x538  |    | Receive buffer RAM start address.                                                         |
| TXD.PTR          | 0x540  |    | Transmit buffer RAM start address.                                                        |
| RXTXD.MAXCNT     | 0x550  |    | Size of RXD and TXD buffers.                                                              |
| PSEL.MCK         | 0x560  |    | Pin select for MCK signal.                                                                |
| PSEL.SCK         | 0x564  |    | Pin select for SCK signal.                                                                |
| PSEL.LRCK        | 0x568  |    | Pin select for LRCK signal.                                                               |
| PSEL.SDIN        | 0x56C  |    | Pin select for SDIN signal.                                                               |
| PSEL.SDOUT       | 0x570  |    | Pin select for SDOUT signal.                                                              |
|                  |        |    |                                                                                           |

# 6.7.10.1 TASKS\_START

Address offset: 0x000

Starts continuous I2S transfer. Also starts MCK generator when this is enabled.




## 6.7.10.2 TASKS\_STOP

Address offset: 0x004

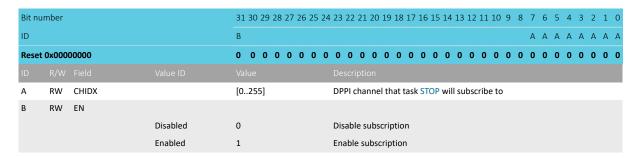
Stops I2S transfer. Also stops MCK generator. Triggering this task will cause the STOPPED event to be generated.





## 6.7.10.3 SUBSCRIBE\_START

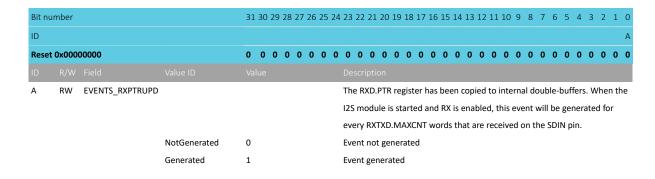
Address offset: 0x080


Subscribe configuration for task START

| Bit nu | ımber   |       |          | 31 30 | 29 2 | 28 27 | 26 2 | 25 24 | 23  | 22   | 21   | 20 : | 19  | 18 1 | 7 1  | 6 15 | 5 14 | 13    | 12  | 11   | 10 9 | 9 8 | 7 | 6 | 5 | 4 | 3 | 2  | 1 0 |
|--------|---------|-------|----------|-------|------|-------|------|-------|-----|------|------|------|-----|------|------|------|------|-------|-----|------|------|-----|---|---|---|---|---|----|-----|
| ID     |         |       |          | В     |      |       |      |       |     |      |      |      |     |      |      |      |      |       |     |      |      |     | Α | Α | Α | Α | Α | Α. | 4 A |
| Reset  | t 0x000 | 00000 |          | 0 0   | 0    | 0 0   | 0 (  | 0 0   | 0   | 0    | 0    | 0    | 0   | 0 (  | 0 0  | 0    | 0    | 0     | 0   | 0    | 0 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0  | 0 0 |
| ID     |         |       |          |       |      |       |      |       |     |      |      |      |     |      |      |      |      |       |     |      |      |     |   |   |   |   |   |    |     |
| Α      | RW      | CHIDX |          | [025  | 55]  |       |      |       | DP  | PI c | han  | nel  | tha | t ta | sk S | TAR  | Tw   | ill s | ubs | crib | e to |     |   |   |   |   |   |    |     |
| В      | RW      | EN    |          |       |      |       |      |       |     |      |      |      |     |      |      |      |      |       |     |      |      |     |   |   |   |   |   |    |     |
|        |         |       | Disabled | 0     |      |       |      |       | Dis | abl  | e su | bsc  | rip | ion  |      |      |      |       |     |      |      |     |   |   |   |   |   |    |     |
|        |         |       |          |       |      |       |      |       |     |      |      |      |     |      |      |      |      |       |     |      |      |     |   |   |   |   |   |    |     |

## 6.7.10.4 SUBSCRIBE\_STOP

Address offset: 0x084


Subscribe configuration for task STOP

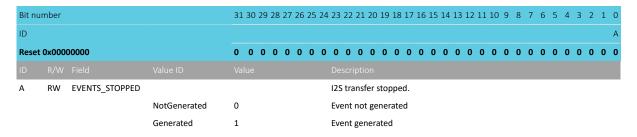


### 6.7.10.5 EVENTS RXPTRUPD

Address offset: 0x104

The RXD.PTR register has been copied to internal double-buffers. When the I2S module is started and RX is enabled, this event will be generated for every RXTXD.MAXCNT words that are received on the SDIN pin.

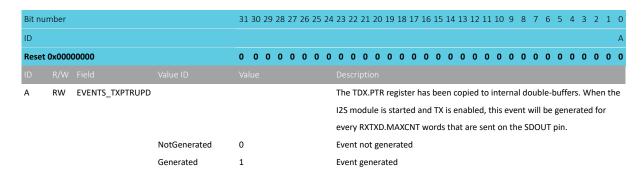







## 6.7.10.6 EVENTS\_STOPPED

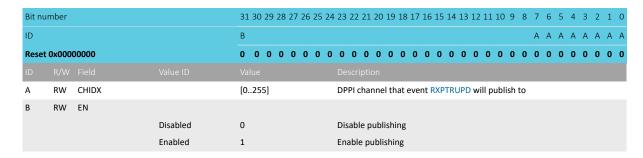
Address offset: 0x108


12S transfer stopped.



### 6.7.10.7 EVENTS TXPTRUPD

Address offset: 0x114


The TDX.PTR register has been copied to internal double-buffers. When the I2S module is started and TX is enabled, this event will be generated for every RXTXD.MAXCNT words that are sent on the SDOUT pin.



### 6.7.10.8 PUBLISH RXPTRUPD

Address offset: 0x184

Publish configuration for event RXPTRUPD



### 6.7.10.9 PUBLISH\_STOPPED

Address offset: 0x188

Publish configuration for event STOPPED



| Bit nu | mber  |       |          | 31 30 29 | 28 27 | 26 2 | 25 24 | 23 2 | 22 2:  | 1 20  | 19    | 18 1 | 17 16 | 5 15 | 14  | 13  | 12 1  | 1 10  | 9    | 8 | 7  | 6 | 5 4 | 1 3 | 2 | 1 | 0 |
|--------|-------|-------|----------|----------|-------|------|-------|------|--------|-------|-------|------|-------|------|-----|-----|-------|-------|------|---|----|---|-----|-----|---|---|---|
| ID     |       |       |          | В        |       |      |       |      |        |       |       |      |       |      |     |     |       |       |      |   | Α. | A | A A | A A | A | Α | Α |
| Reset  | 0x000 | 00000 |          | 0 0 0    | 0 0   | 0    | 0 0   | 0    | 0 0    | 0     | 0     | 0    | 0 0   | 0    | 0   | 0   | 0 (   | 0     | 0    | 0 | 0  | 0 | 0 ( | ) ( | 0 | 0 | 0 |
| ID     |       |       |          |          |       |      |       |      |        |       |       |      |       |      |     |     |       |       |      |   |    |   |     |     |   |   |   |
| Α      | RW    | CHIDX |          | [0255]   |       |      |       | DPP  | PI cha | anne  | l th  | at e | vent  | STC  | PPE | D w | ill p | ublis | h to |   |    |   |     |     |   |   |   |
| В      | RW    | EN    |          |          |       |      |       |      |        |       |       |      |       |      |     |     |       |       |      |   |    |   |     |     |   |   |   |
|        |       |       | Disabled | 0        |       |      |       | Disa | able   | publ  | ishii | ng   |       |      |     |     |       |       |      |   |    |   |     |     |   |   |   |
|        |       |       | Enabled  | 1        |       |      |       | Ena  | ble p  | oubli | shir  | ng   |       |      |     |     |       |       |      |   |    |   |     |     |   |   |   |

# 6.7.10.10 PUBLISH\_TXPTRUPD

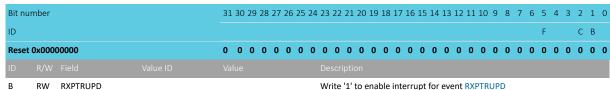
Address offset: 0x194

Publish configuration for event TXPTRUPD

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event TXPTRUPD will publish to                |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

### 6.7.10.11 INTEN

Address offset: 0x300


Enable or disable interrupt

| Bit n | umber   |          |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|----------|----------|------------------------|------------------------------------------------------------------|
| ID    |         |          |          |                        | F C B                                                            |
| Rese  | t 0x000 | 00000    |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID    |         |          |          |                        |                                                                  |
| В     | RW      | RXPTRUPD |          |                        | Enable or disable interrupt for event RXPTRUPD                   |
|       |         |          | Disabled | 0                      | Disable                                                          |
|       |         |          | Enabled  | 1                      | Enable                                                           |
| С     | RW      | STOPPED  |          |                        | Enable or disable interrupt for event STOPPED                    |
|       |         |          | Disabled | 0                      | Disable                                                          |
|       |         |          | Enabled  | 1                      | Enable                                                           |
| F     | RW      | TXPTRUPD |          |                        | Enable or disable interrupt for event TXPTRUPD                   |
|       |         |          | Disabled | 0                      | Disable                                                          |
|       |         |          | Enabled  | 1                      | Enable                                                           |

### 6.7.10.12 INTENSET

Address offset: 0x304

Enable interrupt



Write '1' to enable interrupt for event RXPTRUPD



| Bit nu | ımber        |          | 31 30 29 28 27 26 2 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------------|----------|---------------------|---------------------------------------------------------------------|
| ID     |              |          |                     | F CB                                                                |
| Reset  | t 0x00000000 |          | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID     |              |          |                     | Description                                                         |
|        |              | Set      | 1                   | Enable                                                              |
|        |              | Disabled | 0                   | Read: Disabled                                                      |
|        |              | Enabled  | 1                   | Read: Enabled                                                       |
| С      | RW STOPPED   |          |                     | Write '1' to enable interrupt for event STOPPED                     |
|        |              | Set      | 1                   | Enable                                                              |
|        |              | Disabled | 0                   | Read: Disabled                                                      |
|        |              | Enabled  | 1                   | Read: Enabled                                                       |
| F      | RW TXPTRUPD  |          |                     | Write '1' to enable interrupt for event TXPTRUPD                    |
|        |              | Set      | 1                   | Enable                                                              |
|        |              | Disabled | 0                   | Read: Disabled                                                      |
|        |              | Enabled  | 1                   | Read: Enabled                                                       |

# 6.7.10.13 INTENCLR

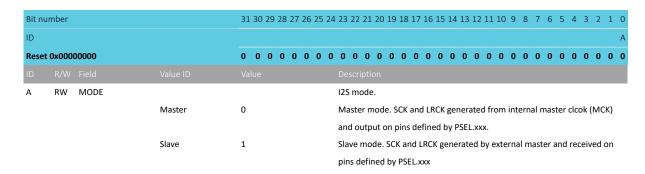
Address offset: 0x308

Disable interrupt

| Bit nu | mber  |          |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|----------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |          |          |                         | F C B                                                           |
| Reset  | 0x000 | 00000    |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |          |          |                         | Description                                                     |
| В      | RW    | RXPTRUPD |          |                         | Write '1' to disable interrupt for event RXPTRUPD               |
|        |       |          | Clear    | 1                       | Disable                                                         |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW    | STOPPED  |          |                         | Write '1' to disable interrupt for event STOPPED                |
|        |       |          | Clear    | 1                       | Disable                                                         |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |
| F      | RW    | TXPTRUPD |          |                         | Write '1' to disable interrupt for event TXPTRUPD               |
|        |       |          | Clear    | 1                       | Disable                                                         |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |

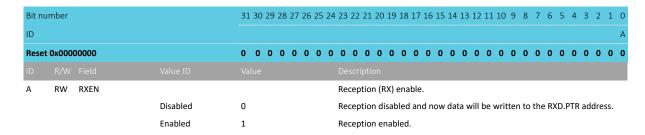
# 6.7.10.14 ENABLE

Address offset: 0x500 Enable I2S module.


| Bit nu | ımber |        |          | 31 30 2 | 28 : | 27 2 | 6 25 | 24 23 | 3 22  | 21 20 | ) 19 | 18 3 | L7 16 | 5 15 | 14 | 13 1 | 2 11 | . 10 | 9 | 8 | 7 | 6 | 5 4 | 4 3 | 2 | 1 0 |
|--------|-------|--------|----------|---------|------|------|------|-------|-------|-------|------|------|-------|------|----|------|------|------|---|---|---|---|-----|-----|---|-----|
| ID     |       |        |          |         |      |      |      |       |       |       |      |      |       |      |    |      |      |      |   |   |   |   |     |     |   | А   |
| Reset  | 0x000 | 00000  |          | 0 0 0   | 0    | 0 0  | 0    | 0 0   | 0     | 0 0   | 0    | 0    | 0 0   | 0    | 0  | 0 (  | 0 0  | 0    | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 0 |
| ID     |       |        |          |         |      |      |      |       |       |       |      |      |       |      |    |      |      |      |   |   |   |   |     |     |   |     |
| Α      | RW    | ENABLE |          |         |      |      |      | Er    | nable | 2S1   | nod  | ule. |       |      |    |      |      |      |   |   |   |   |     |     |   |     |
|        |       |        | Disabled | 0       |      |      |      | Di    | isabl | e     |      |      |       |      |    |      |      |      |   |   |   |   |     |     |   |     |
|        |       |        | Enabled  | 1       |      |      |      | Er    | nable | 9     |      |      |       |      |    |      |      |      |   |   |   |   |     |     |   |     |



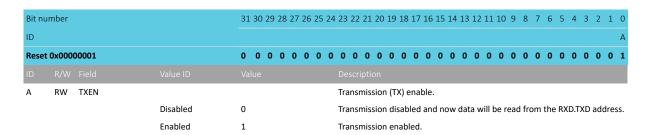
#### 6.7.10.15 CONFIG.MODE


Address offset: 0x504

I2S mode.



#### 6.7.10.16 CONFIG.RXEN


Address offset: 0x508 Reception (RX) enable.



#### 6.7.10.17 CONFIG.TXEN

Address offset: 0x50C

Transmission (TX) enable.



#### 6.7.10.18 CONFIG.MCKEN

Address offset: 0x510

Master clock generator enable.



| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0        |
|--------|-------|-------|----------|----------------------|-------------------------------------------------------------------------|
| ID     |       |       |          |                      | A                                                                       |
| Reset  | 0x000 | 00001 |          | 0 0 0 0 0 0 0        | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $            |
| ID     |       |       |          |                      |                                                                         |
| Α      | RW    | MCKEN |          |                      | Master clock generator enable.                                          |
|        |       |       | Disabled | 0                    | Master clock generator disabled and PSEL.MCK not connected(available as |
|        |       |       |          |                      | GPIO).                                                                  |
|        |       |       | Enabled  | 1                    | Master clock generator running and MCK output on PSEL.MCK.              |

# 6.7.10.19 CONFIG.MCKFREQ

Address offset: 0x514

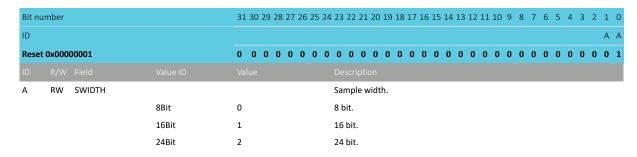
Master clock generator frequency.

| Bit n | umber   |         |           | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|---------|-----------|------------------------|-----------------------------------------------------------------|
| ID    |         |         |           | A A A A A A A          | A A A A A A A A A A A A A A A A A A A                           |
| Rese  | t 0x200 | 00000   |           | 0 0 1 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID    |         |         |           |                        | Description                                                     |
| Α     | RW      | MCKFREQ |           |                        | Master clock generator frequency.                               |
|       |         |         | 32MDIV8   | 0x20000000             | 32 MHz / 8 = 4.0 MHz                                            |
|       |         |         | 32MDIV10  | 0x18000000             | 32 MHz / 10 = 3.2 MHz                                           |
|       |         |         | 32MDIV11  | 0x16000000             | 32 MHz / 11 = 2.9090909 MHz                                     |
|       |         |         | 32MDIV15  | 0x11000000             | 32 MHz / 15 = 2.1333333 MHz                                     |
|       |         |         | 32MDIV16  | 0x10000000             | 32 MHz / 16 = 2.0 MHz                                           |
|       |         |         | 32MDIV21  | 0x0C000000             | 32 MHz / 21 = 1.5238095                                         |
|       |         |         | 32MDIV23  | 0x0B000000             | 32 MHz / 23 = 1.3913043 MHz                                     |
|       |         |         | 32MDIV30  | 0x08800000             | 32 MHz / 30 = 1.0666667 MHz                                     |
|       |         |         | 32MDIV31  | 0x08400000             | 32 MHz / 31 = 1.0322581 MHz                                     |
|       |         |         | 32MDIV32  | 0x08000000             | 32 MHz / 32 = 1.0 MHz                                           |
|       |         |         | 32MDIV42  | 0x06000000             | 32 MHz / 42 = 0.7619048 MHz                                     |
|       |         |         | 32MDIV63  | 0x04100000             | 32 MHz / 63 = 0.5079365 MHz                                     |
|       |         |         | 32MDIV125 | 0x020C0000             | 32 MHz / 125 = 0.256 MHz                                        |
|       |         |         |           |                        |                                                                 |

## 6.7.10.20 CONFIG.RATIO

Address offset: 0x518

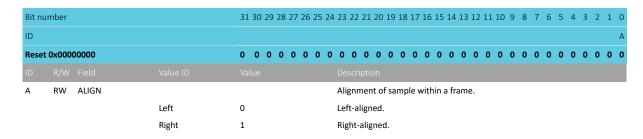
MCK / LRCK ratio.


| Bit nu | umber   |       |      | 31 30 29 28 27 26 2 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|------|---------------------|--------------------------------------------------------------------|
| ID     |         |       |      |                     | АААА                                                               |
| Reset  | t 0x000 | 00006 |      | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |
| ID     |         |       |      |                     |                                                                    |
| Α      | RW      | RATIO |      |                     | MCK / LRCK ratio.                                                  |
|        |         |       | 32X  | 0                   | LRCK = MCK / 32                                                    |
|        |         |       | 48X  | 1                   | LRCK = MCK / 48                                                    |
|        |         |       | 64X  | 2                   | LRCK = MCK / 64                                                    |
|        |         |       | 96X  | 3                   | LRCK = MCK / 96                                                    |
|        |         |       | 128X | 4                   | LRCK = MCK / 128                                                   |
|        |         |       | 192X | 5                   | LRCK = MCK / 192                                                   |
|        |         |       | 256X | 6                   | LRCK = MCK / 256                                                   |
|        |         |       | 384X | 7                   | LRCK = MCK / 384                                                   |
|        |         |       | 512X | 8                   | LRCK = MCK / 512                                                   |



#### 6.7.10.21 CONFIG.SWIDTH

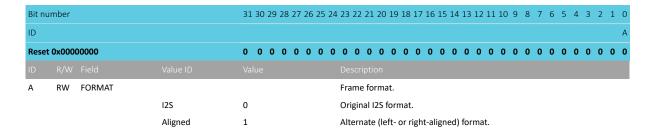
Address offset: 0x51C


Sample width.



### 6.7.10.22 CONFIG.ALIGN

Address offset: 0x520

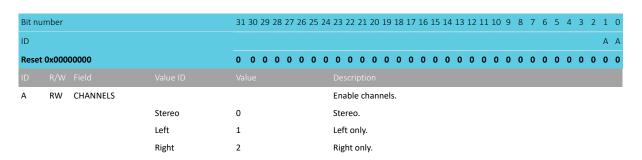

Alignment of sample within a frame.



#### 6.7.10.23 CONFIG.FORMAT

Address offset: 0x524

Frame format.




### 6.7.10.24 CONFIG.CHANNELS

Address offset: 0x528

Enable channels.





### 6.7.10.25 RXD.PTR

Address offset: 0x538

Receive buffer RAM start address.

| Bit n | umber   |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22  | 21   | 20    | 19   | 18   | 17   | 16   | 15   | 14   | 13  | 12   | 11   | 10    | 9    | 8    | 7   | 6    | 5   | 4    | 3    | 2    | 1 0 |
|-------|---------|-------|----|----|----|----|----|----|----|----|-----|-----|------|-------|------|------|------|------|------|------|-----|------|------|-------|------|------|-----|------|-----|------|------|------|-----|
| ID    |         |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α   | Α    | Α     | Α    | Α    | Α    | Α    | Α    | Α    | Α   | Α    | Α    | Α     | Α    | Α    | Α   | Α    | Α   | Α    | Α    | Α    | А А |
| Rese  | t 0x000 | 00000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0     | 0    | 0    | 0   | 0    | 0   | 0    | 0    | 0    | 0 0 |
| ID    |         |       |    |    |    |    |    |    |    |    |     |     |      |       |      |      |      |      |      |      |     |      |      |       |      |      |     |      |     |      |      |      |     |
| Α     | RW      | PTR   |    |    |    |    |    |    |    |    | Re  | cei | ve b | ouff  | er [ | Data | R/   | M    | staı | rt a | ddr | ess  | . W  | her/  | n re | cei  | vin | g, w | orc | ds c | onta | aini | ng  |
|       |         |       |    |    |    |    |    |    |    |    | saı | mp  | les  | will  | be   | wri  | tter | ı to | thi  | s a  | ddr | ess. | . Th | nis a | dd   | ress | sis | a w  | ord | ali  | gne  | d D  | ata |
|       |         |       |    |    |    |    |    |    |    |    | RA  | M   | add  | lres: | s.   |      |      |      |      |      |     |      |      |       |      |      |     |      |     |      |      |      |     |

### 6.7.10.26 TXD.PTR

Address offset: 0x540

Transmit buffer RAM start address.

| Bit n | umber   |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21   | 20    | 19  | 18   | 17   | 16    | 15   | 14    | 13   | 12   | 11   | 10  | 9    | 8    | 7    | 6     | 5     | 4    | 3    | 2   | 1   | 0 |
|-------|---------|-------|----|----|----|----|----|----|----|----|-----|------|------|-------|-----|------|------|-------|------|-------|------|------|------|-----|------|------|------|-------|-------|------|------|-----|-----|---|
| ID    |         |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α    | Α     | Α   | Α    | Α    | Α     | Α    | Α     | Α    | Α    | Α    | Α   | Α    | Α    | Α    | Α     | Α     | Α    | Α    | Α   | Α   | Α |
| Rese  | t 0x000 | 00000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0    | 0     | 0   | 0    | 0    | 0     | 0    | 0     | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0     | 0     | 0    | 0    | 0   | 0   | 0 |
|       |         |       |    |    |    |    |    |    |    |    |     |      |      |       |     |      |      |       |      |       |      |      |      |     |      |      |      |       |       |      |      |     |     |   |
| Α     | RW      | PTR   |    |    |    |    |    |    |    |    | Tra | nsr  | nit  | buf   | fer | Dat  | ta R | ΑM    | sta  | art a | add  | res  | s. V | Νhe | en t | ran  | sm   | ittin | ıg, ı | wor  | ds   |     |     | _ |
|       |         |       |    |    |    |    |    |    |    |    | coı | ntai | inin | ıg sa | amp | oles | wi   | ll be | e fe | tch   | ed 1 | fror | n t  | his | ado  | lres | s. T | his   | ado   | dres | s is | a v | vor | d |
|       |         |       |    |    |    |    |    |    |    |    | ali | gne  | d D  | ata   | RA  | Ma   | add  | ress  | 5.   |       |      |      |      |     |      |      |      |       |       |      |      |     |     |   |

### 6.7.10.27 RXTXD.MAXCNT

Address offset: 0x550

Size of RXD and TXD buffers.

| Α     | RW      | MAXCNT |       |       |         |        | Siz  | e of | RXD   | and | TXD  | buffe | ers ir | n nu | mbe        | er of | 32   | bit | wor | ds. |   |     |     |   |   |   |
|-------|---------|--------|-------|-------|---------|--------|------|------|-------|-----|------|-------|--------|------|------------|-------|------|-----|-----|-----|---|-----|-----|---|---|---|
| ID    |         |        |       |       |         |        |      |      |       |     |      |       |        |      |            |       |      |     |     |     |   |     |     |   |   |   |
| Rese  | t 0x000 | 00000  | 0 0   | 0 0   | 0 0     | 0 (    | 0    | 0    | 0 0   | 0   | 0 (  | 0     | 0      | 0 (  | 0 0        | 0     | 0    | 0   | 0   | 0   | 0 | 0 ( | 0   | 0 | 0 | 0 |
| ID    |         |        |       |       |         |        |      |      |       |     |      |       |        | ,    | <b>А</b> А | A     | Α    | Α   | Α   | Α   | Α | A A | A A | Α | Α | Α |
| Bit n | umber   |        | 31 30 | 29 28 | 3 27 26 | 5 25 2 | 4 23 | 22 2 | 21 20 | 19  | 18 1 | 7 16  | 15 3   | 14 1 | 3 12       | 2 11  | . 10 | 9   | 8   | 7   | 6 | 5 4 | 1 3 | 2 | 1 | 0 |

#### 6.7.10.28 PSEL.MCK

Address offset: 0x560
Pin select for MCK signal.



| Bit nu | mber   |         |              | 31 30 | 29 2 | 8 27 | 26 | 25 24 | 23  | 22 2 | 1 20 | 19 | 18 | 17 1 | .6 1 | 5 14 | 13 | 12 1 | 11 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 : | 2 : | 1 0 |
|--------|--------|---------|--------------|-------|------|------|----|-------|-----|------|------|----|----|------|------|------|----|------|-------|---|---|---|---|---|---|-----|-----|-----|
| ID     |        |         |              | В     |      |      |    |       |     |      |      |    |    |      |      |      |    |      |       |   |   |   |   |   | Α | Α / | Α Α | 4 Α |
| Reset  | 0xFFFI | FFFF    |              | 1 1   | 1 1  | 1 1  | 1  | 1 1   | 1   | 1    | 1 1  | 1  | 1  | 1    | 1 1  | . 1  | 1  | 1    | 1 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 : | 1 : | l 1 |
| ID     |        |         |              |       |      |      |    |       |     |      |      |    |    |      |      |      |    |      |       |   |   |   |   |   |   |     |     |     |
| Α      | RW     | PIN     |              | [031] |      |      |    |       | Pin | nun  | nber |    |    |      |      |      |    |      |       |   |   |   |   |   |   |     |     |     |
| В      | RW     | CONNECT |              |       |      |      |    |       | Cor | nnec | tion |    |    |      |      |      |    |      |       |   |   |   |   |   |   |     |     |     |
|        |        |         | Disconnected | 1     |      |      |    |       | Dis | conr | ect  |    |    |      |      |      |    |      |       |   |   |   |   |   |   |     |     |     |
|        |        |         | Connected    | 0     |      |      |    |       | Cor | nnec | t    |    |    |      |      |      |    |      |       |   |   |   |   |   |   |     |     |     |

## 6.7.10.29 PSEL.SCK

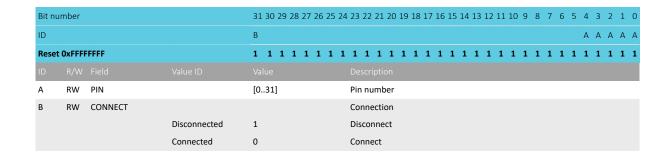
Address offset: 0x564

Pin select for SCK signal.

| Bit nu | mber   |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                          |
| Reset  | 0xFFFI | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

### 6.7.10.30 PSEL.LRCK

Address offset: 0x568

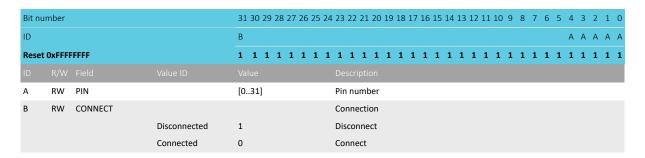

Pin select for LRCK signal.

| Bit nu | mber   |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | ААААА                                                         |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

## 6.7.10.31 PSEL.SDIN

Address offset: 0x56C

Pin select for SDIN signal.






#### 6.7.10.32 PSEL.SDOUT

Address offset: 0x570

Pin select for SDOUT signal.



# 6.7.11 Electrical specification

## 6.7.11.1 I2S timing specification

| Symbol                | Description                       | Min. | Тур. | Max. | Units |
|-----------------------|-----------------------------------|------|------|------|-------|
| t <sub>S_SDIN</sub>   | SDIN setup time before SCK rising | 20   |      |      | ns    |
| t <sub>H_SDIN</sub>   | SDIN hold time after SCK rising   | 15   |      |      | ns    |
| t <sub>S_SDOUT</sub>  | SCK falling edge to SDOUT valid   | 40   |      |      | ns    |
| t <sub>H_SDOUT</sub>  | SDOUT hold time after SCK falling | 6    |      |      | ns    |
| t <sub>SCK_LRCK</sub> | SCLK falling to LRCK edge         | -5   | 0    | 5    | ns    |
| f <sub>MCK</sub>      | MCK frequency                     |      |      | 4000 | kHz   |
| f <sub>LRCK</sub>     | LRCK frequency                    |      |      | 48   | kHz   |
| $f_{SCK}$             | SCK frequency                     |      |      | 2000 | kHz   |
| DC <sub>CK</sub>      | Clock duty cycle (MCK, LRCK, SCK) | 45   |      | 55   | %     |

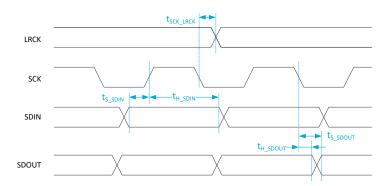



Figure 38: I2S timing diagram

# 6.8 KMU — Key management unit

The key management unit (KMU) enforces access policies to a subset region of user information configuration register (UICR). This subset region is used for storing cryptographic key values inside the key slots, which the CPU has no access to.

In total there are 128 key slots available, where each key slot can store one 128-bit key value together with an access policy and a destination address for the key value. Multiple key slots can be combined in order to support key sizes larger than 128 bits. The access policy of a key slot governs if and how a key value can



be used, while the destination address determines where in the memory map the KMU pushes the key value upon a request from the CPU.

Key slots can be configured to be pushed directly into write-only key registers in cryptographic accelerators, like e.g. CryptoCell, without exposing the key value itself to the CPU. This enables the CPU to use the key values stored inside the key slots for cryptographic operations without being exposed to the key value.

Access to the KMU, and the key slots in the UICR, is only allowed from secure mode.

### 6.8.1 Functional view

From a functional view the UICR is divided into two different regions, one-time programmable (OTP) memory and key storage.

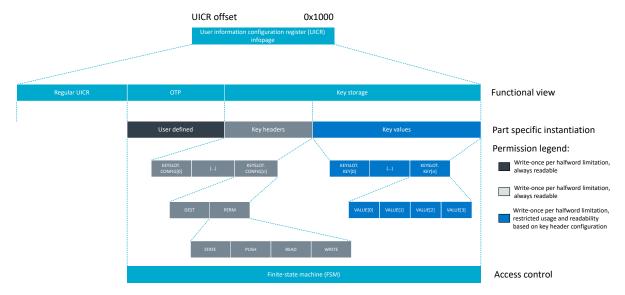



Figure 39: Memory map overview

#### **OTP**

One-time programmable (OTP) memory is typically used for holding values that are written once, and then never to be changed again throughout the product lifetime. The OTP region of UICR is emulated by placing a write-once per halfword limitation on registers defined here.

#### **Key storage**

The key storage region contains multiple key slots, where each slot consists of a key header and an associated key value. The key value is limited to 128 bits. Any key size greater than 128 bits must be divided and distributed over multiple key slot instances.

Key headers are allocated an address range of 0x400 in the UICR memory map, allowing a total of 128 keys to be addressable inside the key storage region.

**Note:** The use of the key storage region in UICR should be limited to keys with a certain life span, and not per-session derived keys where the CPU is involved in the key exchange.

#### 6.8.2 Access control

Access control to the underlying UICR infopage in flash is enforced by a hardware finite-state machine (FSM). The FSM can allow or block transactions, depending both on the security of the transaction (secure or non-secure) and on the type of register being written and/or read.



| Access type | Key headers | Key values |
|-------------|-------------|------------|
| Read        | Allowed     | Restricted |
| Write       | Restricted  | Restricted |

Table 23: Access control

Any restricted access requires an explicit key slot selection through the KMU register interface. Any illegal access to restricted key slot registers will be blocked and word <code>OxDEADDEAD</code> will be returned on the AHB.

The OTP region has individual access control behavior, while access control to the key storage region is configured on a per key slot basis. The KMU FSM operates on only one key slot instance at a time, and the permissions and the usage restriction for a key value associated with a key slot can be configured individually.

**Note:** Even if the KMU can be configured as non-secure, all non-secure transactions will be blocked.

## 6.8.3 Protecting the UICR content

The UICR content can be protected against device-internal NVMC.ERASEALL requests, in addition to device-external ERASEALL requests, through the CTRL-AP interface. This feature is useful if the firmware designers want to prevent the OTP region from being erased.

Since enabling this step will permanently disable erase for the UICR, the procedure requires an implementation defined 32-bit word to be written into the UICR's ERASEPROTECT register.

In case of a field return handling, it is still possible to erase the UICR even if the ERASEPROTECT is set. If this functionality is desired, the secure boot code must implement a secure communication channel over the CTRL-AP mailbox interface. Upon successful authentication of the external party, the secure boot code can temporarily re-enable the CTRL-AP ERASEALL functionality.

# 6.8.4 Usage

This section describes the specific KMU and UICR behavior in more detail, to help the reader get a better overview of KMU's features and the intended usage.

#### 6.8.4.1 OTP

The OTP region of the UICR contains a user-defined static configuration of the device. The KMU emulates the OTP functionality by placing a write-once per halfword limitation of registers defined in this region, i.e. only halfwords containing all '1's can be written.

An OTP write transaction must consist of a full 32-bit word. Both halfwords can either be written simultaneously or one at a time. The KMU FSM will block any write to a halfword in the OTP region, if the initial value of this halfword is not 0xFFFF. When writing halfwords one at a time, the non-active halfword must be masked as 0xFFFF, otherwise the request will be blocked. For example, writing 0x1234XXXX to an OTP destination address which already contains the value 0xFFFFAABB, must be configured as 0x1234FFFF. The OTP destination address will contain the value 0x1234AABB after both write transactions have been processed.

The KMU will also only allow secure AHB write transactions into the OTP region of the UICR. Any AHB write transaction to this region that does not satisfy the above requirements will be ignored, and the STATUS.BLOCKED register will be set to '1'.

#### 6.8.4.2 Key storage

The key storage region of the UICR can contain multiple keys of different type, including symmetrical keys, hashes, public/private key pairs and other device secrets. One of the key features of the KMU, is that these



device secrets can be installed and made available for use in cryptographic operations without revealing the actual secret values.

Keys in this region will typically have a certain life span. The region is not designed to be used for persession derived keys where the non-secure side (i.e. application) is participating in the key exchange.

All key storage is done through the concept of multiple key slots, where each key slot instance consists of one key header and an associated key value. Each key header supports the configuration of usage permissions and an optional secure destination address.

The key header secure destination address option enables the KMU to push the associated key value over a dedicated secure APB to a pre-configured secure location within the memory map. Such locations typically include a write-only key register of the hardware cryptographic accelerator, allowing the KMU to distribute keys within the system without compromising the key values.

One key slot instance can store a key value of maximum 128 bits. If a key size exceeds this limit, the key value itself must be split over multiple key slot instances.

The following usage and read permissions scheme is applicable for each key slot:

| State      | Push     | Read     | Write    | Description                                                                                          |
|------------|----------|----------|----------|------------------------------------------------------------------------------------------------------|
| Juic       | i usii   | ncuu     | wite     | 2001-patient                                                                                         |
| Active (1) | Enabled  | Enabled  | Enabled  | Default flash erase value. Key slot cannot be pushed, write is enabled.                              |
|            | (1)      | (1)      | (1)      |                                                                                                      |
| Active (1) | Enabled  | Enabled  | Disabled | Key slot is active, push is enabled. Key slot VALUE registers can be read, but write is disabled.    |
|            | (1)      | (1)      | (0)      |                                                                                                      |
| Active (1) | Enabled  | Disabled | Disabled | Key slot is active, push is enabled. Read and write to key slot VALUE registers are disabled.        |
|            | (1)      | (0)      | (0)      |                                                                                                      |
| Active (1) | Disabled | Enabled  | Disabled | Key slot is active, push is disabled. Key slot VALUE registers can be read, but write is disabled.   |
|            | (0)      | (1)      | (0)      |                                                                                                      |
| Revoked    | -        | -        | -        | Key slot is revoked. Cannot be read or pushed over secure APB regardless of the permission settings. |
| (0)        |          |          |          |                                                                                                      |

Table 24: Valid key slot permission schemes

#### 6.8.4.2.1 Selecting a key slot

The KMU FSM is designed to process only one key slot at a time, effectively operating as a memory protection unit for the key storage region. Whenever a key slot is selected, the KMU will allow access to writing, reading, and/or pushing the associated key value according to the selected slot configuration.

A key slot must be selected prior to use, by writing the key slot ID into the KMU SELECTKEYSLOT register. Because the reset value of this register is 0x00000000, there is no key slot associated with ID=0 and no slot is selected by default. All key slots are addressed using IDs from 1 to 128.

SELECTED status is set when a key slot is selected, and a read or write access to that keyslot occurs.

BLOCKED status is set when any illegal access to key slot registers is detected.

When the use of the particular key slot is stopped, the key slot selection in SELECTKEYSLOT must be set back to '0'.

By default, all KMU key slots will consist of a 128-bit key value of '1's, where the key headers have no secure destination address, or any usage and read restrictions.

## 6.8.4.2.2 Writing to a key slot

Writing a key slot into UICR is a five-step process.

- 1. Select which key slot the KMU shall operate on by writing the desired key slot ID into KMU->SELECTKEYSLOT. The selected key slot must be empty in order to add a new entry to UICR.
- **2.** If the key value shall be pushable over secure APB, the destination address of the recipient must be configured in register KEYSLOT.CONFIG[ID-1].DEST.



- 3. Write the 128-bit key value into KEYSLOT.KEY[ID-1].VALUE[0-3].
- **4.** Write the desired key slot permissions into KEYSLOT.CONFIG[ID-1].PERM, including any applicable usage restrictions.
- **5.** Select key slot 0.

In case the total key size is greater than 128 bits, the key value itself must be split into 128-bit segments and written to multiple key slot instances. Steps 1 through 5 above must be repeated for the entire key size.

**Note:** If a key slot is configured as readable, and KEYSLOT.CONFIG[ID-1].DEST is not to be used, it is recommended to disable the push bit in KEYSLOT.CONFIG[ID-1].PERM when configuring key slot permissions.

**Note:** A key value distributed over multiple key slots should use the same key slot configuration in its key headers, but the secure destination address for each key slot instance must be incremented by 4 words (128 bits) for each key slot instance spanned.

**Note:** Write to flash must be enabled in NVMC->CONFIG prior to writing keys to flash, and subsequently disabled once writing is complete.

Steps 1 through 5 above will be blocked if any of the following violations are detected:

- No key slot selected
- Non-empty key slot selected
- NVM destination address not empty
- AHB write to KEYSLOT.KEY[ID-1].VALUE[0-3] registers not belonging to selected key slot

#### 6.8.4.2.3 Reading a key value

Key slots that are configured as readable can have their key value read directly from the UICR memory map by the CPU.

Readable keys are typically used during the secure boot sequence, where the CPU is involved in falsifying or verifying the integrity of the system. Since the CPU is involved in this decision process, it makes little sense not to trust the CPU having access to the actual key value but ultimately trust the decision of the integrity check. Another use-case for readable keys is if the key type in question does not have a HW peripheral in the platform that is able to accept such keys over secure APB.

Reading a key value from the UICR is a three-step process:

- 1. Select the key slot which the KMU shall operate on by writing the desired key slot ID into KMU->SELECTKEYSLOT.
- 2. If STATE and READ permission requirements are fulfilled as defined in KEYSLOT.CONFIG[ID-1].PERM, the key value can be read from region KEYSLOT.KEY[ID-1].VALUE[0-3] for selected key slot.
- **3.** Select key slot 0.

Step 2 will be blocked and word 0xDEADDEAD will be returned on AHB if any of the following violations are detected:

- No key slot selected
- Key slot not configured as readable
- Key slot is revoked
- AHB read to KEYSLOT.KEY[ID-1].VALUE[0-3] registers not belonging to selected key slot



#### 6.8.4.2.4 Push over secure APB

Key slots that are configured as non-readable cannot be read by the CPU regardless of the mode the system is in and must be pushed over secure APB in order to use the key value for cryptographic operations.

The secure APB destination address is set in the key slot configuration DEST register. Such destination addresses are typically write-only key registers in a hardware cryptographic accelerators memory map. The secure APB allows key slots to be utilized by the software side, without exposing the key value itself.

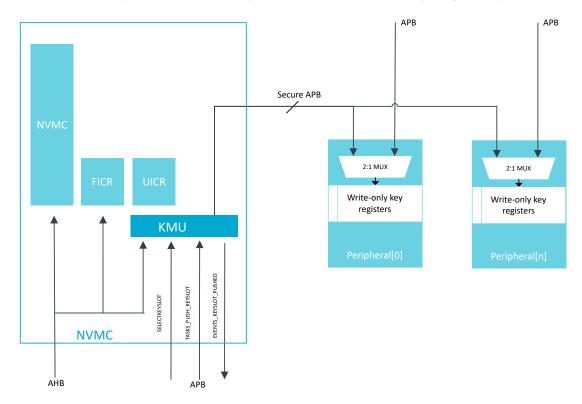



Figure 40: Tasks and events pattern for key slots

Pushing a key slot over secure APB is a four-step process:

- **1.** Select the key slot on which the KMU shall operate by writing the desired key slot ID into KMU->SELECTKEYSLOT.
- **2.** Start TASKS\_PUSH\_KEYSLOT to initiate a secure APB transaction, writing the 128-bit key value associated with the selected key slot into address defined in KEYSLOT.CONFIG[ID-1].DEST.
- **3.** After completing the secure APB transaction, the 128-bit key value is ready for use by the peripheral and EVENTS\_KEYSLOT\_PUSHED is triggered.
- 4. Select key slot 0.

**Note:** If a key value is distributed over multiple key slots due to its key size, exceeding the maximum 128-bit key value limitation, then each distributed key slot must be pushed individually in order to transfer the entire key value over secure APB.

Step 3 will trigger other events than EVENTS\_KEYSLOT\_PUSHED if the following violations are detected:

- EVENTS\_KEYSLOT\_ERROR:
  - If no key slot is selected
  - If a key slot has no destination address configured
  - If when pushing a key slot, flash, or peripheral returns an error
  - If pushing a key slot when push permissions are disabled

NORDIC\*
SEMICONDUCTOR

- If attempting to push a key slot with default permissions
- EVENTS\_KEYSLOT\_REVOKED if a key slot is marked as revoked in its key header configuration

#### 6.8.4.2.5 Revoking the key slots

All key slots within the key storage area can be marked as revoked.

To revoke any key slots, write to the STATE field in the KEYSLOT.CONFIG[ID-1].PERM register. The following rules apply to keys that have been revoked:

- Key slots that have the PUSH field enabled in PERM register can no longer be pushed. If a revoked key slot is selected and task TASKS\_PUSH\_KEYSLOT is started, the event EVENTS\_KEYSLOT\_REVOKED is triggered.
- **2.** Key slots that have the READ field enabled in PERM register can no longer be read. Any read operation to a revoked key value will return word 0xDEADDEAD.
- **3.** Previously pushed key values stored in a peripheral write-only key register are not affected by key revocation. If secure code wants to enforce that a revoked key is no longer usable by a peripheral for cryptographic operations, the secure code should disable or reset the peripheral in question.

## 6.8.4.3 STATUS register

The KMU uses a STATUS register to indicate its status of operation. The SELECTED bit will be asserted whenever the currently selected key slot is successfully read from or written to.

All read or write operations to other key slots than what is currently selected in KMU->SELECTKEYSLOT will assert the BLOCKED bit. The BLOCKED bit will also be asserted if the KMU fails to select a key slot, or if a request has been blocked due to an access violation. Normal operation using the KMU should never trigger the BLOCKED bit. If this bit is triggered during the development phase, it indicates that the code is using the KMU incorrectly.

The STATUS register is reset every time register SELECTKEYSLOT is written.

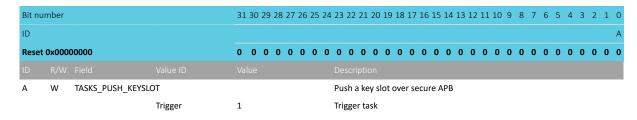
## 6.8.5 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description         |
|----------|--------------|-----------|-----|-----|--------------|---------------------|
|          |              | Мар       | Att | DMA |              |                     |
| KMU : S  | 0x50039000   | HF        | NS  | NA  | Yes          | Key managament unit |
| KMU : NS | 0x40039000   | ПГ        | INS | INA | res          | Key management unit |

#### **Register overview**

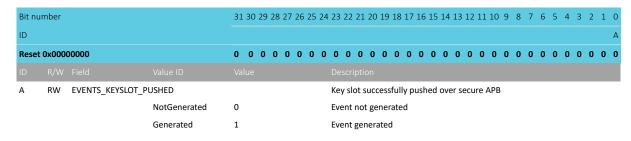
| Register               | Offset TZ | Description                                                                           |
|------------------------|-----------|---------------------------------------------------------------------------------------|
| TASKS_PUSH_KEYSLOT     | 0x0000    | Push a key slot over secure APB                                                       |
| EVENTS_KEYSLOT_PUSHED  | 0x100     | Key slot successfully pushed over secure APB                                          |
| EVENTS_KEYSLOT_REVOKED | 0x104     | Key slot has been revoked and cannot be tasked for selection                          |
| EVENTS_KEYSLOT_ERROR   | 0x108     | No key slot selected, no destination address defined, or error during push operation  |
| INTEN                  | 0x300     | Enable or disable interrupt                                                           |
| INTENSET               | 0x304     | Enable interrupt                                                                      |
| INTENCLR               | 0x308     | Disable interrupt                                                                     |
| INTPEND                | 0x30C     | Pending interrupts                                                                    |
| STATUS                 | 0x40C     | Status bits for KMU operation                                                         |
| SELECTKEYSLOT          | 0x500     | Select key slot to be read over AHB or pushed over secure APB when TASKS_PUSH_KEYSLOT |
|                        |           | is started                                                                            |






### 6.8.5.1 TASKS\_PUSH\_KEYSLOT

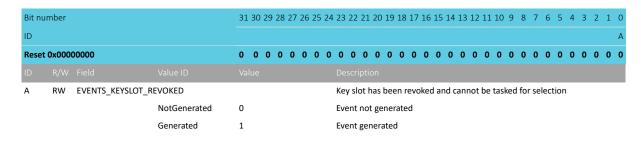
Address offset: 0x0000


Push a key slot over secure APB



### 6.8.5.2 EVENTS KEYSLOT PUSHED

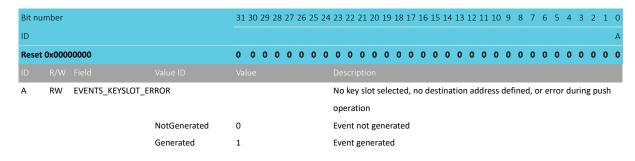
Address offset: 0x100


Key slot successfully pushed over secure APB



# 6.8.5.3 EVENTS\_KEYSLOT\_REVOKED

Address offset: 0x104


Key slot has been revoked and cannot be tasked for selection



## 6.8.5.4 EVENTS\_KEYSLOT\_ERROR

Address offset: 0x108

No key slot selected, no destination address defined, or error during push operation







## 6.8.5.5 INTEN

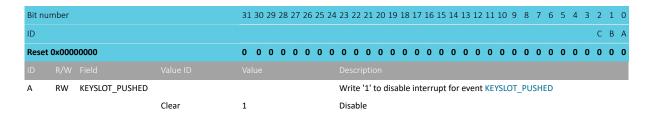
Address offset: 0x300

Enable or disable interrupt

| Bit nu | ımber   |                 |          | 31 3 | 80 29 | 28 27 | 7 26 | 25 2 | 4 23 | 22 2  | 1 20   | 19 1 | 8 17  | 16 1 | .5 14 | 13   | 12 1  | 1 10 | 9    | 8   | 7 6 | 5 5 | 4 | 3 | 2 : | 1 0 |
|--------|---------|-----------------|----------|------|-------|-------|------|------|------|-------|--------|------|-------|------|-------|------|-------|------|------|-----|-----|-----|---|---|-----|-----|
| ID     |         |                 |          |      |       |       |      |      |      |       |        |      |       |      |       |      |       |      |      |     |     |     |   |   | C I | В А |
| Reset  | t 0x000 | 00000           |          | 0 (  | 0 0   | 0 0   | 0    | 0 0  | 0    | 0 (   | 0 0    | 0 0  | 0     | 0    | 0 0   | 0    | 0 0   | 0    | 0    | 0 ( | 0   | 0   | 0 | 0 | 0 ( | 0 0 |
| ID     |         |                 |          |      |       |       |      |      |      |       |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
| Α      | RW      | KEYSLOT_PUSHED  |          |      |       |       |      |      | Ena  | ble ( | or dis | able | inter | rupt | for e | ever | t KEY | 'SLO | Г_РІ | USH | ED  |     |   |   |     |     |
|        |         |                 | Disabled | 0    |       |       |      |      | Disa | able  |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
|        |         |                 | Enabled  | 1    |       |       |      |      | Ena  | ble   |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
| В      | RW      | KEYSLOT_REVOKED |          |      |       |       |      |      | Ena  | ble ( | or dis | able | inter | rupt | for 6 | ever | t KEY | 'SLO | Γ_RI | EVO | KED |     |   |   |     |     |
|        |         |                 | Disabled | 0    |       |       |      |      | Disa | able  |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
|        |         |                 | Enabled  | 1    |       |       |      |      | Ena  | ble   |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
| С      | RW      | KEYSLOT_ERROR   |          |      |       |       |      |      | Ena  | ble ( | or dis | able | inter | rupt | for 6 | ever | t KEY | 'SLO | г_Е  | RRO | R   |     |   |   |     |     |
|        |         |                 | Disabled | 0    |       |       |      |      | Disa | able  |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |
|        |         |                 | Enabled  | 1    |       |       |      |      | Ena  | ble   |        |      |       |      |       |      |       |      |      |     |     |     |   |   |     |     |

### **6.8.5.6 INTENSET**

Address offset: 0x304


Enable interrupt

| Bit nu              | mber  |                 |          | 31 30 29 28 27 26 25 24                                 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|-------|-----------------|----------|---------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| ID                  |       |                 |          |                                                         | СВА                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset               | 0x000 | 00000           |          | 0 0 0 0 0 0 0 0                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |  |  |  |  |  |  |  |  |  |  |  |  |
| ID                  |       |                 |          |                                                         | Description                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW KEYSLOT_PUSHED |       |                 |          |                                                         | Write '1' to enable interrupt for event KEYSLOT_PUSHED          |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | Set   |                 |          | 1                                                       | Enable                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Disabled | 0                                                       | Read: Disabled                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Enabled  | 1                                                       | Read: Enabled                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
| В                   | RW    | KEYSLOT_REVOKED |          | Write '1' to enable interrupt for event KEYSLOT_REVOKED |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Set      | 1                                                       | Enable                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Disabled | 0                                                       | Read: Disabled                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Enabled  | 1                                                       | Read: Enabled                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
| С                   | RW    | KEYSLOT_ERROR   |          |                                                         | Write '1' to enable interrupt for event KEYSLOT_ERROR           |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Set      | 1                                                       | Enable                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Disabled | 0                                                       | Read: Disabled                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|                     |       |                 | Enabled  | 1                                                       | Read: Enabled                                                   |  |  |  |  |  |  |  |  |  |  |  |  |

## **6.8.5.7 INTENCLR**

Address offset: 0x308

Disable interrupt





| Bit nu           | mber |                 |          | 31 3                                                     | 30 29 1 | 28 2 | 27 26 | 25 2 | 4 2 | 3 22  | 21  | 20 1   | 9 1 | 8 17 | ' 16 | 15  | 14  | 13  | 12 : | 11 1 | 0 9 | 8   | 7   | 6 | 5 . | 4 | 3 2 | 1 | 0 |
|------------------|------|-----------------|----------|----------------------------------------------------------|---------|------|-------|------|-----|-------|-----|--------|-----|------|------|-----|-----|-----|------|------|-----|-----|-----|---|-----|---|-----|---|---|
| ID               |      |                 |          |                                                          |         |      |       |      |     |       |     |        |     |      |      |     |     |     |      |      |     |     |     |   |     |   | С   | В | Α |
| Reset 0x00000000 |      |                 |          | 0                                                        | 0 0     | 0    | 0 0   | 0    | 0 ( | 0     | 0   | 0 (    | ) ( | 0    | 0    | 0   | 0   | 0   | 0    | 0 (  | 0   | 0   | 0   | 0 | 0   | 0 | 0 0 | 0 | 0 |
| ID               |      |                 |          |                                                          |         |      |       |      |     |       |     |        |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Disabled | 0                                                        |         |      |       |      | R   | ead   | Dis | abled  | t   |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Enabled  | 1                                                        |         |      |       |      | R   | ead   | Ena | abled  |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
| В                | RW   | KEYSLOT_REVOKED |          | Write '1' to disable interrupt for event KEYSLOT_REVOKED |         |      |       |      |     |       |     |        |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Clear    | 1                                                        |         |      |       |      | D   | isab  | le  |        |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Disabled | 0                                                        |         |      |       |      | R   | ead   | Dis | abled  | t   |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Enabled  | 1                                                        |         |      |       |      | R   | ead   | Ena | abled  |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
| С                | RW   | KEYSLOT_ERROR   |          |                                                          |         |      |       |      | ٧   | Vrite | '1' | to dis | abl | e in | terr | upt | for | eve | nt I | KEYS | LOT | _ER | ROI | 2 |     |   |     |   |   |
|                  |      |                 | Clear    | 1                                                        |         |      |       |      | D   | isab  | le  |        |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Disabled | 0                                                        |         |      |       |      | R   | ead   | Dis | abled  | t   |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |
|                  |      |                 | Enabled  | 1                                                        |         |      |       |      | R   | ead   | Ena | abled  |     |      |      |     |     |     |      |      |     |     |     |   |     |   |     |   |   |

## 6.8.5.8 INTPEND

Address offset: 0x30C Pending interrupts

| Bit nu           | mber |                 |            | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|------------------|------|-----------------|------------|------------------------|-----------------------------------------------------------------|
| ID               |      |                 |            |                        | СВА                                                             |
| Reset 0x00000000 |      |                 |            | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID               |      |                 |            |                        | Description                                                     |
| Α                | R    | KEYSLOT_PUSHED  |            |                        | Read pending status of interrupt for event KEYSLOT_PUSHED       |
|                  |      |                 | NotPending | 0                      | Read: Not pending                                               |
|                  |      |                 | Pending    | 1                      | Read: Pending                                                   |
| В                | R    | KEYSLOT_REVOKED |            |                        | Read pending status of interrupt for event KEYSLOT_REVOKED      |
|                  |      |                 | NotPending | 0                      | Read: Not pending                                               |
|                  |      |                 | Pending    | 1                      | Read: Pending                                                   |
| С                | R    | KEYSLOT_ERROR   |            |                        | Read pending status of interrupt for event KEYSLOT_ERROR        |
|                  |      |                 | NotPending | 0                      | Read: Not pending                                               |
|                  |      |                 | Pending    | 1                      | Read: Pending                                                   |

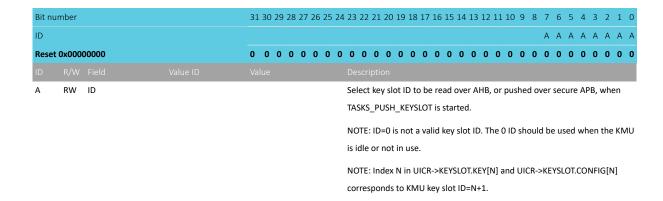
## 6.8.5.9 STATUS

Address offset: 0x40C

Status bits for KMU operation

This register is reset and re-written by the KMU whenever SELECTKEYSLOT is written

| Bit nu | mber  |          |          | 31 | 30 | 29 2 | 8 | 27 2 | 26 | 25 2 | 24 : | 23 2 | 2 2   | 1 20   | 0 1  | 9 : | 18 1 | 17 : | 16 : | 15  | 14   | 13  | 12  | 11   | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|----------|----------|----|----|------|---|------|----|------|------|------|-------|--------|------|-----|------|------|------|-----|------|-----|-----|------|----|---|---|---|---|---|---|---|---|-----|
| ID     |       |          |          |    |    |      |   |      |    |      |      |      |       |        |      |     |      |      |      |     |      |     |     |      |    |   |   |   |   |   |   |   |   | ВА  |
| Reset  | 0x000 | 00000    |          | 0  | 0  | 0 (  | 0 | 0    | 0  | 0    | 0    | 0    | ) (   | 0      | ) (  | 0   | 0    | 0    | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |          |          |    |    |      |   |      |    |      |      | Des  |       |        |      |     |      |      |      |     |      |     |     |      |    |   |   |   |   |   |   |   |   |     |
| Α      | R     | SELECTED |          |    |    |      |   |      |    |      | ı    | Key  | slot  | : ID : | suc  | cce | ssfı | ılly | sel  | ect | ed   | by  | the | e Kľ | ИU |   |   |   |   |   |   |   |   |     |
|        |       |          | Disabled | 0  |    |      |   |      |    |      | ı    | No l | ey    | slot   | ID   | se  | lect | ed   | by   | ΚΝ  | IU   |     |     |      |    |   |   |   |   |   |   |   |   |     |
|        |       |          | Enabled  | 1  |    |      |   |      |    |      | ı    | Key  | slot  | ID:    | suc  | ce  | ssfı | ılly | sel  | ect | ed   | by  | ΚN  | 1U   |    |   |   |   |   |   |   |   |   |     |
| В      | R     | BLOCKED  |          |    |    |      |   |      |    |      | ١    | Viol | atio  | n st   | atu  | ıs  |      |      |      |     |      |     |     |      |    |   |   |   |   |   |   |   |   |     |
|        |       |          | Disabled | 0  |    |      |   |      |    |      | ı    | No a | cce   | ess v  | iol  | ati | on   | det  | ect  | ed  |      |     |     |      |    |   |   |   |   |   |   |   |   |     |
|        |       |          | Enabled  | 1  |    |      |   |      |    |      | ,    | Acce | ess ' | viola  | atic | on  | det  | ect  | ed a | and | l bl | ocl | ked |      |    |   |   |   |   |   |   |   |   |     |






#### 6.8.5.10 SELECTKEYSLOT

Address offset: 0x500

Select key slot to be read over AHB or pushed over secure APB when TASKS\_PUSH\_KEYSLOT is started



# 6.9 PDM — Pulse density modulation interface

The pulse density modulation (PDM) module enables input of pulse density modulated signals from external audio frontends, for example, digital microphones. The PDM module generates the PDM clock and supports single-channel or dual-channel (left and right) data input. Data is transferred directly to RAM buffers using EasyDMA.

Listed here are the main features for PDM:

- Up to two PDM microphones configured as a left/right pair using the same data input
- 16 kHz output sample rate, 16-bit samples
- EasyDMA support for sample buffering
- HW decimation filters
- Selectable ratio of 64 or 80 between PDM\_CLK and output sample rate

The PDM module illustrated below is interfacing up to two digital microphones with the PDM interface. EasyDMA is implemented to relieve the real-time requirements associated with controlling of the PDM slave from a low priority CPU execution context. It also includes all the necessary digital filter elements to produce pulse code modulation (PCM) samples. The PDM module allows continuous audio streaming.

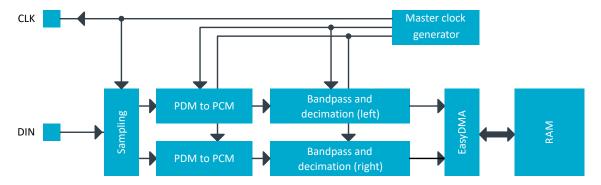



Figure 41: PDM module

# 6.9.1 Master clock generator

The master clock generator's PDMCLKCTRL register allows adjusting the PDM clock's frequency.

The master clock generator does not add any jitter to the HFCLK source chosen. It is recommended (but not mandatory) to use the Xtal as HFCLK source.



## 6.9.2 Module operation

By default, bits from the left PDM microphone are sampled on PDM\_CLK falling edge, and bits for the right are sampled on the rising edge of PDM\_CLK, resulting in two bitstreams. Each bitstream is fed into a digital filter which converts the PDM stream into 16-bit PCM samples, then filters and down-samples them to reach the appropriate sample rate.

The EDGE field in the MODE register allows swapping left and right, so that left will be sampled on rising edge, and right on falling.

The PDM module uses EasyDMA to store the samples coming out from the filters into one buffer in RAM. Depending on the mode chosen in the OPERATION field in the MODE register, memory either contains alternating left and right 16-bit samples (Stereo), or only left 16-bit samples (Mono). To ensure continuous PDM sampling, it is up to the application to update the EasyDMA destination address pointer as the previous buffer is filled.

The continuous transfer can be started or stopped by sending the START and STOP tasks. STOP becomes effective after the current frame has finished transferring, which will generate the STOPPED event. The STOPPED event indicates that all activity in the module is finished, and that the data is available in RAM (EasyDMA has finished transferring as well). Attempting to restart before receiving the STOPPED event may result in unpredictable behavior.

#### 6.9.3 Decimation filter

In order to convert the incoming data stream into PCM audio samples, a decimation filter is included in the PDM interface module.

The input of the filter is the two-channel PDM serial stream (with left channel on clock high, right channel on clock low). Depending on the RATIO selected, its output is  $2 \times 16$ -bit PCM samples at a sample rate either 64 times or 80 times (depending on the RATIO register) lower than the PDM clock rate.

The filter stage of each channel is followed by a digital volume control, to attenuate or amplify the output samples in a range of -20 dB to +20 dB around the default (reset) setting, defined by  $G_{PDM,default}$ . The gain is controlled by the GAINL and GAINR registers.

As an example, if the goal is to achieve 2500 RMS output samples (16-bit) with a 1 kHz 90 dBA signal into a -26 dBFS sensitivity PDM microphone, do the following:

- Sum the PDM module's default gain (G<sub>PDM,default</sub>) and the gain introduced by the microphone and acoustic path of his implementation (an attenuation would translate into a negative gain)
- Adjust GAINL and GAINR by the above summed amount. Assuming that only the PDM module influences the gain, GAINL and GAINR must be set to -G<sub>PDM,default</sub> dB to achieve the requirement.

With G<sub>PDM,default</sub>=3.2 dB, and as GAINL and GAINR are expressed in 0.5 dB steps, the closest value to program would be 3.0 dB, which can be calculated as:

```
GAINL = GAINR = (DefaultGain - (2 * 3))
```

Remember to check that the resulting values programmed into GAINL and GAINR fall within MinGain and MaxGain.

# 6.9.4 EasyDMA

Samples will be written directly to RAM, and EasyDMA must be configured accordingly.

The address pointer for the EasyDMA channel is set in SAMPLE.PTR register. If the destination address set in SAMPLE.PTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 21 for more information about the different memory regions.

DMA supports Stereo (Left+Right 16-bit samples) and Mono (Left only) data transfer, depending on the setting in the OPERATION field in the MODE register. The samples are stored little endian.



| MODE.OPERATION | Bits per sample | Result stored per RAM | Physical RAM allocated | Result boundary indexes | Note    |  |  |  |  |
|----------------|-----------------|-----------------------|------------------------|-------------------------|---------|--|--|--|--|
|                |                 | word                  | (32-bit words)         | in RAM                  |         |  |  |  |  |
| Stereo         | 32 (2x16)       | L+R                   | ceil(SAMPLE.MAXCNT/2)  | R0=[31:16]; L0=[15:0]   | Default |  |  |  |  |
| Mono           | 16              | 2xL                   | ceil(SAMPLE.MAXCNT/2)  | L1=[31:16]; L0=[15:0]   |         |  |  |  |  |

Table 25: DMA sample storage

The destination buffer in RAM consists of one block, the size of which is set in SAMPLE.MAXCNT register. Format is number of 16-bit samples. The physical RAM allocated is always:

```
(RAM allocation, in bytes) = SAMPLE.MAXCNT * 2;
```

(but the mapping of the samples depends on MODE.OPERATION).

If OPERATION=Stereo, RAM will contain a succession of left and right samples.

If OPERATION=Mono, RAM will contain a succession of left only samples.

For a given value of SAMPLE.MAXCNT, the buffer in RAM can contain half the stereo sampling time as compared to the mono sampling time.

The PDM acquisition can be started by the START task, after the SAMPLE.PTR and SAMPLE.MAXCNT registers have been written. When starting the module, it will take some time for the filters to start outputting valid data. Transients from the PDM microphone itself may also occur. The first few samples (typically around 50) might hence contain invalid values or transients. It is therefore advised to discard the first few samples after a PDM start.

As soon as the STARTED event is received, the firmware can write the next SAMPLE.PTR value (this register is double-buffered), to ensure continuous operation.

When the buffer in RAM is filled with samples, an END event is triggered. The firmware can start processing the data in the buffer. Meanwhile, the PDM module starts acquiring data into the new buffer pointed to by SAMPLE.PTR, and sends a new STARTED event, so that the firmware can update SAMPLE.PTR to the next buffer address.

# 6.9.5 Hardware example

PDM can be configured with a single microphone (mono), or with two microphones.

When a single microphone is used, connect the microphone clock to CLK, and data to DIN.



Figure 42: Example of a single PDM microphone, wired as left

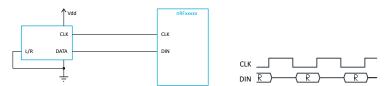



Figure 43: Example of a single PDM microphone, wired as right

Note that in a single-microphone (mono) configuration, depending on the microphone's implementation, either the left or the right channel (sampled at falling or rising CLK edge respectively) will contain reliable data.



If two microphones are used, one of them must be set as left, the other as right (L/R pin tied high or to GND on the respective microphone). It is strongly recommended to use two microphones of exactly the same brand and type so that their timings in left and right operation match.

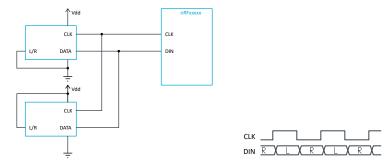



Figure 44: Example of two PDM microphones

## 6.9.6 Pin configuration

The CLK and DIN signals associated to the PDM module are mapped to physical pins according to the configuration specified in the PSEL.CLK and PSEL.DIN registers respectively. If the CONNECT field in any PSEL register is set to Disconnected, the associated PDM module signal will not be connected to the required physical pins and will not operate properly.

The PSEL.CLK and PSEL.DIN registers and their configurations are only used as long as the PDM module is enabled, and retained only as long as the device is in System ON mode. See POWER — Power control on page 67 for more information about power modes. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN\_CNF[n] register.

To ensure correct behavior in the PDM module, the pins used by the PDM module must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 217 before enabling the PDM module. This is to ensure that the pins used by the PDM module are driven correctly if the PDM module itself is temporarily disabled or the device temporarily enters System OFF. This configuration must be retained in the GPIO for the selected I/Os as long as the PDM module is supposed to be connected to an external PDM circuit.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| PDM signal | PDM pin                  | Direction | Output value   | Comment |
|------------|--------------------------|-----------|----------------|---------|
| CLK        | As specified in PSEL.CLK | Output    | 0              |         |
| DIN        | As specified in PSEL.DIN | Input     | Not applicable |         |

Table 26: GPIO configuration before enabling peripheral

# 6.9.7 Registers

#### **Instances**

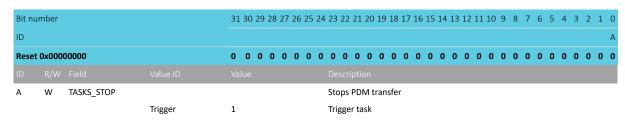
| Instance | Base address | TrustZone |     |     | Split access | Description                       |
|----------|--------------|-----------|-----|-----|--------------|-----------------------------------|
|          |              | Мар       | Att | DMA |              |                                   |
| PDM:S    | 0x50026000   | US        | NS  | SA  | No           | Pulse density modulation (digital |
| PDM: NS  | 0x40026000   | US        | INS | SA  | INO          | microphone) interface             |



## **Register overview**

| Register        | Offset | TZ | Description                                                                              |
|-----------------|--------|----|------------------------------------------------------------------------------------------|
| TASKS_START     | 0x000  |    | Starts continuous PDM transfer                                                           |
| TASKS_STOP      | 0x004  |    | Stops PDM transfer                                                                       |
| SUBSCRIBE_START | 0x080  |    | Subscribe configuration for task START                                                   |
| SUBSCRIBE_STOP  | 0x084  |    | Subscribe configuration for task STOP                                                    |
| EVENTS_STARTED  | 0x100  |    | PDM transfer has started                                                                 |
| EVENTS_STOPPED  | 0x104  |    | PDM transfer has finished                                                                |
| EVENTS_END      | 0x108  |    | The PDM has written the last sample specified by SAMPLE.MAXCNT (or the last sample after |
|                 |        |    | a STOP task has been received) to Data RAM                                               |
| PUBLISH_STARTED | 0x180  |    | Publish configuration for event STARTED                                                  |
| PUBLISH_STOPPED | 0x184  |    | Publish configuration for event STOPPED                                                  |
| PUBLISH_END     | 0x188  |    | Publish configuration for event END                                                      |
| INTEN           | 0x300  |    | Enable or disable interrupt                                                              |
| INTENSET        | 0x304  |    | Enable interrupt                                                                         |
| INTENCLR        | 0x308  |    | Disable interrupt                                                                        |
| ENABLE          | 0x500  |    | PDM module enable register                                                               |
| PDMCLKCTRL      | 0x504  |    | PDM clock generator control                                                              |
| MODE            | 0x508  |    | Defines the routing of the connected PDM microphones' signals                            |
| GAINL           | 0x518  |    | Left output gain adjustment                                                              |
| GAINR           | 0x51C  |    | Right output gain adjustment                                                             |
| RATIO           | 0x520  |    | Selects the ratio between PDM_CLK and output sample rate. Change PDMCLKCTRL              |
|                 |        |    | accordingly.                                                                             |
| PSEL.CLK        | 0x540  |    | Pin number configuration for PDM CLK signal                                              |
| PSEL.DIN        | 0x544  |    | Pin number configuration for PDM DIN signal                                              |
| SAMPLE.PTR      | 0x560  |    | RAM address pointer to write samples to with EasyDMA                                     |
| SAMPLE.MAXCNT   | 0x564  |    | Number of samples to allocate memory for in EasyDMA mode                                 |

# 6.9.7.1 TASKS\_START


Address offset: 0x000

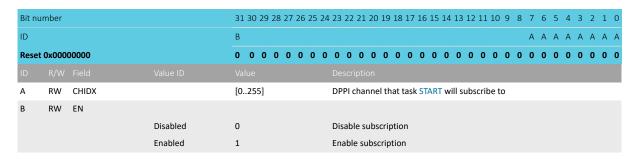
Starts continuous PDM transfer

| Bit n | umber   |             |         | 31 30 29 28 27 26 | 25 24 2 | 23 22 2  | 21 20 | 0 19 | 18 1 | 7 16 | 15    | 14 | 13 1 | .2 1 | 1 1 | 0 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2   | 1 0 |
|-------|---------|-------------|---------|-------------------|---------|----------|-------|------|------|------|-------|----|------|------|-----|-----|---|---|---|---|---|---|-----|-----|
| ID    |         |             |         |                   |         |          |       |      |      |      |       |    |      |      |     |     |   |   |   |   |   |   |     | Α   |
| Rese  | t 0x000 | 00000       |         | 0 0 0 0 0 0       | 0 0     | 0 0      | 0 0   | 0    | 0 0  | 0    | 0     | 0  | 0 (  | 0 (  | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 0 |
| ID    |         |             |         |                   |         |          |       |      |      |      |       |    |      |      |     |     |   |   |   |   |   |   |     |     |
| Α     | W       | TASKS_START |         |                   | 9       | starts o | onti  | nuou | s PD | M tı | ransf | er |      |      |     |     |   |   |   |   |   |   |     |     |
|       |         |             | Trigger | 1                 | 7       | rigger   | task  |      |      |      |       |    |      |      |     |     |   |   |   |   |   |   |     |     |

## 6.9.7.2 TASKS\_STOP

Address offset: 0x004 Stops PDM transfer

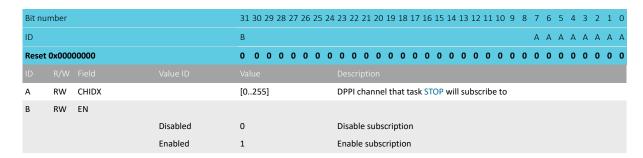







# 6.9.7.3 SUBSCRIBE\_START

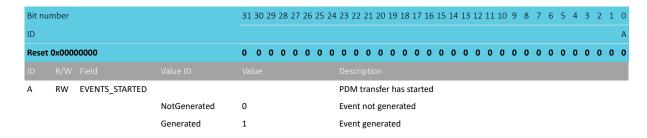
Address offset: 0x080


Subscribe configuration for task START



## 6.9.7.4 SUBSCRIBE\_STOP

Address offset: 0x084

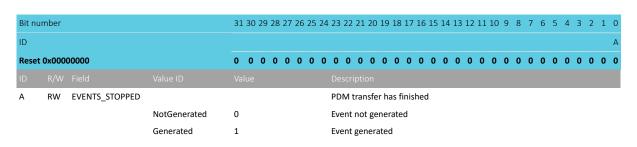

Subscribe configuration for task STOP



#### 6.9.7.5 EVENTS STARTED

Address offset: 0x100

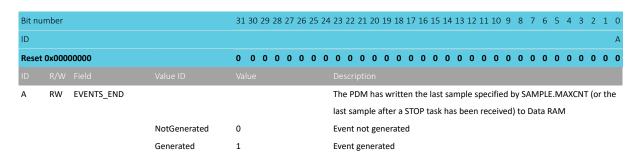
PDM transfer has started




## 6.9.7.6 EVENTS\_STOPPED

Address offset: 0x104

PDM transfer has finished






## 6.9.7.7 **EVENTS\_END**

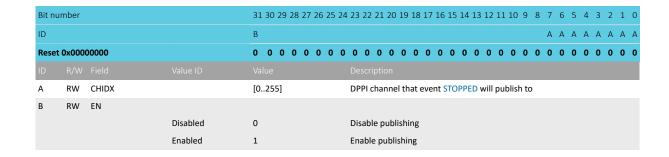
Address offset: 0x108

The PDM has written the last sample specified by SAMPLE.MAXCNT (or the last sample after a STOP task has been received) to Data RAM



#### 6.9.7.8 PUBLISH STARTED

Address offset: 0x180


Publish configuration for event STARTED

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event STARTED will publish to               |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

### 6.9.7.9 PUBLISH\_STOPPED

Address offset: 0x184

Publish configuration for event STOPPED





# 6.9.7.10 PUBLISH\_END

Address offset: 0x188

Publish configuration for event END

| Bit nu | umber   |       |          | 31 3 | 0 29 | 28 2 | 27 26 | 5 25 | 24 | 23   | 22    | 21 2 | 20 1  | 19 1 | 18 1  | .7 1 | 6 1  | 5 14 | 1 13  | 3 12 | 11    | 10 | 9 | B 7        | ' 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---------|-------|----------|------|------|------|-------|------|----|------|-------|------|-------|------|-------|------|------|------|-------|------|-------|----|---|------------|-----|---|---|---|---|---|---|
| ID     |         |       |          | В    |      |      |       |      |    |      |       |      |       |      |       |      |      |      |       |      |       |    |   | A          | , Δ | Α | A | Α | Α | Α | Α |
| Rese   | t 0x000 | 00000 |          | 0 0  | 0    | 0    | 0 0   | 0    | 0  | 0    | 0     | 0    | 0     | 0    | 0     | 0 (  | 0 0  | 0    | 0     | 0    | 0     | 0  | 0 | <b>D</b> C | 0   | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |         |       |          |      |      |      |       |      |    |      |       |      |       |      |       |      |      |      |       |      |       |    |   |            |     |   |   |   |   |   |   |
| Α      | RW      | CHIDX |          | [02  | 55]  |      |       |      |    | DPF  | PI cl | han  | nel   | tha  | it ev | /en  | t EN | D w  | ill p | oubl | ish 1 | to |   |            |     |   |   |   |   |   |   |
| В      | RW      | EN    |          |      |      |      |       |      |    |      |       |      |       |      |       |      |      |      |       |      |       |    |   |            |     |   |   |   |   |   |   |
|        |         |       | Disabled | 0    |      |      |       |      |    | Disa | able  | e pu | ıblis | shir | ıg    |      |      |      |       |      |       |    |   |            |     |   |   |   |   |   |   |
|        |         |       | Enabled  | 1    |      |      |       |      |    | Ena  | ble   | pul  | blis  | hin  | g     |      |      |      |       |      |       |    |   |            |     |   |   |   |   |   |   |

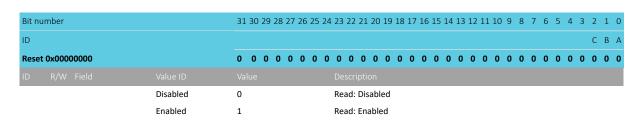
## 6.9.7.11 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit n | umber   |         |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|---------|----------|----------------------|------------------------------------------------------------------|
| ID    |         |         |          |                      | СВА                                                              |
| Rese  | t 0x000 | 00000   |          | 0 0 0 0 0 0 0        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$             |
| ID    |         |         |          |                      | Description                                                      |
| Α     | RW      | STARTED |          |                      | Enable or disable interrupt for event STARTED                    |
|       |         |         | Disabled | 0                    | Disable                                                          |
|       |         |         | Enabled  | 1                    | Enable                                                           |
| В     | RW      | STOPPED |          |                      | Enable or disable interrupt for event STOPPED                    |
|       |         |         | Disabled | 0                    | Disable                                                          |
|       |         |         | Enabled  | 1                    | Enable                                                           |
| С     | RW      | END     |          |                      | Enable or disable interrupt for event END                        |
|       |         |         | Disabled | 0                    | Disable                                                          |
|       |         |         | Enabled  | 1                    | Enable                                                           |

### 6.9.7.12 INTENSET


Address offset: 0x304

Enable interrupt

| Rit nı | umber       |       |          | 31 30 29 29 | 3 27 26 25 24 | 23 22 21  | 1 20 19  | 18 17   | 16 19  | 1/1    | 3 1 2   | 11  | 10 9 | 8 | 7 | 6 ! | 5 4 | 3 | 2 | 1 0 |
|--------|-------------|-------|----------|-------------|---------------|-----------|----------|---------|--------|--------|---------|-----|------|---|---|-----|-----|---|---|-----|
|        | annoci      |       |          | 31 30 23 20 | 3 27 20 23 24 | 25 22 21  | 1 20 15  | 10 17   | 10 10  | , 14 1 | J 12    | 11  | 10 5 | - | ′ | 0 . | , , |   | _ | 1 0 |
| ID     |             |       |          |             |               |           |          |         |        |        |         |     |      |   |   |     |     |   | С | ВА  |
| Rese   | t 0x0000000 | 00    |          | 0 0 0 0     | 0 0 0 0       | 0 0 0     | 0 0      | 0 0     | 0 0    | 0 (    | 0 0     | 0   | 0 0  | 0 | 0 | 0 ( | 0 0 | 0 | 0 | 0 0 |
| ID     |             |       |          |             |               |           |          |         |        |        |         |     |      |   |   |     |     |   |   |     |
| Α      | RW STA      | ARTED |          |             |               | Write '1' | ' to ena | ble int | errupt | for e  | vent S  | STA | RTED |   |   |     |     |   |   |     |
|        |             |       | Set      | 1           |               | Enable    |          |         |        |        |         |     |      |   |   |     |     |   |   |     |
|        |             |       | Disabled | 0           |               | Read: Di  | isabled  |         |        |        |         |     |      |   |   |     |     |   |   |     |
|        |             |       | Enabled  | 1           |               | Read: En  | nabled   |         |        |        |         |     |      |   |   |     |     |   |   |     |
| В      | RW STO      | OPPED |          |             |               | Write '1' | ' to ena | ble int | errupt | for e  | vent \$ | STO | PPED |   |   |     |     |   |   |     |
|        |             |       | Set      | 1           |               | Enable    |          |         |        |        |         |     |      |   |   |     |     |   |   |     |
|        |             |       | Disabled | 0           |               | Read: Di  | isabled  |         |        |        |         |     |      |   |   |     |     |   |   |     |
|        |             |       | Enabled  | 1           |               | Read: En  | nabled   |         |        |        |         |     |      |   |   |     |     |   |   |     |
| С      | RW EN       | ID    |          |             |               | Write '1' | ' to ena | ble int | errupt | for e  | vent l  | END | )    |   |   |     |     |   |   |     |
|        |             |       | Set      | 1           |               | Enable    |          |         |        |        |         |     |      |   |   |     |     |   |   |     |

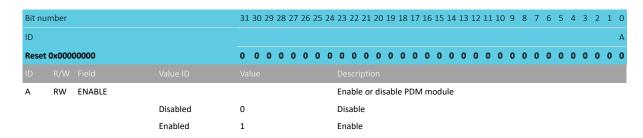






#### 6.9.7.13 INTENCLR

Address offset: 0x308

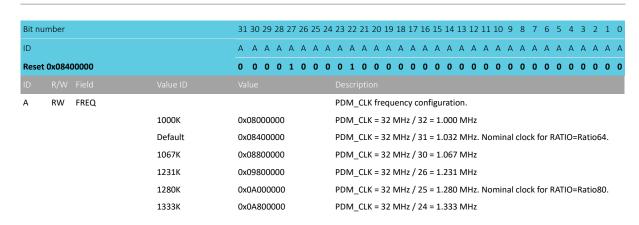

Disable interrupt

| Bit nu | umber    |         |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|----------|---------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |          |         |          |                         | C B A                                                           |
| Reset  | t 0x0000 | 0000    |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |          |         |          |                         |                                                                 |
| Α      | RW       | STARTED |          |                         | Write '1' to disable interrupt for event STARTED                |
|        |          |         | Clear    | 1                       | Disable                                                         |
|        |          |         | Disabled | 0                       | Read: Disabled                                                  |
|        |          |         | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW       | STOPPED |          |                         | Write '1' to disable interrupt for event STOPPED                |
|        |          |         | Clear    | 1                       | Disable                                                         |
|        |          |         | Disabled | 0                       | Read: Disabled                                                  |
|        |          |         | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW       | END     |          |                         | Write '1' to disable interrupt for event END                    |
|        |          |         | Clear    | 1                       | Disable                                                         |
|        |          |         | Disabled | 0                       | Read: Disabled                                                  |
|        |          |         | Enabled  | 1                       | Read: Enabled                                                   |

### 6.9.7.14 ENABLE

Address offset: 0x500

PDM module enable register




#### 6.9.7.15 PDMCLKCTRL

Address offset: 0x504

PDM clock generator control





#### 6.9.7.16 MODE

Address offset: 0x508

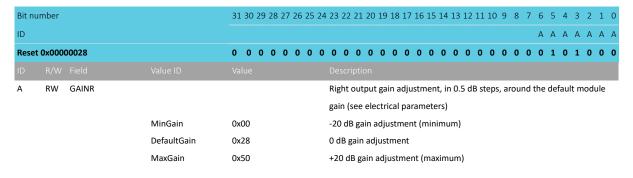
Defines the routing of the connected PDM microphones' signals

| Bit no | umber   |           |             | 31 30 | 29 | 28 2 | 27 20 | 6 25 | 5 24 | 23  | 22    | 21 2  | 0 19  | 18    | 17  | 16   | 15   | 14 1  | L3 1 | .2 1  | 1 10  | 9    | 8          | 7     | 6    | 5     | 4    | 3 2  | 1  | 0  |
|--------|---------|-----------|-------------|-------|----|------|-------|------|------|-----|-------|-------|-------|-------|-----|------|------|-------|------|-------|-------|------|------------|-------|------|-------|------|------|----|----|
| ID     |         |           |             |       |    |      |       |      |      |     |       |       |       |       |     |      |      |       |      |       |       |      |            |       |      |       |      |      | В  | Α  |
| Rese   | t 0x000 | 00000     |             | 0 0   | 0  | 0    | 0 0   | 0    | 0    | 0   | 0     | 0 0   | 0     | 0     | 0   | 0    | 0    | 0     | 0    | 0 (   | 0     | 0    | 0          | 0     | 0    | 0     | 0 (  | 0 0  | 0  | 0  |
| ID     |         |           |             |       |    |      |       |      |      |     |       |       |       |       |     |      |      |       |      |       |       |      |            |       |      |       |      |      |    |    |
| Α      | RW      | OPERATION |             |       |    |      |       |      |      | Mo  | no    | or st | ered  | о ор  | era | tion |      |       |      |       |       |      |            |       |      |       |      |      |    |    |
|        |         |           | Stereo      | 0     |    |      |       |      |      | Sar | nple  | and   | d sto | re c  | one | pair | (le  | ft +  | rigl | ht) c | of 16 | -bit | sar        | nple  | es p | er F  | RAIV | 1 wo | rd |    |
|        |         |           |             |       |    |      |       |      |      | R=  | 31::  | 16];  | L=[1  | 5:0   | ]   |      |      |       |      |       |       |      |            |       |      |       |      |      |    |    |
|        |         |           | Mono        | 1     |    |      |       |      |      | Sar | nple  | and   | d sto | re t  | wo  | suc  | cess | sive  | left | t sar | nple  | s (1 | 6 b        | its e | ach  | n) pe | er R | AM   | wo | rd |
|        |         |           |             |       |    |      |       |      |      | L1= | [31   | :16]; | ; L0= | [15   | :0] |      |      |       |      |       |       |      |            |       |      |       |      |      |    |    |
| В      | RW      | EDGE      |             |       |    |      |       |      |      | Def | fine  | on    | whi   | ch F  | PDM | _CL  | K e  | dge   | lef  | t (oı | mo    | no)  | is s       | amı   | oled | t     |      |      |    |    |
|        |         |           | LeftFalling | 0     |    |      |       |      |      | Lef | t (oı | mo    | no)   | is sa | amp | led  | on   | falli | ng   | edg   | e of  | PDN  | <b>Λ_C</b> | LK    |      |       |      |      |    |    |
|        |         |           | LeftRising  | 1     |    |      |       |      |      | Lef | t (oı | mo    | no)   | is sa | amp | led  | on   | risiı | ng e | dge   | of F  | ND   | 1_C        | _K    |      |       |      |      |    |    |

### 6.9.7.17 GAINL

Address offset: 0x518

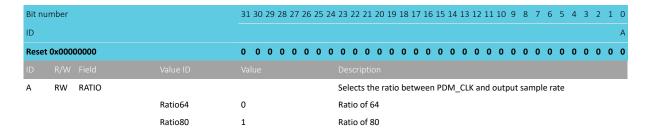
Left output gain adjustment




| Dit  | unahar |       |             | 21.  | 20.2 | 0.24 | 0 27 | 7 20 | י אר | 24 | 22.5 | 22.2              | 11 20 | 10    | 10   | 17   | 10.   | 1 [ | 1 /  | 12  | 17.1 | 1 1  | 2 C  | C   | 7     | C    | _    | 1   | 2  | 2   | 1   | 0   |
|------|--------|-------|-------------|------|------|------|------|------|------|----|------|-------------------|-------|-------|------|------|-------|-----|------|-----|------|------|------|-----|-------|------|------|-----|----|-----|-----|-----|
|      | ımber  |       |             | 31 : | 50 2 | 9 2  | 8 27 | 26   | 25   | 24 | 23 2 | 22 2              | 1 20  | 19    | 18   | 1/   | 16.   | 15  | 14   | 13  | 12 ] | 111  | J 9  | 8   | /     |      | 5    |     |    |     |     |     |
| ID   |        |       |             |      |      |      |      |      |      |    |      |                   |       |       |      |      |       |     |      |     |      |      |      |     |       | Α    | Α    | Α   | Α  | Α   | Α   | Α   |
| Rese | 0x0000 | 00028 |             | 0    | 0 (  | 0 0  | 0    | 0    | 0    | 0  | 0    | 0 (               | 0 0   | 0     | 0    | 0    | 0     | 0   | 0    | 0   | 0    | 0 0  | 0    | 0   | 0     | 0    | 1    | 0   | 1  | 0   | 0   | 0   |
| ID   | R/W    | Field | Value ID    | Valu | 1e   |      |      |      |      |    | Des  | crip <sup>.</sup> | tion  |       |      |      |       |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
| Α    | RW     | GAINL |             |      |      |      |      |      |      |    | Left | out               | tput  | gair  | ad   | just | mei   | nt, | in C | ).5 | dB s | teps | , ar | our | nd th | ne d | defa | ult | mo | dul | e g | ain |
|      |        |       |             |      |      |      |      |      |      |    | (see | e ele             | ctric | al p  | ara  | me   | ters) | )   |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x0  | 0 -2              | 0 dB  | gai   | n ac | ljus | t     |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x0  | 1 -1              | 9.5 c | dB g  | ain  | adj  | ust   |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | ()   |                   |       |       |      |      |       |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x2  | 7 -0              | .5 dE | 3 ga  | in a | dju  | st    |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x2  | 800               | dB ga | ain a | adju | ıst  |       |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x2  | 9 +0              | ).5 d | B ga  | in a | dju  | st    |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | ()   |                   |       |       |      |      |       |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x4  | F +1              | .9.5  | dB g  | gain | adj  | ust   |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       |             |      |      |      |      |      |      |    | 0x5  | 0 +2              | 20 dE | 3 gai | in a | djus | st    |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       | MinGain     | 0x0  | 0    |      |      |      |      |    | -20  | dB g              | gain  | adju  | ıstn | nen  | t (m  | ini | mu   | m)  |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       | DefaultGain | 0x2  | 8    |      |      |      |      |    | 0 dE | B gai             | in ad | djust | me   | nt   |       |     |      |     |      |      |      |     |       |      |      |     |    |     |     |     |
|      |        |       | MaxGain     | 0x5  | 0    |      |      |      |      |    | +20  | dB                | gain  | adj   | ustr | ner  | ıt (m | nax | imu  | ım) |      |      |      |     |       |      |      |     |    |     |     |     |

#### 6.9.7.18 GAINR

Address offset: 0x51C

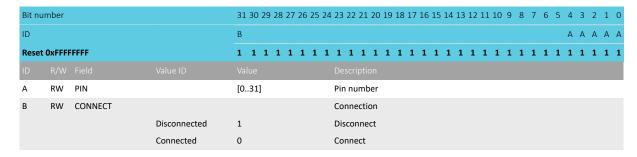

Right output gain adjustment



#### 6.9.7.19 RATIO

Address offset: 0x520

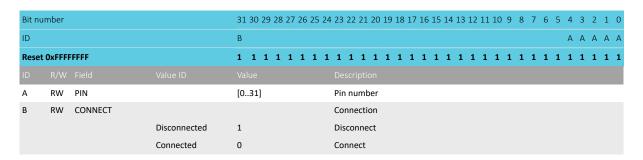
Selects the ratio between PDM\_CLK and output sample rate. Change PDMCLKCTRL accordingly.




#### 6.9.7.20 PSEL.CLK

Address offset: 0x540

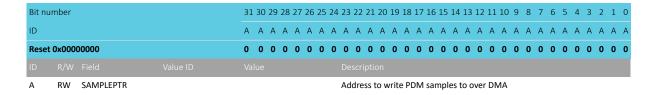



#### Pin number configuration for PDM CLK signal



#### 6.9.7.21 PSEL.DIN

Address offset: 0x544

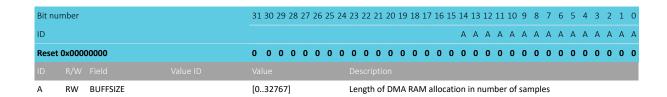

Pin number configuration for PDM DIN signal



#### 6.9.7.22 SAMPLE.PTR

Address offset: 0x560

RAM address pointer to write samples to with EasyDMA




 $\label{Note: See the memory chapter for details about which memories are available for EasyDMA.$ 

#### 6.9.7.23 SAMPLE.MAXCNT

Address offset: 0x564

Number of samples to allocate memory for in EasyDMA mode





# 6.9.8 Electrical specification

### 6.9.8.1 PDM Electrical Specification

| Symbol                   | Description                                                            | Min. | Тур.  | Max. | Units |
|--------------------------|------------------------------------------------------------------------|------|-------|------|-------|
| f <sub>PDM,CLK,64</sub>  | PDM clock speed. PDMCLKCTRL = Default (Setting needed for 16 MHz sampl | e    | 1.032 |      | MHz   |
|                          | frequency @ RATIO = Ratio64)                                           |      |       |      |       |
| f <sub>PDM,CLK,80</sub>  | PDM clock speed. PDMCLKCTRL = 1280K (Setting needed for 16 MHz sample  |      | 1.28  |      | MHz   |
|                          | frequency @ RATIO = Ratio80)                                           |      |       |      |       |
| t <sub>PDM,JITTER</sub>  | Jitter in PDM clock output                                             |      |       | 20   | ns    |
| T <sub>dPDM,CLK</sub>    | PDM clock duty cycle                                                   | 40   | 50    | 60   | %     |
| t <sub>PDM,DATA</sub>    | Decimation filter delay                                                |      |       | 5    | ms    |
| t <sub>PDM,cv</sub>      | Allowed clock edge to data valid                                       |      |       | 125  | ns    |
| t <sub>PDM,ci</sub>      | Allowed (other) clock edge to data invalid                             | 0    |       |      | ns    |
| t <sub>PDM,s</sub>       | Data setup time at f <sub>PDM,CLK</sub> =1.024 MHz or 1.280 MHz        | 65   |       |      | ns    |
| t <sub>PDM,h</sub>       | Data hold time at f <sub>PDM,CLK</sub> =1.024 MHz or 1.280 MHz         | 0    |       |      | ns    |
| G <sub>PDM,default</sub> | Default (reset) absolute gain of the PDM module                        |      | 3.2   |      | dB    |

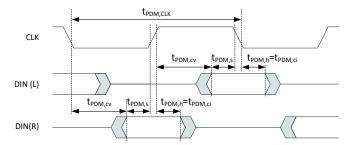



Figure 45: PDM timing diagram

# 6.10 PWM — Pulse width modulation

The pulse width modulation (PWM) module enables the generation of pulse width modulated signals on GPIO. The module implements an up or up-and-down counter with four PWM channels that drive assigned GPIOs.

The following are the main features of a PWM module:

- Programmable PWM frequency
- Up to four PWM channels with individual polarity and duty cycle values
- Edge or center-aligned pulses across PWM channels
- Multiple duty cycle arrays (sequences) defined in RAM
- Autonomous and glitch-free update of duty cycle values directly from memory through EasyDMA (no CPU involvement)
- Change of polarity, duty cycle, and base frequency possibly on every PWM period
- RAM sequences can be repeated or connected into loops



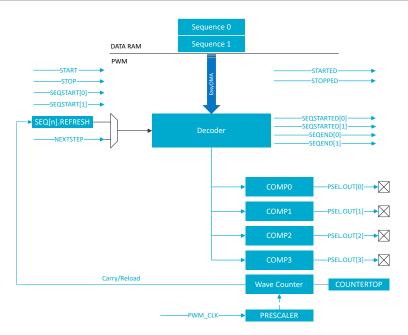



Figure 46: PWM module

#### 6.10.1 Wave counter

The wave counter is responsible for generating the pulses, at a duty cycle that depends on the compare values and at a frequency that depends on COUNTERTOP.

There is one common 15-bit counter with four compare channels. Thus, all four channels will share the same period (PWM frequency) but can have individual duty cycle and polarity. The polarity is set by the most significant bit (MSB) of the value read from RAM (see figure Decoder memory access modes on page 230). When the MSB bit is high (FallingEdge polarity), OUT[n] starts high to become low during the given PWM cycle, whereas the inverse occurs for RisingEdge polarity. Whether the counter counts up, or up and down, is controlled by the MODE register.

The timer top value is controlled by the COUNTERTOP register. This register value, in conjunction with the selected PRESCALER of the PWM\_CLK, will result in a given PWM period. A COUNTERTOP value smaller than the compare setting will result in a state where no PWM edges are generated. OUT[n] is held high, given that the polarity is set to FallingEdge. All compare registers are internal and can only be configured through decoder presented later. COUNTERTOP can be safely written at any time.

Sampling follows the START task. If DECODER.LOAD=WaveForm, the register value is ignored and taken from RAM instead (see section Decoder with EasyDMA on page 230 for more details). If DECODER.LOAD is anything else than the WaveForm, it is sampled following a STARTSEQ[n] task and when loading a new value from RAM during a sequence playback.

The following figure shows the counter operating in up mode (MODE=PWM\_MODE\_Up), with two PWM channels with the same frequency but different duty cycle:



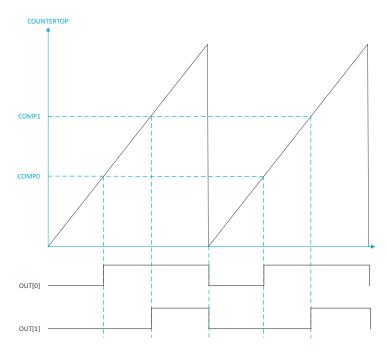



Figure 47: PWM counter in up mode example - RisingEdge polarity

The counter is automatically reset to zero when COUNTERTOP is reached and OUT[n] will invert. OUT[n] is held low if the compare value is 0 and held high if set to COUNTERTOP, given that the polarity is set to FallingEdge. Counter running in up mode results in pulse widths that are edge-aligned. The following is the code for the counter in up mode example:

```
uint16_t pwm_seq[4] = {PWM_CH0_DUTY, PWM_CH1_DUTY, PWM CH2 DUTY, PWM CH3 DUTY};
NRF PWM0->PSEL.OUT[0] = (first pin << PWM PSEL OUT PIN Pos) |
                        (PWM_PSEL_OUT_CONNECT_Connected <<
                                                PWM PSEL OUT CONNECT Pos);
NRF PWM0->PSEL.OUT[1] = (second pin << PWM PSEL OUT PIN Pos) |
                        (PWM PSEL OUT CONNECT Connected <<
                                                PWM PSEL OUT CONNECT Pos);
NRF PWM0->ENABLE
                   = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
NRF PWM0->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos);
NRF PWM0->PRESCALER = (PWM_PRESCALER_PRESCALER_DIV_1 <<
                                                PWM PRESCALER PRESCALER Pos);
NRF PWM0->COUNTERTOP = (16000 << PWM COUNTERTOP COUNTERTOP Pos); //1 msec
                     = (PWM LOOP CNT Disabled << PWM LOOP CNT Pos);
NRF PWM0->LOOP
NRF_PWM0->DECODER = (PWM_DECODER_LOAD_Individual << PWM_DECODER_LOAD_Pos) |
                     (PWM DECODER MODE RefreshCount << PWM DECODER MODE Pos);
NRF PWM0->SEQ[0].PTR = ((uint32 t) (pwm seq) << PWM SEQ PTR PTR Pos);
NRF PWM0->SEQ[0].CNT = ((sizeof(pwm seq) / sizeof(uint16 t)) <<
                                                PWM SEQ CNT CNT Pos);
NRF_PWM0->SEQ[0].REFRESH = 0;
NRF PWM0->SEQ[0].ENDDELAY = 0;
NRF PWM0->TASKS SEQSTART[0] = 1;
```

When the counter is running in up mode, the following formula can be used to compute the PWM period and the step size:

```
PWM period: T_{PWM (Up)} = T_{PWM CLK} * COUNTERTOP
```



Step width/Resolution:  $T_{\text{steps}} = T_{\text{PWM CLK}}$ 

The following figure shows the counter operating in up-and-down mode (MODE=PWM\_MODE\_UpAndDown), with two PWM channels with the same frequency but different duty cycle and output polarity:

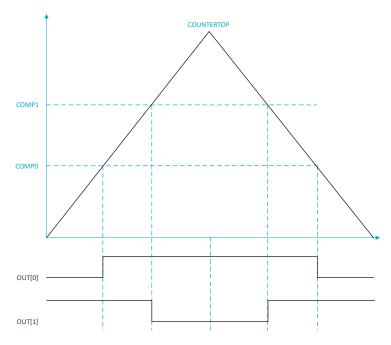
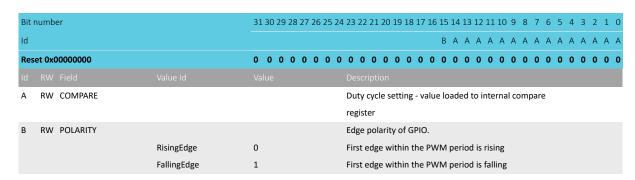



Figure 48: PWM counter in up-and-down mode example

The counter starts decrementing to zero when COUNTERTOP is reached and will invert the OUT[n] when compare value is hit for the second time. This results in a set of pulses that are center-aligned. The following is the code for the counter in up-and-down mode example:

```
uint16 t pwm seq[4] = {PWM CH0 DUTY, PWM CH1 DUTY, PWM CH2 DUTY, PWM CH3 DUTY};
NRF PWM0->PSEL.OUT[0] = (first pin << PWM PSEL OUT PIN Pos) |
                        (PWM PSEL OUT CONNECT Connected <<
                                                 PWM PSEL OUT CONNECT Pos);
NRF PWM0->PSEL.OUT[1] = (second pin << PWM PSEL OUT PIN Pos) |
                        (PWM PSEL OUT CONNECT Connected <<
                                                 PWM PSEL OUT CONNECT Pos);
NRF PWM0->ENABLE
                     = (PWM ENABLE ENABLE Enabled << PWM ENABLE ENABLE Pos);
NRF_PWM0->MODE
                     = (PWM_MODE_UPDOWN_UpAndDown << PWM_MODE_UPDOWN_Pos);</pre>
NRF PWM0->PRESCALER = (PWM PRESCALER PRESCALER DIV 1 <<
                                                 PWM PRESCALER PRESCALER Pos);
NRF PWM0->COUNTERTOP = (16000 << PWM COUNTERTOP COUNTERTOP Pos); //1 msec
                = (PWM LOOP CNT Disabled << PWM LOOP CNT Pos);
NRF PWM0->LOOP
NRF PWM0->DECODER = (PWM DECODER LOAD Individual << PWM DECODER LOAD Pos) |
                     (PWM_DECODER_MODE_RefreshCount << PWM_DECODER_MODE_Pos);</pre>
NRF PWM0->SEQ[0].PTR = ((uint32 t) (pwm seq) << PWM SEQ PTR PTR Pos);
NRF_PWM0 -> SEQ[0].CNT = ((size of (pwm_seq) / size of (uint16_t)) << 
                                                 PWM SEQ CNT CNT Pos);
NRF PWM0->SEQ[0].REFRESH = 0;
NRF_PWM0->SEQ[0].ENDDELAY = 0;
NRF PWM0->TASKS SEQSTART[0] = 1;
```




When the counter is running in up-and-down mode, the following formula can be used to compute the PWM period and the step size:

```
T_{PWM\,(Up\ And\ Down)} = T_{PWM\_CLK} * 2 * COUNTERTOP
Step width/Resolution: T_{steps} = T_{PWM\ CLK} * 2
```

### 6.10.2 Decoder with EasyDMA

The decoder uses EasyDMA to take PWM parameters stored in RAM and update the internal compare registers of the wave counter, based on the mode of operation.

PWM parameters are organized into a sequence containing at least one half word (16 bit). Its most significant bit[15] denotes the polarity of the OUT[n] while bit[14:0] is the 15-bit compare value.



The DECODER register controls how the RAM content is interpreted and loaded into the internal compare registers. The LOAD field controls if the RAM values are loaded to all compare channels, or to update a group or all channels with individual values. The following figure illustrates how parameters stored in RAM are organized and routed to various compare channels in different modes:

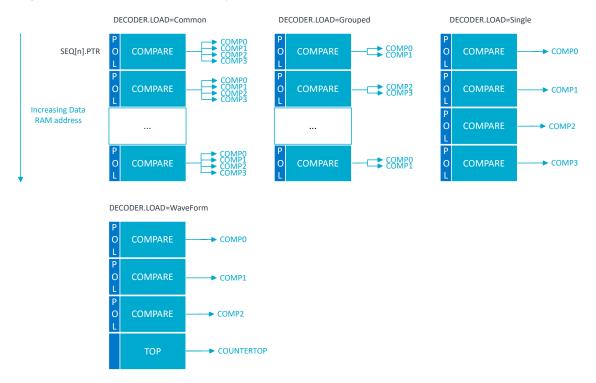



Figure 49: Decoder memory access modes

A special mode of operation is available when DECODER.LOAD is set to WaveForm. In this mode, up to three PWM channels can be enabled - OUT[0] to OUT[2]. In RAM, four values are loaded at a time: the first, second and third location are used to load the values, and the fourth RAM location is used to load



the COUNTERTOP register. This way one can have up to three PWM channels with a frequency base that changes on a per PWM period basis. This mode of operation is useful for arbitrary wave form generation in applications, such as LED lighting.

The register SEQ[n].REFRESH=N (one per sequence n=0 or 1) will instruct a new RAM stored pulse width value on every (N+1)<sup>th</sup> PWM period. Setting the register to zero will result in a new duty cycle update every PWM period, as long as the minimum PWM period is observed.

Note that registers SEQ[n].REFRESH and SEQ[n].ENDDELAY are ignored when DECODER.MODE=NextStep. The next value is loaded upon every received NEXTSTEP task.

SEQ[n].PTR is the pointer used to fetch COMPARE values from RAM. If the SEQ[n].PTR is not pointing to a RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 21 for more information about the different memory regions. After the SEQ[n].PTR is set to the desired RAM location, the SEQ[n].CNT register must be set to the number of 16-bit half words in the sequence. It is important to observe that the Grouped mode requires one half word per group, while the Single mode requires one half word per channel, thus increasing the RAM size occupation. If PWM generation is not running when the SEQSTART[n] task is triggered, the task will load the first value from RAM and then start the PWM generation. A SEQSTARTED[n] event is generated as soon as the EasyDMA has read the first PWM parameter from RAM and the wave counter has started executing it. When LOOP.CNT=0, sequence n=0 or 1 is played back once. After the last value in the sequence has been loaded and started executing, a SEQEND[n] event is generated. The PWM generation will then continue with the last loaded value. The following figure illustrates an example of a simple playback.

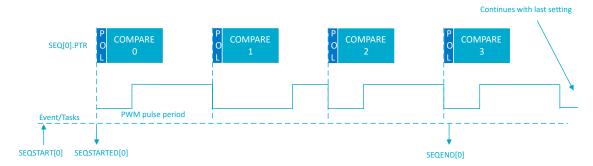



Figure 50: Simple sequence example



The following source code is used for configuration and timing details in a sequence where only sequence 0 is used and only run once with a new PWM duty cycle for each period.

```
NRF PWM0->PSEL.OUT[0] = (first pin << PWM PSEL OUT PIN Pos) |
                         (PWM PSEL OUT CONNECT Connected <<
                                                    PWM PSEL OUT CONNECT Pos);
NRF_PWM0->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
NRF_PWM0->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos);</pre>
NRF PWM0->PRESCALER = (PWM PRESCALER PRESCALER DIV 1 <<
                                                    PWM PRESCALER PRESCALER Pos);
NRF PWM0->COUNTERTOP = (16000 << PWM COUNTERTOP COUNTERTOP Pos); //1 msec
NRF_PWM0->LOOP = (PWM_LOOP_CNT_Disabled << PWM_LOOP_CNT_Pos);
NRF_PWM0->DECODER = (PWM_DECODER_LOAD_Common << PWM_DECODER_LOAD_Pos) |
                       (PWM DECODER MODE RefreshCount << PWM DECODER MODE Pos);
NRF PWM0->SEQ[0].PTR = ((uint32 t)(seq0 ram) << PWM SEQ PTR PTR Pos);
NRF PWM0->SEQ[0].CNT = ((sizeof(seq0 ram) / sizeof(uint16 t)) <<
                                                    PWM SEQ CNT CNT Pos);
NRF PWM0->SEQ[0].REFRESH = 0;
NRF PWM0->SEQ[0].ENDDELAY = 0;
NRF PWM0->TASKS SEQSTART[0] = 1;
```

To completely stop the PWM generation and force the associated pins to a defined state, a STOP task can be triggered at any time. A STOPPED event is generated when the PWM generation has stopped at the end of the currently running PWM period, and the pins go into their idle state as defined in GPIO OUT register. PWM generation can then only be restarted through a SEQSTART[n] task. SEQSTART[n] will resume PWM generation after having loaded the first value from the RAM buffer defined in the SEQ[n].PTR register.

The following table indicates when specific registers get sampled by the hardware. Care should be taken when updating these registers to avoid that values are applied earlier than expected.



| Register        | Taken into account by hardware                                | Recommended (safe) update                                       |
|-----------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| SEQ[n].PTR      | When sending the SEQSTART[n] task                             | After having received the SEQSTARTED[n] event                   |
| SEQ[n].CNT      | When sending the SEQSTART[n] task                             | After having received the SEQSTARTED[n] event                   |
| SEQ[0].ENDDELAY | When sending the SEQSTART[0] task                             | Before starting sequence [0] through a SEQSTART[0] task         |
|                 | Every time a new value from sequence [0] has been loaded from | When no more value from sequence [0] gets loaded from RAM       |
|                 | RAM and gets applied to the Wave Counter (indicated by the    | (indicated by the SEQEND[0] event)                              |
|                 | PWMPERIODEND event)                                           | At any time during sequence [1] (which starts when the          |
|                 |                                                               | SEQSTARTED[1] event is generated)                               |
| SEQ[1].ENDDELAY | When sending the SEQSTART[1] task                             | Before starting sequence [1] through a SEQSTART[1] task         |
|                 | Every time a new value from sequence [1] has been loaded from | When no more value from sequence [1] gets loaded from RAM       |
|                 | RAM and gets applied to the Wave Counter (indicated by the    | (indicated by the SEQEND[1] event)                              |
|                 | PWMPERIODEND event)                                           | At any time during sequence [0] (which starts when the          |
|                 |                                                               | SEQSTARTED[0] event is generated)                               |
| SEQ[0].REFRESH  | When sending the SEQSTART[0] task                             | Before starting sequence [0] through a SEQSTART[0] task         |
|                 | Every time a new value from sequence [0] has been loaded from | At any time during sequence [1] (which starts when the          |
|                 | RAM and gets applied to the Wave Counter (indicated by the    | SEQSTARTED[1] event is generated)                               |
|                 | PWMPERIODEND event)                                           |                                                                 |
| SEQ[1].REFRESH  | When sending the SEQSTART[1] task                             | Before starting sequence [1] through a SEQSTART[1] task         |
|                 | Every time a new value from sequence [1] has been loaded from | At any time during sequence [0] (which starts when the          |
|                 | RAM and gets applied to the Wave Counter (indicated by the    | SEQSTARTED[0] event is generated)                               |
|                 | PWMPERIODEND event)                                           |                                                                 |
| COUNTERTOP      | In DECODER.LOAD=WaveForm: this register is ignored.           | Before starting PWM generation through a SEQSTART[n] task       |
|                 | In all other LOAD modes: at the end of current PWM period     | After a STOP task has been triggered, and the STOPPED event has |
|                 | (indicated by the PWMPERIODEND event)                         | been received.                                                  |
| MODE            | Immediately                                                   | Before starting PWM generation through a SEQSTART[n] task       |
|                 |                                                               | After a STOP task has been triggered, and the STOPPED event has |
|                 |                                                               | been received.                                                  |
| DECODER         | Immediately                                                   | Before starting PWM generation through a SEQSTART[n] task       |
|                 |                                                               | After a STOP task has been triggered, and the STOPPED event has |
|                 |                                                               | been received.                                                  |
| PRESCALER       | Immediately                                                   | Before starting PWM generation through a SEQSTART[n] task       |
|                 |                                                               | After a STOP task has been triggered, and the STOPPED event has |
|                 |                                                               | been received.                                                  |
| LOOP            | Immediately                                                   | Before starting PWM generation through a SEQSTART[n] task       |
|                 |                                                               | After a STOP task has been triggered, and the STOPPED event has |
|                 |                                                               | been received.                                                  |
| PSEL.OUT[n]     | Immediately                                                   | Before enabling the PWM instance through the ENABLE register    |
|                 |                                                               |                                                                 |

Table 27: When to safely update PWM registers

**Note:** SEQ[n].REFRESH and SEQ[n].ENDDELAY are ignored at the end of a complex sequence, indicated by a LOOPSDONE event. The reason for this is that the last value loaded from RAM is maintained until further action from software (restarting a new sequence or stopping PWM generation).

The following figure shows a more complex example using the register LOOP on page 248.



Figure 51: Example using two sequences

In this case, an automated playback takes place, consisting of SEQ[0], delay 0, SEQ[1], delay 1, then again SEQ[0], etc. The user can choose to start a complex playback with SEQ[0] or SEQ[1] through sending the SEQSTART[0] or SEQSTART[1] task. The complex playback always ends with delay 1.

The two sequences 0 and 1 are defined by the addresses of value tables in RAM (pointed to by SEQ[n].PTR) and the buffer size (SEQ[n].CNT). The rate at which a new value is loaded is defined individually for each sequence by SEQ[n].REFRESH. The chaining of sequence 1 following the sequence 0 is implicit, the LOOP.CNT register allows the chaining of sequence 1 to sequence 0 for a determined number of times. In other words, it allows to repeat a complex sequence a number of times in a fully automated way.

In the following code example, sequence 0 is defined with SEQ[0].REFRESH set to 1, meaning that a new PWM duty cycle is pushed every second PWM period. This complex sequence is started with the SEQSTART[0] task, so SEQ[0] is played first. Since SEQ[0].ENDDELAY=1 there will be one PWM period delay between last period on sequence 0 and the first period on sequence 1. Since SEQ[1].ENDDELAY=0 there is no delay 1, so SEQ[0] would be started immediately after the end of SEQ[1]. However, as LOOP.CNT is



1, the playback stops after having played SEQ[1] only once, and both SEQEND[1] and LOOPSDONE are generated (their order is not guaranteed in this case).

```
NRF PWM0->PSEL.OUT[0] = (first pin << PWM PSEL OUT PIN Pos) |
                         (PWM PSEL OUT CONNECT Connected <<
                                                   PWM PSEL OUT CONNECT Pos);
NRF_PWM0->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
NRF_PWM0->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos);</pre>
NRF_PWM0->PRESCALER = (PWM_PRESCALER_PRESCALER DIV 1 <<
                                                   PWM PRESCALER PRESCALER Pos);
NRF_PWM0->COUNTERTOP = (16000 << PWM_COUNTERTOP_COUNTERTOP_Pos); //1 msec
NRF_PWM0->LOOP = (1 << PWM_LOOP_CNT_Pos);
NRF_PWM0->DECODER = (PWM_DECODER_LOAD_Common << PWM_DECODER_LOAD_Pos) |
                       (PWM DECODER MODE RefreshCount << PWM DECODER MODE Pos);
NRF_PWM0->SEQ[0].PTR = ((uint32_t)(seq0_ram) << PWM_SEQ_PTR_PTR_Pos);
NRF PWM0->SEQ[0].CNT = ((sizeof(seq0 ram) / sizeof(uint16 t)) <<
                                                   PWM SEQ CNT CNT Pos);
NRF_PWM0->SEQ[0].REFRESH = 1;
NRF PWM0->SEQ[0].ENDDELAY = 1;
NRF PWM0->SEQ[1].PTR = ((uint32 t)(seq1 ram) << PWM SEQ PTR PTR Pos);
NRF_PWM0->SEQ[1].CNT = ((sizeof(seq1_ram) / sizeof(uint16_t)) <<
                                                  PWM SEQ CNT CNT Pos);
NRF PWM0->SEQ[1].REFRESH = 0;
NRF PWM0->SEQ[1].ENDDELAY = 0;
NRF PWM0->TASKS SEQSTART[0] = 1;
```

The decoder can also be configured to asynchronously load new PWM duty cycle. If the DECODER.MODE register is set to NextStep, then the NEXTSTEP task will cause an update of internal compare registers on the next PWM period.

The following figures provide an overview of each part of an arbitrary sequence, in various modes (LOOP.CNT=0 and LOOP.CNT>0). In particular, the following are represented:

- Initial and final duty cycle on the PWM output(s)
- Chaining of SEQ[0] and SEQ[1] if LOOP.CNT>0
- Influence of registers on the sequence
- Events generated during a sequence
- DMA activity (loading of next value and applying it to the output(s))



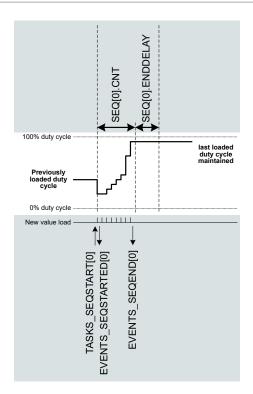



Figure 52: Single shot (LOOP.CNT=0)

Note: The single-shot example also applies to SEQ[1]. Only SEQ[0] is represented for simplicity.

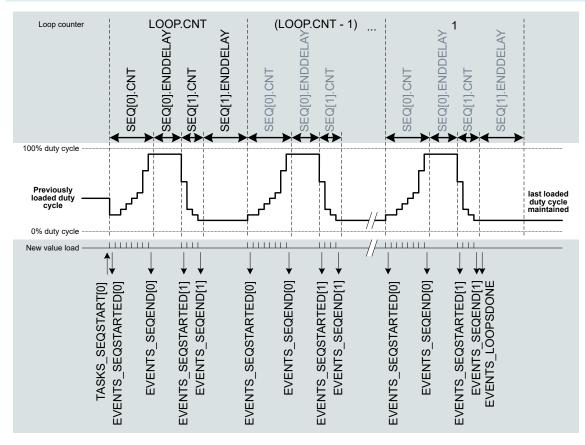



Figure 53: Complex sequence (LOOP.CNT>0) starting with SEQ[0]



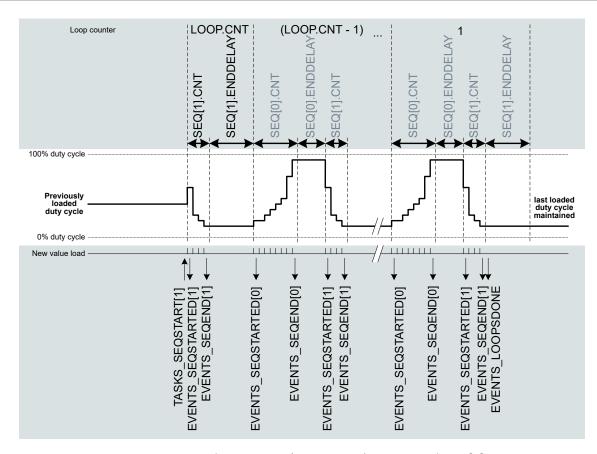



Figure 54: Complex sequence (LOOP.CNT>0) starting with SEQ[1]

**Note:** If a sequence is in use in a simple or complex sequence, it must have a length of SEQ[n].CNT > 0.

This example shows how the PWM module can be configured to repeat a single sequence until stopped.

```
NRF PWM0->PSEL.OUT[0] = (first pin << PWM PSEL OUT PIN Pos) |
                        (PWM PSEL OUT CONNECT Connected <<
                                                 PWM PSEL OUT CONNECT Pos);
NRF PWM0->ENABLE
                      = (PWM ENABLE ENABLE Enabled << PWM ENABLE ENABLE Pos);
                      = (PWM MODE UPDOWN Up << PWM MODE UPDOWN Pos);
NRF PWM0->MODE
NRF PWM0->PRESCALER = (PWM PRESCALER PRESCALER DIV 1 <<
                                                 PWM_PRESCALER_PRESCALER_Pos);
NRF PWM0->COUNTERTOP = (16000 << PWM COUNTERTOP COUNTERTOP Pos); //1 msec
// Enable the shortcut from LOOPSDONE event to SEQSTART1 task for infinite loop
                     = (PWM_SHORTS_LOOPSDONE_SEQSTART1_Enabled <<
NRF PWM0->SHORTS
                                          PWM SHORTS LOOPSDONE SEQSTART1 Pos);
// LOOP CNT must be greater than 0 for the LOOPSDONE event to trigger and enable looping
NRF PWM0->LOOP
                      = (1 << PWM_LOOP_CNT_Pos);
NRF PWM0->DECODER
                      = (PWM DECODER LOAD Common << PWM DECODER LOAD Pos) |
                      (PWM DECODER MODE RefreshCount << PWM DECODER MODE Pos);
// To repeat a single sequence until stopped, it must be configured in SEQ[1]
NRF PWM0->SEQ[1].PTR = ((uint32 t)(seq0 ram) << PWM SEQ PTR PTR Pos);
NRF_PWM0->SEQ[1].CNT = ((sizeof(seq0_ram) / sizeof(uint16_t)) <<
                                                 PWM SEQ CNT CNT Pos);
NRF PWM0->SEQ[1].REFRESH = 0;
NRF PWM0->SEQ[1].ENDDELAY = 0;
NRF PWM0->TASKS SEQSTART[1] = 1;
```



#### 6.10.3 Limitations

The previous compare value is repeated if the PWM period is shorter than the time it takes for the EasyDMA to retrieve from RAM and update the internal compare registers. This is to ensure a glitch-free operation even for very short PWM periods.

Only SEQ[1] can trigger the LOOPSDONE event upon completion, not SEQ[0]. This requires looping to be enabled (LOOP > 0) and SEQ[1].CNT > 0 when sequence playback starts.

### 6.10.4 Pin configuration

The OUT[n] (n=0..3) signals associated with each PWM channel are mapped to physical pins according to the configuration of PSEL.OUT[n] registers. If PSEL.OUT[n].CONNECT is set to Disconnected, the associated PWM module signal will not be connected to any physical pins.

The PSEL.OUT[n] registers and their configurations are used as long as the PWM module is enabled and the PWM generation active (wave counter started). They are retained only as long as the device is in System ON mode (see the POWER section for more information about power modes).

To ensure correct behavior in the PWM module, the pins that are used must be configured in the GPIO peripheral in the following way before the PWM module is enabled:

| PWM signal | PWM pin                     | Direction | Output value | Comment                        |
|------------|-----------------------------|-----------|--------------|--------------------------------|
| OUT[n]     | As specified in PSEL.OUT[n] | Output    | 0            | Idle state defined in GPIO OUT |
|            | (n=03)                      |           |              | register                       |

Table 28: Recommended GPIO configuration before starting PWM generation

The idle state of a pin is defined by the OUT register in the GPIO module, to ensure that the pins used by the PWM module are driven correctly. If PWM generation is stopped by triggering a STOP task, the PWM module itself is temporarily disabled or the device temporarily enters System OFF. This configuration must be retained in the GPIO for the selected pins (I/Os) for as long as the PWM module is supposed to be connected to an external PWM circuit.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

# 6.10.5 Registers

#### Instances

| Instance  | Base address | TrustZone |     |     | Split access | Description                     |  |  |  |  |  |
|-----------|--------------|-----------|-----|-----|--------------|---------------------------------|--|--|--|--|--|
|           |              | Мар       | Att | DMA |              |                                 |  |  |  |  |  |
| PWM0:S    | 0x50021000   | US        | NS  | SA  | No           | Pulse width modulation unit 0   |  |  |  |  |  |
| PWM0 : NS | 0x40021000   | 03        | INS | 3A  | NO           | ruise width modulation unit o   |  |  |  |  |  |
| PWM1:S    | 0x50022000   | US        | NS  | SA  | No           | Pulse width modulation unit 1   |  |  |  |  |  |
| PWM1: NS  | 0x40022000   | 03        | NS  | 3A  | 140          | r disc width modulation diff. I |  |  |  |  |  |
| PWM2:S    | 0x50023000   | US        | NS  | SA  | No           | Pulse width modulation unit 2   |  |  |  |  |  |
| PWM2 : NS | 0x40023000   | 00        |     | 57. |              | . 436                           |  |  |  |  |  |
| PWM3:S    | 0x50024000   | US        | NS  | SA  | No           | Pulse width modulation unit 3   |  |  |  |  |  |
| PWM3:NS   | 0x40024000   | 03        | 145 | 5/1 | 140          | r alse water modulation unit 3  |  |  |  |  |  |



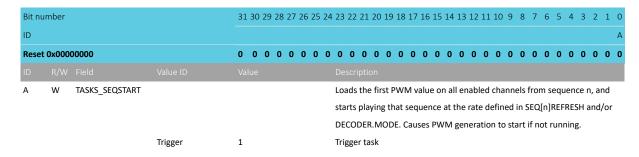
# **Register overview**

| Register              | Offset | TZ | Description                                                                            |
|-----------------------|--------|----|----------------------------------------------------------------------------------------|
| TASKS_STOP            | 0x004  |    | Stops PWM pulse generation on all channels at the end of current PWM period, and stops |
|                       |        |    | sequence playback                                                                      |
| TASKS_SEQSTART[n]     | 0x008  |    | Loads the first PWM value on all enabled channels from sequence n, and starts playing  |
|                       |        |    | that sequence at the rate defined in SEQ[n]REFRESH and/or DECODER.MODE. Causes PWM     |
|                       |        |    | generation to start if not running.                                                    |
| TASKS_NEXTSTEP        | 0x010  |    | Steps by one value in the current sequence on all enabled channels if                  |
|                       |        |    | DECODER.MODE=NextStep. Does not cause PWM generation to start if not running.          |
| SUBSCRIBE_STOP        | 0x084  |    | Subscribe configuration for task STOP                                                  |
| SUBSCRIBE_SEQSTART[n] | 0x088  |    | Subscribe configuration for task SEQSTART[n]                                           |
| SUBSCRIBE_NEXTSTEP    | 0x090  |    | Subscribe configuration for task NEXTSTEP                                              |
| EVENTS_STOPPED        | 0x104  |    | Response to STOP task, emitted when PWM pulses are no longer generated                 |
| EVENTS_SEQSTARTED[n]  | 0x108  |    | First PWM period started on sequence n                                                 |
| EVENTS_SEQEND[n]      | 0x110  |    | Emitted at end of every sequence n, when last value from RAM has been applied to wave  |
|                       |        |    | counter                                                                                |
| EVENTS_PWMPERIODEND   | 0x118  |    | Emitted at the end of each PWM period                                                  |
| EVENTS_LOOPSDONE      | 0x11C  |    | Concatenated sequences have been played the amount of times defined in LOOP.CNT        |
| PUBLISH_STOPPED       | 0x184  |    | Publish configuration for event STOPPED                                                |
| PUBLISH_SEQSTARTED[n] | 0x188  |    | Publish configuration for event SEQSTARTED[n]                                          |
| PUBLISH_SEQEND[n]     | 0x190  |    | Publish configuration for event SEQEND[n]                                              |
| PUBLISH_PWMPERIODEND  | 0x198  |    | Publish configuration for event PWMPERIODEND                                           |
| PUBLISH_LOOPSDONE     | 0x19C  |    | Publish configuration for event LOOPSDONE                                              |
| SHORTS                | 0x200  |    | Shortcuts between local events and tasks                                               |
| INTEN                 | 0x300  |    | Enable or disable interrupt                                                            |
| INTENSET              | 0x304  |    | Enable interrupt                                                                       |
| INTENCLR              | 0x308  |    | Disable interrupt                                                                      |
| ENABLE                | 0x500  |    | PWM module enable register                                                             |
| MODE                  | 0x504  |    | Selects operating mode of the wave counter                                             |
| COUNTERTOP            | 0x508  |    | Value up to which the pulse generator counter counts                                   |
| PRESCALER             | 0x50C  |    | Configuration for PWM_CLK                                                              |
| DECODER               | 0x510  |    | Configuration of the decoder                                                           |
| LOOP                  | 0x514  |    | Number of playbacks of a loop                                                          |
| SEQ[n].PTR            | 0x520  |    | Beginning address in RAM of this sequence                                              |
| SEQ[n].CNT            | 0x524  |    | Number of values (duty cycles) in this sequence                                        |
| SEQ[n].REFRESH        | 0x528  |    | Number of additional PWM periods between samples loaded into compare register          |
| SEQ[n].ENDDELAY       | 0x52C  |    | Time added after the sequence                                                          |
| PSEL.OUT[n]           | 0x560  |    | Output pin select for PWM channel n                                                    |

# 6.10.5.1 TASKS\_STOP

Address offset: 0x004

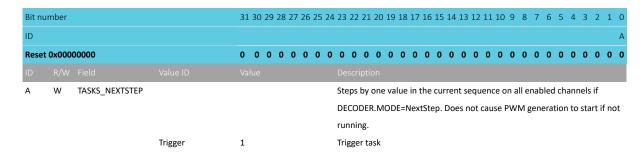
Stops PWM pulse generation on all channels at the end of current PWM period, and stops sequence playback


| Bit nu | ımber   |            |         | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0     |
|--------|---------|------------|---------|----------------------|----------------------------------------------------------------------|
| ID     |         |            |         |                      | A                                                                    |
| Reset  | t 0x000 | 00000      |         | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                              |
| ID     |         |            |         |                      |                                                                      |
| Α      | W       | TASKS_STOP |         |                      | Stops PWM pulse generation on all channels at the end of current PWM |
|        |         |            |         |                      | period, and stops sequence playback                                  |
|        |         |            | Trigger | 1                    | Trigger task                                                         |



# 6.10.5.2 TASKS\_SEQSTART[n] (n=0..1)

Address offset:  $0x008 + (n \times 0x4)$ 


Loads the first PWM value on all enabled channels from sequence n, and starts playing that sequence at the rate defined in SEQ[n]REFRESH and/or DECODER.MODE. Causes PWM generation to start if not running.



#### 6.10.5.3 TASKS\_NEXTSTEP

Address offset: 0x010

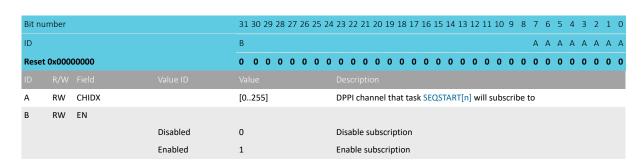
Steps by one value in the current sequence on all enabled channels if DECODER.MODE=NextStep. Does not cause PWM generation to start if not running.



#### 6.10.5.4 SUBSCRIBE STOP

Address offset: 0x084

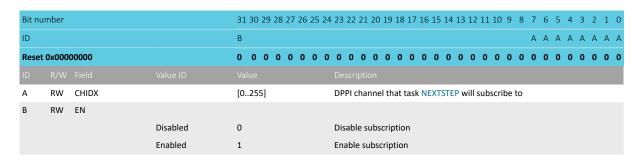
Subscribe configuration for task STOP


| Bit nu | ımber |       |          | 31 30 29 28 27 26 2 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|---------------------|--------------------------------------------------------------------|
| ID     |       |       |          | В                   | A A A A A A A                                                      |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |
| ID     |       |       |          |                     | Description                                                        |
| Α      | RW    | CHIDX |          | [0255]              | DPPI channel that task STOP will subscribe to                      |
| В      | RW    | EN    |          |                     |                                                                    |
|        |       |       | Disabled | 0                   | Disable subscription                                               |
|        |       |       | Enabled  | 1                   | Enable subscription                                                |

# 6.10.5.5 SUBSCRIBE\_SEQSTART[n] (n=0..1)

Address offset:  $0x088 + (n \times 0x4)$ 

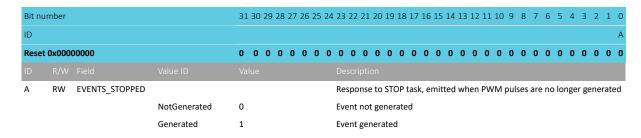
Subscribe configuration for task SEQSTART[n]






### 6.10.5.6 SUBSCRIBE NEXTSTEP

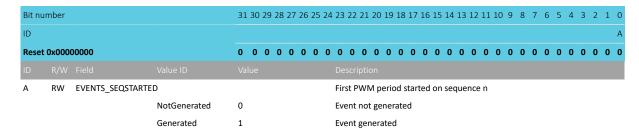
Address offset: 0x090


Subscribe configuration for task NEXTSTEP



#### 6.10.5.7 EVENTS STOPPED

Address offset: 0x104

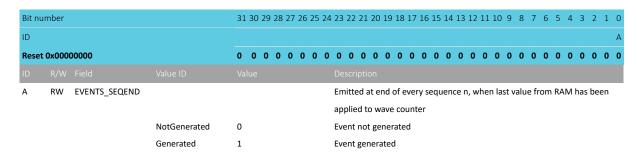

Response to STOP task, emitted when PWM pulses are no longer generated



### 6.10.5.8 EVENTS\_SEQSTARTED[n] (n=0..1)

Address offset:  $0x108 + (n \times 0x4)$ 

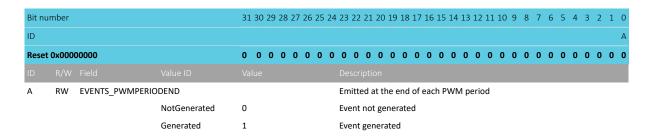
First PWM period started on sequence n




### 6.10.5.9 EVENTS\_SEQEND[n] (n=0..1)

Address offset:  $0x110 + (n \times 0x4)$ 



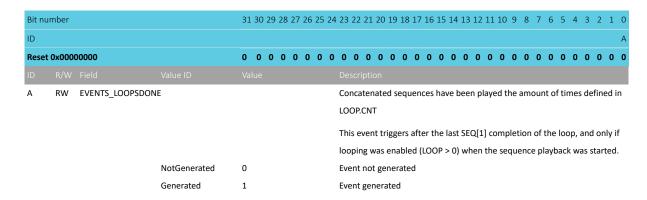

Emitted at end of every sequence n, when last value from RAM has been applied to wave counter



### 6.10.5.10 EVENTS PWMPERIODEND

Address offset: 0x118

Emitted at the end of each PWM period




### 6.10.5.11 EVENTS\_LOOPSDONE

Address offset: 0x11C

Concatenated sequences have been played the amount of times defined in LOOP.CNT

This event triggers after the last SEQ[1] completion of the loop, and only if looping was enabled (LOOP > 0) when the sequence playback was started.



#### 6.10.5.12 PUBLISH STOPPED

Address offset: 0x184

Publish configuration for event STOPPED



| Bit nu | mber  |       |          | 31 30 29 28 | 3 27 2 | 6 25 2 | 4 23 | 22 2:  | 1 20  | 19 3  | 18 1  | 7 16  | 15 1 | L4 1: | 3 12 | 11 1 | 10 9 | 8  | 7 | 6 | 5 . | 4   | 3 2 | 1 | 0 |
|--------|-------|-------|----------|-------------|--------|--------|------|--------|-------|-------|-------|-------|------|-------|------|------|------|----|---|---|-----|-----|-----|---|---|
| ID     |       |       |          | В           |        |        |      |        |       |       |       |       |      |       |      |      |      |    | Α | Α | Α   | A . | А А | Α | Α |
| Reset  | 0x000 | 00000 |          | 0 0 0 0     | 0 0    | 0 0    | 0    | 0 0    | 0     | 0     | 0 0   | 0     | 0    | 0 0   | 0    | 0    | 0 (  | 0  | 0 | 0 | 0   | 0   | 0 0 | 0 | 0 |
| ID     |       |       |          |             |        |        |      |        |       |       |       |       |      |       |      |      |      |    |   |   |     |     |     |   |   |
| Α      | RW    | CHIDX |          | [0255]      |        |        | DPF  | PI cha | anne  | l tha | at ev | ent S | TOP  | PED   | will | pub  | lish | to |   |   |     |     |     |   |   |
| В      | RW    | EN    |          |             |        |        |      |        |       |       |       |       |      |       |      |      |      |    |   |   |     |     |     |   |   |
|        |       |       | Disabled | 0           |        |        | Disa | able   | publ  | ishir | ng    |       |      |       |      |      |      |    |   |   |     |     |     |   |   |
|        |       |       | Enabled  | 1           |        |        | Ena  | able p | oubli | shin  | g     |       |      |       |      |      |      |    |   |   |     |     |     |   |   |

# 6.10.5.13 PUBLISH\_SEQSTARTED[n] (n=0..1)

Address offset:  $0x188 + (n \times 0x4)$ 

Publish configuration for event SEQSTARTED[n]

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event SEQSTARTED[n] will publish to           |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

# 6.10.5.14 PUBLISH\_SEQEND[n] (n=0..1)

Address offset:  $0x190 + (n \times 0x4)$ 

Publish configuration for event SEQEND[n]

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event SEQEND[n] will publish to             |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  |                         | Enable publishing                                             |

## 6.10.5.15 PUBLISH\_PWMPERIODEND

Address offset: 0x198

Publish configuration for event PWMPERIODEND

| Bit no | umber   |       |          | 31 3 | 30 29 | 28 | 27 2 | 26 25 | 5 24 | - 23 | 22   | 21   | 20   | 19    | 18 1  | 7 1  | 6 1 | 5 14 | 13 | 3 12 | 11  | 10   | 9     | 8     | 7    | 6 | 5 | 4 3 | 3 2 | 2 1 | 0 |
|--------|---------|-------|----------|------|-------|----|------|-------|------|------|------|------|------|-------|-------|------|-----|------|----|------|-----|------|-------|-------|------|---|---|-----|-----|-----|---|
| ID     |         |       |          | В    |       |    |      |       |      |      |      |      |      |       |       |      |     |      |    |      |     |      |       |       | Α    | Α | Α | A A | Α Α | A A | Α |
| Rese   | t 0x000 | 00000 |          | 0    | 0 0   | 0  | 0    | 0 0   | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0 (  | 0   | 0    | 0  | 0    | 0   | 0    | 0     | 0     | 0    | 0 | 0 | 0 ( | 0   | 0   | 0 |
| ID     |         |       |          |      |       |    |      |       |      |      |      |      |      |       |       |      |     |      |    |      |     |      |       |       |      |   |   |     |     |     |   |
| Α      | RW      | CHIDX |          | [02  | 255]  |    |      |       |      | DP   | PI c | han  | nel  | l tha | at ev | vent | PW  | /MP  | ER | IODI | END | ) wi | II pu | ublis | sh t | 0 |   |     |     |     |   |
| В      | RW      | EN    |          |      |       |    |      |       |      |      |      |      |      |       |       |      |     |      |    |      |     |      |       |       |      |   |   |     |     |     |   |
|        |         |       | Disabled | 0    |       |    |      |       |      | Dis  | abl  | е рі | ubli | shir  | ng    |      |     |      |    |      |     |      |       |       |      |   |   |     |     |     |   |
|        |         |       | Enabled  | 1    |       |    |      |       |      | En   | able | e pu | blis | shin  | g     |      |     |      |    |      |     |      |       |       |      |   |   |     |     |     |   |





## 6.10.5.16 PUBLISH\_LOOPSDONE

Address offset: 0x19C

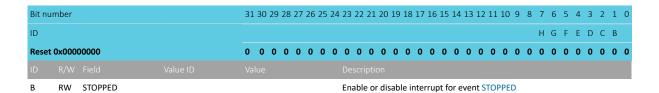
Publish configuration for event LOOPSDONE

This event triggers after the last SEQ[1] completion of the loop, and only if looping was enabled (LOOP > 0) when the sequence playback was started.

| Bit nu | mber  |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event LOOPSDONE will publish to             |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

#### 6.10.5.17 SHORTS

Address offset: 0x200


Shortcuts between local events and tasks

| Bit nu | ımber |                 |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-----------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |                 |          |                         | E D C B A                                                       |
| Reset  | 0x000 | 00000           |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |                 |          |                         | Description                                                     |
| Α      | RW    | SEQENDO_STOP    |          |                         | Shortcut between event SEQEND[0] and task STOP                  |
|        |       |                 | Disabled | 0                       | Disable shortcut                                                |
|        |       |                 | Enabled  | 1                       | Enable shortcut                                                 |
| В      | RW    | SEQEND1_STOP    |          |                         | Shortcut between event SEQEND[1] and task STOP                  |
|        |       |                 | Disabled | 0                       | Disable shortcut                                                |
|        |       |                 | Enabled  | 1                       | Enable shortcut                                                 |
| С      | RW    | LOOPSDONE_SEQST | TARTO    |                         | Shortcut between event LOOPSDONE and task SEQSTART[0]           |
|        |       |                 | Disabled | 0                       | Disable shortcut                                                |
|        |       |                 | Enabled  | 1                       | Enable shortcut                                                 |
| D      | RW    | LOOPSDONE_SEQST | TART1    |                         | Shortcut between event LOOPSDONE and task SEQSTART[1]           |
|        |       |                 | Disabled | 0                       | Disable shortcut                                                |
|        |       |                 | Enabled  | 1                       | Enable shortcut                                                 |
| E      | RW    | LOOPSDONE_STOP  |          |                         | Shortcut between event LOOPSDONE and task STOP                  |
|        |       |                 | Disabled | 0                       | Disable shortcut                                                |
|        |       |                 | Enabled  | 1                       | Enable shortcut                                                 |

#### 6.10.5.18 INTEN

Address offset: 0x300

Enable or disable interrupt





| Bit nu | ımber |                     |          | 31 3 | 30 29 | 28 | 27 2 | 6 2 | 5 24 | - 23 | 22   | 21 2  | 20 1 | 9 1 | 8 1  | 7 16  | 15    | 14   | 13  | 12 : | 11 10 | 9    | 8    | 7    | 6    | 5    | 4    | 3     | 2   | 1    | 0 |
|--------|-------|---------------------|----------|------|-------|----|------|-----|------|------|------|-------|------|-----|------|-------|-------|------|-----|------|-------|------|------|------|------|------|------|-------|-----|------|---|
| ID     |       |                     |          |      |       |    |      |     |      |      |      |       |      |     |      |       |       |      |     |      |       |      |      | Н    | G    | F    | Ε    | D     | С   | В    |   |
| Reset  | 0x000 | 00000               |          | 0    | 0 0   | 0  | 0 (  | 0 0 | 0    | 0    | 0    | 0     | 0 (  | 0 0 | 0    | 0     | 0     | 0    | 0   | 0    | 0 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0   | 0    | 0 |
| ID     |       |                     |          |      |       |    |      |     |      |      |      |       |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Disabled | 0    |       |    |      |     |      | Dis  | abl  | e     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Enabled  | 1    |       |    |      |     |      | Ena  | able | 9     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
| C-D    | RW    | SEQSTARTED[i] (i=0. | 1)       |      |       |    |      |     |      | Ena  | able | e or  | disa | ble | inte | erru  | pt fo | or e | ven | t SE | QST   | ART  | ED[  | i]   |      |      |      |       |     |      |   |
|        |       |                     | Disabled | 0    |       |    |      |     |      | Dis  | abl  | e     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Enabled  | 1    |       |    |      |     |      | Ena  | able | e     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
| E-F    | RW    | SEQEND[i] (i=01)    |          |      |       |    |      |     |      | Ena  | able | e or  | disa | ble | inte | erru  | pt f  | or e | ven | t SE | QEN   | D[i] |      |      |      |      |      |       |     |      |   |
|        |       |                     | Disabled | 0    |       |    |      |     |      | Dis  | abl  | е     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Enabled  | 1    |       |    |      |     |      | Ena  | able | 9     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
| G      | RW    | PWMPERIODEND        |          |      |       |    |      |     |      | Ena  | able | e or  | disa | ble | inte | erru  | pt f  | or e | ven | t PV | VMP   | ERI  | ODI  | END  | )    |      |      |       |     |      |   |
|        |       |                     | Disabled | 0    |       |    |      |     |      | Dis  | abl  | е     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Enabled  | 1    |       |    |      |     |      | Ena  | able | 9     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
| Н      | RW    | LOOPSDONE           |          |      |       |    |      |     |      | Ena  | able | e or  | disa | ble | inte | erru  | pt f  | or e | ven | t LC | OPS   | DO   | NE   |      |      |      |      |       |     |      |   |
|        |       |                     |          |      |       |    |      |     |      | Thi  | s ev | vent  | trig | ger | s af | ter 1 | the   | last | SEC | Ղ[1] | com   | ple  | tior | n of | the  | loc  | р, а | and   | onl | y if |   |
|        |       |                     |          |      |       |    |      |     |      | loo  | pin  | ıg wa | as e | nab | led  | (LO   | OP :  | > 0) | wh  | en t | he s  | equ  | enc  | e p  | layl | bacl | k wa | as si | art | ed.  |   |
|        |       |                     | Disabled | 0    |       |    |      |     |      | Dis  | abl  | e     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     | Enabled  | 1    |       |    |      |     |      | Ena  | able | 9     |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |
|        |       |                     |          |      |       |    |      |     |      |      |      |       |      |     |      |       |       |      |     |      |       |      |      |      |      |      |      |       |     |      |   |

# 6.10.5.19 INTENSET

Address offset: 0x304

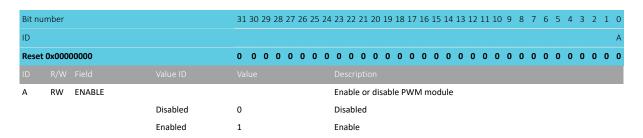
Enable interrupt

| Bit nu | ımber |                    |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0               |
|--------|-------|--------------------|----------|------------------------|-------------------------------------------------------------------------------|
| ID     |       |                    |          |                        | HGFEDCB                                                                       |
| Reset  | 0x000 | 00000              |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
|        |       |                    |          |                        | Description                                                                   |
| В      | RW    | STOPPED            |          |                        | Write '1' to enable interrupt for event STOPPED                               |
|        |       |                    | Set      | 1                      | Enable                                                                        |
|        |       |                    | Disabled | 0                      | Read: Disabled                                                                |
|        |       |                    | Enabled  | 1                      | Read: Enabled                                                                 |
| C-D    | RW    | SEQSTARTED[i] (i=0 | 1)       |                        | Write '1' to enable interrupt for event SEQSTARTED[i]                         |
|        |       |                    | Set      | 1                      | Enable                                                                        |
|        |       |                    | Disabled | 0                      | Read: Disabled                                                                |
|        |       |                    | Enabled  | 1                      | Read: Enabled                                                                 |
| E-F    | RW    | SEQEND[i] (i=01)   |          |                        | Write '1' to enable interrupt for event SEQEND[i]                             |
|        |       |                    | Set      | 1                      | Enable                                                                        |
|        |       |                    | Disabled | 0                      | Read: Disabled                                                                |
|        |       |                    | Enabled  | 1                      | Read: Enabled                                                                 |
| G      | RW    | PWMPERIODEND       |          |                        | Write '1' to enable interrupt for event PWMPERIODEND                          |
|        |       |                    | Set      | 1                      | Enable                                                                        |
|        |       |                    | Disabled | 0                      | Read: Disabled                                                                |
|        |       |                    | Enabled  | 1                      | Read: Enabled                                                                 |
| Н      | RW    | LOOPSDONE          |          |                        | Write '1' to enable interrupt for event LOOPSDONE                             |
|        |       |                    |          |                        | This event triggers after the last SEQ[1] completion of the loop, and only if |
|        |       |                    |          |                        | looping was enabled (LOOP > 0) when the sequence playback was started.        |
|        |       |                    | Set      | 1                      | Enable                                                                        |
|        |       |                    | Disabled | 0                      | Read: Disabled                                                                |
|        |       |                    | Enabled  | 1                      | Read: Enabled                                                                 |
|        |       |                    |          |                        |                                                                               |



### 6.10.5.20 INTENCLR

Address offset: 0x308

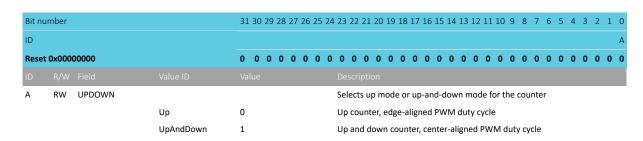

Disable interrupt

| Bit nu | mber  |                     |          | 31 | 30 | 29 2 | 28 2 | 27 2 | 6 2 | 5 24 | 4 2 | 3 2  | 2 2  | 21 2  | 20   | 19   | 18  | 17   | 16   | 15  | 14   | 13 | 12  | 11   | 10   | 9    | 8    | 7    | 6   | 5   | 4    | 3     | 2   | 1     | 0 |
|--------|-------|---------------------|----------|----|----|------|------|------|-----|------|-----|------|------|-------|------|------|-----|------|------|-----|------|----|-----|------|------|------|------|------|-----|-----|------|-------|-----|-------|---|
| ID     |       |                     |          |    |    |      |      |      |     |      |     |      |      |       |      |      |     |      |      |     |      |    |     |      |      |      |      | Н    | G   | F   | Ε    | D     | С   | В     |   |
| Reset  | 0x000 | 00000               |          | 0  | 0  | 0    | 0 (  | 0 (  | 0 ( | 0    | ) ( | 0 (  | 0 (  | 0     | 0    | 0    | 0   | 0    | 0    | 0   | 0    | 0  | 0   | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0     | 0   | 0     | 0 |
| ID     |       |                     |          |    |    |      |      |      |     |      |     |      |      |       |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
| В      | RW    | STOPPED             |          |    |    |      |      |      |     |      | ٧   | Vrit | e '1 | 1' to | o d  | isa  | ble | int  | err  | upt | for  | ev | ent | ST   | OPF  | ED   |      |      |     |     |      |       |     |       | Т |
|        |       |                     | Clear    | 1  |    |      |      |      |     |      | C   | Disa | ble  | •     |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Disabled | 0  |    |      |      |      |     |      | R   | Read | d: D | Disa  | ble  | ed   |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Enabled  | 1  |    |      |      |      |     |      | R   | lead | d: E | nal   | ble  | d    |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
| C-D    | RW    | SEQSTARTED[i] (i=0. | .1)      |    |    |      |      |      |     |      | ٧   | Vrit | e '1 | 1' to | o d  | isa  | ble | int  | err  | upt | for  | ev | ent | SE   | QST  | AR   | ΓED  | [i]  |     |     |      |       |     |       |   |
|        |       |                     | Clear    | 1  |    |      |      |      |     |      | C   | Disa | ble  | •     |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Disabled | 0  |    |      |      |      |     |      | R   | lead | d: D | Disa  | ble  | ed   |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Enabled  | 1  |    |      |      |      |     |      | R   | lead | d: E | nal   | ble  | d    |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
| E-F    | RW    | SEQEND[i] (i=01)    |          |    |    |      |      |      |     |      | ٧   | Vrit | e '1 | 1' to | o d  | isa  | ble | int  | err  | upt | for  | ev | ent | SE   | QEN  | ND[i | i]   |      |     |     |      |       |     |       |   |
|        |       |                     | Clear    | 1  |    |      |      |      |     |      | C   | Disa | ble  | 2     |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Disabled | 0  |    |      |      |      |     |      | R   | lead | d: D | Disa  | ble  | ed   |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Enabled  | 1  |    |      |      |      |     |      | R   | lead | d: E | nal   | ble  | d    |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
| G      | RW    | PWMPERIODEND        |          |    |    |      |      |      |     |      | ٧   | Vrit | e '1 | 1' to | o d  | isa  | ble | int  | err  | upt | for  | ev | ent | PW   | ۷MI  | PER  | IOD  | EN   | D   |     |      |       |     |       |   |
|        |       |                     | Clear    | 1  |    |      |      |      |     |      | C   | Disa | ble  | •     |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Disabled | 0  |    |      |      |      |     |      | R   | lead | d: D | Disa  | ble  | ed   |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Enabled  | 1  |    |      |      |      |     |      | R   | lead | d: E | nal   | ble  | d    |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
| Н      | RW    | LOOPSDONE           |          |    |    |      |      |      |     |      | ٧   | Vrit | e '1 | 1' to | o d  | isa  | ble | int  | err  | upt | for  | ev | ent | LO   | OPS  | SDC  | NE   |      |     |     |      |       |     |       |   |
|        |       |                     |          |    |    |      |      |      |     |      | Т   | his  | eve  | ent   | tri  | igge | ers | aft  | er t | he  | last | SE | Q[1 | ] co | omp  | olet | ion  | of : | the | loo | p, a | and   | onl | ly if |   |
|        |       |                     |          |    |    |      |      |      |     |      | lo  | оор  | ing  | g wa  | as e | ena  | ble | ed ( | LO   | OP: | > 0) | wł | nen | the  | e se | que  | ence | e pl | ayb | ack | · wa | as si | art | ed.   |   |
|        |       |                     | Clear    | 1  |    |      |      |      |     |      | C   | Disa | ble  |       |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Disabled | 0  |    |      |      |      |     |      | R   | lead | d: D | Disa  | ble  | ed   |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     | Enabled  | 1  |    |      |      |      |     |      | R   | lead | d: E | nal   | ble  | d    |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |
|        |       |                     |          |    |    |      |      |      |     |      |     |      |      |       |      |      |     |      |      |     |      |    |     |      |      |      |      |      |     |     |      |       |     |       |   |

#### 6.10.5.21 ENABLE

Address offset: 0x500

PWM module enable register




### 6.10.5.22 MODE

Address offset: 0x504

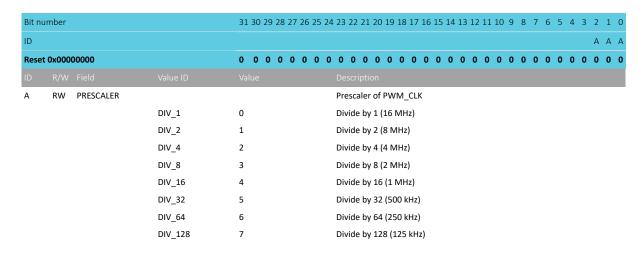
Selects operating mode of the wave counter

NORDIC\*



#### **6.10.5.23 COUNTERTOP**

Address offset: 0x508


Value up to which the pulse generator counter counts

| Bit no | umber   |            | 31 30 | 29 2  | 8 27 : | 26 25 | 24 2 | 23 23 | 2 21 | 20 1 | 19 1 | 8 17 | 16   | 15    | 14  | 13 1  | 2 13  | 10   | 9    | 8   | 7    | 6    | 5    | 4    | 3 2   | 2 1   | 0 |
|--------|---------|------------|-------|-------|--------|-------|------|-------|------|------|------|------|------|-------|-----|-------|-------|------|------|-----|------|------|------|------|-------|-------|---|
| ID     |         |            |       |       |        |       |      |       |      |      |      |      |      |       | Α   | A     | 4 A   | Α    | Α    | Α   | Α    | Α    | Α    | Α.   | Д Д   | A     | Α |
| Rese   | t 0x000 | 003FF      | 0 0   | 0 (   | 0 0    | 0 0   | 0    | 0 0   | 0    | 0    | 0 0  | 0    | 0    | 0     | 0   | 0 (   | 0 0   | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 1   | 1     | 1 |
| ID     |         |            |       |       |        |       |      |       |      |      |      |      |      |       |     |       |       |      |      |     |      |      |      |      |       |       |   |
| Α      | RW      | COUNTERTOP | [332  | 2767] |        |       | ١    | /alue | e up | to w | hich | the  | pul  | lse g | ene | erate | or co | unt  | er c | our | nts. | This | s re | gist | er is |       | _ |
|        |         |            |       |       |        |       | iį   | gnor  | ed v | vhen | DE(  | COD  | ER.N | NOI   | DE= | Wav   | eFo   | rm a | nd   | onl | y va | alue | s fr | om   | RAN   | /I ar | e |
|        |         |            |       |       |        |       | ι    | ısed  |      |      |      |      |      |       |     |       |       |      |      |     |      |      |      |      |       |       |   |

#### 6.10.5.24 PRESCALER

Address offset: 0x50C

Configuration for PWM CLK



#### 6.10.5.25 DECODER

Address offset: 0x510

Configuration of the decoder



| Bit nu | umber   |       |              | 3 | 31 3 | 0 29 | 9 28 | 3 27 | 26 | 25 | 24 | 23  | 22  | 2 2: | 1 20 | 0 19 | 9 1  | 8 1  | 7 1  | 6 1 | 5 1  | 4 1   | 13 1 | .2   | 11   | 10   | 9    | 8    | 7    | 6               | 5     | 4     | 3     | 2   | 1 | 0 |
|--------|---------|-------|--------------|---|------|------|------|------|----|----|----|-----|-----|------|------|------|------|------|------|-----|------|-------|------|------|------|------|------|------|------|-----------------|-------|-------|-------|-----|---|---|
| ID     |         |       |              |   |      |      |      |      |    |    |    |     |     |      |      |      |      |      |      |     |      |       |      |      |      |      |      | В    |      |                 |       |       |       |     | Α | Α |
| Rese   | t 0x000 | 00000 |              | C | ) (  | 0 0  | 0    | 0    | 0  | 0  | 0  | 0   | 0   | 0    | 0    | 0    | ) (  | ) (  | ) (  | ) ( | ) (  | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0               | 0     | 0     | 0     | 0   | 0 | 0 |
| ID     |         |       |              |   |      |      |      |      |    |    |    |     |     |      |      |      |      |      |      |     |      |       |      |      |      |      |      |      |      |                 |       |       |       |     |   |   |
| Α      | RW      | LOAD  |              |   |      |      |      |      |    |    |    | Но  | w   | a se | equ  | ien  | ce i | s re | ead  | fro | m    | RAI   | Ма   | nd   | spi  | read | d to | o th | e c  | om              | par   | e re  | egist | er  |   |   |
|        |         |       | Common       | ( | )    |      |      |      |    |    |    | 1st | ha  | alf  | woı  | rd ( | 16-  | bit  | ) us | ed  | in a | all I | PW   | M d  | ha   | nne  | els  | 03   |      |                 |       |       |       |     |   |   |
|        |         |       | Grouped      | 1 | L    |      |      |      |    |    |    | 1st | ha  | alf  | woı  | rd ( | 16-  | bit  | ) us | ed  | in ( | ha    | nne  | el O | 1;   | ; 2n | ıd v | vor  | d in | ch              | anr   | nel : | 23    |     |   |   |
|        |         |       | Individual   | 2 | 2    |      |      |      |    |    |    | 1st | ha  | alf  | woı  | rd ( | 16-  | bit  | ) in | ch. | 0;   | 2nc   | l in | ch.  | 1;   | ; 4  | 4th  | in   | ch.  | 3               |       |       |       |     |   |   |
|        |         |       | WaveForm     | 3 | 3    |      |      |      |    |    |    | 1st | ha  | alf  | woı  | rd ( | 16-  | bit  | ) in | ch. | 0;   | 2nc   | l in | ch.  | 1;   | ; 4  | 4th  | in   | CO   | UN <sup>-</sup> | TER   | TO    | Р     |     |   |   |
| В      | RW      | MODE  |              |   |      |      |      |      |    |    |    | Sel | ec  | ts s | sou  | rce  | for  | ad   | var  | cin | g t  | he    | acti | ve   | sec  | que  | nce  | е    |      |                 |       |       |       |     |   |   |
|        |         |       | RefreshCount | ( | )    |      |      |      |    |    |    | SEC | Q[r | n].F | REF  | RES  | H i  | s us | sed  | to  | det  | eri   | min  | e lo | oad  | ling | int  | terr | al   | con             | пра   | re i  | egis  | ter | S |   |
|        |         |       | NextStep     | 1 | L    |      |      |      |    |    |    | NE  | ΧT  | STE  | EP t | ask  | ca   | use  | s a  | ne  | w v  | alu   | ie t | o b  | e lo | oad  | ed   | to i | nte  | rna             | ıl co | omp   | are   |     |   |   |
|        |         |       |              |   |      |      |      |      |    |    |    | reg | ist | ers  | S    |      |      |      |      |     |      |       |      |      |      |      |      |      |      |                 |       |       |       |     |   |   |

#### 6.10.5.26 LOOP

Address offset: 0x514

Number of playbacks of a loop

| Bit nu | umber   |       |          | 31 | 30 | 29 2 | 28 2 | 27 2 | 26 2 | 5 2 | 4 23 | 3 22 | 2 21  | 20   | 19   | 18    | L7 1 | 6 1   | 5 14 | 13   | 12    | 11   | 10  | 9   | 8   | 7 | 6 | 5 | 4 | 3   | 2  | 1 0 |
|--------|---------|-------|----------|----|----|------|------|------|------|-----|------|------|-------|------|------|-------|------|-------|------|------|-------|------|-----|-----|-----|---|---|---|---|-----|----|-----|
| ID     |         |       |          |    |    |      |      |      |      |     |      |      |       |      |      |       |      | Þ     | A A  | Α    | Α     | Α    | Α   | Α   | Α   | Α | Α | Α | Α | Α . | Α, | А А |
| Reset  | t 0x000 | 00000 |          | 0  | 0  | 0    | 0    | 0    | 0 0  | (   | 0    | 0    | 0     | 0    | 0    | 0     | 0 (  | ) (   | 0    | 0    | 0     | 0    | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0   | 0  | 0 0 |
| ID     |         |       |          |    |    |      |      |      |      |     |      |      |       |      |      |       |      |       |      |      |       |      |     |     |     |   |   |   |   |     |    |     |
| Α      | RW      | CNT   |          |    |    |      |      |      |      |     | N    | um   | ber   | of p | layb | acl   | s of | pa    | ter  | 1 су | cles  |      |     |     |     |   |   |   |   |     |    |     |
|        |         |       | Disabled | 0  |    |      |      |      |      |     | Lo   | ор   | ing ( | disa | bled | d (st | ор а | at th | ne e | nd ( | of th | ne s | equ | ien | ce) |   |   |   |   |     |    |     |

# 6.10.5.27 SEQ[n].PTR (n=0..1)

Address offset:  $0x520 + (n \times 0x20)$ 

Beginning address in RAM of this sequence

| Α      | RW    | PTR   |  |    |    |      |      |      |     |     | В    | egiı | nnin | g ac | ldre | ess in | n RA | Мс  | of th | nis s | eau | enc | :e |   |   |   |   |   |     |     |   |   |
|--------|-------|-------|--|----|----|------|------|------|-----|-----|------|------|------|------|------|--------|------|-----|-------|-------|-----|-----|----|---|---|---|---|---|-----|-----|---|---|
| ID     |       |       |  |    |    |      |      |      |     |     |      |      |      |      |      |        |      |     |       |       |     |     |    |   |   |   |   |   |     |     |   |   |
| Reset  | 0x000 | 00000 |  | 0  | 0  | 0    | 0    | 0    | 0 ( | ) ( | 0 (  | 0    | 0    | 0    | 0    | 0      | 0 (  | 0   | 0     | 0     | 0   | 0   | 0  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID     |       |       |  | А  | Α  | Α    | Α.   | A ,  | Α Α | Δ / | A A  | A A  | A A  | Α    | Α    | Α      | A A  | λ Δ | A     | Α     | Α   | Α   | Α  | Α | Α | Α | Α | Α | A A | A A | Α | Α |
| Bit nu | ımber |       |  | 31 | 30 | 29 2 | 28 2 | 27 2 | 6 2 | 5 2 | 24 2 | 3 2  | 2 21 | 20   | 19   | 18 1   | L7 1 | 6 1 | 5 14  | 13    | 12  | 11  | 10 | 9 | 8 | 7 | 6 | 5 | 4 3 | 3 2 | 1 | 0 |
|        |       |       |  |    |    |      |      |      |     |     |      |      |      |      |      |        |      |     |       |       |     |     |    |   |   |   |   |   |     |     |   |   |

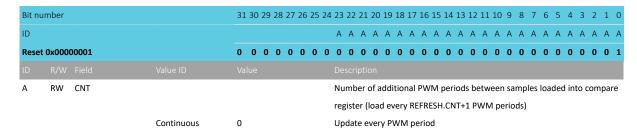
**Note:** See the memory chapter for details about which memories are available for EasyDMA.

# 6.10.5.28 SEQ[n].CNT (n=0..1)

Address offset:  $0x524 + (n \times 0x20)$ 

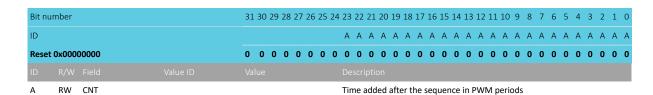
Number of values (duty cycles) in this sequence

| Bit n | umber   |       |          | 31 30 29 | 28 27 2 | 26 25 : | 24 23 | 22 2 | 1 20   | 19 1  | 8 17    | 16 1  | 5 14 | 13    | 12    | 11 1  | 0 9        | 8    | 7     | 6   | 5  | 4 3 | 3 2 | 1 | 0 |
|-------|---------|-------|----------|----------|---------|---------|-------|------|--------|-------|---------|-------|------|-------|-------|-------|------------|------|-------|-----|----|-----|-----|---|---|
| ID    |         |       |          |          |         |         |       |      |        |       |         |       | Α    | Α     | Α     | A     | <b>Α</b> Α | Α    | Α     | Α   | Α. | A A | 4 A | Α | Α |
| Rese  | t 0x000 | 00000 |          | 0 0 0    | 0 0     | 0 0     | 0 0   | 0 (  | 0 0    | 0     | 0 0     | 0 (   | 0    | 0     | 0     | 0 (   | 0          | 0    | 0     | 0   | 0  | 0 ( | 0   | 0 | 0 |
| ID    |         |       |          |          |         |         |       |      |        |       |         |       |      |       |       |       |            |      |       |     |    |     |     |   |   |
| Α     | RW      | CNT   |          |          |         |         | N     | ımbe | r of v | /alue | s (dut  | у сус | les) | in th | nis s | equ   | ence       |      |       |     |    |     |     |   |   |
|       |         |       | Disabled | 0        |         |         | Se    | quen | ce is  | disal | oled, a | and s | hall | not   | be :  | start | ed a       | s it | is eı | mpt | у  |     |     |   |   |



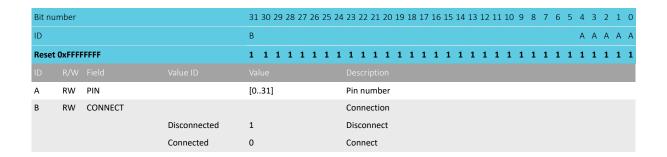



### 6.10.5.29 SEQ[n].REFRESH (n=0..1)


Address offset:  $0x528 + (n \times 0x20)$ 

Number of additional PWM periods between samples loaded into compare register




### 6.10.5.30 SEQ[n].ENDDELAY (n=0..1)

Address offset:  $0x52C + (n \times 0x20)$ Time added after the sequence



### 6.10.5.31 PSEL.OUT[n] (n=0..3)

Address offset:  $0x560 + (n \times 0x4)$ Output pin select for PWM channel n



# 6.11 RTC — Real-time counter

The real-time counter (RTC) module provides a generic, low-power timer on the low frequency clock source (LFCLK).



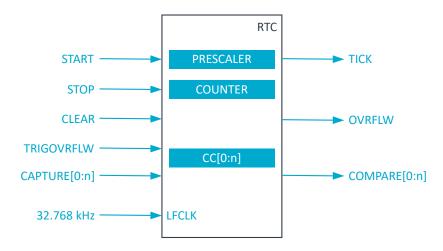



Figure 55: RTC block diagram

The RTC module features a 24-bit COUNTER, a 12-bit (1/X) prescaler, compare registers, and a tick event generator.

#### 6.11.1 Clock source

The RTC will run off the LFCLK.

When started, the RTC will automatically request the LFCLK source with RC oscillator if the LFCLK is not already running.

See CLOCK — Clock control on page 73 for more information about clock sources.

## 6.11.2 Resolution versus overflow and the prescaler

The relationship between the prescaler, counter resolution, and overflow is summarized in the following table.

| Prescaler          | Counter resolution | Overflow       |
|--------------------|--------------------|----------------|
| 0                  | 30.517 μs          | 512 seconds    |
| 2 <sup>8</sup> -1  | 7812.5 μs          | 131072 seconds |
| 2 <sup>12</sup> -1 | 125 ms             | 582.542 hours  |

Table 29: RTC resolution versus overflow

The counter increment frequency is given by the following equation:

```
f_{RTC} [kHz] = 32.768 / (PRESCALER + 1 )
```

The PRESCALER register can only be written when the RTC is stopped.

The prescaler is restarted on tasks START, CLEAR and TRIGOVRFLW. That is, the prescaler value is latched to an internal register (<<PRESC>>) on these tasks.

#### Examples:

1. Desired COUNTER frequency 100 Hz (10 ms counter period)

```
PRESCALER = round(32.768 kHz / 100 Hz) - 1 = 327 f_{RTC} = 99.9 Hz
```

10009.576 µs counter period

NORDIC\*

#### 2. Desired COUNTER frequency 8 Hz (125 ms counter period)

PRESCALER = round(32.768 kHz / 8 Hz) - 1 = 4095

 $f_{RTC} = 8 Hz$ 

125 ms counter period

### 6.11.3 Counter register

The internal <<COUNTER>> register increments on LFCLK when the internal PRESCALER register (<<PRESC>>) is 0x00. <<PRESC>> is reloaded from the PRESCALER register. If enabled, the TICK event occurs on each increment of the COUNTER.

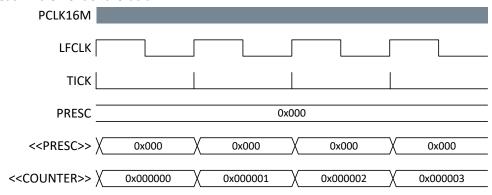



Figure 56: Timing diagram - COUNTER PRESCALER 0

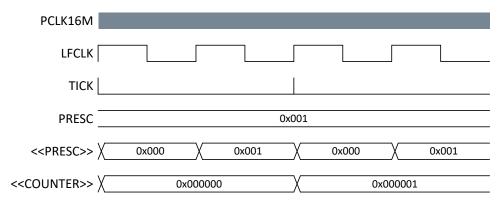



Figure 57: Timing diagram - COUNTER\_PRESCALER\_1

#### 6.11.3.1 Reading the counter register

To read the COUNTER register, the internal <<COUNTER>> value is sampled.

To ensure that the <<COUNTER>> is safely sampled (considering that an LFCLK transition may occur during a read), the CPU and core memory bus are halted for PCLK16M cycles. In addition, the read takes the CPU two PCLK16M cycles, resulting in the COUNTER register read taking maximum six PCLK16M clock cycles.

#### 6.11.4 Overflow

An OVRFLW event is generated on COUNTER register overflow (overflowing from 0xFFFFFF to 0).

The TRIGOVRFLW task will set the COUNTER value to 0xFFFFF0, to allow software test of the overflow condition.

**Note:** The OVRFLW event is disabled by default.



#### 6.11.5 Tick event

The TICK event enables low-power tickless RTOS implementation, as it optionally provides a regular interrupt source for an RTOS with no need for use of the ARM SysTick feature.

Using the TICK event, rather than the SysTick, allows the CPU to be powered down while keeping RTOS scheduling active.

Note: The TICK event is disabled by default.

#### 6.11.6 Event control

To optimize the RTC power consumption, events in the RTC can be individually disabled to prevent PCLK16M and HFCLK from being requested when those events are triggered. This is managed using the EVTEN register.

This means that the RTC implements a slightly different task and event system compared to the standard system described in Peripheral interface on page 15. The RTC task and event system is illustrated in the following figure.

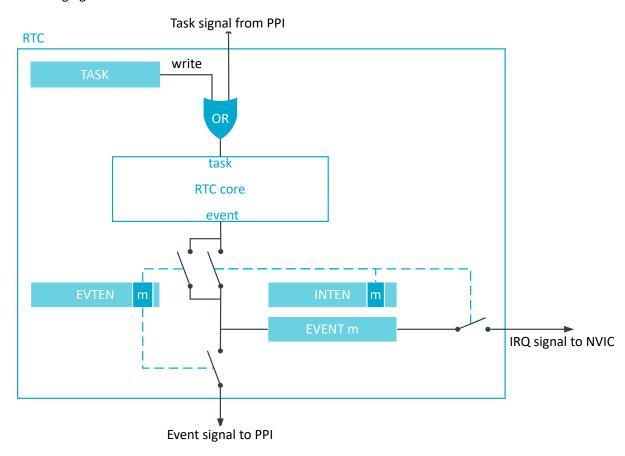



Figure 58: Tasks, events, and interrupts in the RTC

## 6.11.7 Compare

The RTC implements one COMPARE event for every available compare register.

When the COUNTER is incremented and then becomes equal to the value specified in the register CC[n], the corresponding compare event COMPARE[n] is generated.

When writing a CC[n] register, the RTC COMPARE event exhibits several behaviors. See the following figures for more information.

If a CC value is 0 when a CLEAR task is set, this will not trigger a COMPARE event.



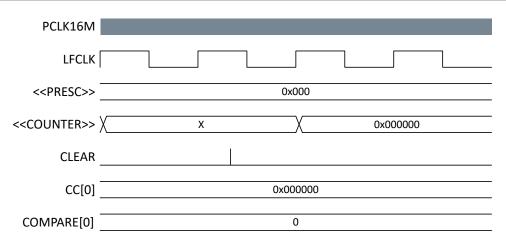



Figure 59: Timing diagram - COMPARE\_CLEAR

If a CC value is N and the COUNTER value is N when the START task is set, this will not trigger a COMPARE event.

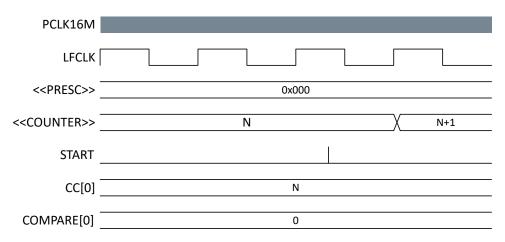



Figure 60: Timing diagram - COMPARE\_START

A COMPARE event occurs when a CC value is N, and the COUNTER value transitions from N-1 to N.

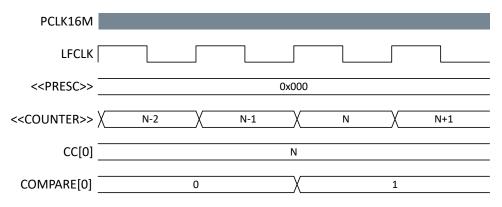



Figure 61: Timing diagram - COMPARE

If the COUNTER value is N, writing N+2 to a CC register is guaranteed to trigger a COMPARE event at N+2.



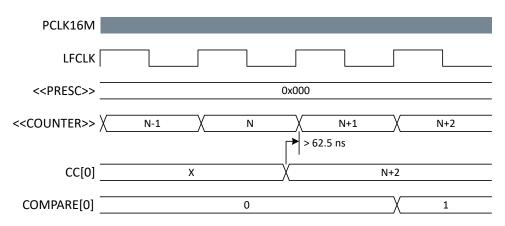



Figure 62: Timing diagram - COMPARE\_N+2

If the COUNTER value is N, writing N or N+1 to a CC register may not trigger a COMPARE event.

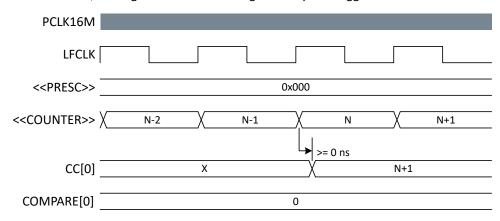



Figure 63: Timing diagram - COMPARE N+1

If the COUNTER value is N, and the current CC value is N+1 or N+2 when a new CC value is written, a match may trigger on the previous CC value before the new value takes effect. If the current CC value is greater than N+2 when the new value is written, there will be no event due to the old value.

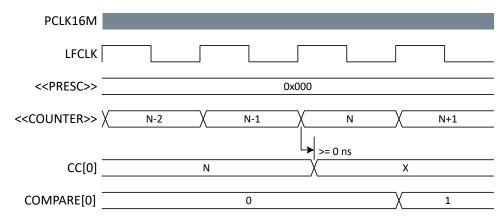



Figure 64: Timing diagram - COMPARE\_N-1

## 6.11.8 Task and event jitter/delay

Jitter or delay in the RTC is due to the peripheral clock being a low frequency clock (LFCLK), which is not synchronous to the faster PCLK16M.

Registers in the peripheral interface that are part of the PCLK16M domain, have a set of mirrored registers in the LFCLK domain. For example, the COUNTER value accessible from the CPU is in the PCLK16M domain and is latched on a read from an internal COUNTER register in the LFCLK domain. The COUNTER register

is modified each time the RTC ticks. The registers are synchronised between the two clock domains (PCLK16M and LFCLK).

CLEAR and STOP (and TRIGOVRFLW, which is not shown) will be delayed as long as it takes for the peripheral to clock a falling edge and a rising edge of the LFCLK. This is between 15.2585  $\mu$ s and 45.7755  $\mu$ s – rounded to 15  $\mu$ s and 46  $\mu$ s for the remainder of the section.

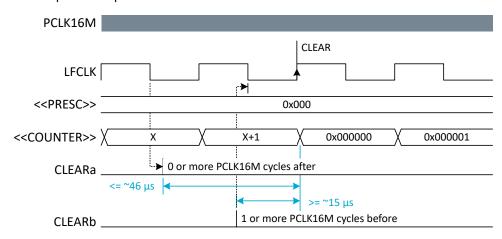



Figure 65: Timing diagram - DELAY CLEAR

When a STOP task is triggered, the PCLK16M domain will immediately prevent the generation of any EVENTS from the RTC. However, as seen in the following figure, the COUNTER value can still increment one final time.

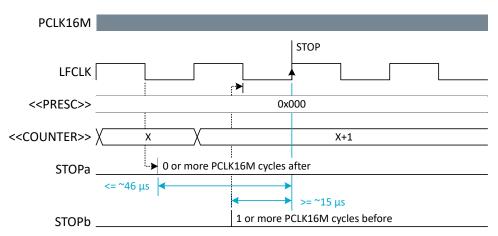



Figure 66: Timing diagram - DELAY\_STOP

The START task will start the RTC. Assuming that the LFCLK was previously running and stable, the first increment of COUNTER (and instance of TICK event) will be typically after 30.5  $\mu$ s +/-15  $\mu$ s. Additional delay will occur if the RTC is started before the LFCLK is running, see CLOCK — Clock control on page 73 for LFLK startup times. The software should therefore wait for the first TICK if it has to make sure that the RTC is running. Sending a TRIGOVRFLW task sets the COUNTER to a value close to overflow. However, since the update of COUNTER relies on a stable LFCLK, sending this task while LFCLK is not running will also add additional delay as previously described. The figures show the smallest and largest delays on the START task, appearing as a +/-15  $\mu$ s jitter on the first COUNTER increment.



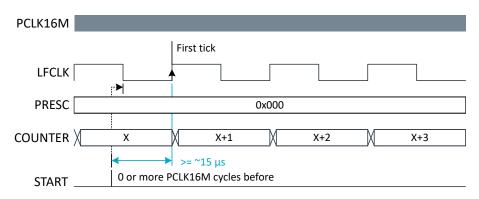



Figure 67: Timing diagram - JITTER\_START-

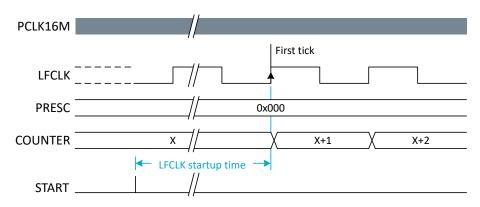



Figure 68: Timing diagram - JITTER\_START+

The following tables summarize jitter introduced for tasks and events. Any 32.768 kHz clock jitter will come in addition to these numbers.

| Task                            | Delay        |
|---------------------------------|--------------|
| CLEAR, START, STOP, TRIGOVRFLOW | +15 to 46 μs |

Table 30: RTC jitter magnitudes on tasks

| Operation/Function               | Jitter    |
|----------------------------------|-----------|
| START to COUNTER increment       | ± 15 μs   |
| COMPARE to COMPARE <sup>18</sup> | ± 62.5 ns |

Table 31: RTC jitter magnitudes on events

## 6.11.9 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description         |
|----------|--------------|-----------|-----|-----|--------------|---------------------|
|          |              | Мар       | Att | DMA |              |                     |
| RTC0: S  | 0x50014000   | US        | NS  | NA  | No           | Real time counter 0 |
| RTC0: NS | 0x40014000   | 03        | INS | INA | NO           | real time counter o |
| RTC1:S   | 0x50015000   | US        | NS  | NA  | No           | Real time counter 1 |
| RTC1: NS | 0x40015000   | US        | CVI | INA | INU          | real time counter 1 |

<sup>&</sup>lt;sup>18</sup> Assumes RTC runs continuously between these events.



## **Register overview**

| Register             | Offset | TZ | Description                                                                               |
|----------------------|--------|----|-------------------------------------------------------------------------------------------|
| TASKS_START          | 0x000  |    | Start RTC counter                                                                         |
| TASKS_STOP           | 0x004  |    | Stop RTC counter                                                                          |
| TASKS_CLEAR          | 0x008  |    | Clear RTC counter                                                                         |
| TASKS_TRIGOVRFLW     | 0x00C  |    | Set counter to 0xFFFFF0                                                                   |
| SUBSCRIBE_START      | 0x080  |    | Subscribe configuration for task START                                                    |
| SUBSCRIBE_STOP       | 0x084  |    | Subscribe configuration for task STOP                                                     |
| SUBSCRIBE_CLEAR      | 0x088  |    | Subscribe configuration for task CLEAR                                                    |
| SUBSCRIBE_TRIGOVRFLW | 0x08C  |    | Subscribe configuration for task TRIGOVRFLW                                               |
| EVENTS_TICK          | 0x100  |    | Event on counter increment                                                                |
| EVENTS_OVRFLW        | 0x104  |    | Event on counter overflow                                                                 |
| EVENTS_COMPARE[n]    | 0x140  |    | Compare event on CC[n] match                                                              |
| PUBLISH_TICK         | 0x180  |    | Publish configuration for event TICK                                                      |
| PUBLISH_OVRFLW       | 0x184  |    | Publish configuration for event OVRFLW                                                    |
| PUBLISH_COMPARE[n]   | 0x1C0  |    | Publish configuration for event COMPARE[n]                                                |
| INTENSET             | 0x304  |    | Enable interrupt                                                                          |
| INTENCLR             | 0x308  |    | Disable interrupt                                                                         |
| EVTEN                | 0x340  |    | Enable or disable event routing                                                           |
| EVTENSET             | 0x344  |    | Enable event routing                                                                      |
| EVTENCLR             | 0x348  |    | Disable event routing                                                                     |
| COUNTER              | 0x504  |    | Current counter value                                                                     |
| PRESCALER            | 0x508  |    | 12-bit prescaler for counter frequency (32768/(PRESCALER+1)). Must be written when RTC is |
|                      |        |    | stopped.                                                                                  |
| CC[n]                | 0x540  |    | Compare register n                                                                        |

# 6.11.9.1 TASKS\_START

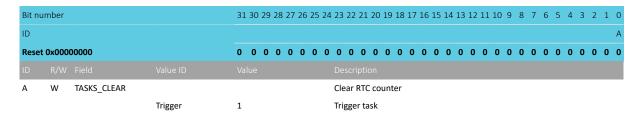
Address offset: 0x000

Start RTC counter

| Bit nu | umber   |             |         | 31 30 29 28 27 | 26 25 24 | 23 22 2   | l 20 19 | 18 17 | 16 15 | 14 1 | .3 12 | 11 1 | 9 | 8 | 7 | 6 5 | 5 4 | 3 | 2 | 1 0 |
|--------|---------|-------------|---------|----------------|----------|-----------|---------|-------|-------|------|-------|------|---|---|---|-----|-----|---|---|-----|
| ID     |         |             |         |                |          |           |         |       |       |      |       |      |   |   |   |     |     |   |   | Α   |
| Rese   | t 0x000 | 00000       |         | 0 0 0 0 0      | 0 0 0    | 0 0 0     | 0 0     | 0 0   | 0 0   | 0    | 0 0   | 0 0  | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 | 0 0 |
| ID     |         |             |         |                |          |           |         |       |       |      |       |      |   |   |   |     |     |   |   |     |
| Α      | W       | TASKS_START |         |                |          | Start RT  | C count | er    |       |      |       |      |   |   |   |     |     |   |   |     |
|        |         |             | Trigger | 1              |          | Trigger t | ask     |       |       |      |       |      |   |   |   |     |     |   |   |     |

# 6.11.9.2 TASKS\_STOP

Address offset: 0x004 Stop RTC counter


| Bit nu | mber  |            |         | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 2 | 23 2 | 22  | 21    | 20  | 19  | 18 | 17 | 16 | 15 | 14 | 13 : | .2 1 | 111 | 0 9 | 9 8 | 3 7 | ' 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|------------|---------|----|----|----|----|----|----|----|------|------|-----|-------|-----|-----|----|----|----|----|----|------|------|-----|-----|-----|-----|-----|---|---|---|---|-----|
| ID     |       |            |         |    |    |    |    |    |    |    |      |      |     |       |     |     |    |    |    |    |    |      |      |     |     |     |     |     |   |   |   |   | Α   |
| Reset  | 0x000 | 00000      |         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0   | 0     | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0 ( | ) ( | 0   | ) ( | 0   | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |            |         |    |    |    |    |    |    |    |      |      |     |       |     |     |    |    |    |    |    |      |      |     |     |     |     |     |   |   |   |   |     |
| Α      | W     | TASKS_STOP |         |    |    |    |    |    |    |    | 9    | Stop | p R | TC (  | cou | ınt | er |    |    |    |    |      |      |     |     |     |     |     |   |   |   |   |     |
|        |       |            | Trigger | 1  |    |    |    |    |    |    | 1    | Γrig | gei | r tas | sk  |     |    |    |    |    |    |      |      |     |     |     |     |     |   |   |   |   |     |



## 6.11.9.3 TASKS\_CLEAR

Address offset: 0x008

Clear RTC counter



### 6.11.9.4 TASKS\_TRIGOVRFLW

Address offset: 0x00C Set counter to 0xFFFFF0

| Bit nu | umber   |             |         | 31 30 29 28 27 | 26 25 24 2 | 3 22 21   | 20 19 1  | .8 17 1 | 5 15 1 | 4 13 1 | 2 11 1 | 0 9 | 8 | 7 | 6 5 | 5 4 | 3 | 2 | 1 0 |
|--------|---------|-------------|---------|----------------|------------|-----------|----------|---------|--------|--------|--------|-----|---|---|-----|-----|---|---|-----|
| ID     |         |             |         |                |            |           |          |         |        |        |        |     |   |   |     |     |   |   | Α   |
| Reset  | t 0x000 | 00000       |         | 0 0 0 0 0      | 0 0 0 0    | 0 0       | 0 0      | 0 0 0   | 0 0    | 0 0    | 0 (    | 0   | 0 | 0 | 0 ( | 0 0 | 0 | 0 | 0 0 |
| ID     |         |             |         |                |            |           |          |         |        |        |        |     |   |   |     |     |   |   |     |
| Α      | W       | TASKS_TRIGO | OVRFLW  |                | S          | et counte | er to 0x | FFFFF0  |        |        |        |     |   |   |     |     |   |   |     |
|        |         |             | Trigger | 1              | Т          | igger tas | sk       |         |        |        |        |     |   |   |     |     |   |   |     |

## 6.11.9.5 SUBSCRIBE\_START

Address offset: 0x080

Subscribe configuration for task START

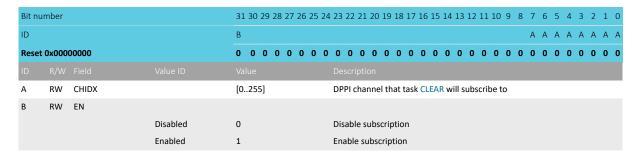

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                      | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                        |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                 | DPPI channel that task START will subscribe to                  |
| В      | RW    | EN    |          |                        |                                                                 |
|        |       |       | Disabled | 0                      | Disable subscription                                            |
|        |       |       | Enabled  | 1                      | Enable subscription                                             |

## 6.11.9.6 SUBSCRIBE\_STOP

Address offset: 0x084

Subscribe configuration for task STOP

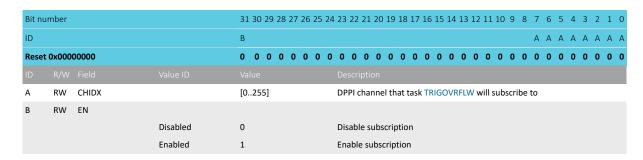
| Bit nu | ımber  |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |        |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x0000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |        |       |          |                         |                                                               |
| Α      | RW     | CHIDX |          | [0255]                  | DPPI channel that task STOP will subscribe to                 |
| В      | RW     | EN    |          |                         |                                                               |
|        |        |       | Disabled | 0                       | Disable subscription                                          |
|        |        |       | Enabled  | 1                       | Enable subscription                                           |






#### 6.11.9.7 SUBSCRIBE\_CLEAR

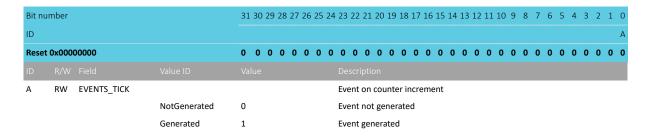
Address offset: 0x088


Subscribe configuration for task CLEAR



#### 6.11.9.8 SUBSCRIBE\_TRIGOVRFLW

Address offset: 0x08C


Subscribe configuration for task TRIGOVRFLW



#### **6.11.9.9 EVENTS TICK**

Address offset: 0x100

Event on counter increment



#### 6.11.9.10 EVENTS OVRFLW

Address offset: 0x104

Event on counter overflow



| Bit number  |               |              | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------------|---------------|--------------|------------------------|-----------------------------------------------------------------|
| ID          |               |              |                        |                                                                 |
| Reset 0x000 | 00000         |              | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID R/W      |               |              |                        |                                                                 |
| A RW        | EVENTS_OVRFLW |              |                        | Event on counter overflow                                       |
|             |               | NotGenerated | 0                      | Event not generated                                             |
|             |               | Generated    | 1                      | Event generated                                                 |

## 6.11.9.11 EVENTS\_COMPARE[n] (n=0..3)

Address offset:  $0x140 + (n \times 0x4)$ Compare event on CC[n] match

| Bit nu | ımber |                |              | 31 30 29 | 28 27 : | 26 25 | 24 23 | 22 2  | 1 20   | 19 1  | L8 17 | 16    | 15 1 | 4 13 | 12 1 | .1 10 | 9 | 8 | 7 | 6 | 5 4 | 3 | 2 | 1 | 0 |
|--------|-------|----------------|--------------|----------|---------|-------|-------|-------|--------|-------|-------|-------|------|------|------|-------|---|---|---|---|-----|---|---|---|---|
| ID     |       |                |              |          |         |       |       |       |        |       |       |       |      |      |      |       |   |   |   |   |     |   |   |   | Α |
| Reset  | 0x000 | 00000          |              | 0 0 0    | 0 0     | 0 0   | 0 0   | 0 (   | 0 0    | 0     | 0 0   | 0     | 0 (  | 0    | 0    | 0 0   | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 |
| ID     |       |                |              |          |         |       |       |       |        |       |       |       |      |      |      |       |   |   |   |   |     |   |   |   | ı |
| Α      | RW    | EVENTS_COMPARE |              |          |         |       | Co    | mpai  | re eve | ent o | n CC  | [n] r | natc | h    |      |       |   |   |   |   |     |   |   |   |   |
|        |       |                | NotGenerated | 0        |         |       | Eve   | ent n | ot ge  | nera  | ted   |       |      |      |      |       |   |   |   |   |     |   |   |   |   |
|        |       |                | Generated    | 1        |         |       | Eve   | ent g | enera  | ated  |       |       |      |      |      |       |   |   |   |   |     |   |   |   |   |

## 6.11.9.12 PUBLISH\_TICK

Address offset: 0x180

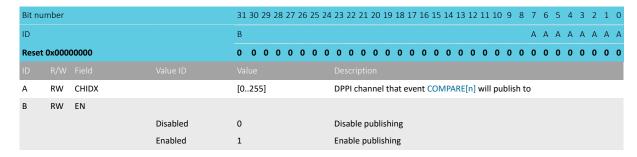
Publish configuration for event TICK

| Bit nu | mber  |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event TICK will publish to                  |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

## 6.11.9.13 PUBLISH\_OVRFLW

Address offset: 0x184

Publish configuration for event OVRFLW


| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                      | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                        | Description                                                     |
| Α      | RW    | CHIDX |          | [0255]                 | DPPI channel that event OVRFLW will publish to                  |
| В      | RW    | EN    |          |                        |                                                                 |
|        |       |       | Disabled | 0                      | Disable publishing                                              |
|        |       |       | Enabled  | 1                      | Enable publishing                                               |

## 6.11.9.14 PUBLISH\_COMPARE[n] (n=0..3)

Address offset:  $0x1C0 + (n \times 0x4)$ 



#### Publish configuration for event COMPARE[n]



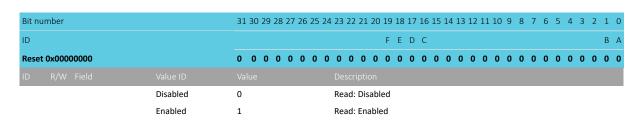
#### 6.11.9.15 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber |                   |          | 31 30 29 2 | 8 27 26 | 25 24 | 23 22 | 2 21 2   | 0 19 | 18  | 17 1 | 16 15 | 14  | 13  | 12 1 | 1 1 | 9   | 8    | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |
|--------|-------|-------------------|----------|------------|---------|-------|-------|----------|------|-----|------|-------|-----|-----|------|-----|-----|------|---|---|---|-----|---|---|---|
| ID     |       |                   |          |            |         |       |       |          | F    | Ε   | D    | С     |     |     |      |     |     |      |   |   |   |     |   | В | Α |
| Reset  | 0x000 | 00000             |          | 0 0 0 0    | 0 0 0   | 0 0   | 0 0   | 0 (      | 0    | 0   | 0    | 0 0   | 0   | 0   | 0 (  | ) ( | 0   | 0    | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 |
| ID     |       |                   |          |            |         |       |       |          |      |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
| Α      | RW    | TICK              |          |            |         |       | Write | e '1' to | ena  | ble | inte | rrupt | for | eve | nt T | CK  |     |      |   |   |   |     |   |   |   |
|        |       |                   | Set      | 1          |         |       | Enab  | le       |      |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Disabled | 0          |         |       | Read  | : Disal  | oled |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Enabled  | 1          |         |       | Read  | : Enab   | led  |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
| В      | RW    | OVRFLW            |          |            |         |       | Write | e '1' to | ena  | ble | inte | rrupt | for | eve | nt O | VRF | LW  |      |   |   |   |     |   |   |   |
|        |       |                   | Set      | 1          |         |       | Enab  | le       |      |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Disabled | 0          |         |       | Read  | : Disal  | oled |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Enabled  | 1          |         |       | Read  | : Enab   | led  |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
| C-F    | RW    | COMPARE[i] (i=03) |          |            |         |       | Write | e '1' to | ena  | ble | inte | rrupt | for | eve | nt C | DM  | PAR | E[i] |   |   |   |     |   |   |   |
|        |       |                   | Set      | 1          |         |       | Enab  | le       |      |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Disabled | 0          |         |       | Read  | : Disal  | oled |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |
|        |       |                   | Enabled  | 1          |         |       | Read  | : Enab   | led  |     |      |       |     |     |      |     |     |      |   |   |   |     |   |   |   |

#### 6.11.9.16 INTENCLR


Address offset: 0x308

Disable interrupt

| Bit nu | ımber |                   |          | 31 30 29 28 27 26 25 24 | 1 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |                   |          |                         | F E D C                                                         |
| Reset  | 0x000 | 00000             |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |                   |          |                         | Description                                                     |
| Α      | RW    | TICK              |          |                         | Write '1' to disable interrupt for event TICK                   |
|        |       |                   | Clear    | 1                       | Disable                                                         |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                  |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW    | OVRFLW            |          |                         | Write '1' to disable interrupt for event OVRFLW                 |
|        |       |                   | Clear    | 1                       | Disable                                                         |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                  |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                   |
| C-F    | RW    | COMPARE[i] (i=03) |          |                         | Write '1' to disable interrupt for event COMPARE[i]             |
|        |       |                   | Clear    | 1                       | Disable                                                         |







#### 6.11.9.17 EVTEN

Address offset: 0x340

Enable or disable event routing

| Bit nu | ımber |                   |          | 31 3 | 0 29 | 28 2 | 27 26 | 5 25 | 24 | 23  | 22 2 | 21 2 | 0 19  | 9 18 | 3 17 | 16    | 15   | 14 | 13    | 12 1 | 11 1 | 10 9 | 8 ( | 7    | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|-------------------|----------|------|------|------|-------|------|----|-----|------|------|-------|------|------|-------|------|----|-------|------|------|------|-----|------|---|---|---|---|---|-----|
| ID     |       |                   |          |      |      |      |       |      |    |     |      |      | F     | Е    | D    | С     |      |    |       |      |      |      |     |      |   |   |   |   |   | ВА  |
| Reset  | 0x000 | 00000             |          | 0 (  | 0 0  | 0    | 0 0   | 0    | 0  | 0   | 0    | 0 (  | 0 0   | 0    | 0    | 0     | 0    | 0  | 0     | 0    | 0    | 0 (  | 0   | 0    | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |                   |          |      |      |      |       |      |    |     |      |      |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
| Α      | RW    | TICK              |          |      |      |      |       |      |    | Ena | ble  | or c | disal | ole  | eve  | nt ro | outi | ng | for ( | ever | nt T | ICK  |     |      |   |   |   |   |   |     |
|        |       |                   | Disabled | 0    |      |      |       |      |    | Dis | able | :    |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
|        |       |                   | Enabled  | 1    |      |      |       |      |    | Ena | able |      |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
| В      | RW    | OVRFLW            |          |      |      |      |       |      |    | Ena | able | or c | disal | ole  | eve  | nt ro | outi | ng | for e | ever | nt C | OVRE | LW  |      |   |   |   |   |   |     |
|        |       |                   | Disabled | 0    |      |      |       |      |    | Dis | able | :    |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
|        |       |                   | Enabled  | 1    |      |      |       |      |    | Ena | able |      |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
| C-F    | RW    | COMPARE[i] (i=03) |          |      |      |      |       |      |    | Ena | able | or c | disal | ole  | eve  | nt ro | outi | ng | for e | ever | nt C | ОМ   | PAR | E[i] |   |   |   |   |   |     |
|        |       |                   | Disabled | 0    |      |      |       |      |    | Dis | able | 2    |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |
|        |       |                   | Enabled  | 1    |      |      |       |      |    | Ena | able |      |       |      |      |       |      |    |       |      |      |      |     |      |   |   |   |   |   |     |

#### 6.11.9.18 EVTENSET

Address offset: 0x344 Enable event routing

| Bit nu | ımber |                   |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |                   |          |                         | F E D C                                                       |
| Reset  | 0x000 | 00000             |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |                   |          |                         | Description                                                   |
| Α      | RW    | TICK              |          |                         | Write '1' to enable event routing for event TICK              |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Set      | 1                       | Enable                                                        |
| В      | RW    | OVRFLW            |          |                         | Write '1' to enable event routing for event OVRFLW            |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Set      | 1                       | Enable                                                        |
| C-F    | RW    | COMPARE[i] (i=03) |          |                         | Write '1' to enable event routing for event COMPARE[i]        |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Set      | 1                       | Enable                                                        |

#### 6.11.9.19 EVTENCLR

Address offset: 0x348

Disable event routing



| Bit nu | mber  |                   |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------------------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |                   |          |                         | F E D C B A                                                   |
| Reset  | 0x000 | 00000             |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |                   |          |                         | Description                                                   |
| Α      | RW    | TICK              |          |                         | Write '1' to disable event routing for event TICK             |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Clear    | 1                       | Disable                                                       |
| В      | RW    | OVRFLW            |          |                         | Write '1' to disable event routing for event OVRFLW           |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Clear    | 1                       | Disable                                                       |
| C-F    | RW    | COMPARE[i] (i=03) |          |                         | Write '1' to disable event routing for event COMPARE[i]       |
|        |       |                   | Disabled | 0                       | Read: Disabled                                                |
|        |       |                   | Enabled  | 1                       | Read: Enabled                                                 |
|        |       |                   | Clear    | 1                       | Disable                                                       |

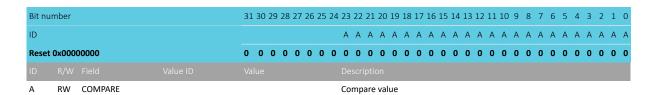
#### 6.11.9.20 COUNTER

Address offset: 0x504 Current counter value

| Bit nu | ımber |         | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|---------|-------------------------------------------------------------------|---------------------|
| ID     |       |         | A A A A A A A A A A A A A A A A A A A                             | A A A A A A A A     |
| Reset  | 0x000 | 00000   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                           | 0 0 0 0 0 0 0 0 0 0 |
| ID     |       |         |                                                                   |                     |
| Α      | R     | COUNTER | Counter value                                                     |                     |

#### 6.11.9.21 PRESCALER

Address offset: 0x508


12-bit prescaler for counter frequency (32768/(PRESCALER+1)). Must be written when RTC is stopped.

| Bit nu | mber  |           | 31 3 | 0 29 2 | 8 27 2 | 6 25 2 | 24 23 | 3 22 : | 21 20  | 19  | 18 17 | 7 16 | 15 1 | 4 13 | 3 12 | 11 3 | .0 9 | 8   | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0 |
|--------|-------|-----------|------|--------|--------|--------|-------|--------|--------|-----|-------|------|------|------|------|------|------|-----|---|---|---|---|-----|-----|---|
| ID     |       |           |      |        |        |        |       |        |        |     |       |      |      |      |      | Α    | Δ .  | A A | Α | Α | Α | Α | A A | A A | Α |
| Reset  | 0x000 | 00000     | 0 (  | 0 (    | 0 0    | 0 0    | 0 0   | 0      | 0 0    | 0   | 0 0   | 0    | 0 (  | 0 0  | 0    | 0    | 0 (  | 0   | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 |
| ID     |       |           |      |        |        |        |       |        |        |     |       |      |      |      |      |      |      |     |   |   |   |   |     |     |   |
| Α      | RW    | PRESCALER |      |        |        |        | Pr    | esca   | ler va | lue |       |      |      |      |      |      |      |     |   |   |   |   |     |     |   |

## 6.11.9.22 CC[n] (n=0..3)

Address offset:  $0x540 + (n \times 0x4)$ 

Compare register n





# 6.12 SAADC — Successive approximation analog-to-digital converter

The SAADC is a differential successive approximation register (SAR) analog-to-digital converter.

Listed here are the main features of SAADC:

- 8/10/12-bit resolution, 14-bit resolution with oversampling
- Multiple analog inputs:
  - AINO to AIN7 pins
  - VDD GPIO pin
- Up to eight input channels:
  - One channel per single-ended input and two channels per differential input
  - Scan mode can be configured with both single-ended channels and differential channels
  - Each channel can be configured to select any of the above analog inputs
- Full scale input range (0 to VDD\_GPIO)
- Sampling triggered via a task from software or a PPI channel for full flexibility on sample frequency source from low-power 32.768 kHz RTC or more accurate 1/16 MHz timers
- One-shot conversion mode to sample a single channel
- · Scan mode to sample a series of channels in sequence with configurable sample delay
- Support for direct sample transfer to RAM using EasyDMA
- Interrupts on single sample and full buffer events
- Samples stored as 16-bit two's complement values for differential and single-ended sampling
- · Continuous sampling without the need of an external timer
- Internal resistor string
- · On-the-fly limit checking

#### 6.12.1 Overview

The ADC supports up to eight external analog input channels. It can be operated in One-shot mode with sampling under software control, or Continuous mode with a programmable sampling rate.

The analog inputs can be configured as eight single-ended inputs, four differential inputs or a combination of these. Each channel can be configured to select:

- AINO to AIN7 pins
- VDD GPIO pin

Channels can be sampled individually in one-shot or continuous sampling modes, or, using scan mode, multiple channels can be sampled in sequence. Channels can also be oversampled to improve noise performance.



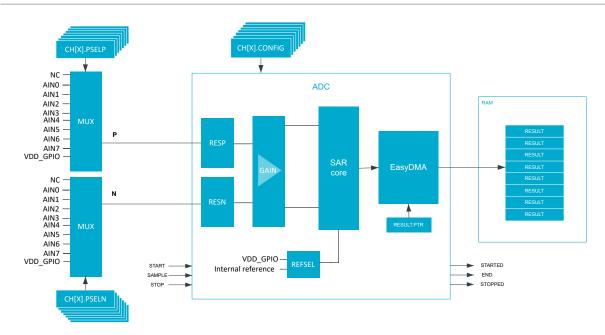



Figure 69: Simplified ADC block diagram

Internally, the ADC is always a differential analog-to-digital converter, but by default it is configured with single-ended input in the MODE field of the CH[n].CONFIG register. In single-ended mode, the negative input will be shorted to ground internally.

The assumption in single-ended mode is that the internal ground of the ADC is the same as the external ground that the measured voltage is referred to. The ADC is thus sensitive to ground bounce on the PCB in single-ended mode. If this is a concern, we recommend using differential measurement.

#### 6.12.2 Digital output

The output result of the ADC depends on the settings in the CH[n].CONFIG and RESOLUTION registers as follows:

```
RESULT = [V(P) - V(N)] * GAIN/REFERENCE * 2 (RESOLUTION - m)
```

where

V(P)

is the voltage at input P

V(N)

is the voltage at input N

GAIN

is the selected gain setting

m

is the mode setting. Use m=0 if CONFIG.MODE=SE, or m=1 if CONFIG.MODE=Diff

#### **REFERENCE**

is the selected reference voltage

The result generated by the ADC will deviate from the expected due DC errors like offset, gain, differential non-linearity (DNL), and integral non-linearity (INL). See Electrical specification for details on these parameters. The result can also vary due to AC errors like non-linearities in the GAIN block, settling errors



due to high source impedance and sampling jitter. For battery measurement, the DC errors are most noticeable.

The ADC has a wide selection of gains controlled in the GAIN field of the CH[n].CONFIG register. If CH[n].CONFIG.REFSEL=0, the input range of the ADC core is nominally ±0.6 V differential and the input must be scaled accordingly.

#### Calibration

The ADC has a temperature dependent offset. If the ADC is to operate over a large temperature range, we recommend running TASKS\_CALIBRATEOFFSET at regular intervals.

The DONE, RESULTDONE, and CALIBRATEDONE events are fired when the calibration has been completed.

The offset calibration must be run when the SAADC is stopped. If the TASKS\_CALIBRATEOFFSET is run when the SAADC is started, then RAM may contain values not related to the ADC input.

#### 6.12.3 Analog inputs and channels

Up to eight analog input channels, CH[n](n=0..7), can be configured.

Any one of the available channels can be enabled for the ADC to operate in one-shot mode. If more than one CH[n] is configured, the ADC enters scan mode.

An analog input is selected as a positive converter input if CH[n].PSELP is set, setting CH[n].PSELP also enables the particular channel.

An analog input is selected as a negative converter input if CH[n].PSELN is set. The CH[n].PSELN register will have no effect unless differential mode is enabled, see MODE field in CH[n].CONFIG register.

If more than one of the CH[n].PSELP registers is set, the device enters scan mode. Input selections in scan mode are controlled by the CH[n].PSELP and CH[n].PSELN registers, where CH[n].PSELN is only used if the particular scan channel is specified as differential, see MODE field in CH[n].CONFIG register.

## 6.12.4 Operation modes

The ADC input configuration supports one-shot mode, continuous mode, and scan mode.

Note: Scan mode and oversampling cannot be combined.

The ADC indicates a single ongoing conversion via the register STATUS on page 285. During scan mode, oversampling, or continuous modes, more than a single conversion take place in the ADC. As consequence, the value reflected in STATUS register will toggle at the end of each single conversion.

#### 6.12.4.1 One-shot mode

One-shot operation is configured by enabling only one of the available channels defined by CH[n].PSELP, CH[n].PSELN, and CH[n].CONFIG registers.

Upon a SAMPLE task, the ADC starts to sample the input voltage. The CH[n].CONFIG.TACQ controls the acquisition time.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event has the same meaning as DONE when no oversampling takes place. Note that both events may occur before the actual value has been transferred into RAM by EasyDMA. For more information, see EasyDMA on page 268.

#### 6.12.4.2 Continuous mode

Continuous sampling can be achieved by using the internal timer in the ADC, or triggering the SAMPLE task from one of the general purpose timers through the PPI system.



Care shall be taken to ensure that the sample rate fulfils the following criteria, depending on how many channels are active:

```
f_{SAMPLE} < 1/(t_{ACQ} + t_{conv})
```

The SAMPLERATE register can be used as a local timer instead of triggering individual SAMPLE tasks. When SAMPLERATE.MODE is set to Timers, it is sufficient to trigger SAMPLE task only once in order to start the SAADC and triggering the STOP task will stop sampling. The SAMPLERATE.CC field controls the sample rate.

The SAMPLERATE timer mode cannot be combined with SCAN mode, and only one channel can be enabled in this mode.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event has the same meaning as DONE when no oversampling takes place. Note that both events may occur before the actual value has been transferred into RAM by EasyDMA.

#### 6.12.4.3 Oversampling

An accumulator in the ADC can be used to average noise on the analog input. In general, oversampling improves the signal-to-noise ratio (SNR). However, oversampling does not improve the integral non-linearity (INL) nor the differential non-linearity (DNL).

Oversampling and scan should not be combined, since oversampling and scan will average over input channels.

The accumulator is controlled in the OVERSAMPLE register. The SAMPLE task must be set 2<sup>OVERSAMPLE</sup> number of times before the result is written to RAM. This can be achieved by:

- Configuring a fixed sampling rate using the local timer or a general purpose timer and the PPI system to trigger a SAMPLE task
- Triggering SAMPLE 2<sup>OVERSAMPLE</sup> times from software
- Enabling BURST mode

CH[n].CONFIG.BURST can be enabled to avoid setting SAMPLE task  $2^{\text{OVERSAMPLE}}$  times. With BURST = 1 the ADC will sample the input  $2^{\text{OVERSAMPLE}}$  times as fast as it can (actual timing:  $<(t_{ACQ}+t_{CONV})\times 2^{\text{OVERSAMPLE}}$ ). Thus, for the user it will just appear like the conversion took a bit longer time, but other than that, it is similar to one-shot mode.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event signals that enough conversions have taken place for an oversampled result to get transferred into RAM. Note that both events may occur before the actual value has been transferred into RAM by EasyDMA.

#### 6.12.4.4 Scan mode

A channel is considered enabled if CH[n].PSELP is set. If more than one channel, CH[n], is enabled, the ADC enters scan mode.

In scan mode, one SAMPLE task will trigger one conversion per enabled channel. The time it takes to sample all channels is:

```
Total time < Sum(CH[x].t_{ACQ}+t_{CONV}), x=0..enabled channels
```

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event signals has the same meaning as DONE when no oversampling takes place. Note that both events may occur before the actual values have been transferred into RAM by EasyDMA.



The following figure shows an example of results placement in Data RAM, with an even RESULT.MAXCNT. In this example, channels 1, 2, and 5 are enabled, all others are disabled.

|                                    | 31 16                        | 15 0                         |
|------------------------------------|------------------------------|------------------------------|
| RESULT.PTR                         | CH[2] 1 <sup>st</sup> result | CH[1] 1 <sup>st</sup> result |
| RESULT.PTR + 4                     | CH[1] 2 <sup>nd</sup> result | CH[5] 1 <sup>st</sup> result |
| RESULT.PTR + 8                     | CH[5] 2 <sup>nd</sup> result | CH[2] 2 <sup>nd</sup> result |
|                                    | (                            | )                            |
| RESULT.PTR + 2*(RESULT.MAXCNT – 2) | CH[5] last result            | CH[2] last result            |

Figure 70: Example of RAM placement (even RESULT.MAXCNT), channels 1, 2 and 5 enabled

The following figure shows an example of results placement in Data RAM, with an odd RESULT.MAXCNT. In this example, channels 1, 2, and 5 are enabled, all others are disabled. The last 32-bit word is populated only with one 16-bit result.

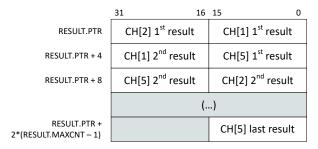



Figure 71: Example of RAM placement (odd RESULT.MAXCNT), channels 1, 2 and 5 enabled

## 6.12.5 EasyDMA

After configuring RESULT.PTR and RESULT.MAXCNT, the ADC resources are started by triggering the START task. The ADC is using EasyDMA to store results in a Result buffer in RAM.

The Result buffer is located at the address specified in the RESULT.PTR register. The RESULT.PTR register is double-buffered and it can be updated and prepared for the next START task immediately after the STARTED event is generated. The size of the Result buffer is specified in the RESULT.MAXCNT register and the ADC will generate an END event when it has filled up the Result buffer, see ADC on page 269. Results are stored in little-endian byte order in Data RAM. Every sample will be sign extended to 16 bit before stored in the Result buffer.

The ADC is stopped by triggering the STOP task. The STOP task will terminate an ongoing sampling. The ADC will generate a STOPPED event when it has stopped. If the ADC is already stopped when the STOP task is triggered, the STOPPED event will still be generated.



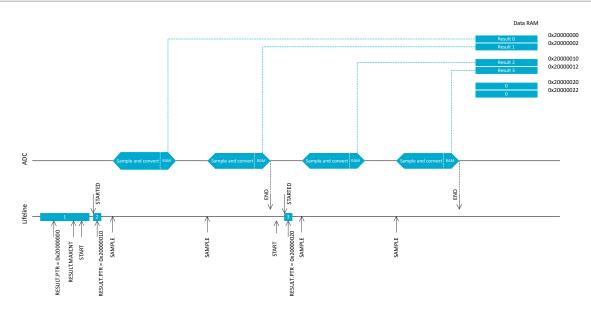



Figure 72: ADC

If the RESULT.PTR is not pointing to a RAM region accessible from the peripheral, an EasyDMA transfer may result in a HardFault and/or memory corruption. See Memory on page 21 for more information about the different memory regions.

The EasyDMA will have finished accessing the RAM when the END or STOPPED event has been generated.

The RESULT.AMOUNT register can be read following an END event or a STOPPED event to see how many results have been transferred to the Result buffer in RAM since the START task was triggered.

In scan mode, SAMPLE tasks can be triggered once the START task is triggered. The END event is generated when the number of samples transferred to memory reaches the value specified by RESULT.MAXCNT.

After an END event, the START task needs to be triggered again before new samples can be taken. Also make sure that the size of the Result buffer is large enough to have space for minimum one result from each of the enabled channels, by specifying RESULT.MAXCNT >= number of channels enabled. For more information about the scan mode, see Scan mode on page 267.

#### 6.12.6 Resistor ladder

The ADC has an internal resistor string for positive and negative input.

See Resistor ladder for positive input (negative input is equivalent, using RESN instead of RESP) on page 270. The resistors are controlled in the CH[n].CONFIG.RESP and CH[n].CONFIG.RESN registers.



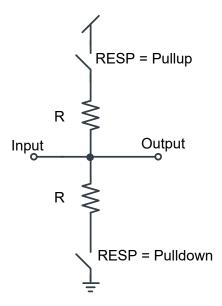



Figure 73: Resistor ladder for positive input (negative input is equivalent, using RESN instead of RESP)

#### 6.12.7 Reference

The ADC can use two different references, controlled in the REFSEL field of the CH[n].CONFIG register.

These are:

- Internal reference
- VDD\_GPIO as reference

The internal reference results in an input range of  $\pm 0.6$  V on the ADC core. VDD\_GPIO as reference results in an input range of  $\pm VDD_GPIO/4$  on the ADC core. The gain block can be used to change the effective input range of the ADC.

```
Input range = (± 0.6 V or ±VDD_GPIO/4)/Gain
```

For example, choosing VDD\_GPIO as reference, single ended input (grounded negative input), and a gain of 1/4 the input range will be:

```
Input range = (VDD_GPIO/4)/(1/4) = VDD_GPIO
```

With internal reference, single ended input (grounded negative input), and a gain of 1/6 the input range will be:

```
Input range = (0.6 \text{ V})/(1/6) = 3.6 \text{ V}
```

The AINO-AIN7 inputs cannot exceed VDD\_GPIO, or be lower than VSS.

## 6.12.8 Acquisition time

To sample the input voltage, the ADC connects a capacitor to the input.

For illustration, see Simplified ADC sample network on page 271. The acquisition time indicates how long the capacitor is connected, see TACQ field in CH[n].CONFIG register. The required acquisition time depends on the source (R<sub>source</sub>) resistance. For high source resistance the acquisition time should be increased, see Acquisition time on page 271.



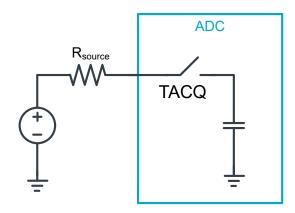



Figure 74: Simplified ADC sample network

| TACQ [µs] | Maximum source resistance [kOhm] |
|-----------|----------------------------------|
| 3         | 10                               |
| 5         | 40                               |
| 10        | 100                              |
| 15        | 200                              |
| 20        | 400                              |
| 40        | 800                              |

Table 32: Acquisition time

## 6.12.9 Limits event monitoring

A channel can be event monitored by configuring limit register CH[n].LIMIT.

If the conversion result is higher than the defined high limit, or lower than the defined low limit, the appropriate event will get fired.

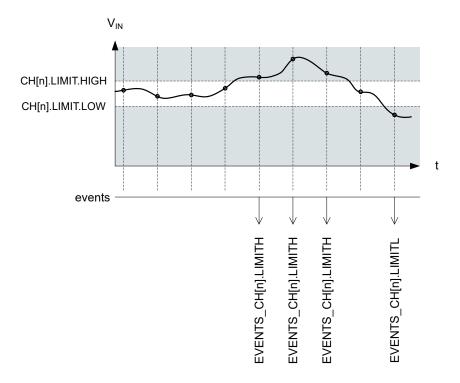



Figure 75: Example of limits monitoring on channel 'n'



Note that when setting the limits, CH[n].LIMIT.HIGH shall always be higher than or equal to CH[n].LIMIT.LOW . In other words, an event can be fired only when the input signal has been sampled outside of the defined limits. It is not possible to fire an event when the input signal is inside a defined range by swapping high and low limits.

The comparison to limits always takes place, there is no need to enable it. If comparison is not required on a channel, the software shall simply ignore the related events. In that situation, the value of the limits registers is irrelevant, so it does not matter if CH[n].LIMIT.LOW is lower than CH[n].LIMIT.HIGH or not.

## 6.12.10 Registers

#### **Instances**

| Instance   | Base address | TrustZone |     |     | Split access | Description                 |
|------------|--------------|-----------|-----|-----|--------------|-----------------------------|
|            |              | Мар       | Att | DMA |              |                             |
| SAADC : S  | 0x5000E000   | US        | NS  | C A | No           | Analog to digital convertor |
| SAADC : NS | 0x4000E000   | 03        | INS | SA  | No           | Analog to digital converter |

#### **Register overview**

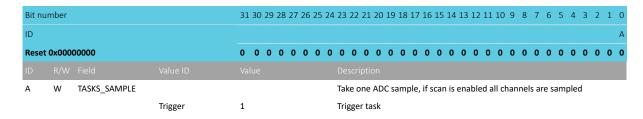
| Register                  | Offset | TZ | Description                                                                             |
|---------------------------|--------|----|-----------------------------------------------------------------------------------------|
| TASKS_START               | 0x000  |    | Start the ADC and prepare the result buffer in RAM                                      |
| TASKS_SAMPLE              | 0x004  |    | Take one ADC sample, if scan is enabled all channels are sampled                        |
| TASKS_STOP                | 0x008  |    | Stop the ADC and terminate any on-going conversion                                      |
| TASKS_CALIBRATEOFFSET     | 0x00C  |    | Starts offset auto-calibration                                                          |
| SUBSCRIBE_START           | 0x080  |    | Subscribe configuration for task START                                                  |
| SUBSCRIBE_SAMPLE          | 0x084  |    | Subscribe configuration for task SAMPLE                                                 |
| SUBSCRIBE_STOP            | 0x088  |    | Subscribe configuration for task STOP                                                   |
| SUBSCRIBE_CALIBRATEOFFSET | 0x08C  |    | Subscribe configuration for task CALIBRATEOFFSET                                        |
| EVENTS_STARTED            | 0x100  |    | The ADC has started                                                                     |
| EVENTS_END                | 0x104  |    | The ADC has filled up the Result buffer                                                 |
| EVENTS_DONE               | 0x108  |    | A conversion task has been completed. Depending on the mode, multiple conversions might |
|                           |        |    | be needed for a result to be transferred to RAM.                                        |
| EVENTS_RESULTDONE         | 0x10C  |    | A result is ready to get transferred to RAM.                                            |
| EVENTS_CALIBRATEDONE      | 0x110  |    | Calibration is complete                                                                 |
| EVENTS_STOPPED            | 0x114  |    | The ADC has stopped                                                                     |
| EVENTS_CH[n].LIMITH       | 0x118  |    | Last results is equal or above CH[n].LIMIT.HIGH                                         |
| EVENTS_CH[n].LIMITL       | 0x11C  |    | Last results is equal or below CH[n].LIMIT.LOW                                          |
| PUBLISH_STARTED           | 0x180  |    | Publish configuration for event STARTED                                                 |
| PUBLISH_END               | 0x184  |    | Publish configuration for event END                                                     |
| PUBLISH_DONE              | 0x188  |    | Publish configuration for event DONE                                                    |
| PUBLISH_RESULTDONE        | 0x18C  |    | Publish configuration for event RESULTDONE                                              |
| PUBLISH_CALIBRATEDONE     | 0x190  |    | Publish configuration for event CALIBRATEDONE                                           |
| PUBLISH_STOPPED           | 0x194  |    | Publish configuration for event STOPPED                                                 |
| PUBLISH_CH[n].LIMITH      | 0x198  |    | Publish configuration for event CH[n].LIMITH                                            |
| PUBLISH_CH[n].LIMITL      | 0x19C  |    | Publish configuration for event CH[n].LIMITL                                            |
| INTEN                     | 0x300  |    | Enable or disable interrupt                                                             |
| INTENSET                  | 0x304  |    | Enable interrupt                                                                        |
| INTENCLR                  | 0x308  |    | Disable interrupt                                                                       |
| STATUS                    | 0x400  |    | Status                                                                                  |
| ENABLE                    | 0x500  |    | Enable or disable ADC                                                                   |
| CH[n].PSELP               | 0x510  |    | Input positive pin selection for CH[n]                                                  |
| CH[n].PSELN               | 0x514  |    | Input negative pin selection for CH[n]                                                  |



| Register      | Offset | TZ | Description                                                                          |
|---------------|--------|----|--------------------------------------------------------------------------------------|
| CH[n].CONFIG  | 0x518  |    | Input configuration for CH[n]                                                        |
| CH[n].LIMIT   | 0x51C  |    | High/low limits for event monitoring a channel                                       |
| RESOLUTION    | 0x5F0  |    | Resolution configuration                                                             |
| OVERSAMPLE    | 0x5F4  |    | Oversampling configuration. OVERSAMPLE should not be combined with SCAN. The         |
|               |        |    | RESOLUTION is applied before averaging, thus for high OVERSAMPLE a higher RESOLUTION |
|               |        |    | should be used.                                                                      |
| SAMPLERATE    | 0x5F8  |    | Controls normal or continuous sample rate                                            |
| RESULT.PTR    | 0x62C  |    | Data pointer                                                                         |
| RESULT.MAXCNT | 0x630  |    | Maximum number of buffer words to transfer                                           |
| RESULT.AMOUNT | 0x634  |    | Number of buffer words transferred since last START                                  |

## 6.12.10.1 TASKS\_START

Address offset: 0x000


Start the ADC and prepare the result buffer in RAM

| Bit nu | ımber   |             |         | 31 30 29 28 27 | 26 25 24 | 4 23 22 | 21 20  | 19    | 18 17  | 16 1 | 5 14  | 13 1   | 2 13 | 1 10  | 9    | 8 | 7 | 6 | 5 | 4 3 | 3 2 | 1 | 0 |
|--------|---------|-------------|---------|----------------|----------|---------|--------|-------|--------|------|-------|--------|------|-------|------|---|---|---|---|-----|-----|---|---|
| ID     |         |             |         |                |          |         |        |       |        |      |       |        |      |       |      |   |   |   |   |     |     |   | Α |
| Rese   | t 0x000 | 00000       |         | 0 0 0 0 0      | 0 0 0    | 0 0     | 0 0    | 0     | 0 0    | 0 (  | 0     | 0 (    | 0 0  | 0     | 0    | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID     |         |             |         |                |          |         |        |       |        |      |       |        |      |       |      |   |   |   |   |     |     |   |   |
| Α      | W       | TASKS_START |         |                |          | Start   | the AI | OC an | ıd pre | pare | the i | result | buf  | fer i | n RA | M |   |   |   |     |     |   |   |
|        |         |             | Trigger | 1              |          | Trigge  | r task |       |        |      |       |        |      |       |      |   |   |   |   |     |     |   |   |

#### 6.12.10.2 TASKS\_SAMPLE

Address offset: 0x004

Take one ADC sample, if scan is enabled all channels are sampled

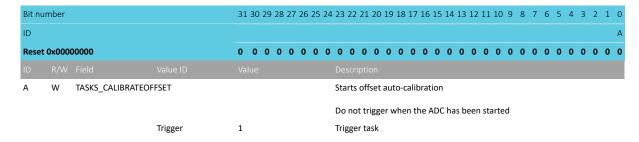


#### 6.12.10.3 TASKS\_STOP

Address offset: 0x008

Stop the ADC and terminate any on-going conversion

| Bit nu | ımber |            |         | 31 30 29 28 27 2 | 26 25 24 23 | 22 21 20 1 | 9 18 17  | 16 15 1  | 4 13 12 | 11 1   | 9     | 8 7  | 6 | 5 | 4 3 | 2 | 1 0 |
|--------|-------|------------|---------|------------------|-------------|------------|----------|----------|---------|--------|-------|------|---|---|-----|---|-----|
| ID     |       |            |         |                  |             |            |          |          |         |        |       |      |   |   |     |   | А   |
| Rese   | 0x000 | 00000      |         | 0 0 0 0 0        | 0 0 0 0     | 0 0 0 0    | 0 0      | 0 0 0    | 0 0     | 0 0    | 0     | 0 0  | 0 | 0 | 0 0 | 0 | 0 0 |
| ID     |       |            |         |                  |             |            |          |          |         |        |       |      |   |   |     |   |     |
| Α      | W     | TASKS_STOP |         |                  | Sto         | p the ADC  | and tern | ninate a | ny on-g | oing c | onver | sion |   |   |     |   |     |
|        |       |            | Trigger | 1                | Trig        | ger task   |          |          |         |        |       |      |   |   |     |   |     |


## 6.12.10.4 TASKS\_CALIBRATEOFFSET

Address offset: 0x00C

Starts offset auto-calibration



#### Do not trigger when the ADC has been started



## 6.12.10.5 SUBSCRIBE\_START

Address offset: 0x080

Subscribe configuration for task START

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                 |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |         |       |          |                         | Description                                                   |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task START will subscribe to                |
| В      | RW      | EN    |          |                         |                                                               |
|        |         |       | Disabled | 0                       | Disable subscription                                          |
|        |         |       | Enabled  | 1                       | Enable subscription                                           |

## 6.12.10.6 SUBSCRIBE\_SAMPLE

Address offset: 0x084

Subscribe configuration for task SAMPLE

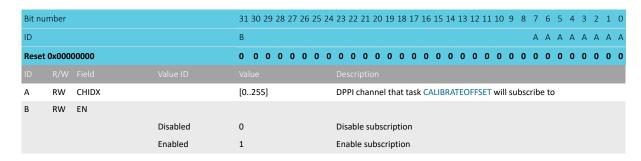
| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task SAMPLE will subscribe to               |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

## 6.12.10.7 SUBSCRIBE\_STOP

Address offset: 0x088

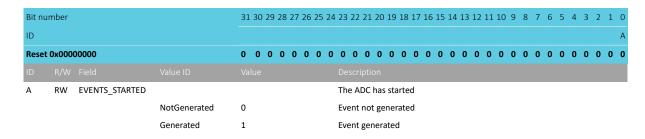
Subscribe configuration for task STOP

| Bit nu | umber    |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|----------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |          |       |          | В                       | A A A A A A A                                                 |
| Reset  | t 0x0000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |          |       |          |                         | Description                                                   |
| Α      | RW       | CHIDX |          | [0255]                  | DPPI channel that task STOP will subscribe to                 |
| В      | RW       | EN    |          |                         |                                                               |
|        |          |       | Disabled | 0                       | Disable subscription                                          |
|        |          |       | Enabled  | 1                       | Enable subscription                                           |




#### 6.12.10.8 SUBSCRIBE\_CALIBRATEOFFSET

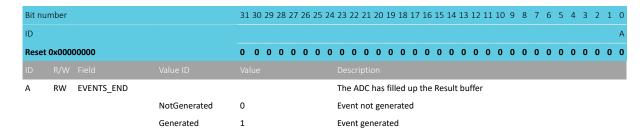
Address offset: 0x08C


Subscribe configuration for task CALIBRATEOFFSET

Do not trigger when the ADC has been started



#### 6.12.10.9 EVENTS STARTED


Address offset: 0x100
The ADC has started



#### 6.12.10.10 EVENTS\_END

Address offset: 0x104

The ADC has filled up the Result buffer



#### 6.12.10.11 EVENTS\_DONE

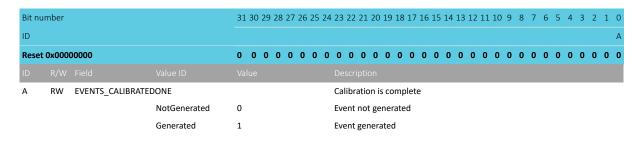
Address offset: 0x108

A conversion task has been completed. Depending on the mode, multiple conversions might be needed for a result to be transferred to RAM.



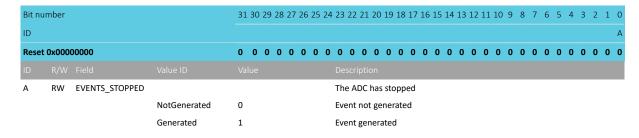
| Bit nu | ımber |             |              | 31 3 | 30 29 | 28 | 27 | 26 2 | 5 2 | 24 23 | 3 22 | 21   | 20    | 19 1 | 18 1  | 7 1  | 6 15 | 5 14  | 13   | 12  | 11    | 10  | 9 :   | 8 .  | 7 6  | 5     | 4    | 3   | 2     | 1   | C |
|--------|-------|-------------|--------------|------|-------|----|----|------|-----|-------|------|------|-------|------|-------|------|------|-------|------|-----|-------|-----|-------|------|------|-------|------|-----|-------|-----|---|
| ID     |       |             |              |      |       |    |    |      |     |       |      |      |       |      |       |      |      |       |      |     |       |     |       |      |      |       |      |     |       |     | Δ |
| Reset  | 0x000 | 00000       |              | 0    | 0 0   | 0  | 0  | 0 (  | 0 ( | 0 0   | 0    | 0    | 0     | 0    | 0 (   | 0 (  | 0    | 0     | 0    | 0   | 0     | 0   | 0     | 0 (  | 0    | 0     | 0    | 0   | 0     | 0   | D |
|        |       |             |              |      |       |    |    |      |     |       |      |      |       |      |       |      |      |       |      |     |       |     |       |      |      |       |      |     |       |     | ı |
| Α      | RW    | EVENTS_DONE |              |      |       |    |    |      |     | Α     | con  | vers | sion  | tas  | k ha  | s be | een  | con   | ple  | ted | . De  | pen | din   | g o  | n th | e m   | ode  | , m | ultip | ole |   |
|        |       |             |              |      |       |    |    |      |     | cc    | nve  | rsic | ons r | nigl | nt be | e ne | eede | ed fo | or a | res | ult t | o b | e tra | anst | erre | ed to | o RA | ۹M. |       |     |   |
|        |       |             | NotGenerated | 0    |       |    |    |      |     | E۱    | ent  | not  | t ger | nera | ited  |      |      |       |      |     |       |     |       |      |      |       |      |     |       |     |   |
|        |       |             | Generated    | 1    |       |    |    |      |     | E١    | ent/ | ger  | nera  | ted  |       |      |      |       |      |     |       |     |       |      |      |       |      |     |       |     |   |

## 6.12.10.12 EVENTS\_RESULTDONE


Address offset: 0x10C

A result is ready to get transferred to RAM.

| Bit nu | ımber |                 |              | 31 30 29 28 27 26 25 24 | 4 23 | 22 2  | 21 20   | 19 :  | 18 17 | 7 16  | 15 1 | 4 13 | 3 12 | 11 1 | 10 9 | 8 | 7 | 6 | 5 | 4 3 | 3 2 | 1 | 0 |
|--------|-------|-----------------|--------------|-------------------------|------|-------|---------|-------|-------|-------|------|------|------|------|------|---|---|---|---|-----|-----|---|---|
| ID     |       |                 |              |                         |      |       |         |       |       |       |      |      |      |      |      |   |   |   |   |     |     |   | Α |
| Rese   | 0x000 | 00000           |              | 0 0 0 0 0 0 0 0         | 0    | 0 (   | 0 0     | 0     | 0 0   | 0     | 0 (  | 0 0  | 0    | 0    | 0 (  | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 | 0 |
| ID     |       |                 |              |                         |      |       |         |       |       |       |      |      |      |      |      |   |   |   |   |     |     |   |   |
| Α      | RW    | EVENTS_RESULTDO | NE           |                         | A r  | esult | t is re | ady   | to ge | t tra | nsfe | rred | to F | RAM  |      |   |   |   |   |     |     |   |   |
|        |       |                 | NotGenerated | 0                       | Eve  | nt n  | ot ge   | enera | ited  |       |      |      |      |      |      |   |   |   |   |     |     |   |   |
|        |       |                 | Generated    | 1                       | Eve  | nt g  | ener    | ated  |       |       |      |      |      |      |      |   |   |   |   |     |     |   |   |


#### 6.12.10.13 EVENTS\_CALIBRATEDONE

Address offset: 0x110
Calibration is complete

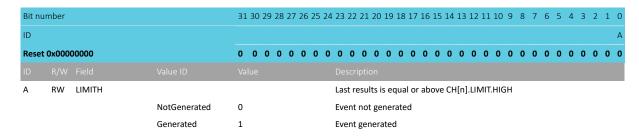


#### **6.12.10.14 EVENTS STOPPED**

Address offset: 0x114
The ADC has stopped



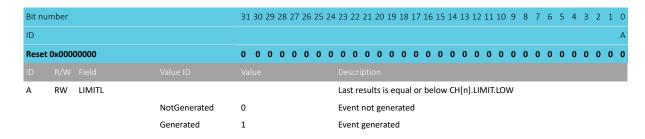
## 6.12.10.15 EVENTS\_CH[n] (n=0..7)


Peripheral events.



#### 6.12.10.15.1 EVENTS\_CH[n].LIMITH (n=0..7)

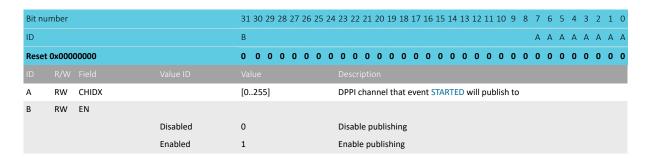
Address offset:  $0x118 + (n \times 0x8)$ 


Last results is equal or above CH[n].LIMIT.HIGH



#### 6.12.10.15.2 EVENTS\_CH[n].LIMITL (n=0..7)

Address offset:  $0x11C + (n \times 0x8)$ 


Last results is equal or below CH[n].LIMIT.LOW



## 6.12.10.16 PUBLISH\_STARTED

Address offset: 0x180

Publish configuration for event STARTED



#### 6.12.10.17 PUBLISH END

Address offset: 0x184

Publish configuration for event END



| Bit nu | mber   |       |          | 31 30 29 | 28 27 | 26 25 | 24  | 23 22 | 21 2  | 20 19  | 9 18  | 17 1 | 6 15 | 5 14  | 13 1  | 2 11  | . 10 | 9 | 8 7 | ' 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|--------|-------|----------|----------|-------|-------|-----|-------|-------|--------|-------|------|------|-------|-------|-------|------|---|-----|-----|---|---|---|---|-----|
| ID     |        |       |          | В        |       |       |     |       |       |        |       |      |      |       |       |       |      |   | A   | , Δ | A | Α | Α | Α | А А |
| Reset  | 0x0000 | 00000 |          | 0 0 0    | 0 0   | 0 0   | 0   | 0 0   | 0     | 0 0    | 0     | 0 (  | 0    | 0     | 0 (   | 0     | 0    | 0 | 0 ( | 0   | 0 | 0 | 0 | 0 | 0 0 |
| ID     |        |       |          |          |       |       |     |       |       |        |       |      |      |       |       |       |      |   |     |     |   |   |   |   |     |
| Α      | RW     | CHIDX |          | [0255]   |       |       | ı   | DPPI  | chan  | nel tl | hat e | vent | ENI  | D wil | l pul | olish | to   |   |     |     |   |   |   |   |     |
| В      | RW     | EN    |          |          |       |       |     |       |       |        |       |      |      |       |       |       |      |   |     |     |   |   |   |   |     |
|        |        |       | Disabled | 0        |       |       |     | Disab | le pu | blish  | ing   |      |      |       |       |       |      |   |     |     |   |   |   |   |     |
|        |        |       | Enabled  | 1        |       |       | - 1 | Enabl | e pul | blishi | ing   |      |      |       |       |       |      |   |     |     |   |   |   |   |     |

## 6.12.10.18 PUBLISH\_DONE

Address offset: 0x188

Publish configuration for event DONE

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event DONE will publish to                    |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

## 6.12.10.19 PUBLISH\_RESULTDONE

Address offset: 0x18C

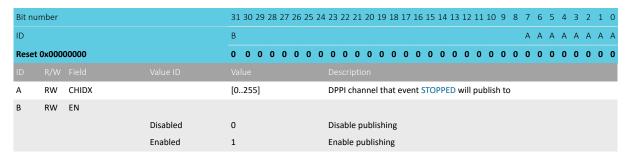
Publish configuration for event RESULTDONE

| Bit nu | umber   |         |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 | 0 |
|--------|---------|---------|----------|-------------------------|---------------------------------------------------------------|---|
| ID     |         |         |          | В                       | A A A A A A                                                   | Α |
| Rese   | t 0x000 | 00000   |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       | 0 |
| ID     |         |         |          |                         |                                                               |   |
|        |         | 0.115.7 |          | [0.255]                 | DDDI abases of the transport DECULTDONE will as which to      | _ |
| Α      | RW      | CHIDX   |          | [0255]                  | DPPI channel that event RESULTDONE will publish to            |   |
| В      | RW      | EN      |          | [0255]                  | DPPI channel that event RESULIDONE WIII publish to            |   |
|        |         |         | Disabled | 0                       | Disable publishing                                            |   |

## 6.12.10.20 PUBLISH\_CALIBRATEDONE

Address offset: 0x190

Publish configuration for event CALIBRATEDONE


| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event CALIBRATEDONE will publish to         |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |



#### 6.12.10.21 PUBLISH\_STOPPED

Address offset: 0x194

Publish configuration for event STOPPED



## 6.12.10.22 PUBLISH\_CH[n] (n=0..7)

Publish configuration for events

#### 6.12.10.22.1 PUBLISH\_CH[n].LIMITH (n=0..7)

Address offset:  $0x198 + (n \times 0x8)$ 

Publish configuration for event CH[n].LIMITH

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event CH[n].LIMITH will publish to            |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable publishing                                              |
|        |       |       | Enabled  | 1                       | Enable publishing                                               |

## 6.12.10.22.2 PUBLISH\_CH[n].LIMITL (n=0..7)

Address offset:  $0x19C + (n \times 0x8)$ 

Publish configuration for event CH[n].LIMITL

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event CH[n].LIMITL will publish to          |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

#### 6.12.10.23 INTEN

Address offset: 0x300

Enable or disable interrupt



| Bit nu | mber  |                     |          | 31 30 2 | 29 28 | 3 27 2 | 26 25 | 24 23 | 22 21    | . 20 | 19 :   | 18   | 17 1 | .6 1 | L5 1  | 4 1 | 3 12 | 11   | l 10  | 9    | 8   | 7  | 6 ! | 5 | 4 3 | 3 2 | 2 1 | . 0 |
|--------|-------|---------------------|----------|---------|-------|--------|-------|-------|----------|------|--------|------|------|------|-------|-----|------|------|-------|------|-----|----|-----|---|-----|-----|-----|-----|
| ID     |       |                     |          |         |       |        |       |       | V        | U    | Т      | S    | R (  | 2    | P C   | ) [ | М    | L    | K     | J    |     | Н  | G I | F | E 0 | ) ( | . E | 3 A |
|        | 0x000 | 00000               |          | 0 0     | 0 0   | 0      | 0 0   | 0 0   |          |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| ID     |       | Field               | Value ID | Value   |       |        |       |       | scriptio |      |        |      |      |      |       |     | Ť    | Ĭ    | Ť     | Ť    |     | _  |     |   |     |     |     |     |
| A      | RW    | STARTED             | 1510515  |         |       |        |       |       | able or  |      |        | e in | terr | upt  | for   | eve | nt S | TA   | RTE   | D    |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| В      | RW    | END                 |          |         |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt E | NE   | )     |      |     |    |     |   |     |     |     |     |
| J      |       | 2.13                | Disabled | 0       |       |        |       |       | able     |      | .50.51 | ·    |      | up.  |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| С      | RW    | DONE                |          | _       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | 100  | NE    |      |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| D      | RW    | RESULTDONE          | 21100100 | -       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt R | RES  | ULT   | 100  | NE  |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       | Ena   | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| E      | RW    | CALIBRATEDONE       | Lindbied | -       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | :AL  | IBR   | ATEI | DON | ΙE |     |   |     |     |     |     |
| -      |       | 0,12,5,0,112,5,0,12 | Disabled | 0       |       |        |       |       | able     |      | .50.51 | ·    |      | чъ   |       |     |      | , ,, |       |      |     | _  |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| F      | RW    | STOPPED             | Enabled  | -       |       |        |       |       | able or  | r di | isahle | e in | terr | unt  | for   | eve | nt S | TO   | PPF   | D    |     |    |     |   |     |     |     |     |
|        | 1111  | 3101112             | Disabled | 0       |       |        |       |       | able     | . u. | 130010 | C    | terr | ир   | . 101 |     |      | ,,,  |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| G      | RW    | CHOLIMITH           | Enabled  | -       |       |        |       |       | able or  | r di | isahle | e in | terr | unt  | for   | eve | nt C | `HC  | ) IIV | ITH  |     |    |     |   |     |     |     |     |
| J      |       | CHOLINITH           | Disabled | 0       |       |        |       |       | able     | . u. | 130010 | c    | terr | ир   | . 101 |     |      |      | ,_,,  |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| Н      | RW    | CHOLIMITL           | Enabled  | -       |       |        |       |       | able or  | r di | isahle | e in | terr | unt  | for   | eve | nt ( | `HC  | ) IIV | ITI  |     |    |     |   |     |     |     |     |
|        |       | 0.1022              | Disabled | 0       |       |        |       |       | able     |      | .50.51 | ·    |      | up.  |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| 1      | RW    | CH1LIMITH           | Enabled  | -       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | .H1  | LIM   | ITH  |     |    |     |   |     |     |     |     |
|        |       | G.122               | Disabled | 0       |       |        |       |       | able     |      | .50.51 | C    |      | чъ   |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| J      | RW    | CH1LIMITL           | 21102100 | -       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | H1   | LIM   | ITL  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| K      | RW    | CH2LIMITH           |          | _       |       |        |       |       | able or  | r di | isable | e in | terr | unt  | for   | eve | nt ( | `H2  | I IIV | ITH  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     | -    |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| L      | RW    | CH2LIMITL           |          | _       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | CH2  | LIM   | ITL  |     |    |     |   |     |     |     |     |
| _      |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| М      | RW    | CH3LIMITH           |          | _       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | ЭНЗ  | BLIM  | ITH  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| N      | RW    | CH3LIMITL           |          | _       |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | ЭНЗ  | BLIM  | ITL  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| 0      | RW    | CH4LIMITH           |          |         |       |        |       |       | able or  | r di | isable | e in | terr | upt  | for   | eve | nt C | CH4  | LIM   | ITH  |     |    |     |   |     |     |     |     |
| -      |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      | ٥.    |     | -    |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| Р      | RW    | CH4LIMITL           |          |         |       |        |       |       | able or  | r di | isable | e in | terr | tau  | for   | eve | nt C | CH4  | LIM   | ITL  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      | ٠.    |     |      |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Enabled  | 1       |       |        |       |       | able     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |
| Q      | RW    | CH5LIMITH           |          |         |       |        |       |       | able or  | r di | isable | e in | terr | tau  | for   | eve | nt C | CH.S | LIM   | ITH  |     |    |     |   |     |     |     |     |
|        |       |                     | Disabled | 0       |       |        |       |       | able     |      |        |      |      |      | ٥.    |     | -    |      |       |      |     |    |     |   |     |     |     |     |
|        |       |                     | Disabica | J       |       |        |       | מוש   | JAIC     |      |        |      |      |      |       |     |      |      |       |      |     |    |     |   |     |     |     |     |



| Bit nu | umber   |           |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-----------|----------|------------------------|------------------------------------------------------------------|
| ID     |         |           |          |                        | V U T S R Q P O N M L K J I H G F E D C B A                      |
| Rese   | t 0x000 | 00000     |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID     |         |           |          |                        |                                                                  |
|        |         |           | Enabled  | 1                      | Enable                                                           |
| R      | RW      | CH5LIMITL |          |                        | Enable or disable interrupt for event CH5LIMITL                  |
|        |         |           | Disabled | 0                      | Disable                                                          |
|        |         |           | Enabled  | 1                      | Enable                                                           |
| S      | RW      | CH6LIMITH |          |                        | Enable or disable interrupt for event CH6LIMITH                  |
|        |         |           | Disabled | 0                      | Disable                                                          |
|        |         |           | Enabled  | 1                      | Enable                                                           |
| Т      | RW      | CH6LIMITL |          |                        | Enable or disable interrupt for event CH6LIMITL                  |
|        |         |           | Disabled | 0                      | Disable                                                          |
|        |         |           | Enabled  | 1                      | Enable                                                           |
| U      | RW      | CH7LIMITH |          |                        | Enable or disable interrupt for event CH7LIMITH                  |
|        |         |           | Disabled | 0                      | Disable                                                          |
|        |         |           | Enabled  | 1                      | Enable                                                           |
| ٧      | RW      | CH7LIMITL |          |                        | Enable or disable interrupt for event CH7LIMITL                  |
|        |         |           | Disabled | 0                      | Disable                                                          |
|        |         |           | Enabled  | 1                      | Enable                                                           |
|        |         |           |          |                        |                                                                  |

## 6.12.10.24 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | mber   |               |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |        |               |          |                         | V U T S R Q P O N M L K J I H G F E D C B A                     |
| Reset  | 0x0000 | 00000         |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |        |               |          |                         | Description                                                     |
| Α      | RW     | STARTED       |          |                         | Write '1' to enable interrupt for event STARTED                 |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW     | END           |          |                         | Write '1' to enable interrupt for event END                     |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW     | DONE          |          |                         | Write '1' to enable interrupt for event DONE                    |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               | Enabled  | 1                       | Read: Enabled                                                   |
| D      | RW     | RESULTDONE    |          |                         | Write '1' to enable interrupt for event RESULTDONE              |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               | Enabled  | 1                       | Read: Enabled                                                   |
| E      | RW     | CALIBRATEDONE |          |                         | Write '1' to enable interrupt for event CALIBRATEDONE           |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               | Enabled  | 1                       | Read: Enabled                                                   |
| F      | RW     | STOPPED       |          |                         | Write '1' to enable interrupt for event STOPPED                 |
|        |        |               | Set      | 1                       | Enable                                                          |
|        |        |               | Disabled | 0                       | Read: Disabled                                                  |
|        |        |               |          |                         |                                                                 |



| Bit n | umber   |              |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|--------------|----------|------------------------|------------------------------------------------------------------|
| ID    |         |              |          |                        | V U T S R Q P O N M L K J I H G F E D C B A                      |
| Rese  | t 0x000 | 00000        |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
|       |         |              |          |                        |                                                                  |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| G     | RW      | CHOLIMITH    |          |                        | Write '1' to enable interrupt for event CH0LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| Н     | RW      | CHOLIMITL    |          |                        | Write '1' to enable interrupt for event CHOLIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| I     | RW      | CH1LIMITH    |          |                        | Write '1' to enable interrupt for event CH1LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| J     | RW      | CH1LIMITL    |          |                        | Write '1' to enable interrupt for event CH1LIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| K     | RW      | CH2LIMITH    |          |                        | Write '1' to enable interrupt for event CH2LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| L     | RW      | CH2LIMITL    |          |                        | Write '1' to enable interrupt for event CH2LIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| М     | RW      | CH3LIMITH    |          |                        | Write '1' to enable interrupt for event CH3LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| N     | RW      | CH3LIMITL    |          |                        | Write '1' to enable interrupt for event CH3LIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| 0     | RW      | CH4LIMITH    |          |                        | Write '1' to enable interrupt for event CH4LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| Р     | RW      | CH4LIMITL    |          |                        | Write '1' to enable interrupt for event CH4LIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| Q     | RW      | CH5LIMITH    | 6.1      |                        | Write '1' to enable interrupt for event CH5LIMITH                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         | CUELL TO THE | Enabled  | 1                      | Read: Enabled                                                    |
| R     | RW      | CH5LIMITL    | 6.       |                        | Write '1' to enable interrupt for event CH5LIMITL                |
|       |         |              | Set      | 1                      | Enable                                                           |
|       |         |              | Disabled | 0                      | Read: Disabled                                                   |
|       |         |              | Enabled  | 1                      | Read: Enabled                                                    |
| S     | RW      | CH6LIMITH    |          |                        | Write '1' to enable interrupt for event CH6LIMITH                |





| Bit nu | ımber    |          |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|----------|----------|----------|------------------------|-----------------------------------------------------------------|
| ID     |          |          |          |                        | V U T S R Q P O N M L K J I H G F E D C B A                     |
| Reset  | 0x000000 | 000      |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |          |          |          |                        | Description                                                     |
|        |          |          | Set      | 1                      | Enable                                                          |
|        |          |          | Disabled | 0                      | Read: Disabled                                                  |
|        |          |          | Enabled  | 1                      | Read: Enabled                                                   |
| Т      | RW C     | H6LIMITL |          |                        | Write '1' to enable interrupt for event CH6LIMITL               |
|        |          |          | Set      | 1                      | Enable                                                          |
|        |          |          | Disabled | 0                      | Read: Disabled                                                  |
|        |          |          | Enabled  | 1                      | Read: Enabled                                                   |
| U      | RW C     | H7LIMITH |          |                        | Write '1' to enable interrupt for event CH7LIMITH               |
|        |          |          | Set      | 1                      | Enable                                                          |
|        |          |          | Disabled | 0                      | Read: Disabled                                                  |
|        |          |          | Enabled  | 1                      | Read: Enabled                                                   |
| V      | RW C     | H7LIMITL |          |                        | Write '1' to enable interrupt for event CH7LIMITL               |
|        |          |          | Set      | 1                      | Enable                                                          |
|        |          |          | Disabled | 0                      | Read: Disabled                                                  |
|        |          |          | Enabled  | 1                      | Read: Enabled                                                   |

## 6.12.10.25 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | ımber |               |          | 31 | 30 2 | 29 2 | 28 : | 27 2 | 26 : | 25 2 | 24 | 23 | 3 22 | 2  | 1 2  | 0 1 | .9  | 18  | 17  | 16  | 15  | 14 | 13   | 12  | 11 | 1 10 | 9   | į  | 8 7 | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|---------------|----------|----|------|------|------|------|------|------|----|----|------|----|------|-----|-----|-----|-----|-----|-----|----|------|-----|----|------|-----|----|-----|----|---|---|---|---|---|---|---|
| ID     |       |               |          |    |      |      |      |      |      |      |    |    |      | ١  | / l  | J . | Т   | S   | R   | Q   | Р   | 0  | N    | М   | L  | K    | J   |    | l F | 1  | G | F | E | D | С | В | Α |
| Reset  | 0x000 | 00000         |          | 0  | 0    | 0 (  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | C  | ) (  | )   | 0   | 0   | 0   | 0   | 0   | 0  | 0    | 0   | 0  | 0    | 0   | (  | 0 ( | )  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|        |       |               |          |    |      |      |      |      |      |      |    |    |      |    |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| Α      | RW    | STARTED       |          |    |      |      |      |      |      |      |    | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | rev  | ent | ST | AR   | ΓED |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | ł   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| В      | RW    | END           |          |    |      |      |      |      |      |      | ,  | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | r ev | ent | ΕN | ND   |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | i   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| С      | RW    | DONE          |          |    |      |      |      |      |      |      | ,  | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | rev  | ent | D  | ONE  |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | ł   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| D      | RW    | RESULTDONE    |          |    |      |      |      |      |      |      | ,  | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | rev  | ent | RE | SU   | LTD | 0  | NE  |    |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | i   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| E      | RW    | CALIBRATEDONE |          |    |      |      |      |      |      |      | ,  | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | rev  | ent | C/ | ALIE | RA  | TE | DO  | NE |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | t   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
| F      | RW    | STOPPED       |          |    |      |      |      |      |      |      | ,  | W  | rite | '1 | ' to | di  | sal | ole | int | err | upt | fo | rev  | ent | ST | ОР   | PEC | )  |     |    |   |   |   |   |   |   |   |
|        |       |               | Clear    | 1  |      |      |      |      |      |      |    | Di | sab  | le |      |     |     |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Disabled | 0  |      |      |      |      |      |      |    | Re | ead: | D  | isal | ble | d   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |
|        |       |               | Enabled  | 1  |      |      |      |      |      |      |    | Re | ead: | E  | nab  | lec | ł   |     |     |     |     |    |      |     |    |      |     |    |     |    |   |   |   |   |   |   |   |



| Bit nu | mber  |           |          | 31 30 29 28 27 26 25 24 | + 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-----------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |           |          |                         | V U T S R Q P O N M L K J I H G F E D C B A                     |
| Reset  | 0x000 | 00000     |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
|        |       |           |          |                         | Description                                                     |
| G      | RW    | CHOLIMITH |          |                         | Write '1' to disable interrupt for event CHOLIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| Н      | RW    | CHOLIMITL |          |                         | Write '1' to disable interrupt for event CHOLIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| I      | RW    | CH1LIMITH |          |                         | Write '1' to disable interrupt for event CH1LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| J      | RW    | CH1LIMITL |          |                         | Write '1' to disable interrupt for event CH1LIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| K      | RW    | CH2LIMITH |          |                         | Write '1' to disable interrupt for event CH2LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| L      | RW    | CH2LIMITL |          |                         | Write '1' to disable interrupt for event CH2LIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| М      | RW    | CH3LIMITH |          |                         | Write '1' to disable interrupt for event CH3LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| N      | RW    | CH3LIMITL |          |                         | Write '1' to disable interrupt for event CH3LIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| 0      | RW    | CH4LIMITH |          |                         | Write '1' to disable interrupt for event CH4LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| Р      | RW    | CH4LIMITL |          |                         | Write '1' to disable interrupt for event CH4LIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| Q      | RW    | CH5LIMITH |          |                         | Write '1' to disable interrupt for event CH5LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| R      | RW    | CH5LIMITL |          |                         | Write '1' to disable interrupt for event CH5LIMITL              |
|        |       |           | Clear    | 1                       | Disable                                                         |
|        |       |           | Disabled | 0                       | Read: Disabled                                                  |
|        |       |           | Enabled  | 1                       | Read: Enabled                                                   |
| S      | RW    | CH6LIMITH |          |                         | Write '1' to disable interrupt for event CH6LIMITH              |
|        |       |           | Clear    | 1                       | Disable                                                         |



| Bit n | umber        |          | 31 30 29 28 2 | 7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|--------------|----------|---------------|--------------------------------------------------------------------------|
| ID    |              |          |               | V U T S R Q P O N M L K J I H G F E D C B A                              |
| Rese  | t 0x00000000 |          | 0 0 0 0 0     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                  |
| ID    |              |          |               |                                                                          |
|       |              | Disabled | 0             | Read: Disabled                                                           |
|       |              | Enabled  | 1             | Read: Enabled                                                            |
| Т     | RW CH6LIMITL |          |               | Write '1' to disable interrupt for event CH6LIMITL                       |
|       |              | Clear    | 1             | Disable                                                                  |
|       |              | Disabled | 0             | Read: Disabled                                                           |
|       |              | Enabled  | 1             | Read: Enabled                                                            |
| U     | RW CH7LIMITH |          |               | Write '1' to disable interrupt for event CH7LIMITH                       |
|       |              | Clear    | 1             | Disable                                                                  |
|       |              | Disabled | 0             | Read: Disabled                                                           |
|       |              | Enabled  | 1             | Read: Enabled                                                            |
| V     | RW CH7LIMITL |          |               | Write '1' to disable interrupt for event CH7LIMITL                       |
|       |              | Clear    | 1             | Disable                                                                  |
|       |              | Disabled | 0             | Read: Disabled                                                           |
|       |              | Enabled  | 1             | Read: Enabled                                                            |
|       |              |          |               |                                                                          |

#### 6.12.10.26 STATUS

Address offset: 0x400

Status

| Bit n | umber   |        |       | 31 30 | 29 2 | 8 27 | 26 | 25 2 | 24 2 | 3 22  | 21   | 20     | 19   | 18 1 | 7 1  | 6 15 | 5 14 | 13   | 12  | 11   | 10 | 9 8 | 3 7 | 7 6 | 5 5 | 4 | 3 | 2 | 1 ( | ) |
|-------|---------|--------|-------|-------|------|------|----|------|------|-------|------|--------|------|------|------|------|------|------|-----|------|----|-----|-----|-----|-----|---|---|---|-----|---|
| ID    |         |        |       |       |      |      |    |      |      |       |      |        |      |      |      |      |      |      |     |      |    |     |     |     |     |   |   |   | ,   | A |
| Rese  | t 0x000 | 00000  |       | 0 0   | 0 (  | 0 0  | 0  | 0    | 0 (  | 0     | 0    | 0      | 0    | 0 (  | 0    | 0    | 0    | 0    | 0   | 0    | 0  | 0 ( | 0 ( | ) ( | 0   | 0 | 0 | 0 | 0 ( | כ |
| ID    |         |        |       |       |      |      |    |      |      |       |      |        |      |      |      |      |      |      |     |      |    |     |     |     |     |   |   |   |     |   |
| Α     | R       | STATUS |       |       |      |      |    |      | S    | tatus | 5    |        |      |      |      |      |      |      |     |      |    |     |     |     |     |   |   |   |     |   |
|       |         |        | Ready | 0     |      |      |    |      | Α    | DC i  | s re | ady.   | No   | on-  | goir | ng c | onv  | ersi | on. |      |    |     |     |     |     |   |   |   |     |   |
|       |         |        | Busy  | 1     |      |      |    |      | Α    | DC i  | s bu | ısy. S | Sing | le c | onve | ersi | on i | n pr | ogr | ess. |    |     |     |     |     |   |   |   |     |   |

## 6.12.10.27 ENABLE

Address offset: 0x500 Enable or disable ADC

| Bit n | umber   |        |          | 31 30 29 28 27 26 25 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|--------|----------|----------------------|--------------------------------------------------------------------|
| ID    |         |        |          |                      | A                                                                  |
| Rese  | t 0x000 | 00000  |          | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |
| ID    |         |        |          |                      |                                                                    |
| Α     | RW      | ENABLE |          |                      | Enable or disable ADC                                              |
|       |         |        | Disabled | 0                    | Disable ADC                                                        |
|       |         |        | Enabled  | 1                    | Enable ADC                                                         |
|       |         |        |          |                      | When enabled, the ADC will acquire access to the analog input pins |
|       |         |        |          |                      | specified in the CH[n].PSELP and CH[n].PSELN registers.            |

# 6.12.10.28 CH[n].PSELP (n=0..7)

Address offset:  $0x510 + (n \times 0x10)$ Input positive pin selection for CH[n]



| D.1  |         |       |              | 24 : | 20.20 |    | 27  | 26.5 | NF 2  | 4 22            | 22         | 24.2  | 0.40  | . 10 | 47.6 | 16.4 | <b>-</b> 1 |      |      |      | 10 | ^ | 0 | - | 6 | _ | 4 2 | 2 | 4 | 0 |
|------|---------|-------|--------------|------|-------|----|-----|------|-------|-----------------|------------|-------|-------|------|------|------|------------|------|------|------|----|---|---|---|---|---|-----|---|---|---|
|      | umber   |       |              | 31 : | 30 25 | 28 | 27. | 26 2 | 25 24 | <del>1</del> 23 | 22         | 21 2  | 0 19  | 18   | 1/.  | 16 1 | .5 1       | 4 13 | 5 12 | . 11 | 10 | 9 | 8 | / | ь | 5 | 4 3 | 2 | 1 | 0 |
| ID   |         |       |              |      |       |    |     |      |       |                 |            |       |       |      |      |      |            |      |      |      |    |   |   |   |   | , | А А | Α | Α | Α |
| Rese | t 0x000 | 00000 |              | 0    | 0 0   | 0  | 0   | 0    | 0 0   | 0               | 0          | 0 (   | 0     | 0    | 0    | 0 (  | 0 (        | 0    | 0    | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 |
| ID   |         |       |              |      |       |    |     |      |       |                 |            |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
| Α    | RW      | PSELP |              |      |       |    |     |      |       | An              | alo        | g pos | itive | inp  | ut c | han  | nel        |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | NC           | 0    |       |    |     |      |       | No              | t co       | onne  | cted  |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput0 | 1    |       |    |     |      |       | All             | NO         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput1 | 2    |       |    |     |      |       | All             | N1         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput2 | 3    |       |    |     |      |       | All             | N2         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput3 | 4    |       |    |     |      |       | All             | N3         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput4 | 5    |       |    |     |      |       | All             | <b>N</b> 4 |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput5 | 6    |       |    |     |      |       | All             | N5         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput6 | 7    |       |    |     |      |       | All             | N6         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | AnalogInput7 | 8    |       |    |     |      |       | All             | N7         |       |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |
|      |         |       | VDDGPIO      | 9    |       |    |     |      |       | VD              | D_0        | GPIO  |       |      |      |      |            |      |      |      |    |   |   |   |   |   |     |   |   |   |

## 6.12.10.29 CH[n].PSELN (n=0..7)


Address offset:  $0x514 + (n \times 0x10)$ Input negative pin selection for CH[n]

| Bit n | umber   |       |           |     | 31 30 | 29 2 | 28 27 2 | 26 25 2 | 4 23 | 22 21   | 20 19  | 18 1   | 7 16   | 15 3 | L4 13 | 3 12 3 | 11 : | 10 9 | 8    | 7 | 6 | 5 4 | 4 3 | 2 | 1 | 0 |
|-------|---------|-------|-----------|-----|-------|------|---------|---------|------|---------|--------|--------|--------|------|-------|--------|------|------|------|---|---|-----|-----|---|---|---|
| ID    |         |       |           |     |       |      |         |         |      |         |        |        |        |      |       |        |      |      |      |   |   | ,   | 4 A | Α | Α | Α |
| Rese  | t 0x000 | 00000 |           |     | 0 0   | 0 (  | 0 0     | 0 0 0   | 0    | 0 0     | 0 0    | 0 (    | 0      | 0    | 0 0   | 0      | 0    | 0 0  | 0    | 0 | 0 | 0 ( | 0   | 0 | 0 | 0 |
| ID    |         |       |           |     |       |      |         |         |      |         |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
| Α     | RW      | PSELN |           |     |       |      |         |         | Ana  | alog ne | egativ | e inpu | ıt, en | able | s dif | feren  | tial | chai | nnel |   |   |     |     |   |   |   |
|       |         |       | NC        |     | 0     |      |         |         | Not  | t conne | ected  |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut0 | 1     |      |         |         | AIN  | 10      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut1 | 2     |      |         |         | AIN  | 11      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut2 | 3     |      |         |         | AIN  | 12      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut3 | 4     |      |         |         | AIN  | 13      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut4 | 5     |      |         |         | AIN  | 14      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut5 | 6     |      |         |         | AIN  | 15      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut6 | 7     |      |         |         | AIN  | 16      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | AnalogInp | ut7 | 8     |      |         |         | AIN  | 17      |        |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |
|       |         |       | VDD_GPIO  | )   | 9     |      |         |         | VD   | D_GPI   | 0      |        |        |      |       |        |      |      |      |   |   |     |     |   |   |   |

## 6.12.10.30 CH[n].CONFIG (n=0..7)

Address offset:  $0x518 + (n \times 0x10)$ Input configuration for CH[n]

| Bit nu | ımber |       |          | 31 30 29 28 27 26 2 | 5 2 | 1 23 | 22    | 21    | 20 :  | 19 :  | 18 1 | 17 1 | 16 1  | L5 1 | 14 1 | 3 1 | .2 1: | . 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 1 | . 0 |
|--------|-------|-------|----------|---------------------|-----|------|-------|-------|-------|-------|------|------|-------|------|------|-----|-------|------|---|---|---|---|---|---|---|-----|-----|
| ID     |       |       |          |                     | G   |      |       |       | F     |       | E    | Ε    | E     |      |      | ı   | D     | С    | С | С |   |   | В | В |   | Α   | 4 A |
| Reset  | 0x000 | 20000 |          | 0 0 0 0 0 0         | 0   | 0    | 0     | 0     | 0     | 0     | 0    | 1    | 0     | 0    | 0 (  | ) ( | 0 0   | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   |
| ID     |       |       |          |                     |     |      |       |       |       |       |      |      |       |      |      |     |       |      |   |   |   |   |   |   |   |     |     |
| Α      | RW    | RESP  |          |                     |     | Po   | sitiv | ve cl | han   | nel   | res  | isto | or co | onti | rol  |     |       |      |   |   |   |   |   |   |   |     |     |
|        |       |       | Bypass   | 0                   |     | Ву   | pas   | s re  | sisto | or la | add  | er   |       |      |      |     |       |      |   |   |   |   |   |   |   |     |     |
|        |       |       | Pulldown | 1                   |     | Pu   | ıll-d | own   | to    | GN    | D    |      |       |      |      |     |       |      |   |   |   |   |   |   |   |     |     |
|        |       |       | Pullup   | 2                   |     | Pu   | ıll-u | p to  | VD    | D_0   | GPI  | )    |       |      |      |     |       |      |   |   |   |   |   |   |   |     |     |
|        |       |       | VDD1_2   | 3                   |     | Se   | t in  | put   | at V  | 'DD   | _GF  | 210, | /2    |      |      |     |       |      |   |   |   |   |   |   |   |     |     |
| В      | RW    | RESN  |          |                     |     | Ne   | egat  | ive ( | chai  | nne   | l re | sist | or    | con  | trol |     |       |      |   |   |   |   |   |   |   |     |     |
|        |       |       | Bypass   | 0                   |     | Ву   | pas   | s re  | sisto | or la | add  | er   |       |      |      |     |       |      |   |   |   |   |   |   |   |     |     |

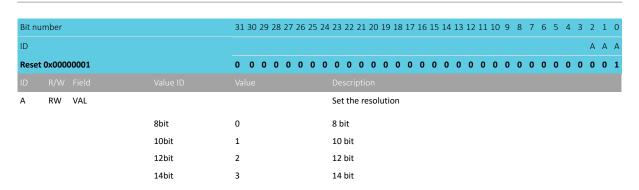




| Bit n | umber   |        |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0             |
|-------|---------|--------|----------|-------------------------|---------------------------------------------------------------------------|
| ID    |         |        |          | G                       | F E E E D C C C B B A A                                                   |
| Rese  | t 0x000 | 20000  |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |
|       |         |        |          |                         |                                                                           |
|       |         |        | Pulldown | 1                       | Pull-down to GND                                                          |
|       |         |        | Pullup   | 2                       | Pull-up to VDD_GPIO                                                       |
|       |         |        | VDD1_2   | 3                       | Set input at VDD_GPIO/2                                                   |
| С     | RW      | GAIN   |          |                         | Gain control                                                              |
|       |         |        | Gain1_6  | 0                       | 1/6                                                                       |
|       |         |        | Gain1_5  | 1                       | 1/5                                                                       |
|       |         |        | Gain1_4  | 2                       | 1/4                                                                       |
|       |         |        | Gain1_3  | 3                       | 1/3                                                                       |
|       |         |        | Gain1_2  | 4                       | 1/2                                                                       |
|       |         |        | Gain1    | 5                       | 1                                                                         |
|       |         |        | Gain2    | 6                       | 2                                                                         |
|       |         |        | Gain4    | 7                       | 4                                                                         |
| D-    | RW      | REFSEL |          |                         | Reference control                                                         |
|       |         |        | Internal | 0                       | Internal reference (0.6 V)                                                |
|       |         |        | VDD1_4   | 1                       | VDD_GPIO/4 as reference                                                   |
| E     | RW      | TACQ   |          |                         | Acquisition time, the time the ADC uses to sample the input voltage       |
|       |         |        | 3us      | 0                       | 3 us                                                                      |
|       |         |        | 5us      | 1                       | 5 us                                                                      |
|       |         |        | 10us     | 2                       | 10 us                                                                     |
|       |         |        | 15us     | 3                       | 15 us                                                                     |
|       |         |        | 20us     | 4                       | 20 us                                                                     |
|       |         |        | 40us     | 5                       | 40 us                                                                     |
| F     | RW      | MODE   |          |                         | Enable differential mode                                                  |
|       |         |        | SE       | 0                       | Single ended, PSELN will be ignored, negative input to ADC shorted to GND |
|       |         |        | Diff     | 1                       | Differential                                                              |
| G     | RW      | BURST  |          |                         | Enable burst mode                                                         |
|       |         |        | Disabled | 0                       | Burst mode is disabled (normal operation)                                 |
|       |         |        | Enabled  | 1                       | Burst mode is enabled. SAADC takes 2^OVERSAMPLE number of samples as      |
|       |         |        |          |                         | fast as it can, and sends the average to Data RAM.                        |

# 6.12.10.31 CH[n].LIMIT (n=0..7)

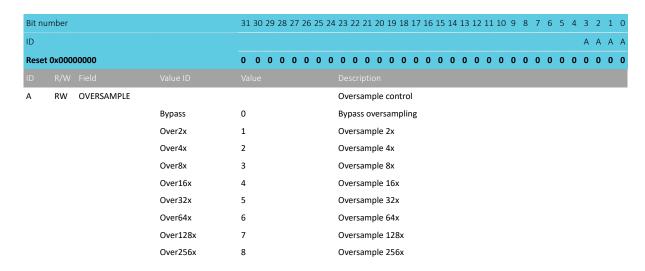
Address offset: 0x51C + (n × 0x10)


High/low limits for event monitoring a channel

| Bit number       |         |  | 31                 | 30 2               | 9 28 | 3 27 | 26               | 25 2 | 24 2 | 23 2 | 2 2    | 1 20 | 19 | 18 | 17 1 | 6 1 | 5 14 | 13 | 12 | 11 1 | .0 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2 : | 1 0        |
|------------------|---------|--|--------------------|--------------------|------|------|------------------|------|------|------|--------|------|----|----|------|-----|------|----|----|------|------|---|---|---|---|---|-----|-----|------------|
| ID E             |         |  | В                  | ВЕ                 | 3 B  | В    | В                | В    | В    | В    | ВЕ     | ВВ   | В  | В  | В    | B A | A    | Α  | Α  | A    | 4 Δ  | A | Α | Α | Α | Α | Α . | Δ , | <b>А</b> А |
| Reset 0x7FFF8000 |         |  |                    | 1 1                | 1    | 1    | 1                | 1    | 1    | 1 :  | 1 1    | 1    | 1  | 1  | 1    | 1 1 | . 0  | 0  | 0  | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 | 0   | 0 ( | 0 0        |
| ID               |         |  |                    |                    |      |      |                  |      |      |      |        |      |    |    |      |     |      |    |    |      |      |   |   |   |   |   |     |     |            |
| Α                | RW LOW  |  | [-3                | [-32768 to +32767] |      |      |                  | l    | Low  | leve | el lin | nit  |    |    |      |     |      |    |    |      |      |   |   |   |   |   |     |     |            |
| В                | RW HIGH |  | [-32768 to +32767] |                    |      |      | High level limit |      |      |      |        |      |    |    |      |     |      |    |    |      |      |   |   |   |   |   |     |     |            |

## 6.12.10.32 RESOLUTION

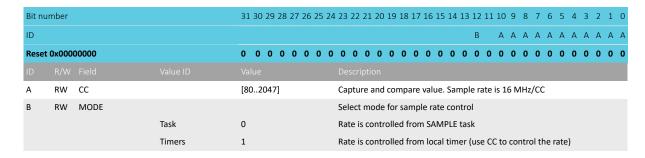
Address offset: 0x5F0
Resolution configuration






#### 6.12.10.33 OVERSAMPLE

Address offset: 0x5F4


Oversampling configuration. OVERSAMPLE should not be combined with SCAN. The RESOLUTION is applied before averaging, thus for high OVERSAMPLE a higher RESOLUTION should be used.



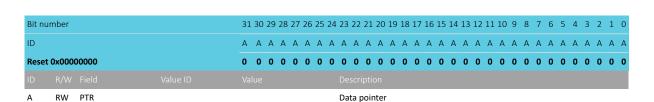
#### 6.12.10.34 SAMPLERATE

Address offset: 0x5F8

Controls normal or continuous sample rate



#### 6.12.10.35 RESULT

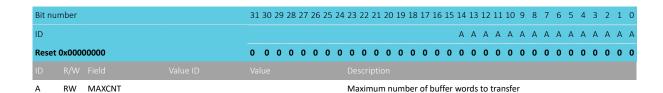

**RESULT EasyDMA channel** 

6.12.10.35.1 RESULT.PTR

Address offset: 0x62C

Data pointer

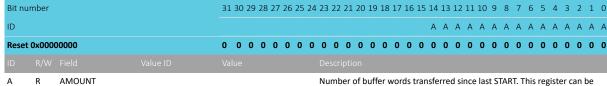





**Note:** See the memory chapter for details about which memories are available for EasyDMA.

#### 6.12.10.35.2 RESULT.MAXCNT

Address offset: 0x630


Maximum number of buffer words to transfer



#### 6.12.10.35.3 RESULT.AMOUNT

Address offset: 0x634

Number of buffer words transferred since last START



Number of buffer words transferred since last START. This register can be read after an END or STOPPED event.

# 6.12.11 Electrical specification

## 6.12.11.1 SAADC Electrical Specification

| Symbol                | Description                                                            | Min.  | Тур. | Max. | Units  |
|-----------------------|------------------------------------------------------------------------|-------|------|------|--------|
| DNL <sub>10</sub>     | Differential non-linearity, 10-bit resolution                          | -0.95 | <1   |      | LSB10b |
| INL <sub>10</sub>     | Integral non-linearity, 10-bit resolution                              |       | 1    |      | LSB10b |
| V <sub>OS</sub>       | Differential offset error (calibrated), 10-bit resolution <sup>a</sup> |       | ±2   |      | LSB10b |
| C <sub>EG</sub>       | Gain error temperature coefficient                                     | -0.05 | 0.02 | 0.05 | %/°C   |
| f <sub>SAMPLE</sub>   | Maximum sampling rate                                                  |       |      | 200  | kHz    |
| t <sub>ACQ,10k</sub>  | Acquisition time (configurable), source Resistance <= 10 kOhm          |       | 3    |      | μs     |
| t <sub>ACQ,40k</sub>  | Acquisition time (configurable), source Resistance <= 40 kOhm          |       | 5    |      | μs     |
| t <sub>ACQ,100k</sub> | Acquisition time (configurable), source Resistance <= 100 kOhm         |       | 10   |      | μs     |
| t <sub>ACQ,200k</sub> | Acquisition time (configurable), source Resistance <= 200 kOhm         |       | 15   |      | μs     |
| t <sub>ACQ,400k</sub> | Acquisition time (configurable), source Resistance <= 400 kOhm         |       | 20   |      | μs     |
| t <sub>ACQ,800k</sub> | Acquisition time (configurable), source Resistance <= 800 kOhm         |       | 40   |      | μs     |
| t <sub>CONV</sub>     | Conversion time                                                        |       | <2   |      | μs     |

<sup>&</sup>lt;sup>a</sup> Digital output code at zero volt differential input.



| Symbol                     | Description                                                                         | Min. | Тур. | Max. | Units |
|----------------------------|-------------------------------------------------------------------------------------|------|------|------|-------|
| E <sub>G1/6</sub>          | Error <sup>b</sup> for Gain = 1/6                                                   | -3   |      | 3    | %     |
| E <sub>G1/4</sub>          | Error <sup>b</sup> for Gain = 1/4                                                   | -3   |      | 3    | %     |
| E <sub>G1/2</sub>          | Error <sup>b</sup> for Gain = 1/2. Internal reference                               | -3   |      | 4    | %     |
| E <sub>G1</sub>            | Error <sup>b</sup> for Gain = 1. Internal reference                                 | -3   |      | 4    | %     |
| E <sub>G1/2_VDD_GPIO</sub> | Error <sup>b</sup> for Gain = 1/2. VDD_GPIO as reference                            | -4   |      | 4    | %     |
| E <sub>G1_VDD_GPIO</sub>   | Error <sup>b</sup> for Gain = 1. VDD_GPIO as reference                              | -4   |      | 4    | %     |
| C <sub>SAMPLE</sub>        | Sample and hold capacitance at maximum gain <sup>19</sup>                           |      | 2.5  |      | pF    |
| R <sub>INPUT</sub>         | Input resistance                                                                    |      | >1   |      | ΜΩ    |
| E <sub>NOB</sub>           | Effective number of bits, differential mode, 12-bit resolution, 1/1 gain, 3 $\mu s$ |      | 9    |      | Bit   |
|                            | acquisition time, HFXO, 200 ksps                                                    |      |      |      |       |
| S <sub>NDR</sub>           | Peak signal to noise and distortion ratio, differential mode, 12-bit resolution,    |      | 56   |      | dB    |
|                            | 1/1 gain, 3 μs acquisition time, HFXO, 200 ksps                                     |      |      |      |       |
| S <sub>FDR</sub>           | Spurious free dynamic range, differential mode, 12-bit resolution, 1/1 gain, 3      |      | 70   |      | dBc   |
|                            | μs acquisition time, HFXO, 200 ksps                                                 |      |      |      |       |
| R <sub>LADDER</sub>        | Ladder resistance                                                                   |      | 160  |      | kΩ    |

## 6.12.12 Performance factors

Clock jitter, affecting sample timing accuracy, and circuit noise can affect ADC performance.

Jitter can be between START tasks or from START task to acquisition. START timer accuracy and startup times of regulators and references will contribute to variability. Sources of circuit noise may include CPU activity and the DC/DC regulator. Best ADC performance is achieved using START timing based on the TIMER module, HFXO clock source, and Constant Latency mode.

# 6.13 SPIM — Serial peripheral interface master with EasyDMA

The SPI master can communicate with multiple slaves using individual chip select signals for each of the slave devices attached to a bus.

Listed here are the main features for the SPIM

- SPI mode 0-3
- EasyDMA direct transfer to/from RAM for both SPI Slave and SPI Master
- Individual selection of IO pin for each SPI signal



<sup>&</sup>lt;sup>b</sup> Does not include temperature drift

<sup>&</sup>lt;sup>19</sup> Maximum gain corresponds to highest capacitance.

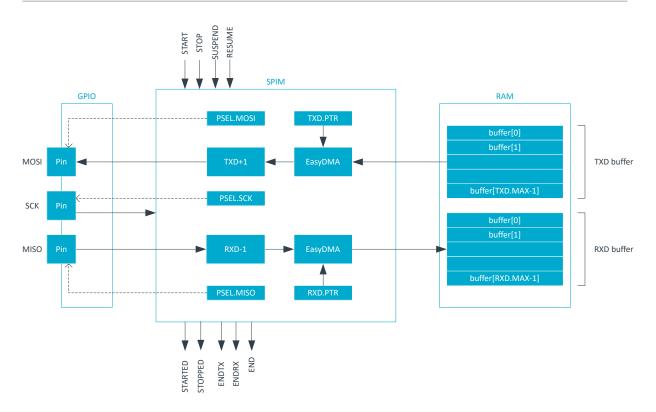



Figure 76: SPIM — SPI master with EasyDMA

The SPIM does not implement support for chip select directly. Therefore, the CPU must use available GPIOs to select the correct slave and control this independently of the SPI master. The SPIM supports SPI modes 0 through 3. The CONFIG register allows setting CPOL and CPHA appropriately.

| Mode      | Clock polarity  | Clock phase  |
|-----------|-----------------|--------------|
|           | CPOL            | СРНА         |
| SPI_MODE0 | 0 (Active High) | 0 (Leading)  |
| SPI_MODE1 | 0 (Active High) | 1 (Trailing) |
| SPI_MODE2 | 1 (Active Low)  | 0 (Leading)  |
| SPI_MODE3 | 1 (Active Low)  | 1 (Trailing) |

Table 33: SPI modes

## 6.13.1 SPI master transaction sequence

An SPI master transaction consists of a sequence started by the START task followed by a number of events, and finally the STOP task.

An SPI master transaction is started by triggering the START task. The ENDTX event will be generated when the transmitter has transmitted all bytes in the TXD buffer as specified in the TXD.MAXCNT register. The ENDRX event will be generated when the receiver has filled the RXD buffer, i.e. received the last possible byte as specified in the RXD.MAXCNT register.

Following a START task, the SPI master will generate an END event when both ENDRX and ENDTX have been generated.

The SPI master is stopped by triggering the STOP task. A STOPPED event is generated when the SPI master has stopped.

If the ENDRX event has not already been generated when the SPI master has come to a stop, the SPI master will generate the ENDRX event explicitly even though the RX buffer is not full.



If the ENDTX event has not already been generated when the SPI master has come to a stop, the SPI master will generate the ENDTX event explicitly even though all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have not been transmitted.

The SPI master is a synchronous interface, and for every byte that is sent, a different byte will be received at the same time; this is illustrated in SPI master transaction on page 292.

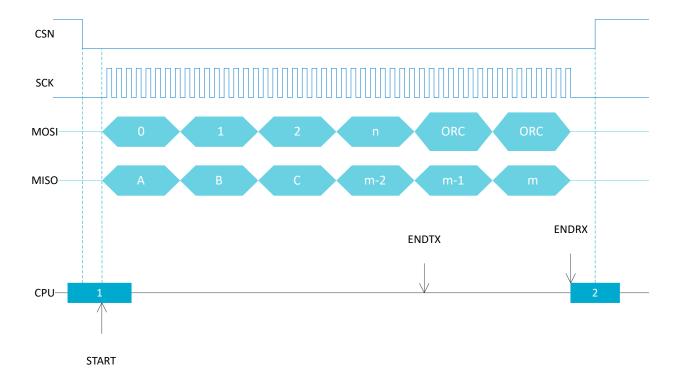



Figure 77: SPI master transaction

## 6.13.2 Master mode pin configuration

The SCK, MOSI, and MISO signals associated with the SPI master are mapped to physical pins according to the configuration specified in the PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers respectively.

The PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used as long as the SPI master is enabled, and retained only as long as the device is in ON mode. PSEL.SCK, PSEL.MOSI and PSEL.MISO must only be configured when the SPI master is disabled.

To secure correct behavior in the SPI, the pins used by the SPI must be configured in the GPIO peripheral as described in GPIO configuration on page 292 prior to enabling the SPI. This configuration must be retained in the GPIO for the selected IOs as long as the SPI is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| SPI master signal | SPI master pin            | Direction | Output value        |
|-------------------|---------------------------|-----------|---------------------|
| SCK               | As specified in PSEL.SCK  | Output    | Same as CONFIG.CPOL |
| MOSI              | As specified in PSEL.MOSI | Output    | 0                   |
| MISO              | As specified in PSEL.MISO | Input     | Not applicable      |

Table 34: GPIO configuration



#### 6.13.3 Shared resources

The SPI shares registers and other resources with other peripherals that have the same ID as the SPI. Therefore, the user must disable all peripherals that have the same ID as the SPI before the SPI can be configured and used.

Disabling a peripheral that has the same ID as the SPI will not reset any of the registers that are shared with the SPI. It is therefore important to configure all relevant SPI registers explicitly to secure that it operates correctly.

See the Instantiation table in Instantiation on page 25 for details on peripherals and their IDs.

## 6.13.4 EasyDMA

The SPIM implements EasyDMA for accessing RAM without CPU involvement.

The SPIM peripheral implements the following EasyDMA channels:

| Channel | Туре   | Register Cluster |
|---------|--------|------------------|
| TXD     | READER | TXD              |
| RXD     | WRITER | RXD              |

Table 35: SPIM EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 46.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next transmission immediately after having received the STARTED event.

The SPI master will automatically stop transmitting after TXD.MAXCNT bytes have been transmitted and RXD.MAXCNT bytes have been received. If RXD.MAXCNT is larger than TXD.MAXCNT, the remaining transmitted bytes will contain the value defined in the ORC register. If TXD.MAXCNT is larger than RXD.MAXCNT, the superfluous received bytes will be discarded.

The ENDRX/ENDTX event indicate that EasyDMA has finished accessing respectively the RX/TX buffer in RAM. The END event gets generated when both RX and TX are finished accessing the buffers in RAM.

In the case of bus congestion as described in AHB multilayer interconnect on page 48, data loss may occur.

## 6.13.5 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.



# 6.13.6 Registers

# Instances

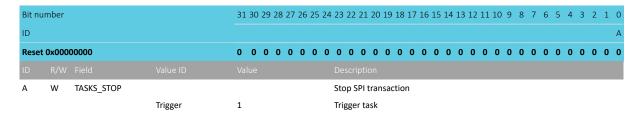
| Instance   | Base address | TrustZone |     |     | Split access | Description  |
|------------|--------------|-----------|-----|-----|--------------|--------------|
|            |              | Мар       | Att | DMA |              |              |
| SPIM0 : S  | 0x50008000   | US        | NS  | SA  | No           | SPI master 0 |
| SPIM0 : NS | 0x40008000   | 03        | NS  | JA  | NO           | SFI Master 0 |
| SPIM1:S    | 0x50009000   | US        | NS  | SA  | No           | SPI master 1 |
| SPIM1: NS  | 0x40009000   | 03        | NS  | JA. | NO           | STITUSTET I  |
| SPIM2 : S  | 0x5000A000   | US        | NS  | SA  | No           | SPI master 2 |
| SPIM2 : NS | 0x4000A000   | 03        | 145 | 3A  | NO           | STITIOSCI Z  |
| SPIM3 : S  | 0x5000B000   | US        | NS  | SA  | No           | SPI master 3 |
| SPIM3: NS  | 0x4000B000   | 03        | 145 | 5,1 | 110          | 3.1 master 3 |

# Register overview

|                   |        | _  |                                                               |
|-------------------|--------|----|---------------------------------------------------------------|
| Register          | Offset | TZ | Description                                                   |
| TASKS_START       | 0x010  |    | Start SPI transaction                                         |
| TASKS_STOP        | 0x014  |    | Stop SPI transaction                                          |
| TASKS_SUSPEND     | 0x01C  |    | Suspend SPI transaction                                       |
| TASKS_RESUME      | 0x020  |    | Resume SPI transaction                                        |
| SUBSCRIBE_START   | 0x090  |    | Subscribe configuration for task START                        |
| SUBSCRIBE_STOP    | 0x094  |    | Subscribe configuration for task STOP                         |
| SUBSCRIBE_SUSPEND | 0x09C  |    | Subscribe configuration for task SUSPEND                      |
| SUBSCRIBE_RESUME  | 0x0A0  |    | Subscribe configuration for task RESUME                       |
| EVENTS_STOPPED    | 0x104  |    | SPI transaction has stopped                                   |
| EVENTS_ENDRX      | 0x110  |    | End of RXD buffer reached                                     |
| EVENTS_END        | 0x118  |    | End of RXD buffer and TXD buffer reached                      |
| EVENTS_ENDTX      | 0x120  |    | End of TXD buffer reached                                     |
| EVENTS_STARTED    | 0x14C  |    | Transaction started                                           |
| PUBLISH_STOPPED   | 0x184  |    | Publish configuration for event STOPPED                       |
| PUBLISH_ENDRX     | 0x190  |    | Publish configuration for event ENDRX                         |
| PUBLISH_END       | 0x198  |    | Publish configuration for event END                           |
| PUBLISH_ENDTX     | 0x1A0  |    | Publish configuration for event ENDTX                         |
| PUBLISH_STARTED   | 0x1CC  |    | Publish configuration for event STARTED                       |
| SHORTS            | 0x200  |    | Shortcuts between local events and tasks                      |
| INTENSET          | 0x304  |    | Enable interrupt                                              |
| INTENCLR          | 0x308  |    | Disable interrupt                                             |
| ENABLE            | 0x500  |    | Enable SPIM                                                   |
| PSEL.SCK          | 0x508  |    | Pin select for SCK                                            |
| PSEL.MOSI         | 0x50C  |    | Pin select for MOSI signal                                    |
| PSEL.MISO         | 0x510  |    | Pin select for MISO signal                                    |
| FREQUENCY         | 0x524  |    | SPI frequency. Accuracy depends on the HFCLK source selected. |
| RXD.PTR           | 0x534  |    | Data pointer                                                  |
| RXD.MAXCNT        | 0x538  |    | Maximum number of bytes in receive buffer                     |
| RXD.AMOUNT        | 0x53C  |    | Number of bytes transferred in the last transaction           |
| RXD.LIST          | 0x540  |    | EasyDMA list type                                             |
| TXD.PTR           | 0x544  |    | Data pointer                                                  |
| TXD.MAXCNT        | 0x548  |    | Maximum number of bytes in transmit buffer                    |
| TXD.AMOUNT        | 0x54C  |    | Number of bytes transferred in the last transaction           |
| TXD.LIST          | 0x550  |    | EasyDMA list type                                             |
|                   |        |    |                                                               |



| Register | Offset | TZ | Description                                                                        |
|----------|--------|----|------------------------------------------------------------------------------------|
| CONFIG   | 0x554  |    | Configuration register                                                             |
| ORC      | 0x5C0  |    | Over-read character. Character clocked out in case an over-read of the TXD buffer. |


## 6.13.6.1 TASKS\_START

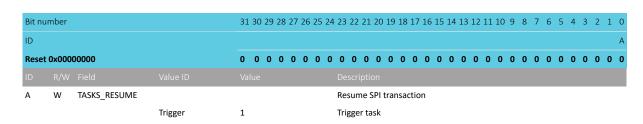
Address offset: 0x010 Start SPI transaction

| Bit nu | umber   |             |         | 31 30 29 28 27 26 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------------|---------|-------------------|---------------------------------------------------------------------|
| ID     |         |             |         |                   | A                                                                   |
| Reset  | t 0x000 | 00000       |         | 0 0 0 0 0 0       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID     |         |             |         |                   | Description                                                         |
| Α      | W       | TASKS_START |         |                   | Start SPI transaction                                               |
|        |         |             | Trigger | 1                 | Trigger task                                                        |

# 6.13.6.2 TASKS\_STOP

Address offset: 0x014
Stop SPI transaction




## 6.13.6.3 TASKS\_SUSPEND

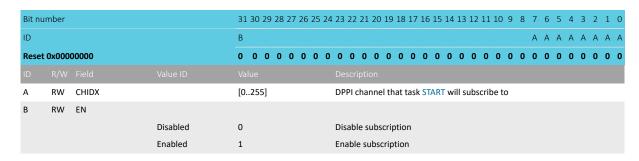

Address offset: 0x01C Suspend SPI transaction

| Bit nu | mber  |               |         | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 4 23 | 3 2: | 2 2: | 1 2  | 0 1  | 9 1 | 8 1  | 7 10 | 5 1 | 5 14 | 4 1 | 3 12 | 2 13 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|---------------|---------|----|----|----|----|----|----|----|----|------|------|------|------|------|-----|------|------|-----|------|-----|------|------|----|---|---|---|---|---|---|---|---|---|---|
| ID     |       |               |         |    |    |    |    |    |    |    |    |      |      |      |      |      |     |      |      |     |      |     |      |      |    |   |   |   |   |   |   |   |   |   | Α |
| Reset  | 0x000 | 00000         |         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    | ) (  | ) ( | 0 (  | 0    | ) C | 0    | (   | 0    | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |       |               |         |    |    |    |    |    |    |    |    |      |      |      |      |      |     |      |      |     |      |     |      |      |    |   |   |   |   |   |   |   |   |   |   |
| Α      | W     | TASKS_SUSPEND |         |    |    |    |    |    |    |    |    | Su   | ısp  | end  | I SP | l tr | ans | sact | ion  |     |      |     |      |      |    |   |   |   |   |   |   |   |   |   |   |
|        |       |               | Trigger | 1  |    |    |    |    |    |    |    | Tri  | igg  | er t | ask  | (    |     |      |      |     |      |     |      |      |    |   |   |   |   |   |   |   |   |   |   |

# 6.13.6.4 TASKS\_RESUME

Address offset: 0x020 Resume SPI transaction

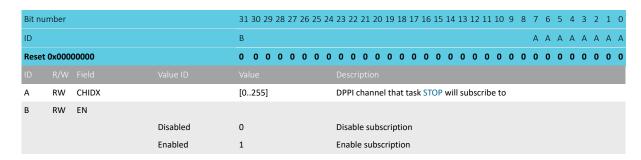







## 6.13.6.5 SUBSCRIBE\_START

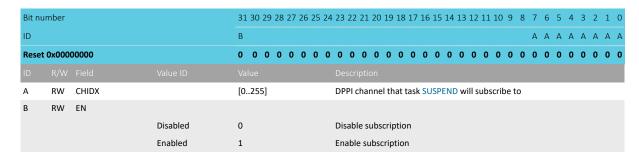
Address offset: 0x090


Subscribe configuration for task START



## 6.13.6.6 SUBSCRIBE\_STOP

Address offset: 0x094


Subscribe configuration for task STOP



## 6.13.6.7 SUBSCRIBE SUSPEND

Address offset: 0x09C

Subscribe configuration for task SUSPEND



## 6.13.6.8 SUBSCRIBE\_RESUME

Address offset: 0x0A0

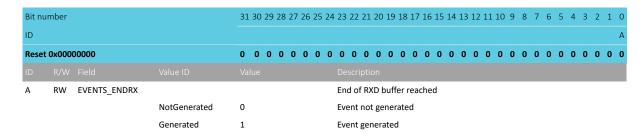
Subscribe configuration for task RESUME



| Bit nu | mber   |       |          | 31 30 29 | 28 27 | 26 25 | 24 2 | 23 22  | 21 2  | 0 19   | 18     | 17 16 | 6 15 | 14 | 13 1  | 2 11 | 10   | 9    | 8 7 | 6 | 5 | 4 | 3 : | 2 1 | L 0 |
|--------|--------|-------|----------|----------|-------|-------|------|--------|-------|--------|--------|-------|------|----|-------|------|------|------|-----|---|---|---|-----|-----|-----|
| ID     |        |       |          | В        |       |       |      |        |       |        |        |       |      |    |       |      |      |      | Δ   | A | Α | Α | Α / | Α Α | A A |
| Reset  | 0x0000 | 00000 |          | 0 0 0    | 0 0   | 0 0   | 0    | 0 0    | 0 (   | 0      | 0      | 0 0   | 0    | 0  | 0 (   | 0    | 0    | 0    | 0 0 | 0 | 0 | 0 | 0 ( | ) ( | 0   |
| ID     |        |       |          |          |       |       |      |        |       |        |        |       |      |    |       |      |      |      |     |   |   |   |     |     |     |
| Α      | RW     | CHIDX |          | [0255]   |       |       | [    | OPPI o | hanr  | nel tl | nat ta | sk R  | ESU  | ME | wills | ubso | ribe | e to |     |   |   |   |     |     |     |
| В      | RW     | EN    |          |          |       |       |      |        |       |        |        |       |      |    |       |      |      |      |     |   |   |   |     |     |     |
|        |        |       | Disabled | 0        |       |       | [    | Disab  | e sub | oscri  | ptior  | 1     |      |    |       |      |      |      |     |   |   |   |     |     |     |
|        |        |       | Enabled  | 1        |       |       | E    | Enabl  | e sub | scrip  | tion   |       |      |    |       |      |      |      |     |   |   |   |     |     |     |

# 6.13.6.9 EVENTS\_STOPPED

Address offset: 0x104


SPI transaction has stopped

| Bit nu | umber   |                |              | 31 30 29 28 27 26 25 24 | 4 23 2 | 2 21 2 | 20 19  | 18 1   | 7 16 | 15 1 | 4 13 | 12 | 11 10 | 9 | 8 | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |
|--------|---------|----------------|--------------|-------------------------|--------|--------|--------|--------|------|------|------|----|-------|---|---|---|---|---|-----|---|---|---|
| ID     |         |                |              |                         |        |        |        |        |      |      |      |    |       |   |   |   |   |   |     |   |   | Α |
| Rese   | t 0x000 | 00000          |              | 0 0 0 0 0 0 0 0         | 0 0    | 0      | 0 0    | 0 0    | 0    | 0 (  | 0    | 0  | 0 0   | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 | 0 | 0 |
| ID     |         |                |              |                         |        |        |        |        |      |      |      |    |       |   |   |   |   |   |     |   |   |   |
| Α      | RW      | EVENTS_STOPPED |              |                         | SPI t  | ransad | tion   | has st | topp | ed   |      |    |       |   |   |   |   |   |     |   |   |   |
|        |         |                | NotGenerated | 0                       | Even   | t not  | gener  | rated  |      |      |      |    |       |   |   |   |   |   |     |   |   |   |
|        |         |                | Generated    | 1                       | Even   | t gene | erated | d      |      |      |      |    |       |   |   |   |   |   |     |   |   |   |

## 6.13.6.10 EVENTS\_ENDRX

Address offset: 0x110

End of RXD buffer reached



## 6.13.6.11 EVENTS\_END

Address offset: 0x118

End of RXD buffer and TXD buffer reached

| Bit n | umber   |            |              | 31 30 2 | 9 28 | 27 20 | 6 25 | 24 2 | 23 2 | 2 2:  | 1 20  | 19    | 18 1  | L7 1 | 6 1 | 5 14 | 13   | 12  | 11  | 10 | 9 8 | 3 7 | 7 6 | 5 | 4 | 3 | 2 | 1 0 |
|-------|---------|------------|--------------|---------|------|-------|------|------|------|-------|-------|-------|-------|------|-----|------|------|-----|-----|----|-----|-----|-----|---|---|---|---|-----|
| ID    |         |            |              |         |      |       |      |      |      |       |       |       |       |      |     |      |      |     |     |    |     |     |     |   |   |   |   | Α   |
| Rese  | t 0x000 | 00000      |              | 0 0     | 0 0  | 0 0   | 0    | 0    | 0 (  | 0 0   | 0     | 0     | 0     | 0 (  | 0   | 0    | 0    | 0   | 0   | 0  | 0 ( | ) ( | ) ( | 0 | 0 | 0 | 0 | 0 0 |
| ID    |         |            |              |         |      |       |      |      |      |       |       |       |       |      |     |      |      |     |     |    |     |     |     |   |   |   |   |     |
| Α     | RW      | EVENTS_END |              |         |      |       |      | 1    | End  | of R  | XD b  | ouffe | er ar | nd T | XD  | buff | er r | eac | hed |    |     |     |     |   |   |   |   |     |
|       |         |            | NotGenerated | 0       |      |       |      | E    | Ever | nt no | ot ge | ner   | ated  | ı    |     |      |      |     |     |    |     |     |     |   |   |   |   |     |
|       |         |            | Generated    | 1       |      |       |      | 1    | Ever | nt ge | enera | ated  | I     |      |     |      |      |     |     |    |     |     |     |   |   |   |   |     |

## 6.13.6.12 EVENTS\_ENDTX

Address offset: 0x120

End of TXD buffer reached



| Bit nui | mber  |              |              | 31 30 29 28 27 2 | 6 25 24 | 1 23 : | 22 21 : | 20 19  | 18 17  | 7 16 1 | .5 14 | 13 1 | 2 11 | 10 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|---------|-------|--------------|--------------|------------------|---------|--------|---------|--------|--------|--------|-------|------|------|------|---|---|---|---|---|-----|-----|---|
| ID      |       |              |              |                  |         |        |         |        |        |        |       |      |      |      |   |   |   |   |   |     |     | Α |
| Reset   | 0x000 | 00000        |              | 0 0 0 0 0        | 0 0     | 0      | 0 0     | 0 0    | 0 0    | 0      | 0 0   | 0 0  | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID      |       |              |              |                  |         |        |         |        |        |        |       |      |      |      |   |   |   |   |   |     |     |   |
| Α       | RW    | EVENTS_ENDTX |              |                  |         | End    | of TXI  | ) buff | er rea | ched   |       |      |      |      |   |   |   |   |   |     |     |   |
|         |       |              | NotGenerated | 0                |         | Eve    | nt not  | gener  | ated   |        |       |      |      |      |   |   |   |   |   |     |     |   |
|         |       |              | Generated    | 1                |         | Eve    | nt gen  | erated | t      |        |       |      |      |      |   |   |   |   |   |     |     |   |

# 6.13.6.13 EVENTS\_STARTED

Address offset: 0x14C
Transaction started

| Bit nu | mber  |                |              | 31 30 | 29 2 | 8 27 : | 26 25 | 5 24 | 23 2 | 22 2 | 1 20  | 19   | 18    | 17 1 | 6 15 | 14 | 13 | 12 1 | 1 10 | 9 | 8 | 7 | 6 | 5 4 | 4 3 | 3 2 | 1 | 0 |
|--------|-------|----------------|--------------|-------|------|--------|-------|------|------|------|-------|------|-------|------|------|----|----|------|------|---|---|---|---|-----|-----|-----|---|---|
| ID     |       |                |              |       |      |        |       |      |      |      |       |      |       |      |      |    |    |      |      |   |   |   |   |     |     |     |   | Α |
| Reset  | 0x000 | 00000          |              | 0 0   | 0 0  | 0      | 0 0   | 0    | 0    | 0 (  | 0 0   | 0    | 0     | 0 (  | 0    | 0  | 0  | 0 0  | 0    | 0 | 0 | 0 | 0 | 0 ( | 0 ( | 0 0 | 0 | 0 |
| ID     |       |                |              |       |      |        |       |      |      |      |       |      |       |      |      |    |    |      |      |   |   |   |   |     |     |     |   |   |
| Α      | RW    | EVENTS_STARTED |              |       |      |        |       |      | Trar | ısac | tion  | star | rted  |      |      |    |    |      |      |   |   |   |   |     |     |     |   |   |
|        |       |                | NotGenerated | 0     |      |        |       |      | Eve  | nt n | ot ge | ener | rated | ł    |      |    |    |      |      |   |   |   |   |     |     |     |   |   |
|        |       |                | Generated    | 1     |      |        |       |      | Eve  | nt g | ener  | ated | b     |      |      |    |    |      |      |   |   |   |   |     |     |     |   |   |

# 6.13.6.14 PUBLISH\_STOPPED

Address offset: 0x184

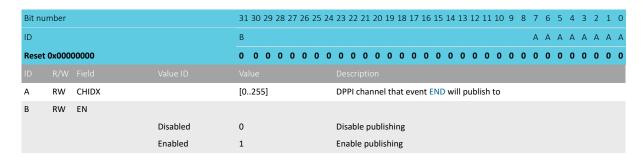
Publish configuration for event STOPPED

| Bit nu | mber  |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event STOPPED will publish to                 |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable publishing                                              |
|        |       |       | Enabled  | 1                       | Enable publishing                                               |

# 6.13.6.15 PUBLISH\_ENDRX

Address offset: 0x190

Publish configuration for event ENDRX


| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Rese   | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         | Description                                                     |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event ENDRX will publish to                   |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

## 6.13.6.16 PUBLISH\_END

Address offset: 0x198



## Publish configuration for event END



# 6.13.6.17 PUBLISH\_ENDTX

Address offset: 0x1A0

Publish configuration for event ENDTX

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|----------------------|------------------------------------------------------------------|
| ID     |       |       |          | В                    | A A A A A A A A A A A A A A A A A A A                            |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0        | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                        |
| ID     |       |       |          |                      |                                                                  |
| Α      | RW    | CHIDX |          | [0255]               | DPPI channel that event ENDTX will publish to                    |
| В      | RW    | EN    |          |                      |                                                                  |
|        |       |       | Disabled | 0                    | Disable publishing                                               |
|        |       |       | Enabled  | 1                    | Enable publishing                                                |

## 6.13.6.18 PUBLISH\_STARTED

Address offset: 0x1CC

Publish configuration for event STARTED

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event STARTED will publish to               |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

## 6.13.6.19 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

| Bit no | umber        |          | 31 30 29 28 27 26 2 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------------|----------|---------------------|---------------------------------------------------------------------|
| ID     |              |          |                     | А                                                                   |
| Rese   | t 0x00000000 |          | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID     | R/W Field    | Value ID | Value               | Description                                                         |
| Α      | RW END_START |          |                     | Shortcut between event END and task START                           |
|        |              | Disabled | 0                   | Disable shortcut                                                    |
|        |              | Enabled  | 1                   | Enable shortcut                                                     |





# 6.13.6.20 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | mber      |      |          | 31 | 30 29 | 28 | 27 26 | 5 25 2 | 4 2 | 23 22 | 2 21  | L 20 | 19 1  | 8 1   | 7 16 | 15  | 14 :  | 13 1 | .2 13 | 10   | 9 | 8 7 | 7 ( | 5 5 | 4 | 3 | 2 1 | . 0 |
|--------|-----------|------|----------|----|-------|----|-------|--------|-----|-------|-------|------|-------|-------|------|-----|-------|------|-------|------|---|-----|-----|-----|---|---|-----|-----|
| ID     |           |      |          |    |       |    |       |        |     |       |       |      | Е     |       |      |     |       |      |       |      |   | D   | (   | 2   | В |   | Δ   |     |
| Reset  | 0x0000000 |      |          | 0  | 0 0   | 0  | 0 0   | 0 (    | 0 ( | 0 0   | 0     | 0    | 0 (   | 0 (   | 0    | 0   | 0     | 0    | 0 0   | 0    | 0 | 0 ( | ) ( | 0 0 | 0 | 0 | 0 0 | 0   |
|        |           |      |          |    |       |    |       |        |     |       |       |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
| Α      | RW STOP   | PPED |          |    |       |    |       |        | ٧   | Write | e '1' | to e | enabl | le in | terr | upt | for e | ever | nt ST | OPPE | D |     |     |     |   |   |     |     |
|        |           | :    | Set      | 1  |       |    |       |        | E   | Enab  | le    |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | 1    | Disabled | 0  |       |    |       |        | R   | Read  | : Dis | sabl | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Enabled  | 1  |       |    |       |        | R   | Read  | : En  | able | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
| В      | RW ENDI   | RX   |          |    |       |    |       |        | ٧   | Write | e '1' | to e | enabl | le in | terr | upt | for e | ever | nt EN | IDRX |   |     |     |     |   |   |     |     |
|        |           | :    | Set      | 1  |       |    |       |        | E   | Enab  | le    |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | 1    | Disabled | 0  |       |    |       |        | R   | Read  | : Dis | sabl | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Enabled  | 1  |       |    |       |        | R   | Read  | : En  | able | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
| С      | RW END    |      |          |    |       |    |       |        | ٧   | Write | e '1' | to e | enabl | le in | terr | upt | for e | ever | nt EN | ID   |   |     |     |     |   |   |     |     |
|        |           | !    | Set      | 1  |       |    |       |        | Е   | Enab  | le    |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | 1    | Disabled | 0  |       |    |       |        | R   | Read  | : Dis | sabl | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | 1    | Enabled  | 1  |       |    |       |        | R   | Read  | : En  | able | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
| D      | RW END    | TX   |          |    |       |    |       |        | ٧   | Write | e '1' | to e | enabl | le in | terr | upt | for e | ever | nt EN | IDTX |   |     |     |     |   |   |     |     |
|        |           | !    | Set      | 1  |       |    |       |        | E   | Enab  | le    |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Disabled | 0  |       |    |       |        | R   | Read  | : Dis | sabl | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Enabled  | 1  |       |    |       |        | R   | Read  | : En  | able | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
| E      | RW STAR   | TED  |          |    |       |    |       |        | ٧   | Write | e '1' | to e | enabl | le in | terr | upt | for e | ever | nt ST | ARTE | D |     |     |     |   |   |     |     |
|        |           | :    | Set      | 1  |       |    |       |        | Е   | Enab  | le    |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Disabled | 0  |       |    |       |        | R   | Read  | : Dis | sabl | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           | I    | Enabled  | 1  |       |    |       |        | R   | Read  | : En  | able | ed    |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |
|        |           |      |          |    |       |    |       |        |     |       |       |      |       |       |      |     |       |      |       |      |   |     |     |     |   |   |     |     |

## 6.13.6.21 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | ımber |         |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|---------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |         |          |                         | E D C B A                                                     |
| Reset  | 0x000 | 00000   |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |         |          |                         |                                                               |
| Α      | RW    | STOPPED |          |                         | Write '1' to disable interrupt for event STOPPED              |
|        |       |         | Clear    | 1                       | Disable                                                       |
|        |       |         | Disabled | 0                       | Read: Disabled                                                |
|        |       |         | Enabled  | 1                       | Read: Enabled                                                 |
| В      | RW    | ENDRX   |          |                         | Write '1' to disable interrupt for event ENDRX                |
|        |       |         | Clear    | 1                       | Disable                                                       |
|        |       |         | Disabled | 0                       | Read: Disabled                                                |
|        |       |         | Enabled  | 1                       | Read: Enabled                                                 |
| С      | RW    | END     |          |                         | Write '1' to disable interrupt for event END                  |
|        |       |         | Clear    | 1                       | Disable                                                       |
|        |       |         | Disabled | 0                       | Read: Disabled                                                |
|        |       |         | Enabled  | 1                       | Read: Enabled                                                 |
| D      | RW    | ENDTX   |          |                         | Write '1' to disable interrupt for event ENDTX                |
|        |       |         | Clear    | 1                       | Disable                                                       |
|        |       |         |          |                         |                                                               |



| Bit n | umber        |          | 31 30 29 28 2 | 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|--------------|----------|---------------|---------------------------------------------------------------------------|
| ID    |              |          |               | E D C B A                                                                 |
| Rese  | t 0x00000000 |          | 0 0 0 0       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |
| ID    |              |          |               |                                                                           |
|       |              | Disabled | 0             | Read: Disabled                                                            |
|       |              | Enabled  | 1             | Read: Enabled                                                             |
| E     | RW STARTED   |          |               | Write '1' to disable interrupt for event STARTED                          |
|       |              | Clear    | 1             | Disable                                                                   |
|       |              | Disabled | 0             | Read: Disabled                                                            |
|       |              | Enabled  | 1             | Read: Enabled                                                             |

## 6.13.6.22 ENABLE

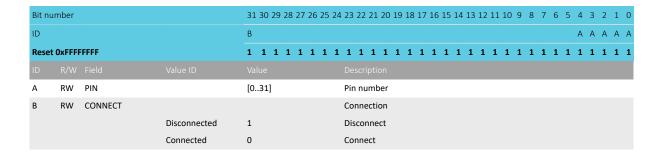
Address offset: 0x500

**Enable SPIM** 

| Bit nu | ımber |        |          | 31 30 2 | 9 28 2 | 27 26 | 25 2 | 24 23 | 22    | 21 2  | 0 19  | 18 1  | 7 16 | 15 | 14 1 | .3 12 | 2 11 | 10 | 9 8 | 3 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|--------|----------|---------|--------|-------|------|-------|-------|-------|-------|-------|------|----|------|-------|------|----|-----|-----|---|---|---|---|---|-----|
| ID     |       |        |          |         |        |       |      |       |       |       |       |       |      |    |      |       |      |    |     |     |   |   |   | Α | A | 4 A |
| Reset  | 0x000 | 00000  |          | 0 0 0   | 0      | 0 0   | 0    | 0 0   | 0     | 0 (   | 0     | 0 (   | 0    | 0  | 0    | 0 0   | 0    | 0  | 0 ( | 0   | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |        |          |         |        |       |      |       |       |       |       |       |      |    |      |       |      |    |     |     |   |   |   |   |   |     |
| Α      | RW    | ENABLE |          |         |        |       |      | En    | able  | or c  | lisab | le SP | М    |    |      |       |      |    |     |     |   |   |   |   |   |     |
|        |       |        | Disabled | 0       |        |       |      | Dis   | sable | e SPI | М     |       |      |    |      |       |      |    |     |     |   |   |   |   |   |     |
|        |       |        | Enabled  | 7       |        |       |      | En    | able  | SPII  | M     |       |      |    |      |       |      |    |     |     |   |   |   |   |   |     |

## 6.13.6.23 PSEL.SCK

Address offset: 0x508


Pin select for SCK

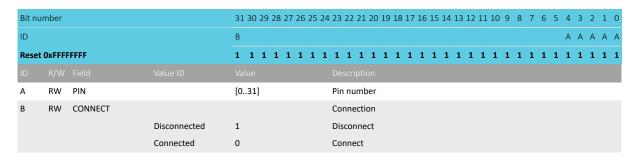
| Bit number      |    |         |              | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-----------------|----|---------|--------------|-------------------------|-----------------------------------------------------------------|
| ID              |    |         |              | В                       | ААААА                                                           |
| Reset 0xFFFFFFF |    |         |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         |
| ID              |    |         |              |                         | Description                                                     |
| Α               | RW | PIN     |              | [031]                   | Pin number                                                      |
| В               | RW | CONNECT |              |                         | Connection                                                      |
|                 |    |         | Disconnected | 1                       | Disconnect                                                      |
|                 |    |         | Connected    | 0                       | Connect                                                         |

## 6.13.6.24 PSEL.MOSI

Address offset: 0x50C

Pin select for MOSI signal

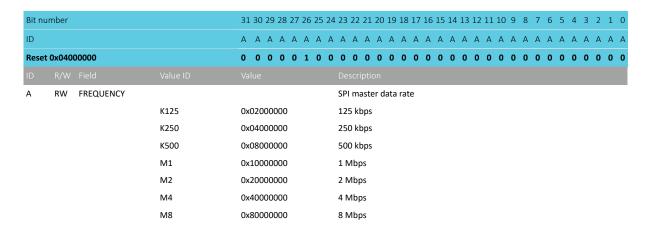







#### 6.13.6.25 PSEL.MISO

Address offset: 0x510


Pin select for MISO signal

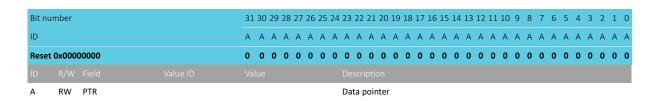


## 6.13.6.26 FREQUENCY

Address offset: 0x524

SPI frequency. Accuracy depends on the HFCLK source selected.




#### 6.13.6.27 RXD

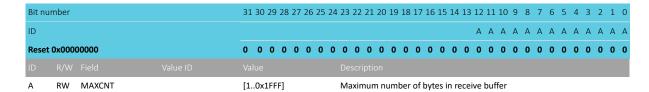
RXD EasyDMA channel

#### 6.13.6.27.1 RXD.PTR

Address offset: 0x534

Data pointer




**Note:** See the memory chapter for details about which memories are available for EasyDMA.

#### 6.13.6.27.2 RXD.MAXCNT

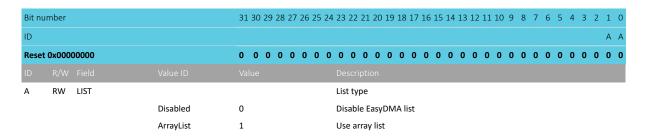
Address offset: 0x538



#### Maximum number of bytes in receive buffer



#### 6.13.6.27.3 RXD.AMOUNT


Address offset: 0x53C

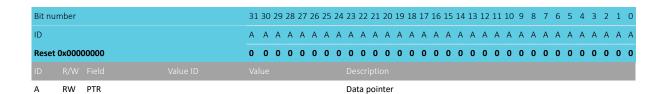
Number of bytes transferred in the last transaction

| Α                | R | AMOUNT |  | [1 Ox1FFF]             | Number of bytes transferred in the last transaction             |
|------------------|---|--------|--|------------------------|-----------------------------------------------------------------|
| ID               |   |        |  |                        |                                                                 |
| Reset 0x00000000 |   |        |  | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID               |   |        |  |                        | A A A A A A A A A A A A A A A A A A A                           |
| Bit number       |   |        |  | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |

#### 6.13.6.27.4 RXD.LIST

Address offset: 0x540 EasyDMA list type




#### 6.13.6.28 TXD

TXD EasyDMA channel

#### 6.13.6.28.1 TXD.PTR

Address offset: 0x544

Data pointer



**Note:** See the memory chapter for details about which memories are available for EasyDMA.



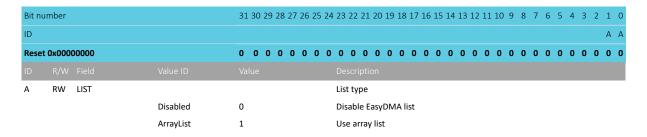
#### 6.13.6.28.2 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer



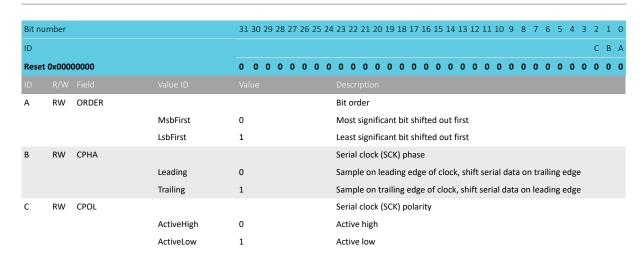
## 6.13.6.28.3 TXD.AMOUNT


Address offset: 0x54C

Number of bytes transferred in the last transaction

| Α                | R     | AMOUNT |  | [1 Ox1FFF]           | Number of bytes transferred in the last transaction            |
|------------------|-------|--------|--|----------------------|----------------------------------------------------------------|
| ID               |       |        |  |                      |                                                                |
| Reset 0x00000000 |       |        |  | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        |
| ID               |       |        |  |                      | A A A A A A A A A A A A A A A A A A A                          |
| Bit nu           | umber |        |  | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 |

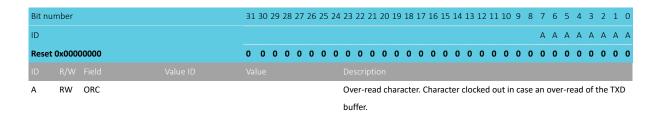
#### 6.13.6.28.4 TXD.LIST


Address offset: 0x550 EasyDMA list type



#### 6.13.6.29 CONFIG

Address offset: 0x554 Configuration register






#### 6.13.6.30 ORC

Address offset: 0x5C0

Over-read character. Character clocked out in case an over-read of the TXD buffer.



## 6.13.7 Electrical specification

## 6.13.7.1 SPIM master interface electrical specifications

| Symbol                   | Description                                  | Min. | Тур. | Max. | Units |
|--------------------------|----------------------------------------------|------|------|------|-------|
| f <sub>SPIM</sub>        | Bit rates for SPIM <sup>20</sup>             |      |      | 8    | Mbps  |
| t <sub>SPIM</sub> ,START | Time from START task to transmission started |      | 1    |      | μs    |

## 6.13.7.2 Serial Peripheral Interface Master (SPIM) timing specifications

| Symbol                    | Description                                | Min.                     | Тур. | Max.                  | Units |
|---------------------------|--------------------------------------------|--------------------------|------|-----------------------|-------|
| t <sub>SPIM,CSCK</sub>    | SCK period                                 |                          | 125  |                       | ns    |
| t <sub>SPIM,RSCK,LD</sub> | SCK rise time, standard drive <sup>a</sup> |                          |      | t <sub>RF,25pF</sub>  |       |
| t <sub>SPIM,RSCK,HD</sub> | SCK rise time, high drive <sup>a</sup>     |                          |      | t <sub>HRF,25pF</sub> |       |
| t <sub>SPIM,FSCK,LD</sub> | SCK fall time, standard drive <sup>a</sup> |                          |      | t <sub>RF,25pF</sub>  |       |
| t <sub>SPIM,FSCK,HD</sub> | SCK fall time, high drive <sup>a</sup>     |                          |      | t <sub>HRF,25pF</sub> |       |
| t <sub>SPIM,WHSCK</sub>   | SCK high time <sup>a</sup>                 | (0.5*t <sub>CSCK</sub> ) |      |                       |       |
|                           |                                            | - t <sub>RSCK</sub>      |      |                       |       |
| t <sub>SPIM,WLSCK</sub>   | SCK low time <sup>a</sup>                  | (0.5*t <sub>CSCK</sub> ) |      |                       |       |
|                           |                                            | - t <sub>FSCK</sub>      |      |                       |       |
| t <sub>SPIM,SUMI</sub>    | MISO to CLK edge setup time                | 19                       |      |                       | ns    |
| t <sub>SPIM,HMI</sub>     | CLK edge to MISO hold time                 | 18                       |      |                       | ns    |

High bit rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.



<sup>&</sup>lt;sup>a</sup> At 25pF load, including GPIO pin capacitance, see GPIO spec.

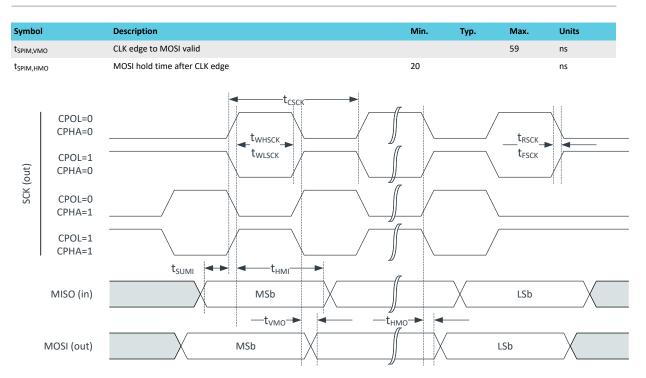



Figure 78: SPIM timing diagram

# 6.14 SPIS — Serial peripheral interface slave with EasyDMA

SPI slave (SPIS) is implemented with EasyDMA support for ultra low power serial communication from an external SPI master. EasyDMA in conjunction with hardware-based semaphore mechanisms removes all real-time requirements associated with controlling the SPI slave from a low priority CPU execution context.

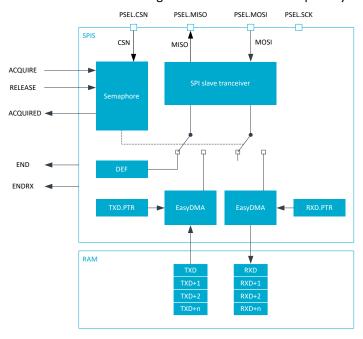



Figure 79: SPI slave

The SPIS supports SPI modes 0 through 3. The CONFIG register allows setting CPOL and CPHA appropriately.



| Mode      | Clock polarity  | Clock phase            |
|-----------|-----------------|------------------------|
|           | CPOL            | СРНА                   |
| SPI_MODE0 | 0 (Active High) | 0 (Sample on Leading)  |
| SPI_MODE1 | 0 (Active High) | 1 (Sample on Trailing) |
| SPI_MODE2 | 1 (Active Low)  | 0 (Sample on Leading)  |
| SPI_MODE3 | 1 (Active Low)  | 1 (Sample on Trailing) |

Table 36: SPI modes

#### 6.14.1 Shared resources

The SPI slave shares registers and other resources with other peripherals that have the same ID as the SPI slave. Therefore, you must disable all peripherals that have the same ID as the SPI slave before the SPI slave can be configured and used.

Disabling a peripheral that has the same ID as the SPI slave will not reset any of the registers that are shared with the SPI slave. It is important to configure all relevant SPI slave registers explicitly to secure that it operates correctly.

The Instantiation table in Instantiation on page 25 shows which peripherals have the same ID as the SPI slave.

## 6.14.2 EasyDMA

The SPIS implements EasyDMA for accessing RAM without CPU involvement.

The SPIS peripheral implements the following EasyDMA channels:

| Channel | Туре   | Register Cluster |
|---------|--------|------------------|
| TXD     | READER | TXD              |
| RXD     | WRITER | RXD              |

Table 37: SPIS EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 46.

If RXD.MAXCNT is larger than TXD.MAXCNT, the remaining transmitted bytes will contain the value defined in the ORC register.

The END event indicates that EasyDMA has finished accessing the buffer in RAM.

## 6.14.3 SPI slave operation

SPI slave uses two memory pointers, RXD.PTR and TXD.PTR, that point to the RXD buffer (receive buffer) and TXD buffer (transmit buffer) respectively. Since these buffers are located in RAM, which can be accessed by both the SPI slave and the CPU, a hardware based semaphore mechanism is implemented to enable safe sharing.

Before the CPU can safely update the RXD.PTR and TXD.PTR pointers it must first acquire the SPI semaphore. The CPU can acquire the semaphore by triggering the ACQUIRE task and then receiving the ACQUIRED event. When the CPU has updated the RXD.PTR and TXD.PTR pointers the CPU must release the semaphore before the SPI slave will be able to acquire it.

The CPU releases the semaphore by triggering the RELEASE task, this is illustrated in SPI transaction when shortcut between END and ACQUIRE is enabled on page 308. Triggering the RELEASE task when the semaphore is not granted to the CPU will have no effect. See Semaphore operation on page 309 for more information



If the CPU is not able to reconfigure the TXD.PTR and RXD.PTR between granted transactions, the same TX data will be clocked out and the RX buffers will be overwritten. To prevent this from happening, the END\_ACQUIRE shortcut can be used. With this shortcut enabled the semaphore will be handed over to the CPU automatically after the granted transaction has completed, giving the CPU the ability to update the TXPTR and RXPTR between every granted transaction.

The ENDRX event is generated when the RX buffer has been filled.

The RXD.MAXCNT register specifies the maximum number of bytes the SPI slave can receive in one granted transaction. If the SPI slave receives more than RXD.MAXCNT number of bytes, an OVERFLOW will be indicated in the STATUS register and the incoming bytes will be discarded.

The TXD.MAXCNT parameter specifies the maximum number of bytes the SPI slave can transmit in one granted transaction. If the SPI slave is forced to transmit more than TXD.MAXCNT number of bytes, an OVERREAD will be indicated in the STATUS register and the ORC character will be clocked out.

The RXD.AMOUNT and TXD.AMOUNT registers are updated when a granted transaction is completed. The TXD.AMOUNT register indicates how many bytes were read from the TX buffer in the last transaction, that is, ORC (over-read) characters are not included in this number. Similarly, the RXD.AMOUNT register indicates how many bytes were written into the RX buffer in the last transaction.

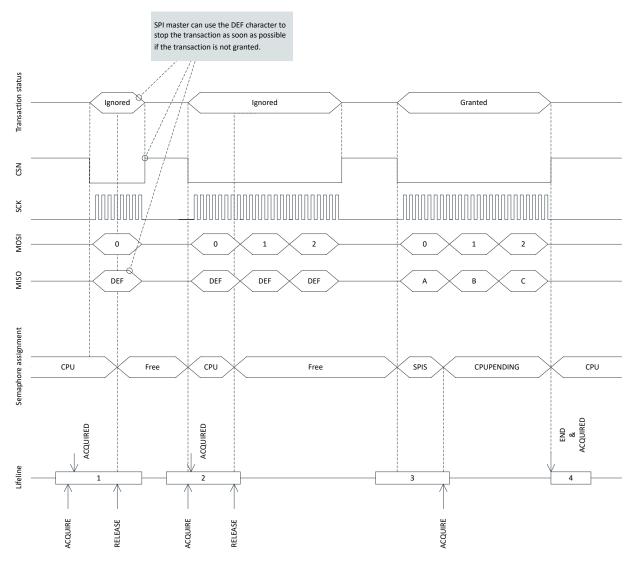



Figure 80: SPI transaction when shortcut between END and ACQUIRE is enabled



## 6.14.4 Semaphore operation

The semaphore is a mechanism implemented inside the SPI slave that prevents simultaneous access to the data buffers by the SPI slave and CPU.

The semaphore is by default assigned to the CPU after the SPI slave is enabled. No ACQUIRED event will be generated for this initial semaphore handover. An ACQUIRED event will be generated immediately if the ACQUIRE task is triggered while the semaphore is assigned to the CPU. The figure SPI semaphore FSM on page 309 illustrates the transitions between states in the semaphore based on the relevant tasks and events.

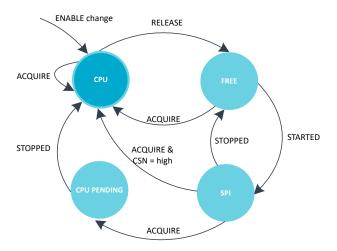



Figure 81: SPI semaphore FSM

**Note:** The semaphore mechanism does not, at any time, prevent the CPU from performing read or write access to the RXD.PTR register, the TXD.PTR registers, or the RAM that these pointers are pointing to. The semaphore is only telling when these can be updated by the CPU so that safe sharing is achieved.

The SPI slave will try to acquire the semaphore when STARTED event is detected, the event also indicates that CSN is currently low. If the SPI slave does not manage to acquire the semaphore at this point (i.e., it is under CPU's control), the transaction will be ignored. This means that all incoming data on MOSI will be discarded, and the DEF (default) character will be clocked out on the MISO line throughout the whole transaction. This will also be the case even if the semaphore is released by the CPU during the transaction. In case of a race condition where the CPU and the SPI slave try to acquire the semaphore at the same time, as illustrated in lifeline item 2 in figure SPI transaction when shortcut between END and ACQUIRE is enabled on page 308, the semaphore will be granted to the CPU.

If the SPI slave acquires the semaphore, the transaction will be granted. The incoming data on MOSI will be stored in the RXD buffer and the data in the TXD buffer will be clocked out on MISO.

When a granted transaction is completed and CSN goes high, the SPI slave will automatically release the semaphore and generate the END event.

As long as the semaphore is available, the SPI slave can be granted multiple transactions one after the other.

If the CPU tries to acquire the semaphore while it is assigned to the SPI slave, an immediate handover will not be granted. However, the semaphore will be handed over to the CPU as soon as the SPI slave has released the semaphore after the granted transaction is completed. If the END\_ACQUIRE shortcut is enabled and the CPU has triggered the ACQUIRE task during a granted transaction, only one ACQUIRE request will be served following the END event.



## 6.14.5 Pin configuration

The CSN, SCK, MOSI, and MISO signals associated with the SPI slave are mapped to physical pins according to the configuration specified in the PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers respectively. If the CONNECT field of any of these registers is set to Disconnected, the associated SPI slave signal will not be connected to any physical pins.

The PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used as long as the SPI slave is enabled, and retained only as long as the device is in System ON mode, see POWER — Power control on page 67 chapter for more information about power modes. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN\_CNF[n] register. PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO must only be configured when the SPI slave is disabled.

To secure correct behavior in the SPI slave, the pins used by the SPI slave must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 310 before enabling the SPI slave. This is to secure that the pins used by the SPI slave are driven correctly if the SPI slave itself is temporarily disabled, or if the device temporarily enters System OFF. This configuration must be retained in the GPIO for the selected I/Os as long as the SPI slave is to be recognized by an external SPI master.

The MISO line is set in high impedance as long as the SPI slave is not selected with CSN.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| SPI signal | SPI pin                   | Direction | Output value Comment                                        |
|------------|---------------------------|-----------|-------------------------------------------------------------|
| CSN        | As specified in PSEL.CSN  | Input     | Not applicable                                              |
| SCK        | As specified in PSEL.SCK  | Input     | Not applicable                                              |
| MOSI       | As specified in PSEL.MOSI | Input     | Not applicable                                              |
| MISO       | As specified in PSEL.MISO | Input     | Not applicable Emulates that the SPI slave is not selected. |

Table 38: GPIO configuration before enabling peripheral

# 6.14.6 Registers

#### **Instances**

| Instance   | Base address | TrustZone |     |      | Split access | Description  |  |  |  |  |  |
|------------|--------------|-----------|-----|------|--------------|--------------|--|--|--|--|--|
|            |              | Мар       | Att | DMA  |              |              |  |  |  |  |  |
| SPIS0 : S  | 0x50008000   | US        | NS  | SA   | No           | SPI slave 0  |  |  |  |  |  |
| SPISO: NS  | 0x40008000   | 03        | INS | SA   | NO           | SPI Slave U  |  |  |  |  |  |
| SPIS1: S   | 0x50009000   | US        | NS  | SA   | No           | SPI slave 1  |  |  |  |  |  |
| SPIS1: NS  | 0x40009000   | 03        | INS | SA   | NO           | SPI Slave 1  |  |  |  |  |  |
| SPIS2 : S  | 0x5000A000   | uc        | NC  | C.A. | N-           | CDI alaura 2 |  |  |  |  |  |
| SPIS2 : NS | 0x4000A000   | US        | NS  | SA   | No           | SPI slave 2  |  |  |  |  |  |
| SPIS3: S   | 0x5000B000   | uc        | NC  | C.A. | N-           | CDI alaura 2 |  |  |  |  |  |
| SPIS3 : NS | 0x4000B000   | US        | NS  | SA   | No           | SPI slave 3  |  |  |  |  |  |

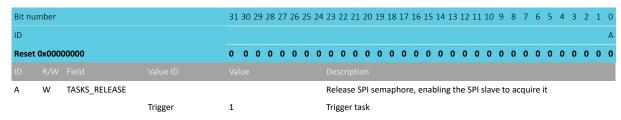
#### **Register overview**

| Register          | Offset | TZ | Description                                                 |
|-------------------|--------|----|-------------------------------------------------------------|
| TASKS_ACQUIRE     | 0x024  |    | Acquire SPI semaphore                                       |
| TASKS_RELEASE     | 0x028  |    | Release SPI semaphore, enabling the SPI slave to acquire it |
| SUBSCRIBE_ACQUIRE | 0x0A4  |    | Subscribe configuration for task ACQUIRE                    |



| Register          | Offset | TZ | Description                                                                 |
|-------------------|--------|----|-----------------------------------------------------------------------------|
| SUBSCRIBE_RELEASE | 0x0A8  |    | Subscribe configuration for task RELEASE                                    |
| EVENTS_END        | 0x104  |    | Granted transaction completed                                               |
| EVENTS_ENDRX      | 0x110  |    | End of RXD buffer reached                                                   |
| EVENTS_ACQUIRED   | 0x128  |    | Semaphore acquired                                                          |
| PUBLISH_END       | 0x184  |    | Publish configuration for event END                                         |
| PUBLISH_ENDRX     | 0x190  |    | Publish configuration for event ENDRX                                       |
| PUBLISH_ACQUIRED  | 0x1A8  |    | Publish configuration for event ACQUIRED                                    |
| SHORTS            | 0x200  |    | Shortcuts between local events and tasks                                    |
| INTENSET          | 0x304  |    | Enable interrupt                                                            |
| INTENCLR          | 0x308  |    | Disable interrupt                                                           |
| SEMSTAT           | 0x400  |    | Semaphore status register                                                   |
| STATUS            | 0x440  |    | Status from last transaction                                                |
| ENABLE            | 0x500  |    | Enable SPI slave                                                            |
| PSEL.SCK          | 0x508  |    | Pin select for SCK                                                          |
| PSEL.MISO         | 0x50C  |    | Pin select for MISO signal                                                  |
| PSEL.MOSI         | 0x510  |    | Pin select for MOSI signal                                                  |
| PSEL.CSN          | 0x514  |    | Pin select for CSN signal                                                   |
| RXD.PTR           | 0x534  |    | RXD data pointer                                                            |
| RXD.MAXCNT        | 0x538  |    | Maximum number of bytes in receive buffer                                   |
| RXD.AMOUNT        | 0x53C  |    | Number of bytes received in last granted transaction                        |
| RXD.LIST          | 0x540  |    | EasyDMA list type                                                           |
| TXD.PTR           | 0x544  |    | TXD data pointer                                                            |
| TXD.MAXCNT        | 0x548  |    | Maximum number of bytes in transmit buffer                                  |
| TXD.AMOUNT        | 0x54C  |    | Number of bytes transmitted in last granted transaction                     |
| TXD.LIST          | 0x550  |    | EasyDMA list type                                                           |
| CONFIG            | 0x554  |    | Configuration register                                                      |
| DEF               | 0x55C  |    | Default character. Character clocked out in case of an ignored transaction. |
| ORC               | 0x5C0  |    | Over-read character                                                         |

## 6.14.6.1 TASKS\_ACQUIRE


Address offset: 0x024 Acquire SPI semaphore

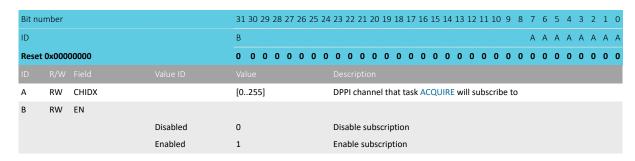
| Bit no | umber   |               |         | 31 | 30 2 | 29 2 | 8 2 | 7 20 | 6 25                  | 24 | - 23 | 22 | 21 2 | 20 1 | 9 1 | 8 17 | 16 | 15 | 14 | 13 1 | .2 1 | 1 1 | 0 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2 1 | 1 0 |
|--------|---------|---------------|---------|----|------|------|-----|------|-----------------------|----|------|----|------|------|-----|------|----|----|----|------|------|-----|-----|---|---|---|---|---|-----|-----|-----|
| ID     |         |               |         |    |      |      |     |      |                       |    |      |    |      |      |     |      |    |    |    |      |      |     |     |   |   |   |   |   |     |     | Α   |
| Rese   | t 0x000 | 00000         |         | 0  | 0    | 0 (  | 0 ( | 0    | 0                     | 0  | 0    | 0  | 0    | 0 (  | 0   | 0    | 0  | 0  | 0  | 0    | 0    | 0 ( | 0   | 0 | 0 | 0 | 0 | 0 | 0 ( | ) ( | 0 0 |
| ID     |         |               |         |    |      |      |     |      |                       |    |      |    |      |      |     |      |    |    |    |      |      |     |     |   |   |   |   |   |     |     |     |
| Α      | W       | TASKS_ACQUIRE |         |    |      |      |     |      | Acquire SPI semaphore |    |      |    |      |      |     |      |    |    |    |      |      |     |     |   |   |   |   |   |     |     |     |
|        |         |               | Trigger | 1  | 1    |      |     |      | Trigger task          |    |      |    |      |      |     |      |    |    |    |      |      |     |     |   |   |   |   |   |     |     |     |

# 6.14.6.2 TASKS\_RELEASE

Address offset: 0x028

Release SPI semaphore, enabling the SPI slave to acquire it

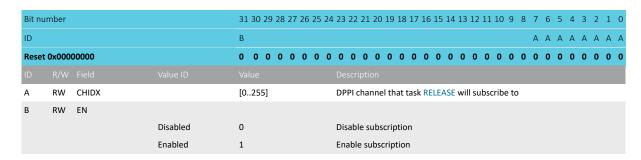







## 6.14.6.3 SUBSCRIBE\_ACQUIRE

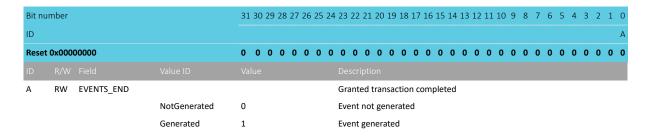
Address offset: 0x0A4


Subscribe configuration for task ACQUIRE



## 6.14.6.4 SUBSCRIBE\_RELEASE

Address offset: 0x0A8


Subscribe configuration for task RELEASE



## 6.14.6.5 EVENTS END

Address offset: 0x104

Granted transaction completed



## **6.14.6.6 EVENTS ENDRX**

Address offset: 0x110

End of RXD buffer reached



| Bit nun | mber   |              |              | 31 30 2 | 9 28 27 | ' 26 25 | 24 2 | 23 22 | 2 21 2 | 0 19  | 18 17  | 7 16 1 | 15 14 | 13 1 | 2 11 | 10 ! | 9 8 | 7 | 6 | 5 | 4 | 3 2 | 1 ( | ) |
|---------|--------|--------------|--------------|---------|---------|---------|------|-------|--------|-------|--------|--------|-------|------|------|------|-----|---|---|---|---|-----|-----|---|
| ID      |        |              |              |         |         |         |      |       |        |       |        |        |       |      |      |      |     |   |   |   |   |     | A   |   |
| Reset ( | 0x0000 | 00000        |              | 0 0 0   | 0 0     | 0 0     | 0 (  | 0 0   | 0 (    | 0 0   | 0 0    | 0      | 0 0   | 0 (  | 0    | 0    | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 ( | ) |
| ID      |        |              |              |         |         |         |      |       |        |       |        |        |       |      |      |      |     |   |   |   |   |     |     |   |
| Α       | RW     | EVENTS_ENDRX |              |         |         |         | Е    | nd o  | f RXD  | buff  | er rea | ched   |       |      |      |      |     |   |   |   |   |     |     |   |
|         |        |              | NotGenerated | 0       |         |         | E    | vent  | not g  | gener | ated   |        |       |      |      |      |     |   |   |   |   |     |     |   |
|         |        |              | Generated    | 1       |         |         | Е    | vent  | gene   | rated | i      |        |       |      |      |      |     |   |   |   |   |     |     |   |

# 6.14.6.7 EVENTS\_ACQUIRED

Address offset: 0x128 Semaphore acquired

| Bit nu | mber  |                 |              | 31 30 | 29 2 | 8 27 : | 26 25 | 5 24 | 23 2 | 22 21 | 1 20  | 19 3 | 18 1  | 7 16 | 15 | 14 1 | 13 12 | 2 11 | 10 | 9 8 | 3 7 | 6 | 5 | 4 | 3 2 | 1 | 0 |
|--------|-------|-----------------|--------------|-------|------|--------|-------|------|------|-------|-------|------|-------|------|----|------|-------|------|----|-----|-----|---|---|---|-----|---|---|
| ID     |       |                 |              |       |      |        |       |      |      |       |       |      |       |      |    |      |       |      |    |     |     |   |   |   |     |   | Α |
| Reset  | 0x000 | 00000           |              | 0 0   | 0 (  | 0      | 0 0   | 0    | 0    | 0 0   | 0     | 0    | 0 0   | 0    | 0  | 0    | 0 0   | 0    | 0  | 0 ( | 0   | 0 | 0 | 0 | 0 ( | 0 | 0 |
| ID     |       |                 |              |       |      |        |       |      |      |       |       |      |       |      |    |      |       |      |    |     |     |   |   |   |     |   |   |
| Α      | RW    | EVENTS_ACQUIRED |              |       |      |        |       |      | Sem  | aph   | ore a | acqu | iired |      |    |      |       |      |    |     |     |   |   |   |     |   |   |
|        |       |                 | NotGenerated | 0     |      |        |       |      | Ever | nt no | ot ge | nera | ated  |      |    |      |       |      |    |     |     |   |   |   |     |   |   |
|        |       |                 | Generated    | 1     |      |        |       |      | Ever | nt ge | enera | ited |       |      |    |      |       |      |    |     |     |   |   |   |     |   |   |

# 6.14.6.8 PUBLISH\_END

Address offset: 0x184

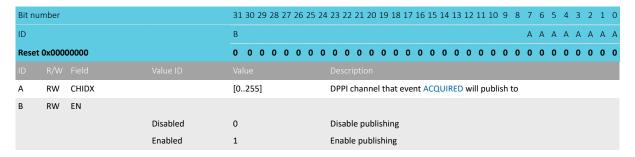
Publish configuration for event END

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event END will publish to                   |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

# 6.14.6.9 PUBLISH\_ENDRX

Address offset: 0x190

Publish configuration for event ENDRX


| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Rese   | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         | Description                                                     |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event ENDRX will publish to                   |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

## 6.14.6.10 PUBLISH\_ACQUIRED

Address offset: 0x1A8



## Publish configuration for event ACQUIRED



## 6.14.6.11 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

| Bit no | umber        |          | 31 30 29 28 27 | 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------------|----------|----------------|------------------------------------------------------------------------|
| ID     |              |          |                | А                                                                      |
| Rese   | t 0x0000000  |          | 0 0 0 0 0      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                |
| ID     |              |          |                |                                                                        |
| Α      | RW END_ACQUI | RE       |                | Shortcut between event END and task ACQUIRE                            |
|        |              | Disabled | 0              | Disable shortcut                                                       |
|        |              | Enabled  | 1              | Enable shortcut                                                        |

## 6.14.6.12 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber |          |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|----------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |          |          |                         | C B A                                                           |
| Reset  | 0x000 | 00000    |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |          |          |                         |                                                                 |
| Α      | RW    | END      |          |                         | Write '1' to enable interrupt for event END                     |
|        |       |          | Set      | 1                       | Enable                                                          |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW    | ENDRX    |          |                         | Write '1' to enable interrupt for event ENDRX                   |
|        |       |          | Set      | 1                       | Enable                                                          |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW    | ACQUIRED |          |                         | Write '1' to enable interrupt for event ACQUIRED                |
|        |       |          | Set      | 1                       | Enable                                                          |
|        |       |          | Disabled | 0                       | Read: Disabled                                                  |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                   |

#### 6.14.6.13 INTENCLR

Address offset: 0x308

Disable interrupt



| Bit nu | ımber |          |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|----------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |          |          |                         | C B A                                                         |
| Reset  | 0x000 | 00000    |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |          |          |                         | Description                                                   |
| Α      | RW    | END      |          |                         | Write '1' to disable interrupt for event END                  |
|        |       |          | Clear    | 1                       | Disable                                                       |
|        |       |          | Disabled | 0                       | Read: Disabled                                                |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                 |
| В      | RW    | ENDRX    |          |                         | Write '1' to disable interrupt for event ENDRX                |
|        |       |          | Clear    | 1                       | Disable                                                       |
|        |       |          | Disabled | 0                       | Read: Disabled                                                |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                 |
| С      | RW    | ACQUIRED |          |                         | Write '1' to disable interrupt for event ACQUIRED             |
|        |       |          | Clear    | 1                       | Disable                                                       |
|        |       |          | Disabled | 0                       | Read: Disabled                                                |
|        |       |          | Enabled  | 1                       | Read: Enabled                                                 |

## 6.14.6.14 SEMSTAT

Address offset: 0x400 Semaphore status register

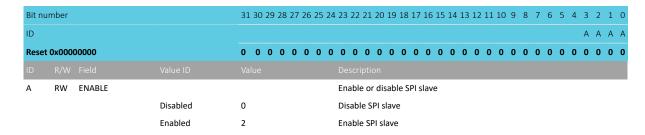
| Bit n | umber   |         |            | 31 30 29 28 27 26 2 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|---------|------------|---------------------|--------------------------------------------------------------------|
| ID    |         |         |            |                     | A A                                                                |
| Rese  | t 0x000 | 00001   |            | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |
| ID    |         |         |            |                     |                                                                    |
| Α     | R       | SEMSTAT |            |                     | Semaphore status                                                   |
|       |         |         | Free       | 0                   | Semaphore is free                                                  |
|       |         |         | CPU        | 1                   | Semaphore is assigned to CPU                                       |
|       |         |         | SPIS       | 2                   | Semaphore is assigned to SPI slave                                 |
|       |         |         | CPUPending | 3                   | Semaphore is assigned to SPI but a handover to the CPU is pending  |

## 6.14.6.15 STATUS

Address offset: 0x440

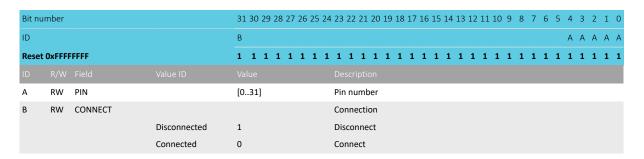
Status from last transaction

Note: Individual bits are cleared by writing a '1' to the bits that shall be cleared


| Bit nu | ımber   |          |            | 31 3 | 0 29 : | 28 27 | 7 26 | 25 2 | 4 23 | 3 22  | 21    | 20 1  | 19 18 | 8 17  | 16 3   | l5 1  | 4 13 | 12   | 11 : | 10 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 1 0 |
|--------|---------|----------|------------|------|--------|-------|------|------|------|-------|-------|-------|-------|-------|--------|-------|------|------|------|------|---|---|---|---|---|-----|-----|-----|
| ID     |         |          |            |      |        |       |      |      |      |       |       |       |       |       |        |       |      |      |      |      |   |   |   |   |   |     | E   | ВА  |
| Reset  | t 0x000 | 00000    |            | 0 (  | 0      | 0 0   | 0    | 0 0  | 0    | 0     | 0     | 0     | 0 0   | 0     | 0      | 0 0   | 0    | 0    | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 | 0 0 | ) ( | 0 0 |
| ID     |         |          |            |      |        |       |      |      |      |       |       |       |       |       |        |       |      |      |      |      |   |   |   |   |   |     |     |     |
| Α      | RW      | OVERREAD |            |      |        |       |      |      | TX   | (but  | ffer  | ove   | r-rea | ad de | etect  | ed,   | and  | prev | ent  | ed   |   |   |   |   |   |     |     |     |
|        |         |          | NotPresent | 0    |        |       |      |      | Re   | ad:   | err   | or no | ot pr | reser | nt     |       |      |      |      |      |   |   |   |   |   |     |     |     |
|        |         |          | Present    | 1    |        |       |      |      | Re   | ad:   | err   | or pr | rese  | nt    |        |       |      |      |      |      |   |   |   |   |   |     |     |     |
|        |         |          | Clear      | 1    |        |       |      |      | W    | rite: | : cle | ar e  | rror  | on v  | vritir | ng '1 | '    |      |      |      |   |   |   |   |   |     |     |     |
| В      | RW      | OVERFLOW |            |      |        |       |      |      | RX   | ( but | ffer  | ove   | rflov | v de  | tecte  | d, a  | nd p | reve | ente | d    |   |   |   |   |   |     |     |     |
|        |         |          | NotPresent | 0    |        |       |      |      | Re   | ad:   | err   | or no | ot pr | reser | nt     |       |      |      |      |      |   |   |   |   |   |     |     |     |
|        |         |          | Present    | 1    |        |       |      |      | Re   | ad:   | err   | or pr | rese  | nt    |        |       |      |      |      |      |   |   |   |   |   |     |     |     |
|        |         |          | Clear      | 1    |        |       |      |      | W    | rite: | : cle | ar e  | rror  | on v  | vritir | ng '1 |      |      |      |      |   |   |   |   |   |     |     |     |



#### 6.14.6.16 ENABLE


Address offset: 0x500

**Enable SPI slave** 



## 6.14.6.17 PSEL.SCK

Address offset: 0x508
Pin select for SCK



#### 6.14.6.18 PSEL.MISO

Address offset: 0x50C

Pin select for MISO signal

| Bit nu | umber    |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|----------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |          |         |              | В                       | ААААА                                                         |
| Rese   | t OxFFFI | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |          |         |              |                         | Description                                                   |
| Α      | RW       | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW       | CONNECT |              |                         | Connection                                                    |
|        |          |         |              |                         |                                                               |
|        |          |         | Disconnected | 1                       | Disconnect                                                    |

#### 6.14.6.19 PSEL.MOSI

Address offset: 0x510

Pin select for MOSI signal



| Bit nu | mber   |         |              | 31 3 | 0 29 :     | 28 27 | 7 26 | 25 2 | 4 23 | 3 22 | 21 20  | 0 19 | 18 | 17 | 16 1 | 5 14 | 1 13 | 12 | 11 1 | .0 ! | 9 8 | 7 | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|--------|--------|---------|--------------|------|------------|-------|------|------|------|------|--------|------|----|----|------|------|------|----|------|------|-----|---|---|---|---|-----|-----|---|
| ID     |        |         |              | В    |            |       |      |      |      |      |        |      |    |    |      |      |      |    |      |      |     |   |   |   | Α | A A | A   | Α |
| Reset  | 0xFFFF | FFFF    |              | 1 1  | l <b>1</b> | 1 1   | 1    | 1    | 1 1  | 1    | 1 1    | . 1  | 1  | 1  | 1 :  | 1 1  | 1    | 1  | 1    | 1    | L 1 | 1 | 1 | 1 | 1 | 1 1 | 1   | 1 |
| ID     |        |         |              |      |            |       |      |      |      |      |        |      |    |    |      |      |      |    |      |      |     |   |   |   |   |     |     |   |
| Α      | RW     | PIN     |              | [03  | 1]         |       |      |      | Pii  | n nı | ımber  | r    |    |    |      |      |      |    |      |      |     |   |   |   |   |     |     |   |
| В      | RW     | CONNECT |              |      |            |       |      |      | Co   | onne | ection |      |    |    |      |      |      |    |      |      |     |   |   |   |   |     |     |   |
|        |        |         | Disconnected | 1    |            |       |      |      | Di   | scoi | nnect  |      |    |    |      |      |      |    |      |      |     |   |   |   |   |     |     |   |
|        |        |         | Connected    | 0    |            |       |      |      | Co   | onne | ect    |      |    |    |      |      |      |    |      |      |     |   |   |   |   |     |     |   |

## 6.14.6.20 PSEL.CSN

Address offset: 0x514

Pin select for CSN signal

| Bit nu | ımber  |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                          |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         |                                                               |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

## 6.14.6.21 RXD.PTR

Address offset: 0x534

RXD data pointer

| Bit nu | mber  |       |  | 31 | 30 2 | 29 2 | 8 2 | 7 2 | 6 25 | 24 | 23 | 22  | 21  | 20 : | 19 1 | 8 17 | 16 | 15 | 14 | 13 1 | 2 1 | 1 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2 : | 1 0        |
|--------|-------|-------|--|----|------|------|-----|-----|------|----|----|-----|-----|------|------|------|----|----|----|------|-----|------|---|---|---|---|---|---|-----|-----|------------|
| ID     |       |       |  | А  | Α.   | Α,   | А А | . 4 | A    | Α  | Α  | Α   | Α   | Α    | A A  | A A  | Α  | Α  | Α  | A A  | A A | A    | Α | Α | Α | Α | Α | Α | A   | A A | <b>А</b> А |
| Reset  | 0x000 | 00000 |  | 0  | 0    | 0    | 0 0 | 0   | 0    | 0  | 0  | 0   | 0   | 0    | 0 (  | 0    | 0  | 0  | 0  | 0 (  | ) ( | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 ( | 0 0        |
| ID     |       |       |  |    |      |      |     |     |      |    |    |     |     |      |      |      |    |    |    |      |     |      |   |   |   |   |   |   |     |     |            |
| Α      | RW    | PTR   |  |    |      |      |     |     |      |    | RX | D d | ata | poi  | nter |      |    |    |    |      |     |      |   |   |   |   |   |   |     |     |            |

See the Memory chapter for details about which memories are available for EasyDMA.

## 6.14.6.22 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer

| Bit nu | ımber        | 31 30 29 28 27 26 25 24 23 22 21 | 20 19 18 17 16 15 14 13   | 3 12 11 10 9 8 | 3 7 6 | 5 4 | 3 2 | 1 0 |
|--------|--------------|----------------------------------|---------------------------|----------------|-------|-----|-----|-----|
| ID     |              |                                  |                           | AAAAA          | A A A | A A | A A | A A |
| Reset  | t 0x00000000 | 0 0 0 0 0 0 0 0 0 0 0            | 0 0 0 0 0 0 0 0           | 00000          | 0 0   | 0 0 | 0 0 | 0 0 |
| ID     |              |                                  |                           |                |       |     |     |     |
| Α      | RW MAXCNT    | [10x1FFF] Maximun                | n number of bytes in rece | eive buffer    |       |     |     |     |

## 6.14.6.23 RXD.AMOUNT

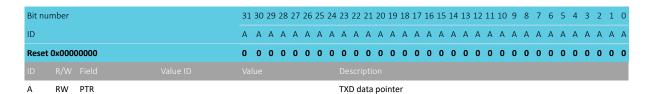
Address offset: 0x53C

Number of bytes received in last granted transaction



|                                                                                              | A R AMOUNT       | [10x1FFF]              | Number of bytes received in the last granted transaction      |
|----------------------------------------------------------------------------------------------|------------------|------------------------|---------------------------------------------------------------|
| ID A A A A A A A A A A A A A A A A A A A                                                     |                  |                        |                                                               |
|                                                                                              | Reset 0x00000000 | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| 51 30 25 20 27 20 25 24 25 22 21 20 15 10 17 10 15 14 15 12 11 10 5 0 7 0 5 4 5 2            | D                |                        | A A A A A A A A A A A A A A A A A A A                         |
| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 | Bit number       | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 |

#### 6.14.6.24 RXD.LIST

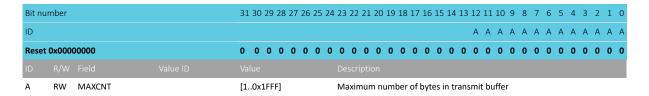

Address offset: 0x540 EasyDMA list type

| Bit nu | umber   |       |           | 31 30 | 29 2 | 8 27 | 26 25 | 24 | 23 2   | 2 21  | 20 1   | 19 1 | 8 17 | 16 1 | .5 14 | 13 1 | .2 11 | 10 | 9 | 8 | 7 | 6 ! | 5 4 | 4 3 | 2 | 1 0 |
|--------|---------|-------|-----------|-------|------|------|-------|----|--------|-------|--------|------|------|------|-------|------|-------|----|---|---|---|-----|-----|-----|---|-----|
| ID     |         |       |           |       |      |      |       |    |        |       |        |      |      |      |       |      |       |    |   |   |   |     |     |     |   | A A |
| Rese   | t 0x000 | 00000 |           | 0 0   | 0 (  | 0 0  | 0 0   | 0  | 0 (    | 0     | 0      | 0 (  | 0 0  | 0    | 0 0   | 0    | 0 0   | 0  | 0 | 0 | 0 | 0 ( | 0 ( | 0 0 | 0 | 0 0 |
| ID     |         |       |           |       |      |      |       |    | Desc   |       |        |      |      |      |       |      |       |    |   |   |   |     |     |     |   |     |
| Α      | RW      | LIST  |           |       |      |      |       |    | List t | ype   |        |      |      |      |       |      |       |    |   |   |   |     |     |     |   |     |
|        |         |       | Disabled  | 0     |      |      |       |    | Disa   | ble E | asyD   | MA   | list |      |       |      |       |    |   |   |   |     |     |     |   |     |
|        |         |       | ArrayList | 1     |      |      |       |    | Use    | array | / list |      |      |      |       |      |       |    |   |   |   |     |     |     |   |     |

#### 6.14.6.25 TXD.PTR

Address offset: 0x544

TXD data pointer




See the Memory chapter for details about which memories are available for EasyDMA.

#### 6.14.6.26 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer



#### 6.14.6.27 TXD.AMOUNT

Address offset: 0x54C

4512\_092 v1.1

Number of bytes transmitted in last granted transaction



| Bit number                                                                                       |
|--------------------------------------------------------------------------------------------------|
| ID A A A A A A A A A A A A A A A A A A A                                                         |
|                                                                                                  |
| Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|                                                                                                  |

## 6.14.6.28 TXD.LIST

Address offset: 0x550 EasyDMA list type

| Bit ni | umber        |           | 31 30 29 28 27 2 | 6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------------|-----------|------------------|-----------------------------------------------------------------------|
| ID     |              |           |                  | A A                                                                   |
| Rese   | t 0x00000000 |           | 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| ID     |              |           |                  |                                                                       |
| Α      | RW LIST      |           |                  | List type                                                             |
|        |              | Disabled  | 0                | Disable EasyDMA list                                                  |
|        |              | ArrayList | 1                | Use array list                                                        |

# 6.14.6.29 CONFIG

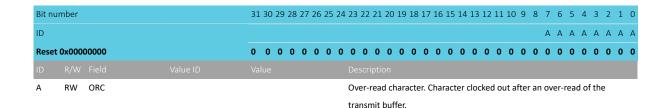
Address offset: 0x554 Configuration register

| Bit nu | ımber    |       |            | 31 30 29 28 27 26 25 24                  | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0     |  |  |  |  |  |  |  |  |
|--------|----------|-------|------------|------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ID     |          |       |            |                                          | СВА                                                                 |  |  |  |  |  |  |  |  |
| Reset  | 0x0000   | 00000 |            | 0 0 0 0 0 0 0 0                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |  |  |  |  |  |  |  |  |
| ID     |          |       |            |                                          | Description                                                         |  |  |  |  |  |  |  |  |
| Α      | RW       | ORDER |            |                                          | Bit order                                                           |  |  |  |  |  |  |  |  |
|        | MsbFirst |       |            | 0 Most significant bit shifted out first |                                                                     |  |  |  |  |  |  |  |  |
|        |          |       | LsbFirst   | 1                                        | Least significant bit shifted out first                             |  |  |  |  |  |  |  |  |
| В      | RW       | СРНА  |            |                                          | Serial clock (SCK) phase                                            |  |  |  |  |  |  |  |  |
|        |          |       | Leading    | 0                                        | Sample on leading edge of clock, shift serial data on trailing edge |  |  |  |  |  |  |  |  |
|        |          |       | Trailing   | 1                                        | Sample on trailing edge of clock, shift serial data on leading edge |  |  |  |  |  |  |  |  |
| С      | RW       | CPOL  |            |                                          | Serial clock (SCK) polarity                                         |  |  |  |  |  |  |  |  |
|        |          |       | ActiveHigh | 0                                        | Active high                                                         |  |  |  |  |  |  |  |  |
|        |          |       | ActiveLow  | 1                                        | Active low                                                          |  |  |  |  |  |  |  |  |

## 6.14.6.30 DEF

Address offset: 0x55C

Default character. Character clocked out in case of an ignored transaction.


| Bit nu | umber        | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 | 4 13 12 11 10 9 8 7 6 5 4 3 2 1 0            |
|--------|--------------|-------------------------------------------------------|----------------------------------------------|
| ID     |              |                                                       | A A A A A A A                                |
| Reset  | t 0x00000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  |
| ID     |              |                                                       |                                              |
| Α      | RW DEF       | Default character. Character clo                      | ocked out in case of an ignored transaction. |

## 6.14.6.31 ORC

Address offset: 0x5C0



#### Over-read character



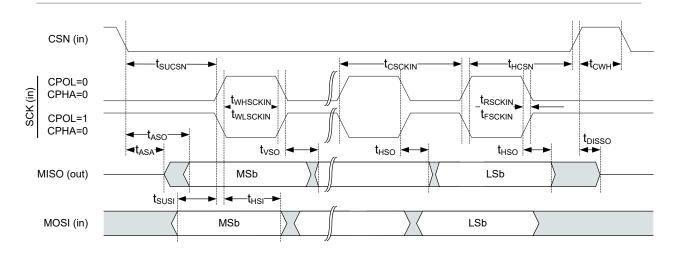
# 6.14.7 Electrical specification

## 6.14.7.1 SPIS slave interface electrical specifications

| Symbol                  | Description                                             | Min. | Тур.  | Max.            | Units |
|-------------------------|---------------------------------------------------------|------|-------|-----------------|-------|
| f <sub>SPIS</sub>       | Bit rates for SPIS <sup>21</sup>                        |      |       | 8 <sup>22</sup> | Mbps  |
| t <sub>SPIS,START</sub> | Time from RELEASE task to receive/transmit (CSN active) |      | 0.125 |                 | μs    |

## 6.14.7.2 Serial Peripheral Interface Slave (SPIS) timing specifications

| Symbol                    | Description                       | Min.             | Тур. | Max. | Units |
|---------------------------|-----------------------------------|------------------|------|------|-------|
| t <sub>SPIS,CSCKIN</sub>  | SCK input period                  | 125              |      |      | ns    |
| t <sub>SPIS,RFSCKIN</sub> | SCK input rise/fall time          |                  |      | 30   | ns    |
| t <sub>SPIS,WHSCKIN</sub> | SCK input high time               | 30               |      |      | ns    |
| t <sub>SPIS,WLSCKIN</sub> | SCK input low time                | 30               |      |      | ns    |
| t <sub>SPIS,SUCSN</sub>   | CSN to CLK setup time             | 1000             |      |      | ns    |
| t <sub>SPIS,HCSN</sub>    | CLK to CSN hold time              | 2000             |      |      | ns    |
| t <sub>SPIS,ASA</sub>     | CSN to MISO driven                | 0                |      |      | ns    |
| t <sub>SPIS,ASO</sub>     | CSN to MISO valid <sup>a</sup>    |                  |      | 1000 | ns    |
| t <sub>SPIS,DISSO</sub>   | CSN to MISO disabled <sup>a</sup> |                  |      | 68   | ns    |
| t <sub>SPIS,CWH</sub>     | CSN inactive time                 | 300              |      |      | ns    |
| t <sub>SPIS,VSO</sub>     | CLK edge to MISO valid            |                  |      | 59   | ns    |
| t <sub>SPIS,HSO</sub>     | MISO hold time after CLK edge     | 20 <sup>23</sup> |      |      | ns    |
| t <sub>SPIS,SUSI</sub>    | MOSI to CLK edge setup time       | 19               |      |      | ns    |
| t <sub>SPIS,HSI</sub>     | CLK edge to MOSI hold time        | 18               |      |      | ns    |




High bit rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

The actual maximum data rate depends on the master's CLK to MISO and MOSI setup and hold timings.

<sup>&</sup>lt;sup>a</sup> At 25pF load, including GPIO capacitance, see GPIO spec.

This is to ensure compatibility to SPI masters sampling MISO on the same edge as MOSI is output



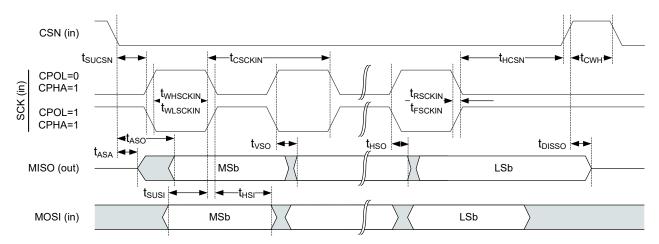



Figure 82: SPIS timing diagram

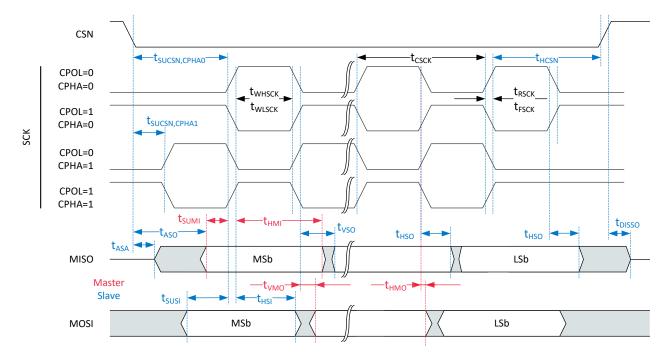



Figure 83: Common SPIM and SPIS timing diagram



# 6.15 SPU — System protection unit

SPU is the central point in the system to control access to memories, peripherals and other resources.

Listed here are the main features of the SPU:

- ARM TrustZone support, allowing definition of secure, non-secure and non-secure callable memory regions
- Extended ARMTrustZone, protecting memory regions and peripherals from non-CPU devices like EasyDMA transfer
- Pin access protection, preventing non-secure code and peripherals from accessing secure pin resources
- DPPI access protection, realized by preventing non-secure code and peripherals to publish from or subscribe to secured DPPI channels
- External domain access protection, controlling access rights from other MCUs

## 6.15.1 General concepts

SPU provides a register interface to control the various internal logic blocks that monitor access to memory-mapped slave devices (RAM, flash, peripherals, etc) and other resources (device pins, DPPI channels, etc).

For memory-mapped devices like RAM, flash and peripherals, the internal logic checks the address and attributes (e.g. read, write, execute, secure) of the incoming transfer to block it if necessary. Whether a secure resource can be accessed by a given master is defined:

#### For a CPU-type master

By the security state of the CPU and the security state reported by the SPU, for the address in the bus transfer

#### For a non-CPU master

By the security attribute of the master that initiates the transfer, defined by a SPU register The Simplified view of the protection of RAM, flash and peripherals using SPU on page 322 shows a simplified view of the SPU registers controlling several internal modules.

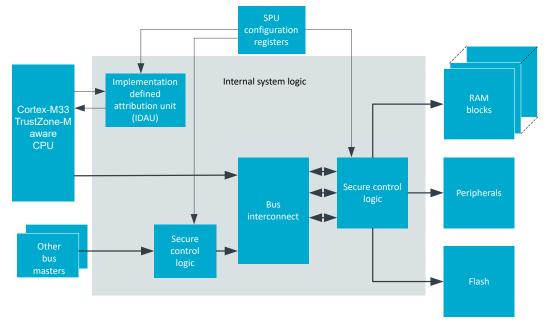



Figure 84: Simplified view of the protection of RAM, flash and peripherals using SPU

The protection logic implements a read-as-zero/write-ignore (RAZ/WI) policy:



- A blocked read operation will always return a zero value on the bus, preventing information leak
- A write operation to a forbidden region or peripheral will be ignored

An error is reported through dedicated error signals. For security state violations from an M33 master this will be a SecureFault exception, for other violations this will be an SPU event. The SPU event can be configured to generate an interrupt towards the CPU.

Other resources like pins and DPPI channels are protected by comparing the security attributes of the protected resource with the security attribute of the peripheral that wants to access it. The SPU is the only place where those security attributes can be configured.

## 6.15.1.1 Special considerations for ARM TrustZone for Cortex-M enabled system

For a ARM TrustZone for Cortex-M enabled CPU, the SPU also controls custom logic.

Custom logic is shown as the implementation defined attribution unit (IDAU) in figure Simplified view of the protection of RAM, flash and peripherals using SPU on page 322. Full support is provided for:

- ARM TrustZone for Cortex-M related instructions, like test target (TT) for reporting the security attributes of a region
- Non-secure callable (NSC) regions, to implement secure entry points from non-secure code

The SPU provides the necessary registers to configure the security attributes for memory regions and peripherals. However, as a requirement to use the SPU, the secure attribution unit (SAU) needs to be disabled and all memory set as non-secure in the ARM core. This will allow the SPU to control the IDAU and set the security attribution of all addresses as originally intended.

## 6.15.2 Flash access control

The flash memory space is divided in regions, each of them with configurable permissions settings.

The flash memory space is divided into 32 regions of 32 KiB.

For each region, four different types of permissions can be configured:

#### Read

Allows data read access to the region. Note that code fetch from this region is not controlled by the read permission but by the execute permission described below.

#### Write

Allows write or page erase access to the region

#### **Execute**

Allows code fetch from this region, even if data read is disabled

#### Secure

Allows only bus accesses with the security attribute set to access the region

Permissions can be set independently. For example, it is possible to configure a flash region to be accessible only through secure transfer, being read-only (no write allowed) and non-executable (no code fetch allowed). For each region, permissions can be set and then locked by using the FLASHREGION[n].PERM.LOCK bit, to prevent subsequent modifications.

Note that the debugger is able to step through execute-protected memory regions.

The following figure shows the flash memory space and the divided regions:



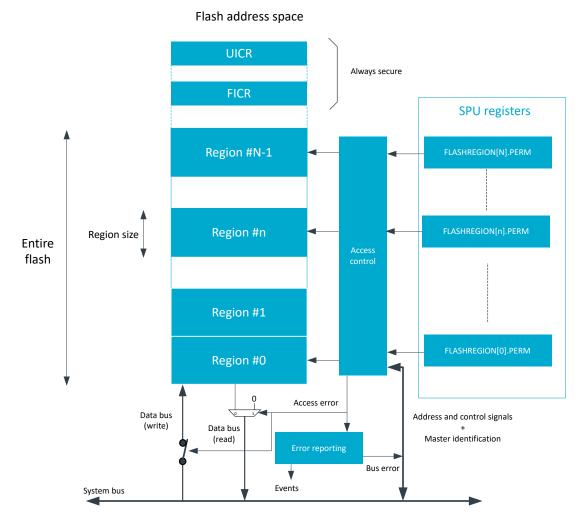



Figure 85: Definition of the N=32 regions, each of 32 KiB, in the flash memory space

## 6.15.2.1 Non-secure callable (NSC) region definition in flash

The SPU provides support for the definition of non-secure callable (NSC) sub-regions to allow non-secure to secure function calls.

A non-secure callable sub-region can only exist within an existing secure region and its definition is done using two registers:

- FLASHNSC[n].REGION, used to select the secure region that will contain the NSC sub-region
- FLASHNSC[n].SIZE, used to define the size of the NSC sub-region within the secure region

The NSC sub-region will be defined from the highest address in that region, going downwards. Figure below illustrates the NSC sub-regions and the registers used for their definition:

NOPDIC

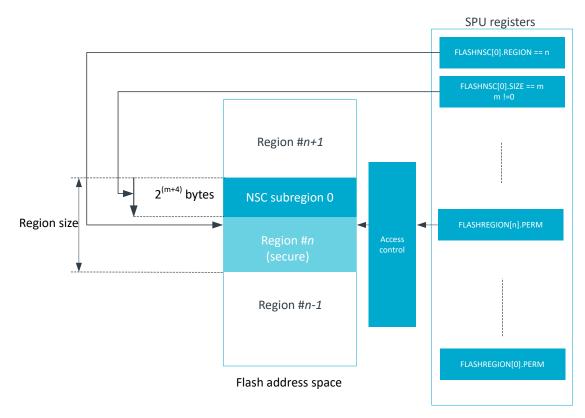



Figure 86: Non-secure callable region definition in the flash memory space

The NSC sub-region will only be defined if:

- FLASHNSC[i].SIZE value is non zero
- FLASHNSC[i].REGION defines a secure region

If FLASHNSC[i].REGION and FLASHNSC[j].REGION have the same value, there is only one sub-region defined as NSC, with the size given by the maximum of FLASHNSC[i].SIZE and FLASHNSC[j].SIZE.

If FLASHNSC[i].REGION defines a non-secure region, then there is no non-secure callable region defined and the selected region stays non-secure.

## 6.15.2.2 Flash access error reporting

The SPU and the logic controlled by it will respond with a certain behavior once an access violation is detected.

The following will happen once the logic controlled by the SPU detects an access violation on one of the flash ports:

- The faulty transfer will be blocked
- In case of a read transfer, the bus will be driven to zero
- Feedback will be sent to the master through specific bus error signals, if this is supported by the
  master. Moreover, the SPU will receive an event that can optionally trigger an interrupt towards the
  CPU.
- SecureFault exception will be triggered if security violation is detected for access from Cortex-M33
- BusFault exception will be triggered when read/write/execute protection violation is detected for Cortex-M33
- FLASHACCERR event will be triggered if any access violations are detected for all master types except for Cortex-M33 security violation

The following table summarizes the SPU behavior based on the type of initiator and access violation:

NORDIC

| Master type   | Security violation        | Read/Write/Execute protection violation |
|---------------|---------------------------|-----------------------------------------|
| Cortex-M33    | SecureFault exception     | BusFault exception, FLASHACCERR event   |
| EasyDMA       | RAZ/WI, FLASHACCERR event | RAZ/WI, FLASHACCERR event               |
| Other masters | RAZ/WI, FLASHACCERR event | RAZ/WI, FLASHACCERR event               |

Table 39: Error reporting for flash access errors

For a Cortex-M33 master, the SecureFault exception will take precedence over the BusFault exception if a security violation occurs simultaneously with another type of violation.

## 6.15.2.3 UICR and FICR protections

The user information configuration registers (UICR) and factory information configuration registers (FICR) are always considered as secure. FICR registers are read-only. UICR registers can be read and written by secure code only.

Writing new values to user information configuration registers must follow the procedure described in NVMC — Non-volatile memory controller on page 29. Code execution from FICR and UICR address spaces will always be reported as access violation, an exception to this rule applies during a debug session.

## 6.15.3 RAM access control

The RAM memory space is divided in regions, each of them with configurable permissions settings.

The RAM memory space is divided into 32 regions of 8 KiB.

For each region, four different types of permissions can be configured:

#### Read

Allows data read access to the region. Code fetch from this region is not controlled by the read permission but by the execute permission described below.

#### Write

Allows write access to the region

#### **Execute**

Allows code fetch from this region

#### Secure

Allows only bus accesses with the security attribute set to access the region

Permissions can be set independently. For example, it is possible to configure a RAM region to be accessible only through secure transfer, being read-only (no write allowed) and non-executable (no code fetch allowed). For each region, permissions can be set and then locked to prevent subsequent modifications by using the RAMREGION[n].PERM.LOCK bit.

The following figure shows the RAM memory space and the devided regions:



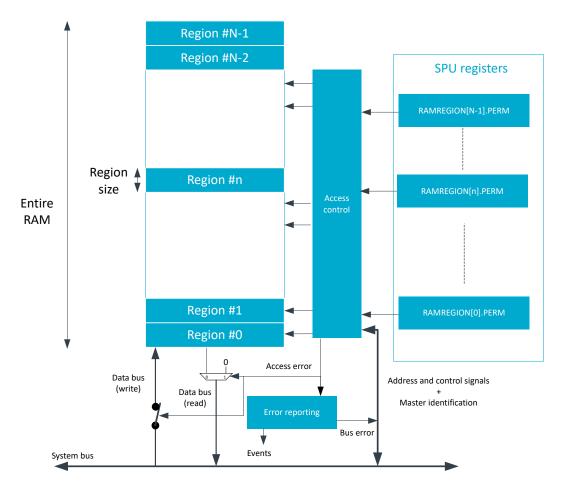



Figure 87: Definition of the N=32 regions, each of 8 KiB, in the RAM memory space

## 6.15.3.1 Non-secure callable (NSC) region definition in RAM

The SPU provides support for the definition of non-secure callable (NSC) sub-regions to allow non-secure to secure function calls.

A non-secure callable sub-region can only exist within an existing secure region and its definition is done using two registers:

- RAMNSC[n].REGION, used to select the secure region that will contain the NSC sub-region
- RAMNSC[n].SIZE, used to define the size of the NSC sub-region within the secure region

The NSC sub-region will be defined from the highest address in that region, going downwards. Figure below illustrates the NSC sub-regions and the registers used for their definition:



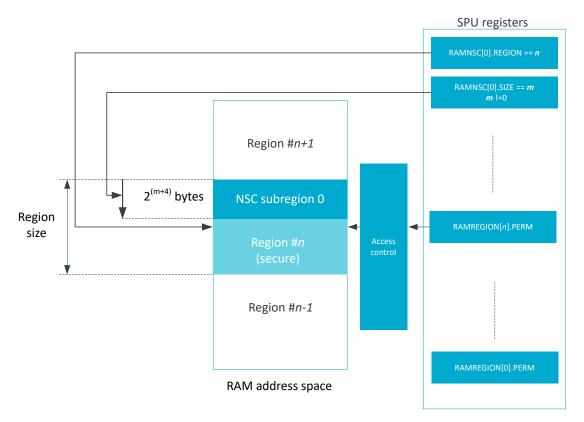



Figure 88: Non-secure callable region definition in the RAM memory space

The NSC sub-region will only be defined if:

- RAMNSC[i].SIZE value is non zero
- RAMNSC[i].REGION defines a secure region

If RAMNSC[i].REGION and RAMNSC[j].REGION have the same value, there is only one sub-region defined as NSC, with the size given by the maximum of RAMNSC[i].SIZE and RAMNSC[j].SIZE.

If RAMNSC[i].REGION defines a non-secure region, then there is no non-secure callable region defined and the selected region stays non-secure.

#### 6.15.3.2 RAM access error reporting

The SPU and the logic controlled by it will respond with a certain behavior once an access violation is detected.

The following will happen once the logic controlled by the SPU detects an access violation on one of the RAM ports:

- · The faulty transfer will be blocked
- In case of a read transfer, the bus will be driven to zero
- Feedback will be sent to the master through specific bus error signals, if this is supported by the master
- · SecureFault exception will be triggered if security violation is detected for access from Cortex-M33
- BusFault exception will be triggered when read/write/execute protection violation is detected for Cortex-M33. The SPU will also generate an event that can optionally trigger an interrupt towards the CPU.
- RAMACCERR event will be triggered if any access violations are detected for all master types but for Cortex-M33 security violation

The following table summarizes the SPU behavior based on the type of initiator and access violation:



| Master type   | Security violation      | Read/Write/Execute protection violation |
|---------------|-------------------------|-----------------------------------------|
| Cortex-M33    | SecureFault exception   | BusFault exception, RAMACCERR event     |
| EasyDMA       | RAZ/WI, RAMACCERR event | RAZ/WI, RAMACCERR event                 |
| Other masters | RAZ/WI, RAMACCERR event | RAZ/WI, RAMACCERR event                 |

Table 40: Error reporting for RAM access errors

For a Cortex-M33 master, the SecureFault exception will take precedence over the BusFault exception if a security violation occurs simultaneously with another type of violation.

# 6.15.4 Peripheral access control

Access controls are defined by the characteristics of the peripheral.

Peripherals can have their security attribute set as:

#### Always secure

For a peripheral related to system control

#### Always non-secure

For some general-purpose peripherals

#### Configurable

For general-purpose peripherals that may be configured for secure only access

The full list of peripherals and their corresponding security attributes can be found in Memory map on page 23. For each peripheral with ID n, PERIPHID[n]. PERM will show whether the security attribute for this peripheral is configurable or not.

If not hardcoded, the security attribute can configured using the PERIPHID[id].PERM.

At reset, all user-selectable and split security peripherals are set to be secure, with secure DMA where present.

Secure code can access both secure peripherals and non-secure peripherals.

#### 6.15.4.1 Peripherals with split security

Peripherals with split security are defined to handle use-cases when both secure and non-secure code needs to control the same resource.

When peripherals with split security have their security attribute set to non-secure, access to specific registers and bitfields within some registers is dependent on the security attribute of the bus transfer. For example, some registers will not be accessible for a non-secure transfer.

When peripherals with split security have their security attribute set to secure, then only secure transfers can access their registers.

See Instantiation on page 25 for an overview of split security peripherals. Respective peripheral chapters explain the specific security behavior of each peripheral.

## 6.15.4.2 Peripheral address mapping

Peripherals that have non-secure security mapping have their address starting with 0x4XXX\_XXXX. Peripherals that have secure security mapping have their address starting with 0x5XXX\_XXXX.

Peripherals with a user-selectable security mapping are available at an address starting with:

- 0x4XXX XXXX, if the peripheral security attribute is set to non-secure
- 0x5XXX\_XXXX, if the peripheral security attribute is set to secure

NORDIC\*
SEMICONDUCTOR

**Note:** Accesses to the 0x4XXX\_XXXX address range from secure or non-secure code for a peripheral marked as secure will result in a bus-error.

Secure code accessing the 0x5XXX\_XXXX address range of a peripheral marked as non-secure will also result in a bus-error.

Peripherals with a split security mapping are available at an address starting with:

- 0x4XXX\_XXXX for non-secure access and 0x5XXX\_XXXX for secure access, if the peripheral security attribute is set to non-secure
  - Secure registers in the 0x4XXX\_XXXX range are not visible for secure or non-secure code, and an attempt to access such a register will result in write-ignore, read-as-zero behavior
  - Secure code can access both non-secure and secure registers in the 0x5XXX XXXX range
- 0x5XXX\_XXXX, if the peripheral security attribute is set to secure

Any attempt to access the 0x5000\_0000-0x5FFF\_FFFF address range from non-secure code will be ignored and generate a SecureFault exception.

The table below illustrates the address mapping for the three peripheral types, in all possible configurations

| Security-features and configuration                  | Is mapped at 0x4XXX_XXXX?     | Is mapped at 0x5XXX_XXXX? |
|------------------------------------------------------|-------------------------------|---------------------------|
| Secure peripheral                                    | No                            | Yes                       |
| Non-secure peripheral                                | Yes                           | No                        |
| Split-security peripheral, with attribute=secure     | No                            | Yes                       |
| Split-security peripheral, with attribute=non-secure | Yes, restricted functionality | Yes                       |

Table 41: Peripheral's address mapping in relation to its security-features and configuration

#### 6.15.4.3 Special considerations for peripherals with DMA master

Peripherals containing a DMA master can be configured so the security attribute of the DMA transfers is different from the security attribute of the peripheral itself. This allows a secure peripheral to do non-secure data transfers to or from the system memories.

The following conditions must be met:

- The DMA field of PERIPHID[n].PERM.SECURITYMAPPING should read as "SeparateAttribute"
- The peripheral itself should be secure (PERIPHID[n].PERM.SECATTR == 1)

Then it is possible to select the security attribute of the DMA transfers using the field DMASEC (PERIPHID[n].PERM.DMASEC == Secure and PERIPHID[n].PERM.DMASEC == NonSecure) in PERIPHID[n].PERM.

## 6.15.4.4 Peripheral access error reporting

Peripherals send error reports once access violation is detected.

The following will happen if the logic controlled by the SPU detects an access violation on one of the peripherals:

- The faulty transfer will be blocked
- In case of a read transfer, the bus will be driven to zero
- Feedback is sent to the master through specific bus error signals, if this is supported by the master. If the master is a processor supporting ARM TrustZone for Cortex-M, a SecureFault exception will be generated for security related errors.
- The PERIPHACCERR event will be triggered



#### 6.15.5 Pin access control

Access to device pins can be controlled by the SPU. A pin can be declared as secure so that only secure peripherals or secure code can access it. Pins declared as non-secure can be accessed by both secure and non-secure peripherals or code.

The security attribute of each pin can be individually configured in SPU's GPIOPORT[n].PERM register. When the secure attribute is set for a pin, only peripherals that have the secure attribute set will be able to read the value of the pin or change it.

Peripherals can select the pin(s) they need access to through their PSEL register(s). If a peripheral has its attribute set to non-secure, but one of its PSEL registers selects a pin with the attribute set to secure, the SPU controlled logic will ensure that the pin selection is not propagated. In addition, the pin value will always be read as zero, to prevent a non-secure peripheral from obtaining a value from a secure pin. Whereas access to other pins with attribute set as non-secure will not be blocked.

Pins can be assigned to other domains than the application domain by changing the MCUSEL value in the GPIO PIN\_CNF[n] register. Domains that do not have a pin assigned to them can neither control that pin nor read its status. Any pin configuration set in a domain that doesn't have ownership of that pin will not take effect until the MCUSEL is updated to assign that pin to the domain. Within each domain, pin access is controlled by that domain's local security configuration and peripheral PSEL registers. This is illustrated in the following figure:

**Note:** The SPU setting will still count when the APP domain accesses its local GPIO peripheral, as local registers are still writable even though MCUSEL is set to a different domain. Any changes in the APP GPIO peripheral done to a GPIO controlled by another domain will not affect the GPIO pad until MCUSEL is changed to APP.

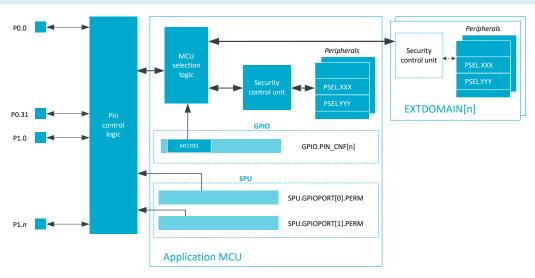



Figure 89: Pin access for domains other than the application domain

#### 6.15.6 DPPI access control

Access to DPPI channels can be restricted. A channel can be declared as secure so that only secure peripherals can access it.

The security attribute of a DPPI channel is configured in DPPI[n].PERM (n=0..0) on page 339. When the secure attribute is set for a channel, only peripherals that have the secure attribute set will be able to publish events to this channel or subscribe to this channel to receive tasks.

The DPPI controller peripheral (DPPIC) is a split security peripheral, i.e., its security behavior depends on the security attributes of both the DPPIC and the accessing party. See Special considerations regarding the DPPIC configuration registers on page 332 for more information about the DPPIC security behavior.

NORDIC

If a non-secure peripheral wants to publish an event on a secure DPPI channel, the channel will ignore the event. If a non-secure peripheral subscribes to a secure DPPI channel, it will not receive any events from this channel. The following figure illustrates the principle of operation of the security logic for a subscribed channel:

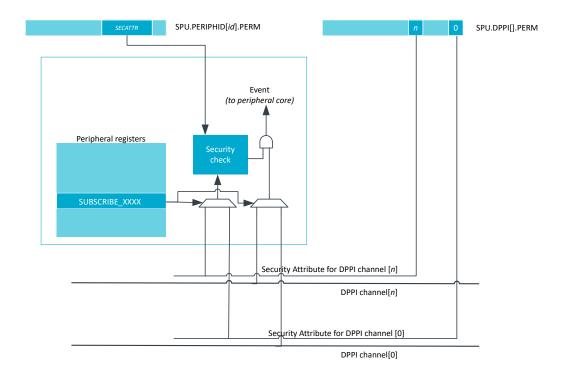



Figure 90: Subscribed channel security concept

No error reporting mechanism is associated with the DPPI access control logic.

## 6.15.6.1 Special considerations regarding the DPPIC configuration registers

DPPI channels can be enabled, disabled and grouped through the DPPI controller (DPPIC). The DPPIC is a split-security peripheral, and handles both secure and non-secure accesses.

A non-secure peripheral access will only be able to configure and control DPPI channels defined as non-secure in SPU's DPPI[n].PERM register(s). A secure peripheral access can control all DPPI channels, independently of the configuration in the DPPI[n].PERM register(s).

The DPPIC allows the creation of group of channels to be able to enable or disable all channels within a group simultaneously. The security attribute of a group of channels (secure or non-secure) is defined as follows:

- If all channels (enabled or not) in the group are non-secure, then the group is considered non-secure
- If at least one of the channels (enabled or not) in the group is secure, then the group is considered secure

A non-secure access to a DPPIC register, or a bitfield controlling a channel marked as secure in DPPI[n].PERM register(s), will be ignored:

- · Write accesses will have no effect
- · Read will always return a zero value

No exceptions are thrown when a non-secure access targets a register or bitfield controlling a secure channel. For example, if the bit i is set in the DPPI[n].PERM register (declaring the DPPI channel i as secure), then:



- Non-secure write accesses to registers CHEN, CHENSET and CHENCLR will not be able to write to bit i of those registers
- Non-secure write accesses to registers TASK\_CHG[j].EN and TASK\_CHG[j].DIS will be ignored if the
  channel group j contains at least one channel defined as secure (it can be the channel i itself or any
  channel declared as secured)
- Non-secure read accesses to registers CHEN, CHENSET and CHENCLR will always read zero for the bit at position *i*

For the channel configuration registers (DPPIC.CHG[n]), access from non-secure code is only possible if the included channels are all non-secure, whether the channels are enabled or not. If a DPPIC.CHG[g] register included one or more secure channels, then the group g is considered as secure and only a secure transfer can read or write DPPIC.CHG[g]. A non-secure write will be ignored and a non-secure read will return zero.

The DPPIC can subscribe to secure or non-secure channels through SUBSCRIBE\_CHG[n] registers in order to trigger task for enabling or disabling groups of channels. But an event from a non-secure channel will be ignored if the group subscribing to this channel is secure. An event from a secure channel can trigger both secure and non-secure tasks.

## 6.15.7 External domain access control

Other domains with their own CPUs can access peripherals, flash, and RAM memories. The SPU allows controlling accesses from those bus masters.

The external domains can access application MCU memories and peripherals. External domains are assigned security attributes as described in register EXTDOMAIN[n].PERM.

| Domain    | Capability register                 | Permission register |
|-----------|-------------------------------------|---------------------|
| LTE modem | Modem is always a non-secure domain | Not applicable      |

Table 42: Register mapping for external domains

The figure below illustrates how the security control units are used to assign security attributes to transfers initiated by the external domains:



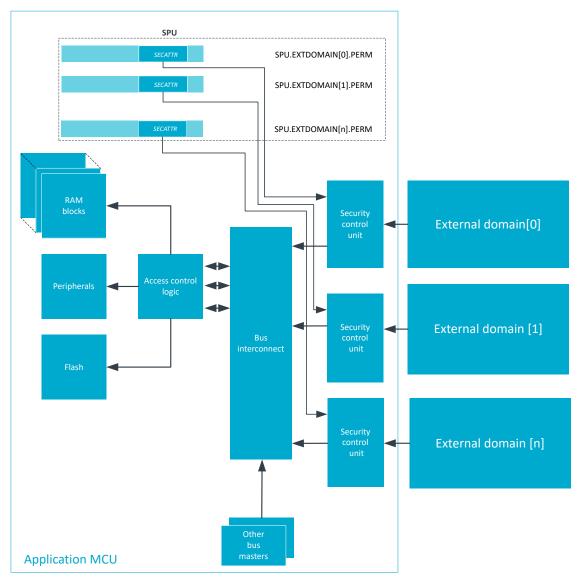



Figure 91: Access control from external domains

# 6.15.8 TrustZone for Cortex-M ID allocation

Flash and RAM regions, as well as non-secure and secure peripherals, are assigned unique TrustZone IDs.

**Note:** TrustZone ID should not be confounded with the peripheral ID used to identify peripherals.

The table below shows the TrustZone ID allocation:

| Regions                | TrustZone Cortex-M ID |
|------------------------|-----------------------|
| Flash regions 031      | 031                   |
| RAM regions 015        | 6479                  |
| Non-secure peripherals | 253                   |
| Secure peripherals     | 254                   |

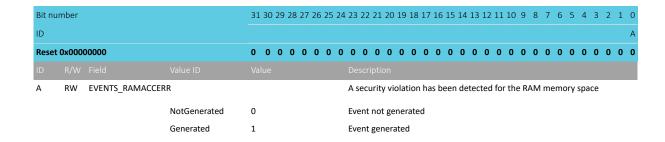
Table 43: TrustZone ID allocation



# 6.15.9 Registers

#### **Instances**

| Instance | Base address | TrustZone | TrustZone |     | Split access | Description            |
|----------|--------------|-----------|-----------|-----|--------------|------------------------|
|          |              | Мар       | Att       | DMA |              |                        |
| SPU      | 0x50003000   | HF        | S         | NA  | No           | System Protection Unit |

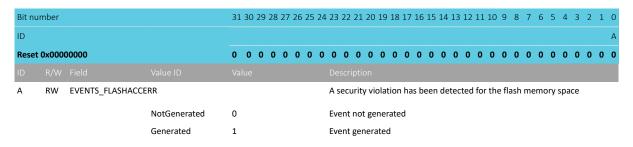

# **Register overview**

| Register             | Offset | TZ | Description                                                                  |
|----------------------|--------|----|------------------------------------------------------------------------------|
| EVENTS_RAMACCERR     | 0x100  |    | A security violation has been detected for the RAM memory space              |
| EVENTS_FLASHACCERR   | 0x104  |    | A security violation has been detected for the flash memory space            |
| EVENTS_PERIPHACCERR  | 0x108  |    | A security violation has been detected on one or several peripherals         |
| PUBLISH_RAMACCERR    | 0x180  |    | Publish configuration for event RAMACCERR                                    |
| PUBLISH_FLASHACCERR  | 0x184  |    | Publish configuration for event FLASHACCERR                                  |
| PUBLISH_PERIPHACCERR | 0x188  |    | Publish configuration for event PERIPHACCERR                                 |
| INTEN                | 0x300  |    | Enable or disable interrupt                                                  |
| INTENSET             | 0x304  |    | Enable interrupt                                                             |
| INTENCLR             | 0x308  |    | Disable interrupt                                                            |
| CAP                  | 0x400  |    | Show implemented features for the current device                             |
| EXTDOMAIN[n].PERM    | 0x440  |    | Access for bus access generated from the external domain n                   |
|                      |        |    | List capabilities of the external domain n                                   |
| DPPI[n].PERM         | 0x480  |    | Select between secure and non-secure attribute for the DPPI channels.        |
| DPPI[n].LOCK         | 0x484  |    | Prevent further modification of the corresponding PERM register              |
| GPIOPORT[n].PERM     | 0x4C0  |    | Select between secure and non-secure attribute for pins 0 to 31 of port n.   |
|                      |        |    | This register is retained.                                                   |
| GPIOPORT[n].LOCK     | 0x4C4  |    | Prevent further modification of the corresponding PERM register              |
| FLASHNSC[n].REGION   | 0x500  |    | Define which flash region can contain the non-secure callable (NSC) region n |
| FLASHNSC[n].SIZE     | 0x504  |    | Define the size of the non-secure callable (NSC) region n                    |
| RAMNSC[n].REGION     | 0x540  |    | Define which RAM region can contain the non-secure callable (NSC) region n   |
| RAMNSC[n].SIZE       | 0x544  |    | Define the size of the non-secure callable (NSC) region n                    |
| FLASHREGION[n].PERM  | 0x600  |    | Access permissions for flash region n                                        |
| RAMREGION[n].PERM    | 0x700  |    | Access permissions for RAM region n                                          |
| PERIPHID[n].PERM     | 0x800  |    | List capabilities and access permissions for the peripheral with ID n        |

# 6.15.9.1 EVENTS RAMACCERR

Address offset: 0x100

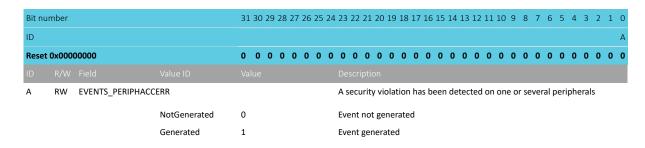
A security violation has been detected for the RAM memory space






## 6.15.9.2 EVENTS\_FLASHACCERR

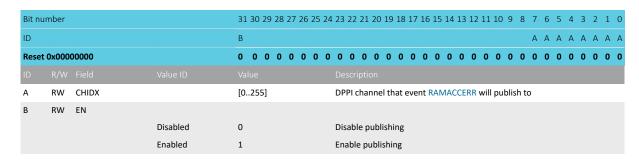
Address offset: 0x104


A security violation has been detected for the flash memory space



## 6.15.9.3 EVENTS\_PERIPHACCERR

Address offset: 0x108

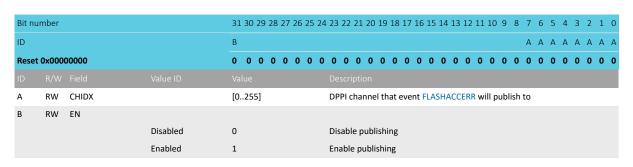

A security violation has been detected on one or several peripherals



## 6.15.9.4 PUBLISH RAMACCERR

Address offset: 0x180

Publish configuration for event RAMACCERR




## 6.15.9.5 PUBLISH FLASHACCERR

Address offset: 0x184

Publish configuration for event FLASHACCERR





# 6.15.9.6 PUBLISH\_PERIPHACCERR

Address offset: 0x188

Publish configuration for event PERIPHACCERR

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|----------------------|------------------------------------------------------------------|
| ID     |         |       |          | В                    | A A A A A A A                                                    |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0        | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                        |
| ID     |         |       |          |                      |                                                                  |
| Α      | RW      | CHIDX |          | [0255]               | DPPI channel that event PERIPHACCERR will publish to             |
| В      | RW      | EN    |          |                      |                                                                  |
|        |         |       | Disabled | 0                    | Disable publishing                                               |
|        |         |       | Enabled  | 1                    | Enable publishing                                                |

## 6.15.9.7 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit n | umber   |              |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|--------------|----------|-------------------------|-----------------------------------------------------------------|
| ID    |         |              |          |                         | СВА                                                             |
| Rese  | t 0x000 | 00000        |          | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID    |         |              |          |                         | Description                                                     |
| Α     | RW      | RAMACCERR    |          |                         | Enable or disable interrupt for event RAMACCERR                 |
|       |         |              | Disabled | 0                       | Disable                                                         |
|       |         |              | Enabled  | 1                       | Enable                                                          |
| В     | RW      | FLASHACCERR  |          |                         | Enable or disable interrupt for event FLASHACCERR               |
|       |         |              | Disabled | 0                       | Disable                                                         |
|       |         |              | Enabled  | 1                       | Enable                                                          |
| С     | RW      | PERIPHACCERR |          |                         | Enable or disable interrupt for event PERIPHACCERR              |
|       |         |              | Disabled | 0                       | Disable                                                         |
|       |         |              | Enabled  | 1                       | Enable                                                          |

#### 6.15.9.8 INTENSET

Address offset: 0x304

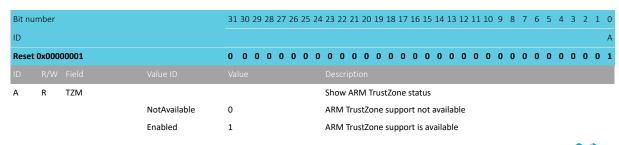
Enable interrupt



| Bit nu | ımber |              |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|--------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |              |          |                         | СВА                                                             |
| Reset  | 0x000 | 00000        |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |              |          |                         | Description                                                     |
| Α      | RW    | RAMACCERR    |          |                         | Write '1' to enable interrupt for event RAMACCERR               |
|        |       |              | Set      | 1                       | Enable                                                          |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW    | FLASHACCERR  |          |                         | Write '1' to enable interrupt for event FLASHACCERR             |
|        |       |              | Set      | 1                       | Enable                                                          |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW    | PERIPHACCERR |          |                         | Write '1' to enable interrupt for event PERIPHACCERR            |
|        |       |              | Set      | 1                       | Enable                                                          |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |

## 6.15.9.9 INTENCLR

Address offset: 0x308


Disable interrupt

| Bit nu | ımber |              |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|--------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |              |          |                         | СВА                                                             |
| Reset  | 0x000 | 00000        |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |              |          |                         | Description                                                     |
| Α      | RW    | RAMACCERR    |          |                         | Write '1' to disable interrupt for event RAMACCERR              |
|        |       |              | Clear    | 1                       | Disable                                                         |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |
| В      | RW    | FLASHACCERR  |          |                         | Write '1' to disable interrupt for event FLASHACCERR            |
|        |       |              | Clear    | 1                       | Disable                                                         |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |
| С      | RW    | PERIPHACCERR |          |                         | Write '1' to disable interrupt for event PERIPHACCERR           |
|        |       |              | Clear    | 1                       | Disable                                                         |
|        |       |              | Disabled | 0                       | Read: Disabled                                                  |
|        |       |              | Enabled  | 1                       | Read: Enabled                                                   |

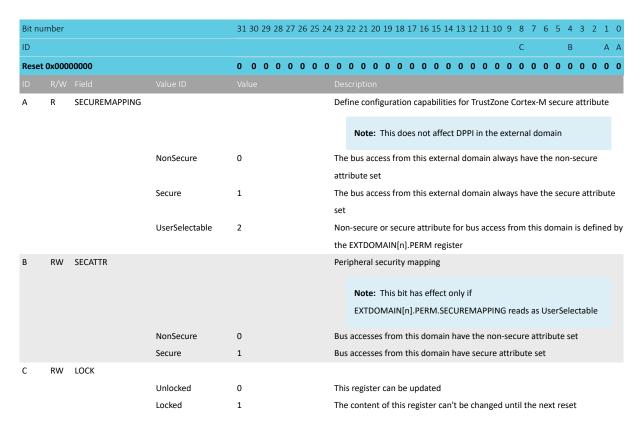
## 6.15.9.10 CAP

Address offset: 0x400

Show implemented features for the current device



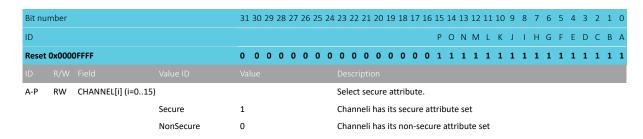





## 6.15.9.11 EXTDOMAIN[n].PERM (n=0..0)

Address offset:  $0x440 + (n \times 0x4)$ 

Access for bus access generated from the external domain n

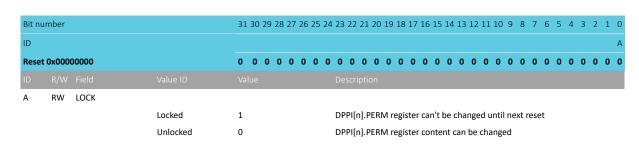

List capabilities of the external domain n



# 6.15.9.12 DPPI[n].PERM (n=0..0)

Address offset:  $0x480 + (n \times 0x8)$ 

Select between secure and non-secure attribute for the DPPI channels.

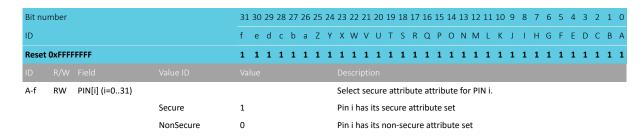



## 6.15.9.13 DPPI[n].LOCK (n=0..0)

Address offset: 0x484 + (n × 0x8)

Prevent further modification of the corresponding PERM register

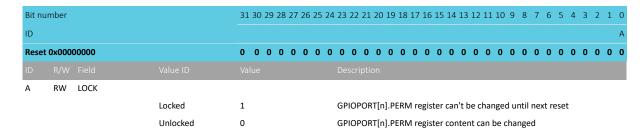





# 6.15.9.14 GPIOPORT[n].PERM (n=0..0) (Retained)

Address offset:  $0x4C0 + (n \times 0x8)$ 

Select between secure and non-secure attribute for pins 0 to 31 of port n.


This register is retained.



## 6.15.9.15 GPIOPORT[n].LOCK (n=0..0)

Address offset:  $0x4C4 + (n \times 0x8)$ 


Prevent further modification of the corresponding PERM register

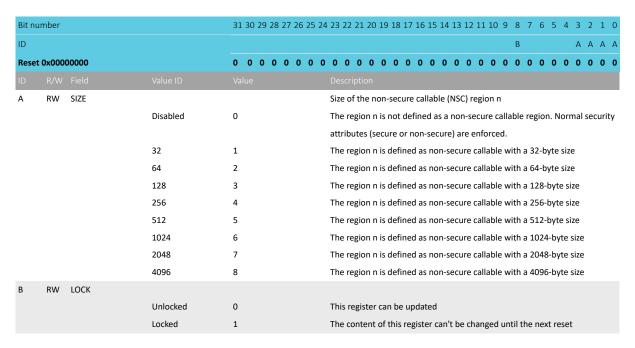


## 6.15.9.16 FLASHNSC[n].REGION (n=0..1)

Address offset:  $0x500 + (n \times 0x8)$ 

Define which flash region can contain the non-secure callable (NSC) region n

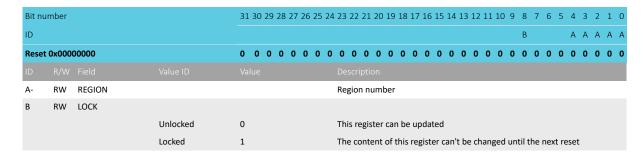



# 6.15.9.17 FLASHNSC[n].SIZE (n=0..1)

Address offset:  $0x504 + (n \times 0x8)$ 



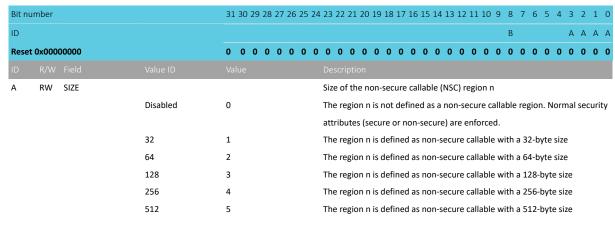



#### Define the size of the non-secure callable (NSC) region n



## 6.15.9.18 RAMNSC[n].REGION (n=0..1)

Address offset:  $0x540 + (n \times 0x8)$ 


Define which RAM region can contain the non-secure callable (NSC) region n



#### 6.15.9.19 RAMNSC[n].SIZE (n=0..1)

Address offset:  $0x544 + (n \times 0x8)$ 

Define the size of the non-secure callable (NSC) region n





| Bit number       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0      |
|------------------|----------|------------------------|----------------------------------------------------------------------|
| ID               |          |                        | В АААА                                                               |
| Reset 0x00000000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                              |
| ID R/W Field     |          |                        | Description                                                          |
|                  | 1024     | 6                      | The region n is defined as non-secure callable with a 1024-byte size |
|                  | 2048     | 7                      | The region n is defined as non-secure callable with a 2048-byte size |
|                  | 4096     | 8                      | The region n is defined as non-secure callable with a 4096-byte size |
| B RW LOCK        |          |                        |                                                                      |
|                  | Unlocked | 0                      | This register can be updated                                         |
|                  | Locked   | 1                      | The content of this register can't be changed until the next reset   |

# 6.15.9.20 FLASHREGION[n].PERM (n=0..31)

Address offset:  $0x600 + (n \times 0x4)$ Access permissions for flash region n

| Rit n | umber    |         |            | 31 : | 3O 2 | 9 2  | g 27 | 26 | 25.2 | ) / · | י או  | 2 2   | 21 2  | o∩ 1 | 19 1 | Q 1 <sup>-</sup> | 7 16  | 15   | 1/1  | 13    | 12 1  | 1 1 | n 9   | 8      | 7    | 6    | 5        | 1   | 2 2 | 1   | Λ |
|-------|----------|---------|------------|------|------|------|------|----|------|-------|-------|-------|-------|------|------|------------------|-------|------|------|-------|-------|-----|-------|--------|------|------|----------|-----|-----|-----|---|
|       | umber    |         |            | 51.  | JO 2 | J 21 | 0 27 | 20 | 23 2 |       | 2J Z. |       | 21 2  | 10 1 |      | .0 1             | , 10  | 13   | 17   | 13    | 12 1  |     | .0 5  | _      |      | -    | <i>J</i> |     |     |     | ^ |
| ID    |          |         |            |      |      |      |      |    |      |       |       |       |       |      |      |                  |       |      |      |       |       |     |       | Ε      |      |      |          | D   | (   | : B | Α |
| Rese  | t 0x0000 | 00017   |            | 0    | 0 (  | 0    | 0    | 0  | 0    | 0     | 0 0   | ) (   | 0     | 0 (  | 0 (  | 0                | 0     | 0    | 0    | 0     | 0 (   | ) ( | 0 0   | 0      | 0    | 0    | 0        | 1   | ) 1 | . 1 | 1 |
| ID    |          |         |            |      |      |      |      |    |      |       |       |       |       |      |      |                  |       |      |      |       |       |     |       |        |      |      |          |     |     |     |   |
| Α     | RW       | EXECUTE |            |      |      |      |      |    |      | (     | Conf  | figu  | ure   | inst | ruc  | tion             | fet   | ch p | erm  | nissi | ons   | fro | m fla | sh     | regi | on r | n        |     |     |     |   |
|       |          |         | Enable     | 1    |      |      |      |    |      | 1     | Allov | w ir  | nstr  | uct  | ion  | feto             | hes   | fro  | m fl | ash   | regi  | on  | n     |        |      |      |          |     |     |     |   |
|       |          |         | Disable    | 0    |      |      |      |    |      | E     | Blocl | k in  | nstr  | ucti | ion  | fetc             | hes   | froi | n fl | ash   | regi  | on  | n     |        |      |      |          |     |     |     |   |
| В     | RW       | WRITE   |            |      |      |      |      |    |      | (     | Conf  | figu  | ure   | writ | te p | erm              | issi  | on f | or f | lash  | reg   | ion | n     |        |      |      |          |     |     |     |   |
|       |          |         | Enable     | 1    |      |      |      |    |      | ,     | Allov | w w   | write | e op | pera | ation            | ı to  | reg  | on   | n     |       |     |       |        |      |      |          |     |     |     |   |
|       |          |         | Disable    | 0    |      |      |      |    |      | 1     | 3locl | k w   | vrite | е ор | oera | tior             | to    | regi | on i | า     |       |     |       |        |      |      |          |     |     |     |   |
| С     | RW       | READ    |            |      |      |      |      |    |      | (     | Conf  | figu  | ure   | read | d pe | ermi             | issic | ns f | or f | lasł  | n reg | ion | n     |        |      |      |          |     |     |     |   |
|       |          |         | Enable     | 1    |      |      |      |    |      | 1     | Allov | w re  | ead   | Іор  | era  | tion             | fro   | m fl | ash  | reg   | ion i | ı   |       |        |      |      |          |     |     |     |   |
|       |          |         | Disable    | 0    |      |      |      |    |      | E     | Blocl | k re  | ead   | оре  | era  | tion             | froi  | n fl | ash  | reg   | ion r | 1   |       |        |      |      |          |     |     |     |   |
| D     | RW       | SECATTR |            |      |      |      |      |    |      | 9     | Secu  | ırity | y at  | trib | ute  | for              | flas  | h re | gio  | n n   |       |     |       |        |      |      |          |     |     |     |   |
|       |          |         | Non_Secure | 0    |      |      |      |    |      | ı     | lash  | n re  | egio  | n n  | sec  | curit            | y at  | trib | ute  | is n  | on-s  | eci | ure   |        |      |      |          |     |     |     |   |
|       |          |         | Secure     | 1    |      |      |      |    |      | ı     | lash  | n re  | egio  | n n  | sec  | curit            | y at  | trib | ute  | is s  | ecur  | е   |       |        |      |      |          |     |     |     |   |
| E     | RW       | LOCK    |            |      |      |      |      |    |      |       |       |       |       |      |      |                  |       |      |      |       |       |     |       |        |      |      |          |     |     |     |   |
|       |          |         | Unlocked   | 0    |      |      |      |    |      | 1     | Γhis  | reg   | giste | er c | an l | be u             | pda   | ted  |      |       |       |     |       |        |      |      |          |     |     |     |   |
|       |          |         | Locked     | 1    |      |      |      |    |      | 1     | Γhe ( | cor   | nter  | nt o | f th | is re            | gist  | er c | an't | : be  | cha   | nge | ed ur | ntil 1 | he   | next | t re     | set |     |     |   |

# 6.15.9.21 RAMREGION[n].PERM (n=0..31)

Address offset:  $0x700 + (n \times 0x4)$ Access permissions for RAM region n

| Bit nu | ımber |         |         | 31 3 | 80 29 | 28 | 27 2 | 6 25 | 5 24 | 1 23 | 22    | 21    | 20 1 | 19 1 | .8 1 | 7 16  | 15   | 14    | 13   | 12    | 11 1 | 10  | 9 8 | 7   | 6   | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|---------|---------|------|-------|----|------|------|------|------|-------|-------|------|------|------|-------|------|-------|------|-------|------|-----|-----|-----|-----|---|---|---|---|-----|
| ID     |       |         |         |      |       |    |      |      |      |      |       |       |      |      |      |       |      |       |      |       |      |     | Ε   |     |     |   | D |   | С | В А |
| Reset  | 0x000 | 00017   |         | 0    | 0 0   | 0  | 0 (  | 0 0  | 0    | 0    | 0     | 0     | 0    | 0 (  | 0 (  | 0     | 0    | 0     | 0    | 0     | 0    | 0   | 0 0 | 0   | 0   | 0 | 1 | 0 | 1 | 1 1 |
| ID     |       |         |         |      |       |    |      |      |      |      |       |       |      |      |      |       |      |       |      |       |      |     |     |     |     |   |   |   |   |     |
| Α      | RW    | EXECUTE |         |      |       |    |      |      |      | Со   | nfig  | ure   | inst | truc | tior | fet   | ch p | err   | niss | ions  | fro  | m F | RAM | reg | ion | n |   |   |   |     |
|        |       |         | Enable  | 1    |       |    |      |      |      | All  | ow    | inst  | ruct | ion  | fet  | ches  | fro  | m F   | RAN  | 1 re  | gion | n   |     |     |     |   |   |   |   |     |
|        |       |         | Disable | 0    |       |    |      |      |      | Blo  | ock i | instı | ruct | ion  | feto | hes   | fro  | m F   | AM   | l reg | ion  | n   |     |     |     |   |   |   |   |     |
| В      | RW    | WRITE   |         |      |       |    |      |      |      | Со   | nfig  | ure   | wri  | te p | ern  | nissi | on 1 | for I | RAN  | 1 re  | gior | n n |     |     |     |   |   |   |   |     |
|        |       |         | Enable  | 1    |       |    |      |      |      | All  | ow    | writ  | te o | pera | atio | n to  | RA   | M r   | egic | n n   |      |     |     |     |     |   |   |   |   |     |
|        |       |         | Disable | 0    |       |    |      |      |      | Blo  | ock v | writ  | e op | oera | itio | ı to  | RAI  | VI re | egio | n n   |      |     |     |     |     |   |   |   |   |     |
| С      | RW    | READ    |         |      |       |    |      |      |      | Со   | nfig  | ure   | rea  | d pe | erm  | issic | ns   | for   | RAN  | ∕l re | gior | n n |     |     |     |   |   |   |   |     |
|        |       |         | Enable  | 1    |       |    |      |      |      | All  | ow    | read  | d op | era  | tior | fro   | m F  | AN    | re   | gion  | n    |     |     |     |     |   |   |   |   |     |



| Bit nu | ımber  |         |            | 31 | 30 | 29 2 | 8 2 | 27 2 | 6 2 | 5 24 | 4 2 | 3 22  | 2 21 | 20   | 19   | 18    | 17   | 16   | 15   | 14   | 13   | 12  | 11  | 10   | 9   | 8     | 7   | 6   | 5 . | 4 3 | 3 2 | 1 | 0 |
|--------|--------|---------|------------|----|----|------|-----|------|-----|------|-----|-------|------|------|------|-------|------|------|------|------|------|-----|-----|------|-----|-------|-----|-----|-----|-----|-----|---|---|
| ID     |        |         |            |    |    |      |     |      |     |      |     |       |      |      |      |       |      |      |      |      |      |     |     |      |     | Ε     |     |     |     | D   | С   | В | Α |
| Reset  | 0x0000 | 00017   |            | 0  | 0  | 0 (  | 0   | 0 (  | 0 ( | 0 0  | ) ( | 0 0   | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0   | 0     | 0   | 0   | 0   | 1 ( | ) 1 | 1 | 1 |
| ID     |        |         |            |    |    |      |     |      |     |      |     |       |      |      |      |       |      |      |      |      |      |     |     |      |     |       |     |     |     |     |     |   |   |
|        |        |         | Disable    | 0  |    |      |     |      |     |      | В   | lock  | rea  | ad o | per  | atio  | n fr | om   | RΑ   | M    | reg  | ion | n   |      |     |       |     |     |     |     |     |   |   |
| D      | RW     | SECATTR |            |    |    |      |     |      |     |      | S   | ecu   | rity | attr | ibut | te fo | or R | AM   | re   | gio  | n n  |     |     |      |     |       |     |     |     |     |     |   |   |
|        |        |         | Non_Secure | 0  |    |      |     |      |     |      | R   | AM    | reg  | ion  | n se | ecur  | ity  | attr | ibu  | ite  | is n | on- | sec | ure  |     |       |     |     |     |     |     |   |   |
|        |        |         | Secure     | 1  |    |      |     |      |     |      | R   | AM    | reg  | ion  | n se | ecur  | ity  | attr | ibu  | ite  | is s | ecu | re  |      |     |       |     |     |     |     |     |   |   |
| E      | RW     | LOCK    |            |    |    |      |     |      |     |      |     |       |      |      |      |       |      |      |      |      |      |     |     |      |     |       |     |     |     |     |     |   |   |
|        |        |         | Unlocked   | 0  |    |      |     |      |     |      | Т   | his i | egi  | ster | car  | ı be  | up   | dat  | ed   |      |      |     |     |      |     |       |     |     |     |     |     |   |   |
|        |        |         | Locked     | 1  |    |      |     |      |     |      | Т   | he o  | ont  | ent  | of t | his   | reg  | iste | r ca | an't | be   | ch  | ang | ed i | unt | il th | e n | ext | res | et  |     |   |   |

# 6.15.9.22 PERIPHID[n].PERM (n=0..66)

Address offset:  $0x800 + (n \times 0x4)$ 

List capabilities and access permissions for the peripheral with ID n

**Note:** Reset values are unique per peripheral instantiation. Please refer to the peripheral instantiation table. Entries not listed in the instantiation table are undefined.

| Bit nu | ımber |               |                     | 31   | 30 29 | 28 2 | 27 20 | 6 25 | 24 | 23 2   | 2 21   | 20 1   | 19 1   | 8 1   | 7 16   | 15   | 14    | 13     | 12         | 11   | 10    | 9   | 8     | 7     | 6    | 5     | 4    | 3     | 2    | 1 C    | , |
|--------|-------|---------------|---------------------|------|-------|------|-------|------|----|--------|--------|--------|--------|-------|--------|------|-------|--------|------------|------|-------|-----|-------|-------|------|-------|------|-------|------|--------|---|
| ID     |       |               |                     | F    |       |      |       |      |    |        |        |        |        |       |        |      |       | =      |            | Ξ.   |       | -   | E     |       | -    |       |      | В     |      |        |   |
|        | 0x000 | 00012         |                     |      | 0 0   | 0    | 0 0   | 0    | 0  | 0 0    | 0      | 0      | 0 0    | ) (   | 0      | 0    | 0     | 0      | 0          | 0    | 0     | 0   |       | 0     | 0    |       |      |       |      |        |   |
| ID     |       | Field         | Value ID            | Valu |       |      |       |      | Ť  |        | riptio |        |        |       |        | Ť    | Ť     | Ť      |            | Ī    | Ť     | Ī   | Ť     | Ī     | Ť    | Ť     |      |       |      |        |   |
| A      | R     | SECUREMAPPING |                     |      |       |      |       |      |    | Defir  | ne coi | nfig   | urati  | ion   | capa   | abil | ities | fo     | r Tru      | ıst  | Zone  | e C | orte  | l-xe  | M s  | ecu   | re a | attri | out  | e<br>e | 1 |
|        |       |               | NonSecure           | 0    |       |      |       |      |    | This   | perip  | her    | al is  | alw   | ays    | acc  | essi  | ble    | as a       | n    | on-s  | ec  | ure   | pei   | riph | nera  | ıl   |       |      |        |   |
|        |       |               | Secure              | 1    |       |      |       |      |    | This   | perip  | her    | al is  | alw   | ays    | acc  | essi  | ble    | as a       | ı se | cur   | e p | erip  | ohe   | ral  |       |      |       |      |        |   |
|        |       |               | UserSelectable      | 2    |       |      |       |      |    | Non-   | secui  | re o   | r sec  | cure  | att    | ribu | ıte f | or     | his        | pe   | riph  | era | al is | de    | fine | ed b  | y tł | ne    |      |        |   |
|        |       |               |                     |      |       |      |       |      |    | PERI   | PHID[  | [n].F  | PERN   | √l re | gist   | er   |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               | Split               | 3    |       |      |       |      |    | This   | perip  | her    | al im  | ple   | mer    | nts  | the   | spli   | t se       | cui  | ity   | me  | cha   | nis   | m.   | Noı   | า-ระ | cur   | 10 9 | -      |   |
|        |       |               |                     |      |       |      |       |      |    | secu   | re att | ribu   | ute f  | or t  | his p  | eri  | phe   | ral    | is de      | efir | ned   | by  | the   | PE    | RIP  | HIC   | )[n] | .PEF  | M    |        |   |
|        |       |               |                     |      |       |      |       |      |    | regis  | ter.   |        |        |       |        |      |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |
| В      | R     | DMA           |                     |      |       |      |       |      |    | Indic  | ate if | the    | e per  | iph   | eral   | ha   | DΝ    | 1A     | capa       | abi  | itie  | s a | nd i  | f D   | MA   | tra   | nsf  | er ca | an b | эе     |   |
|        |       |               |                     |      |       |      |       |      |    | assig  | ned t  | :о а   | diffe  | erer  | nt se  | cur  | ity a | ttr    | but        | e t  | han   | th  | е ре  | erip  | he   | ral i | tse  | lf    |      |        |   |
|        |       |               | NoDMA               | 0    |       |      |       |      |    | Perip  | hera   | l ha   | s no   | D۱    | 1A c   | ара  | bilit | У      |            |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               | NoSeparateAttribute | 1    |       |      |       |      |    | Perip  | hera   | l ha   | s DN   | ИΑ    | and    | DIV  | A tr  | ans    | fers       | al   | way   | s h | ave   | th    | e sa | ame   | se   | curi  | ty   |        |   |
|        |       |               |                     |      |       |      |       |      |    | attril | bute a | as a   | ssigr  | ned   | to t   | he   | peri  | phe    | ral        |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               | SeparateAttribute   | 2    |       |      |       |      |    | Perip  | hera   | l ha   | s DN   | ИΑ    | and    | DIV  | A tr  | ans    | fers       | са   | n h   | ave | e a c | liffe | erei | nt s  | ecu  | rity  |      |        |   |
|        |       |               |                     |      |       |      |       |      |    | attril | bute t | thar   | n the  | on    | e as   | sig  | ned   | to 1   | he ¡       | pei  | iph   | era | ıl    |       |      |       |      |       |      |        |   |
| С      | RW    | SECATTR       |                     |      |       |      |       |      |    | Perip  | hera   | l se   | curit  | y m   | app    | ing  |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               |                     |      |       |      |       |      |    |        | Note   | . т    | 'hic b | .:. 6 |        | ee.  | -t -  | a la c | £          |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               |                     |      |       |      |       |      |    |        | PERI   |        |        |       |        |      |       |        |            | INIC | ro    | ada |       | He    | or\$ | مامد  | tah  | م ما  | r    |        |   |
|        |       |               |                     |      |       |      |       |      |    |        | Split  |        | נווןט  | .r L  | IXIVI  | JLC  | UKL   | .1017  | <b>AFF</b> | IIVC | , , , | aus | as    | US    | CI 3 | cicc  | lau  | ie o  | '    |        |   |
|        |       |               |                     |      |       |      |       |      |    |        | Spire  |        |        |       |        |      |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               | Secure              | 1    |       |      |       |      |    | Perip  | hera   | l is r | map    | pec   | l in s | ecı  | ıre p | eri    | phe        | ral  | ado   | dre | SS S  | pac   | ce   |       |      |       |      |        |   |
|        |       |               | NonSecure           | 0    |       |      |       |      |    | If SE  | CURE   | MA     | PPIN   | IG =  | := U:  | ser: | Sele  | cta    | ble:       | Pe   | riph  | er  | al is | ma    | app  | ed    | in n | on-   | seci | ure    |   |
|        |       |               |                     |      |       |      |       |      |    | perip  | ohera  | l ad   | dres   | s s   | ace    |      |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |
|        |       |               |                     |      |       |      |       |      |    | If SE  | CURE   | MA     | PPIN   | IG =  | := Sp  | lit: | Per   | iph    | eral       | is   | map   | эре | ed ir | n no  | on-  | sec   | ure  | and   | sec  | cure   |   |
|        |       |               |                     |      |       |      |       |      |    | perip  | hera   | l ad   | dres   | s s   | oace   |      |       |        |            |      |       |     |       |       |      |       |      |       |      |        |   |



| Bit nu | mber  |         |            | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 C              |
|--------|-------|---------|------------|-------------------------|------------------------------------------------------------------------------|
| ID     |       |         |            | F                       | E DCBBAA                                                                     |
| Reset  | 0x000 | 00012   |            | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |
| ID     |       |         |            |                         |                                                                              |
| D      | RW    | DMASEC  |            |                         | Security attribution for the DMA transfer                                    |
|        |       |         |            |                         | Note: This bit has effect only if PERIPHID[n].PERM.SECATTR is set to secure  |
|        |       |         | Secure     | 1                       | DMA transfers initiated by this peripheral have the secure attribute set     |
|        |       |         | NonSecure  | 0                       | DMA transfers initiated by this peripheral have the non-secure attribute set |
| Е      | RW    | LOCK    |            |                         |                                                                              |
|        |       |         | Unlocked   | 0                       | This register can be updated                                                 |
|        |       |         | Locked     | 1                       | The content of this register can't be changed until the next reset           |
| F      | R     | PRESENT |            |                         | Indicate if a peripheral is present with ID n                                |
|        |       |         | NotPresent | 0                       | Peripheral is not present                                                    |
|        |       |         | IsPresent  | 1                       | Peripheral is present                                                        |

# 6.16 TIMER — Timer/counter

This peripheral is a general purpose timer designed to keep track of time in user-selective time intervals, it can operate in two modes: timer and counter.

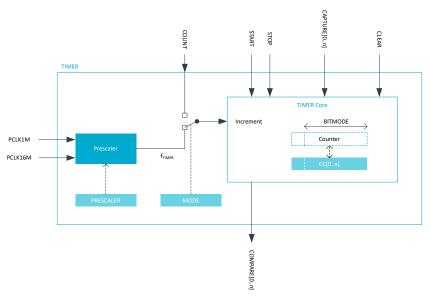



Figure 92: Block schematic for timer/counter

The timer/counter runs on the high-frequency clock source (HFCLK) and includes a four-bit (1/2X) prescaler that can divide the timer input clock from the HFCLK controller. Clock source selection between PCLK16M and PCLK1M is automatic according to TIMER base frequency set by the prescaler. The TIMER base frequency is always given as 16 MHz divided by the prescaler value.

The PPI system allows a TIMER event to trigger a task of any other system peripheral of the device. The PPI system also enables the TIMER task/event features to generate periodic output and PWM signals to any GPIO. The number of input/outputs used at the same time is limited by the number of GPIOTE channels.

TIMER can operate in two modes: Timer mode and Counter mode. In both modes, TIMER is started by triggering the START task, and stopped by triggering the STOP task. After the timer is stopped the timer can resume timing/counting by triggering the START task again. When timing/counting is resumed, the timer will continue from the value it had prior to being stopped.

344

NORDIC"

In Timer mode, the TIMER's internal Counter register is incremented by one for every tick of the timer frequency  $f_{\text{TIMER}}$  as illustrated in Block schematic for timer/counter on page 344. The timer frequency is derived from PCLK16M as shown in the following example, using the values specified in the PRESCALER register.

```
f_{\text{TIMER}} = 16 \text{ MHz} / (2^{\text{PRESCALER}})
```

When  $f_{TIMER} \le 1$  MHz, TIMER will use PCLK1M instead of PCLK16M for reduced power consumption.

In counter mode, the TIMER's internal Counter register is incremented by one each time the COUNT task is triggered, meaning the timer frequency and the prescaler are not utilized in counter mode. Similarly, the COUNT task has no effect in Timer mode.

The TIMER's maximum value is configured by changing the bit-width of the timer in register BITMODE on page 351.

PRESCALER on page 352 and BITMODE on page 351 must only be updated when the timer is stopped. If these registers are updated while the timer is started, unpredictable behavior may occur.

When the timer is incremented beyond its maximum value, the Counter register will overflow and the timer will automatically start over from zero.

The Counter register can be cleared by triggering the CLEAR task. This will explicitly set the internal value to zero.

TIMER implements multiple capture/compare registers.

Independent of prescaler setting, the accuracy of TIMER is equivalent to one tick of the timer frequency  $f_{\text{TIMER}}$  as illustrated in Block schematic for timer/counter on page 344.

# 6.16.1 Capture

TIMER implements one capture task for every available capture/compare register.

Every time the CAPTURE[n] task is triggered, the Counter value is copied to the CC[n] register.

# 6.16.2 Compare

TIMER implements one COMPARE event for every available capture/compare register.

A COMPARE event is generated when the Counter is incremented and then becomes equal to the value specified in one of the capture compare registers. When the Counter value becomes equal to the value specified in a capture compare register CC[n], the corresponding compare event COMPARE[n] is generated.

BITMODE on page 351 specifies how many bits of the Counter register and the capture/compare register that are used when the comparison is performed. Other bits will be ignored.

The COMPARE event can be configured to operate in one-shot mode by configuring the corresponding ONESHOTEN[n] register. COMPARE[n] event is generated the first time the Counter matches CC[n] after CC[n] has been written.

# 6.16.3 Task delays

After TIMER is started, the CLEAR, COUNT, and STOP tasks are guaranteed to take effect within one clock cycle of the PCLK16M.

# 6.16.4 Task priority



If the START task and the STOP task are triggered at the same time, meaning within the same period of PCLK16M, the STOP task will be prioritized.

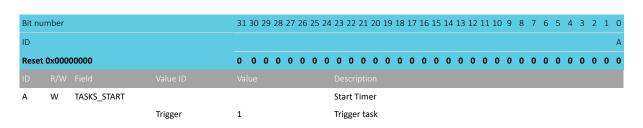
If one or more of the CAPTURE tasks and the CLEAR task is triggered at the same time, that is, within the same period of PCLK16M, the CLEAR task will be prioritized. This means that the CC register for the relevant CAPTURE task will be set to 0.

# 6.16.5 Registers

#### **Instances**

| Instance    | Base address | TrustZone |     |     | Split access | Description |
|-------------|--------------|-----------|-----|-----|--------------|-------------|
|             |              | Мар       | Att | DMA |              |             |
| TIMER0 : S  | 0x5000F000   | US        | NS  | NA  | No           | Timer 0     |
| TIMERO : NS | 0x4000F000   | 03        | INS | INA | INO          | Timer 0     |
| TIMER1: S   | 0x50010000   | US        | NS  | NA  | No           | Timer 1     |
| TIMER1: NS  | 0x40010000   | 03        | INS | INA | INO          | Timer 1     |
| TIMER2 : S  | 0x50011000   | US        | NS  | NA  | No           | Timer 2     |
| TIMER2 : NS | 0x40011000   | 03        | INJ | INA | NO           | Timer 2     |

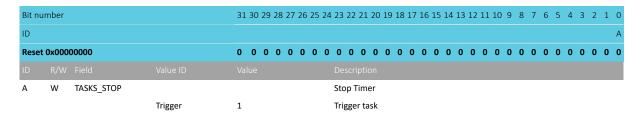
## **Register overview**


| Register             | Offset | TZ | Description                                             |
|----------------------|--------|----|---------------------------------------------------------|
| TASKS_START          | 0x000  |    | Start Timer                                             |
| TASKS_STOP           | 0x004  |    | Stop Timer                                              |
| TASKS_COUNT          | 0x008  |    | Increment Timer (Counter mode only)                     |
| TASKS_CLEAR          | 0x00C  |    | Clear time                                              |
| TASKS_SHUTDOWN       | 0x010  |    | Shut down timer                                         |
|                      |        |    | This register is deprecated.                            |
| TASKS_CAPTURE[n]     | 0x040  |    | Capture Timer value to CC[n] register                   |
| SUBSCRIBE_START      | 0x080  |    | Subscribe configuration for task START                  |
| SUBSCRIBE_STOP       | 0x084  |    | Subscribe configuration for task STOP                   |
| SUBSCRIBE_COUNT      | 0x088  |    | Subscribe configuration for task COUNT                  |
| SUBSCRIBE_CLEAR      | 0x08C  |    | Subscribe configuration for task CLEAR                  |
| SUBSCRIBE_SHUTDOWN   | 0x090  |    | Subscribe configuration for task SHUTDOWN               |
|                      |        |    | This register is deprecated.                            |
| SUBSCRIBE_CAPTURE[n] | 0x0C0  |    | Subscribe configuration for task CAPTURE[n]             |
| EVENTS_COMPARE[n]    | 0x140  |    | Compare event on CC[n] match                            |
| PUBLISH_COMPARE[n]   | 0x1C0  |    | Publish configuration for event COMPARE[n]              |
| SHORTS               | 0x200  |    | Shortcuts between local events and tasks                |
| INTENSET             | 0x304  |    | Enable interrupt                                        |
| INTENCLR             | 0x308  |    | Disable interrupt                                       |
| MODE                 | 0x504  |    | Timer mode selection                                    |
| BITMODE              | 0x508  |    | Configure the number of bits used by the TIMER          |
| PRESCALER            | 0x510  |    | Timer prescaler register                                |
| ONESHOTEN[n]         | 0x514  |    | Enable one-shot operation for Capture/Compare channel n |
| CC[n]                | 0x540  |    | Capture/Compare register n                              |
|                      |        |    |                                                         |

## 6.16.5.1 TASKS\_START

Address offset: 0x000

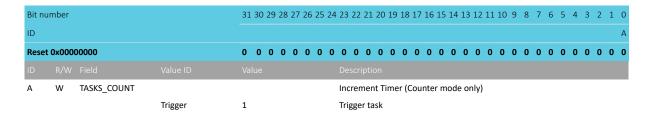
**Start Timer** 






# 6.16.5.2 TASKS STOP

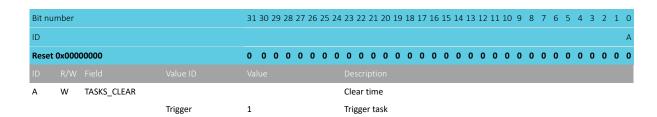
Address offset: 0x004


**Stop Timer** 



# 6.16.5.3 TASKS\_COUNT

Address offset: 0x008


Increment Timer (Counter mode only)



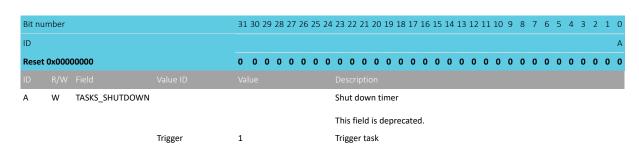
## 6.16.5.4 TASKS CLEAR

Address offset: 0x00C

Clear time



## 6.16.5.5 TASKS\_SHUTDOWN (Deprecated)


Address offset: 0x010

Shut down timer

This register is deprecated.







# 6.16.5.6 TASKS\_CAPTURE[n] (n=0..5)

Address offset:  $0x040 + (n \times 0x4)$ Capture Timer value to CC[n] register

| Bit nu | ımber |               |         | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22  | 21   | 20  | 19   | 18  | 17   | 16 | 15  | 14 | 13   | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | . 0 |
|--------|-------|---------------|---------|----|----|----|----|----|----|----|----|-----|-----|------|-----|------|-----|------|----|-----|----|------|----|----|----|---|---|---|---|---|---|-----|-----|-----|
| ID     |       |               |         |    |    |    |    |    |    |    |    |     |     |      |     |      |     |      |    |     |    |      |    |    |    |   |   |   |   |   |   |     |     | Α   |
| Reset  | 0x000 | 00000         |         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0   | 0  | 0    | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0   |
| ID     |       |               |         |    |    |    |    |    |    |    |    |     |     |      |     |      |     |      |    |     |    |      |    |    |    |   |   |   |   |   |   |     |     |     |
| Α      | W     | TASKS_CAPTURE |         |    |    |    |    |    |    |    |    | Ca  | otu | re T | ime | er v | alu | e to | CC | [n] | re | gist | er |    |    |   |   |   |   |   |   |     |     |     |
|        |       |               | Trigger | 1  |    |    |    |    |    |    |    | Tri | gge | r ta | sk  |      |     |      |    |     |    |      |    |    |    |   |   |   |   |   |   |     |     |     |

# 6.16.5.7 SUBSCRIBE\_START

Address offset: 0x080

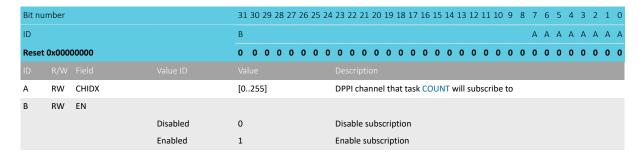
Subscribe configuration for task START

| Bit nu | umber   |       |          | 31 30 | 29 2 | 8 27 2 | 26 25 | 24 | 23 2 | 22 2: | 1 20 | 19    | 18 1  | L7 1 | 6 15 | 5 14 | 13    | 12   | 11   | 10 ! | 9 8 | 7 | 6 | 5 | 4 | 3   | 2 1 | 1 0 |
|--------|---------|-------|----------|-------|------|--------|-------|----|------|-------|------|-------|-------|------|------|------|-------|------|------|------|-----|---|---|---|---|-----|-----|-----|
| ID     |         |       |          | В     |      |        |       |    |      |       |      |       |       |      |      |      |       |      |      |      |     | Α | Α | Α | Α | A   | Δ / | 4 A |
| Rese   | t 0x000 | 00000 |          | 0 0   | 0 (  | 0 0    | 0 0   | 0  | 0    | 0 0   | 0    | 0     | 0     | 0 (  | 0    | 0    | 0     | 0    | 0    | 0 (  | 0 0 | 0 | 0 | 0 | 0 | 0 ( | 0 ( | 0 0 |
| ID     |         |       |          |       |      |        |       |    |      |       |      |       |       |      |      |      |       |      |      |      |     |   |   |   |   |     |     |     |
| Α      | RW      | CHIDX |          | [025  | 55]  |        |       |    | DPP  | l cha | anne | el th | at ta | sk S | TAR  | T w  | ill s | ubso | crib | e to |     |   |   |   |   |     |     |     |
| В      | RW      | EN    |          |       |      |        |       |    |      |       |      |       |       |      |      |      |       |      |      |      |     |   |   |   |   |     |     |     |
|        |         |       | Disabled | 0     |      |        |       |    | Disa | able  | subs | scrip | tion  |      |      |      |       |      |      |      |     |   |   |   |   |     |     |     |
|        |         |       | Enabled  | 1     |      |        |       |    | Ena  | ble s | ubs  | cript | tion  |      |      |      |       |      |      |      |     |   |   |   |   |     |     |     |

# 6.16.5.8 SUBSCRIBE\_STOP

Address offset: 0x084

Subscribe configuration for task STOP


| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A A                                               |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |         |       |          |                         |                                                               |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task STOP will subscribe to                 |
| В      | RW      | EN    |          |                         |                                                               |
|        |         |       | Disabled | 0                       | Disable subscription                                          |
|        |         |       | Enabled  | 1                       | Enable subscription                                           |

# 6.16.5.9 SUBSCRIBE\_COUNT

Address offset: 0x088



#### Subscribe configuration for task COUNT



# 6.16.5.10 SUBSCRIBE\_CLEAR

Address offset: 0x08C

Subscribe configuration for task CLEAR

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                 |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |         |       |          |                         |                                                               |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task CLEAR will subscribe to                |
| В      | RW      | EN    |          |                         |                                                               |
|        |         |       | Disabled | 0                       | Disable subscription                                          |
|        |         |       | Enabled  | 1                       | Enable subscription                                           |

# 6.16.5.11 SUBSCRIBE\_SHUTDOWN (Deprecated)

Address offset: 0x090

Subscribe configuration for task SHUTDOWN

This register is deprecated.

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                 |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                     |
| ID     |         |       |          |                         |                                                               |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task SHUTDOWN will subscribe to             |
| В      | RW      | EN    |          |                         |                                                               |
|        |         |       |          |                         |                                                               |
|        |         |       | Disabled | 0                       | Disable subscription                                          |

# 6.16.5.12 SUBSCRIBE\_CAPTURE[n] (n=0..5)

Address offset:  $0x0C0 + (n \times 0x4)$ 

Subscribe configuration for task CAPTURE[n]



| Bit nu | mber   |       |          | 31 30 29 | 28 27 | 26 | 25 24 | - 23 2 | 22 21 | 20   | 19 1   | 8 17  | ' 16 | 15 1 | 4 1  | 3 12  | 11    | 10 9 | 8     | 7 | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|--------|--------|-------|----------|----------|-------|----|-------|--------|-------|------|--------|-------|------|------|------|-------|-------|------|-------|---|---|---|---|-----|-----|---|
| ID     |        |       |          | В        |       |    |       |        |       |      |        |       |      |      |      |       |       |      |       | Α | Α | Α | Α | A A | A   | Α |
| Reset  | 0x0000 | 00000 |          | 0 0 0    | 0 0   | 0  | 0 0   | 0      | 0 0   | 0    | 0 (    | 0     | 0    | 0    | 0 0  | 0     | 0     | 0 (  | 0     | 0 | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID     |        |       |          |          |       |    |       |        |       |      |        |       |      |      |      |       |       |      |       |   |   |   |   |     |     |   |
| Α      | RW     | CHIDX |          | [0255]   |       |    |       | DPP    | I cha | nnel | that   | t tas | k CA | PTU  | RE[r | ı] wi | ll su | bscr | ibe t | 0 |   |   |   |     |     |   |
| В      | RW     | EN    |          |          |       |    |       |        |       |      |        |       |      |      |      |       |       |      |       |   |   |   |   |     |     |   |
|        |        |       | Disabled | 0        |       |    |       | Disa   | ble s | ubso | ripti  | ion   |      |      |      |       |       |      |       |   |   |   |   |     |     |   |
|        |        |       | Enabled  | 1        |       |    |       | Enal   | ble s | ubsc | riptio | on    |      |      |      |       |       |      |       |   |   |   |   |     |     |   |

# 6.16.5.13 EVENTS\_COMPARE[n] (n=0..5)

Address offset:  $0x140 + (n \times 0x4)$ Compare event on CC[n] match

| Bit nu | mber  |                |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|----------------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |       |                |              |                         | А                                                             |
| Reset  | 0x000 | 00000          |              | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |                |              |                         | Description                                                   |
| Α      | RW    | EVENTS_COMPARE |              |                         | Compare event on CC[n] match                                  |
|        |       |                | NotGenerated | 0                       | Event not generated                                           |
|        |       |                | Generated    | 1                       | Event generated                                               |

# 6.16.5.14 PUBLISH\_COMPARE[n] (n=0..5)

Address offset:  $0x1C0 + (n \times 0x4)$ 

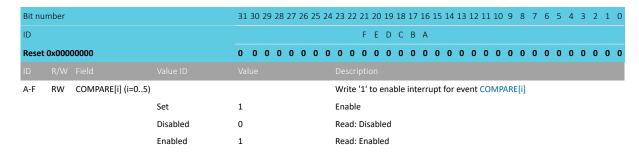
Publish configuration for event COMPARE[n]

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                      | A A A A A A A A                                                 |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                        | Description                                                     |
| Α      | RW      | CHIDX |          | [0255]                 | DPPI channel that event COMPARE[n] will publish to              |
| В      | RW      | EN    |          |                        |                                                                 |
|        |         |       | Disabled | 0                      | Disable publishing                                              |
|        |         |       | Enabled  | 1                      | Enable publishing                                               |

## 6.16.5.15 SHORTS

Address offset: 0x200

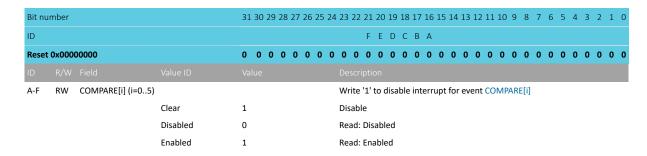
Shortcuts between local events and tasks


| Bit nu | mber  |                    |          | 31 3 | 30 | 29 2 | 28 | 27 2 | 26 | 25 2 | 4 2 | 23 2  | 2 2: | 1 20 | 19   | 9 18 | 3 17 | 16  | 15  | 14  | 13  | 12    | 11 | 10   | 9   | 8   | 7 | 6 | 5 | 4 | 3   | 2 | 1 0 |
|--------|-------|--------------------|----------|------|----|------|----|------|----|------|-----|-------|------|------|------|------|------|-----|-----|-----|-----|-------|----|------|-----|-----|---|---|---|---|-----|---|-----|
| ID     |       |                    |          |      |    |      |    |      |    |      |     |       |      |      |      |      |      |     |     |     | L   | K     | J  | 1    | Н   | G   |   |   | F | Е | D ( | С | ВА  |
| Reset  | 0x000 | 00000              |          | 0    | 0  | 0    | 0  | 0    | 0  | 0 (  | 0   | 0 0   | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0     | 0  | 0    | 0   | 0   | 0 | 0 | 0 | 0 | 0 ( | 0 | 0 0 |
| ID     |       |                    |          |      |    |      |    |      |    |      |     |       |      |      |      |      |      |     |     |     |     |       |    |      |     |     |   |   |   |   |     |   |     |
| A-F    | RW    | COMPARE[i]_CLEAR   | (i=05)   |      |    |      |    |      |    |      | 9   | Shor  | tcu  | t be | tw   | een  | eve  | ent | COI | MPA | ARE | [i] a | nd | task | (CL | EAF | 3 |   |   |   |     |   |     |
|        |       |                    | Disabled | 0    |    |      |    |      |    |      | [   | Disal | ole  | shoi | rtcı | ut   |      |     |     |     |     |       |    |      |     |     |   |   |   |   |     |   |     |
|        |       |                    | Enabled  | 1    |    |      |    |      |    |      | E   | Enab  | le s | hor  | tcu  | ıt   |      |     |     |     |     |       |    |      |     |     |   |   |   |   |     |   |     |
| G-L    | RW    | COMPARE[i]_STOP (i | =05)     |      |    |      |    |      |    |      | 9   | Shor  | tcu  | t be | tw   | een  | eve  | ent | COI | MPA | ARE | [i] a | nd | task | ST  | OP  |   |   |   |   |     |   |     |
|        |       |                    | Disabled | 0    |    |      |    |      |    |      | [   | Disal | ole: | shoi | rtcı | ut   |      |     |     |     |     |       |    |      |     |     |   |   |   |   |     |   |     |
|        |       |                    | Enabled  | 1    |    |      |    |      |    |      | E   | Enab  | le s | hor  | tcu  | ıt   |      |     |     |     |     |       |    |      |     |     |   |   |   |   |     |   |     |



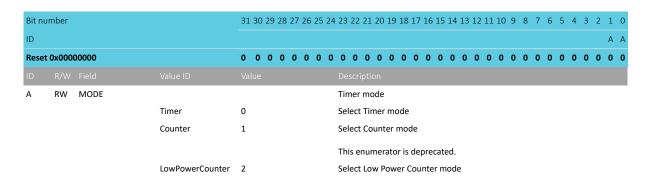
#### 6.16.5.16 INTENSET

Address offset: 0x304


Enable interrupt



#### 6.16.5.17 INTENCLR

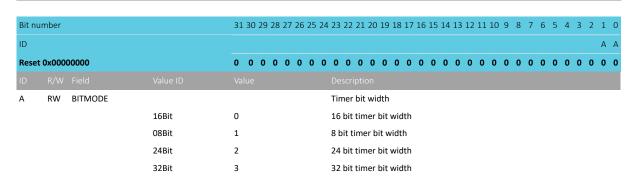

Address offset: 0x308

Disable interrupt



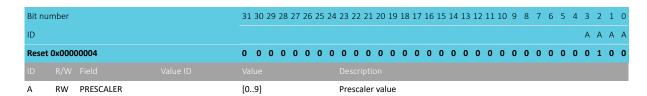
#### 6.16.5.18 MODE

Address offset: 0x504
Timer mode selection




#### 6.16.5.19 BITMODE

Address offset: 0x508


Configure the number of bits used by the TIMER





#### 6.16.5.20 PRESCALER

Address offset: 0x510
Timer prescaler register



# 6.16.5.21 ONESHOTEN[n] (n=0..5)

Address offset:  $0x514 + (n \times 0x4)$ 

Enable one-shot operation for Capture/Compare channel n

| Bit nu | mber   |           |         | 31 30 | 29 2 | 8 27 | 26 25 | 24 | 23 2 | 2 21   | 20    | 19 : | 18 1   | 7 16  | 15               | 14 1  | .3 12  | 11    | 10    | 9 8   | 3 7   | 6    | 5    | 4    | 3 2   | 1   | . 0 |
|--------|--------|-----------|---------|-------|------|------|-------|----|------|--------|-------|------|--------|-------|------------------|-------|--------|-------|-------|-------|-------|------|------|------|-------|-----|-----|
| ID     |        |           |         |       |      |      |       |    |      |        |       |      |        |       |                  |       |        |       |       |       |       |      |      |      |       |     | Α   |
| Reset  | 0x0000 | 00000     |         | 0 0   | 0 0  | 0    | 0 0   | 0  | 0 (  | 0 0    | 0     | 0    | 0 0    | 0     | 0                | 0     | 0 0    | 0     | 0     | 0 (   | 0 0   | 0    | 0    | 0    | 0 0   | 0   | 0   |
| ID     |        |           |         |       |      |      |       |    |      |        |       |      |        |       |                  |       |        |       |       |       |       |      |      |      |       |     |     |
| Α      | RW     | ONESHOTEN |         |       |      |      |       |    | Enab | ole o  | ne-s  | hot  | ope    | ratio | n                |       |        |       |       |       |       |      |      |      |       |     |     |
|        |        |           |         |       |      |      |       |    | Conf | figur  | es th | ie c | orre   | pon   | ding             | g cor | npar   | e-ch  | nann  | el fo | or or | ie-s | hot  | ope  | ratio | n   |     |
|        |        |           | Disable | 0     |      |      |       |    | Disa | ble c  | ne-s  | shot | оре    | ratio | on               |       |        |       |       |       |       |      |      |      |       |     |     |
|        |        |           |         |       |      |      |       |    | Com  | pare   | eve   | nt i | s gei  | nera  | ted              | ever  | y tin  | ne th | ne Co | ount  | ter n | nato | hes  | CC[  | n]    |     |     |
|        |        |           | Enable  | 1     |      |      |       |    | Enab | ole o  | ne-s  | hot  | ope    | ratic | n                |       |        |       |       |       |       |      |      |      |       |     |     |
|        |        |           |         |       |      |      |       |    | Com  | pare   | e eve | nt i | s gei  | nera  | ted <sup>·</sup> | the f | irst t | ime   | the   | Cou   | ınte  | · ma | atch | es C | C[n]  | aft | er  |
|        |        |           |         |       |      |      |       |    | CC[n | n] has | s be  | en v | vritte | en    |                  |       |        |       |       |       |       |      |      |      |       |     |     |

# 6.16.5.22 CC[n] (n=0..5)

Address offset: 0x540 + (n × 0x4) Capture/Compare register n

| Bit nu | mber       |     | 3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|------------|-----|--------------------------------------------------------------|
| Reset  | 0x00000000 |     | . A A A A A A A A A A A A A A A A A A A                      |
| ID     |            |     | escription                                                   |
| Α      | RW CC      | Caj | apture/Compare value                                         |

Only the number of bits indicated by  $\ensuremath{\mathsf{BITMODE}}$  will be used by the TIMER.



# $6.17 \text{ TWIM} - I^2 \text{C}$ compatible two-wire interface master with EasyDMA

TWI master with EasyDMA (TWIM) is a two-wire half-duplex master which can communicate with multiple slave devices connected to the same bus.

Listed here are the main features for TWIM:

- I<sup>2</sup>C compatible
- Supported baud rates: 100, 250, 400 kbps
- Support for clock stretching (non I<sup>2</sup>C compliant)
- EasyDMA

The two-wire interface can communicate with a bi-directional wired-AND bus with two lines (SCL, SDA). The protocol makes it possible to interconnect up to 127 individually addressable devices. TWIM is not compatible with CBUS.

The GPIOs used for each two-wire interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

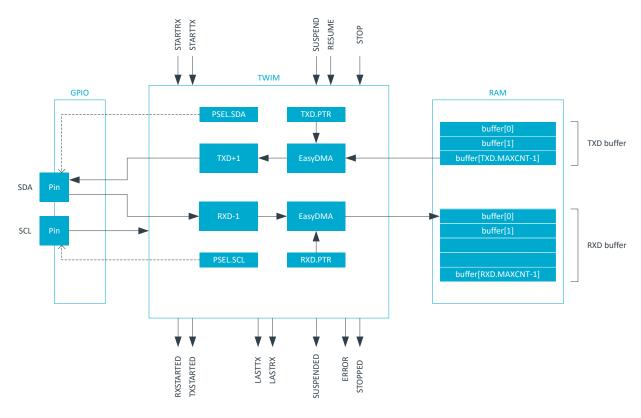



Figure 93: TWI master with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see the following figure. This TWIM is only able to operate as a single master on the TWI bus. Multi-master bus configuration is not supported.



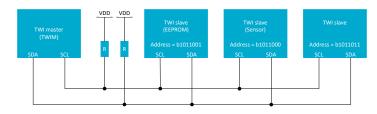



Figure 94: A typical TWI setup comprising one master and three slaves

This TWI master supports clock stretching performed by the slaves. The SCK pulse following a stretched clock cycle may be shorter than specified by the I2C specification.

The TWI master is started by triggering the STARTTX or STARTRX tasks and stopped by triggering the STOP task. The TWI master will generate a STOPPED event when it has stopped following a STOP task.

After the TWI master is started, the STARTTX or STARTRX tasks should not be triggered again until the TWI master has issued a LASTRX, LASTTX, or STOPPED event.

The TWI master can be suspended using the SUSPEND task, this can be used when using the TWI master in a low priority interrupt context. When the TWIM enters suspend state, will automatically issue a SUSPENDED event while performing a continuous clock stretching until it is instructed to resume operation via a RESUME task. The TWI master cannot be stopped while it is suspended, thus the STOP task must be issued after the TWI master has been resumed.

**Note:** Any ongoing byte transfer will be allowed to complete before the suspend is enforced. A SUSPEND task has no effect unless the TWI master is actively involved in a transfer.

If a NACK is clocked in from the slave, the TWI master will generate an ERROR event.

#### 6.17.1 Shared resources

The TWI master shares registers and other resources with other peripherals that have the same ID as the TWI master. Therefore, you must disable all peripherals that have the same ID as the TWI master before the TWI master can be configured and used.

Disabling a peripheral that has the same ID as the TWI master will not reset any of the registers that are shared with the TWI master. It is therefore important to configure all relevant registers explicitly to secure that the TWI master operates correctly.

The Instantiation table in Instantiation on page 25 shows which peripherals have the same ID as the TWI.

# 6.17.2 EasyDMA

The TWIM implements EasyDMA for accessing RAM without CPU involvement.

The TWIM peripheral implements the EasyDMA channels found in the following table.

| Channel | Туре   | Register Cluster |
|---------|--------|------------------|
| TXD     | READER | TXD              |
| RXD     | WRITER | RXD              |

Table 44: TWIM EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 46.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.



# 6.17.3 Master write sequence

A TWI master write sequence is started by triggering the STARTTX task. After the STARTTX task has been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1).

The address must match the address of the slave device that the master wants to write to. The READ/ WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) generated by the slave.

After receiving the ACK bit, the TWI master will clock out the data bytes found in the transmit buffer located in RAM at the address specified in the TXD.PTR register. Each byte clocked out from the master will be followed by an ACK/NACK bit clocked in from the slave.

A typical TWI master write sequence is shown in the following figure. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect. This event can be used to synchronize the software.

The TWI master will generate a LASTTX event when it starts to transmit the last byte, this is shown in the following figure.

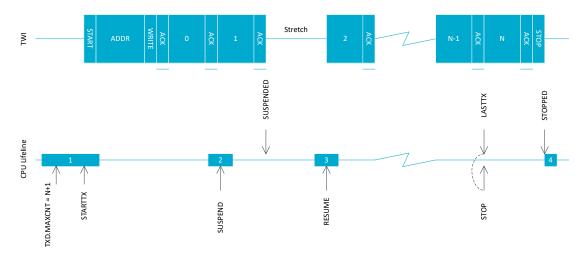



Figure 95: TWI master writing data to a slave

The TWI master is stopped by triggering the STOP task. This task should be triggered during the transmission of the last byte to secure that the TWI master will stop as fast as possible after sending the last byte. The shortcut between LASTTX and STOP can alternatively be used to accomplish this.

**Note:** The TWI master does not stop by itself when the entire RAM buffer has been sent, or when an error occurs. The STOP task must be issued, using a local or PPI shortcut, or in software as part of the error handler.

# 6.17.4 Master read sequence

A TWI master read sequence is started by triggering the STARTRX task. After the STARTRX task has been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 1 (WRITE = 0, READ = 1). The address must match the address of the slave device that the master wants to read from. The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK = 1) generated by the slave.

After sending the ACK bit, the TWI slave will send data to the master using the clock generated by the master.



Data received will be stored in RAM at the address specified in the RXD.PTR register. The TWI master will generate an ACK after all but the last byte have been received from the slave. The TWI master will generate a NACK after the last byte received to indicate that the read sequence shall stop.

A typical TWI master read sequence is illustrated in The TWI master reading data from a slave on page 356. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect. This event can be used to synchronize the software.

The TWI master will generate a LASTRX event when it is ready to receive the last byte, as shown in The TWI master reading data from a slave on page 356. If RXD.MAXCNT > 1, the LASTRX event is generated after sending the ACK of the previously received byte. If RXD.MAXCNT = 1, the LASTRX event is generated after receiving the ACK following the address and READ bit.

The TWI master is stopped by triggering the STOP task. This task must be triggered before the NACK bit is supposed to be transmitted. The STOP task can be triggered at any time during the reception of the last byte. It is recommended to use the shortcut between LASTRX and STOP to accomplish this.

The TWI master does not stop by itself when the RAM buffer is full, or when an error occurs. The STOP task must be issued, using a local or PPI shortcut, or in software as part of the error handler.

The TWI master cannot be stopped while suspended, so the STOP task must be issued after the TWI master has been resumed.

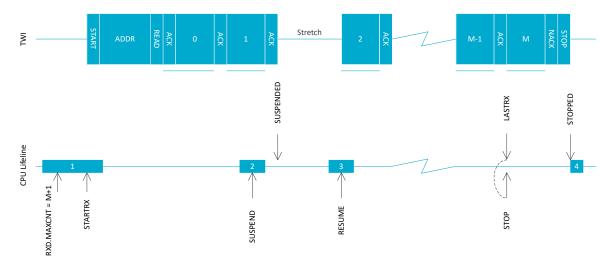



Figure 96: The TWI master reading data from a slave

# 6.17.5 Master repeated start sequence

A typical repeated start sequence is one in which the TWI master writes two bytes to the slave followed by reading four bytes from the slave. This example uses shortcuts to perform the simplest type of repeated start sequence, i.e. one write followed by one read. The same approach can be used to perform a repeated start sequence where the sequence is read followed by write.

The following figure shows an example of a repeated start sequence where the TWI master writes two bytes followed by reading four bytes from the slave.



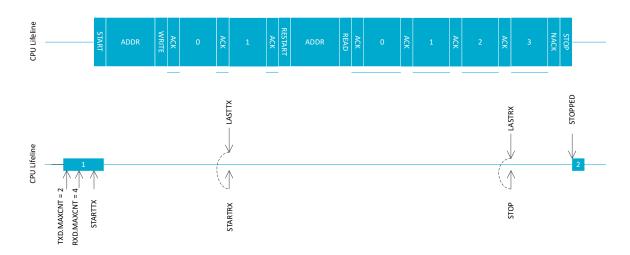



Figure 97: Master repeated start sequence

If a more complex repeated start sequence is needed, and the TWI firmware drive is serviced in a low priority interrupt, it may be necessary to use the SUSPEND task and SUSPENDED event to guarantee that the correct tasks are generated at the correct time. A double repeated start sequence using the SUSPEND task to secure safe operation in low priority interrupts is shown in the following figure.

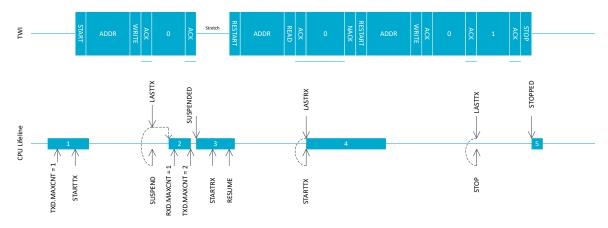



Figure 98: Double repeated start sequence

# 6.17.6 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

When the STOP task is sent, the software shall wait until the STOPPED event is received as a response before disabling the peripheral through the ENABLE register. If the peripheral is already stopped, the STOP task is not required.

# 6.17.7 Master mode pin configuration

The SCL and SDA signals associated with the TWI master are mapped to physical pins according to the configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI master is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN\_CNF[n] register. PSEL.SCL, PSEL.SDA must only be configured when the TWI master is disabled.



To secure correct signal levels on the pins used by the TWI master when the system is in OFF mode, and when the TWI master is disabled, these pins must be configured in the GPIO peripheral as described in the following table.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| TWI master signal | TWI master pin           | Direction | Output value   | Drive strength |
|-------------------|--------------------------|-----------|----------------|----------------|
| SCL               | As specified in PSEL.SCL | Input     | Not applicable | SOD1           |
| SDA               | As specified in PSEL.SDA | Input     | Not applicable | SOD1           |

Table 45: GPIO configuration before enabling peripheral

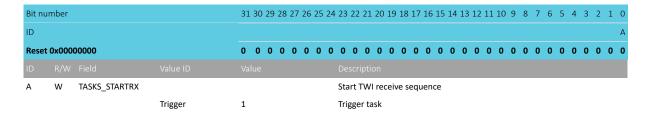
# 6.17.8 Registers

## **Instances**

| Instance   | Base address | TrustZone |     |     | Split access | Description                 |
|------------|--------------|-----------|-----|-----|--------------|-----------------------------|
|            |              | Мар       | Att | DMA |              |                             |
| TWIM0 : S  | 0x50008000   | US        | NS  | SA  | No           | Two-wire interface master 0 |
| TWIM0 : NS | 0x40008000   | 03        | NS  | JA  | NO           | Two-wife interface master o |
| TWIM1:S    | 0x50009000   | US        | NS  | SA  | No           | Two-wire interface master 1 |
| TWIM1: NS  | 0x40009000   | 03        | INS | ЭА  | NO           | iwo-wife interface master 1 |
| TWIM2:S    | 0x5000A000   | US        | NS  | SA  | No           | Two-wire interface master 2 |
| TWIM2 : NS | 0x4000A000   | 03        | NS  | JA  | NO           | 1wo-wife interface master 2 |
| TWIM3:S    | 0x5000B000   | US        | NS  | SA  | No           | Two-wire interface master 3 |
| TWIM3: NS  | 0x4000B000   | 03        | INS | JA  | NO           | iwo-wife interface master 5 |

# **Register overview**

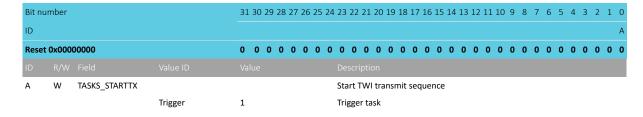
| Register          | Offset | TZ | Description                                                                 |
|-------------------|--------|----|-----------------------------------------------------------------------------|
| TASKS_STARTRX     | 0x000  |    | Start TWI receive sequence                                                  |
| TASKS_STARTTX     | 0x008  |    | Start TWI transmit sequence                                                 |
| TASKS_STOP        | 0x014  |    | Stop TWI transaction. Must be issued while the TWI master is not suspended. |
| TASKS_SUSPEND     | 0x01C  |    | Suspend TWI transaction                                                     |
| TASKS_RESUME      | 0x020  |    | Resume TWI transaction                                                      |
| SUBSCRIBE_STARTRX | 0x080  |    | Subscribe configuration for task STARTRX                                    |
| SUBSCRIBE_STARTTX | 0x088  |    | Subscribe configuration for task STARTTX                                    |
| SUBSCRIBE_STOP    | 0x094  |    | Subscribe configuration for task STOP                                       |
| SUBSCRIBE_SUSPEND | 0x09C  |    | Subscribe configuration for task SUSPEND                                    |
| SUBSCRIBE_RESUME  | 0x0A0  |    | Subscribe configuration for task RESUME                                     |
| EVENTS_STOPPED    | 0x104  |    | TWI stopped                                                                 |
| EVENTS_ERROR      | 0x124  |    | TWI error                                                                   |
| EVENTS_SUSPENDED  | 0x148  |    | SUSPEND task has been issued, TWI traffic is now suspended.                 |
| EVENTS_RXSTARTED  | 0x14C  |    | Receive sequence started                                                    |
| EVENTS_TXSTARTED  | 0x150  |    | Transmit sequence started                                                   |
| EVENTS_LASTRX     | 0x15C  |    | Byte boundary, starting to receive the last byte                            |
| EVENTS_LASTTX     | 0x160  |    | Byte boundary, starting to transmit the last byte                           |
| PUBLISH_STOPPED   | 0x184  |    | Publish configuration for event STOPPED                                     |
| PUBLISH_ERROR     | 0x1A4  |    | Publish configuration for event ERROR                                       |
| PUBLISH_SUSPENDED | 0x1C8  |    | Publish configuration for event SUSPENDED                                   |
| PUBLISH_RXSTARTED | 0x1CC  |    | Publish configuration for event RXSTARTED                                   |




| Register          | Offset | TZ | Description                                                   |
|-------------------|--------|----|---------------------------------------------------------------|
| PUBLISH_TXSTARTED | 0x1D0  |    | Publish configuration for event TXSTARTED                     |
| PUBLISH_LASTRX    | 0x1DC  |    | Publish configuration for event LASTRX                        |
| PUBLISH_LASTTX    | 0x1E0  |    | Publish configuration for event LASTTX                        |
| SHORTS            | 0x200  |    | Shortcuts between local events and tasks                      |
| INTEN             | 0x300  |    | Enable or disable interrupt                                   |
| INTENSET          | 0x304  |    | Enable interrupt                                              |
| INTENCLR          | 0x308  |    | Disable interrupt                                             |
| ERRORSRC          | 0x4C4  |    | Error source                                                  |
| ENABLE            | 0x500  |    | Enable TWIM                                                   |
| PSEL.SCL          | 0x508  |    | Pin select for SCL signal                                     |
| PSEL.SDA          | 0x50C  |    | Pin select for SDA signal                                     |
| FREQUENCY         | 0x524  |    | TWI frequency. Accuracy depends on the HFCLK source selected. |
| RXD.PTR           | 0x534  |    | Data pointer                                                  |
| RXD.MAXCNT        | 0x538  |    | Maximum number of bytes in receive buffer                     |
| RXD.AMOUNT        | 0x53C  |    | Number of bytes transferred in the last transaction           |
| RXD.LIST          | 0x540  |    | EasyDMA list type                                             |
| TXD.PTR           | 0x544  |    | Data pointer                                                  |
| TXD.MAXCNT        | 0x548  |    | Maximum number of bytes in transmit buffer                    |
| TXD.AMOUNT        | 0x54C  |    | Number of bytes transferred in the last transaction           |
| TXD.LIST          | 0x550  |    | EasyDMA list type                                             |
| ADDRESS           | 0x588  |    | Address used in the TWI transfer                              |

## 6.17.8.1 TASKS\_STARTRX

Address offset: 0x000


Start TWI receive sequence



## 6.17.8.2 TASKS\_STARTTX

Address offset: 0x008

Start TWI transmit sequence



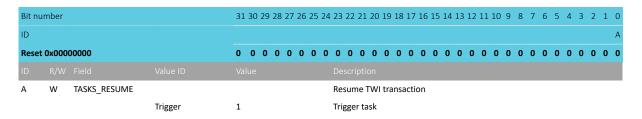
# 6.17.8.3 TASKS\_STOP

Address offset: 0x014

Stop TWI transaction. Must be issued while the TWI master is not suspended.



| Bit nu | mber  |            |         | 31 30 | 0 29 : | 28 2 <sup>-</sup> | 7 26 | 5 25 | 24 2 | 23 2 | 22 2 | 21 2  | 0 1 | 9 18 | 3 17 | ' 16 | 15    | 14    | 13  | 12 1 | .1 10 | 9   | 8  | 7     | 6   | 5 .  | 4 3 | 3 2 | 1 | 0 |
|--------|-------|------------|---------|-------|--------|-------------------|------|------|------|------|------|-------|-----|------|------|------|-------|-------|-----|------|-------|-----|----|-------|-----|------|-----|-----|---|---|
| ID     |       |            |         |       |        |                   |      |      |      |      |      |       |     |      |      |      |       |       |     |      |       |     |    |       |     |      |     |     |   | Α |
| Reset  | 0x000 | 00000      |         | 0 0   | 0      | 0 0               | 0    | 0    | 0    | 0 (  | 0 (  | 0 0   | 0   | 0    | 0    | 0    | 0     | 0     | 0   | 0    | 0 0   | 0   | 0  | 0     | 0   | 0    | 0 0 | 0   | 0 | 0 |
| ID     |       |            |         |       |        |                   |      |      |      |      |      |       |     |      |      |      |       |       |     |      |       |     |    |       |     |      |     |     |   |   |
| Α      | W     | TASKS_STOP |         |       |        |                   |      |      | S    | top  | TV   | VI tr | ans | acti | ion. | Мι   | ıst k | oe is | sue | d w  | hile  | the | TW | 'l ma | ste | r is | not |     |   |   |
|        |       |            |         |       |        |                   |      |      | S    | usp  | eno  | ded   |     |      |      |      |       |       |     |      |       |     |    |       |     |      |     |     |   |   |
|        |       |            | Trigger | 1     |        |                   |      |      | Т    | rigg | ger  | task  | (   |      |      |      |       |       |     |      |       |     |    |       |     |      |     |     |   |   |


# 6.17.8.4 TASKS\_SUSPEND

Address offset: 0x01C Suspend TWI transaction

| Bit number |                  |               |         |   |   | 29 2 | 8 2 | 27 2 | 6 25                    | 5 2 | 4 23 | 3 2 | 2 21 | 1 20 | 0 19 | 18 | 8 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | . 1 | 0 |
|------------|------------------|---------------|---------|---|---|------|-----|------|-------------------------|-----|------|-----|------|------|------|----|------|----|----|----|----|----|----|----|---|---|---|---|---|---|-----|-----|---|
| ID         |                  |               |         |   |   |      |     |      |                         |     |      |     |      |      |      |    |      |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     | Α |
| Reset      | Reset 0x00000000 |               |         |   | 0 | 0    | 0 ( | 0 (  | 0 0                     | (   | 0    | C   | 0    | 0    | 0    | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0   | 0 |
| ID         |                  |               |         |   |   |      |     |      |                         |     |      |     |      |      |      |    |      |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     |   |
| Α          | W                | TASKS_SUSPEND |         |   |   |      |     |      | Suspend TWI transaction |     |      |     |      |      |      |    |      |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     |   |
|            |                  |               | Trigger | 1 |   |      |     |      |                         |     | Tr   | igg | er t | ask  | :    |    |      |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     |   |

# 6.17.8.5 TASKS\_RESUME

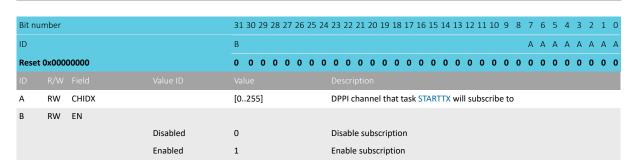
Address offset: 0x020
Resume TWI transaction



# 6.17.8.6 SUBSCRIBE\_STARTRX

Address offset: 0x080

Subscribe configuration for task STARTRX


| Bit number |       |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|------------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
|            |       |       |          | В                       | A A A A A A A                                                 |
| Reset      | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID         |       |       |          |                         | Description                                                   |
| Α          | RW    | CHIDX |          | [0255]                  | DPPI channel that task STARTRX will subscribe to              |
| В          | RW    | EN    |          |                         |                                                               |
|            |       |       | Disabled | 0                       | Disable subscription                                          |
|            |       |       | Enabled  | 1                       | Enable subscription                                           |

## 6.17.8.7 SUBSCRIBE\_STARTTX

Address offset: 0x088

Subscribe configuration for task STARTTX





## 6.17.8.8 SUBSCRIBE\_STOP

Address offset: 0x094

Subscribe configuration for task STOP

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task STOP will subscribe to                   |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable subscription                                            |
|        |         |       | Enabled  | 1                       | Enable subscription                                             |

## 6.17.8.9 SUBSCRIBE\_SUSPEND

Address offset: 0x09C

Subscribe configuration for task SUSPEND

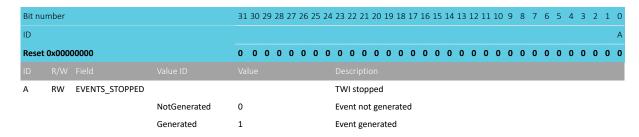
| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task SUSPEND will subscribe to              |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

# 6.17.8.10 SUBSCRIBE\_RESUME

Address offset: 0x0A0

Subscribe configuration for task RESUME

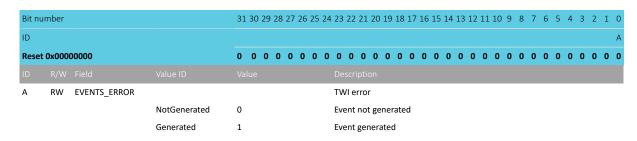
| Bit no | umber   |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A A                                               |
| Rese   | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |         |       |          |                         |                                                               |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task RESUME will subscribe to               |
| В      | RW      | EN    |          |                         |                                                               |
|        |         |       | Disabled | 0                       | Disable subscription                                          |
|        |         |       | Enabled  | 1                       | Enable subscription                                           |






## 6.17.8.11 EVENTS\_STOPPED

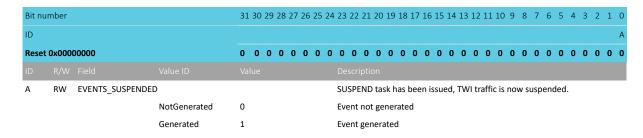
Address offset: 0x104


TWI stopped



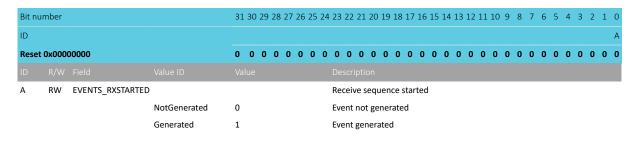
#### 6.17.8.12 EVENTS ERROR

Address offset: 0x124


TWI error



#### 6.17.8.13 EVENTS SUSPENDED

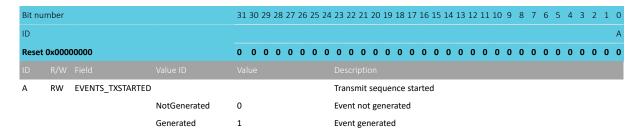

Address offset: 0x148

SUSPEND task has been issued, TWI traffic is now suspended.



#### 6.17.8.14 EVENTS RXSTARTED

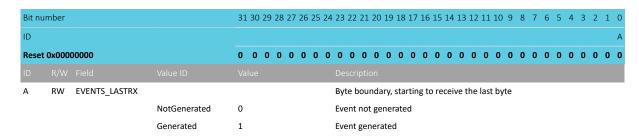
Address offset: 0x14C Receive sequence started






## 6.17.8.15 EVENTS\_TXSTARTED

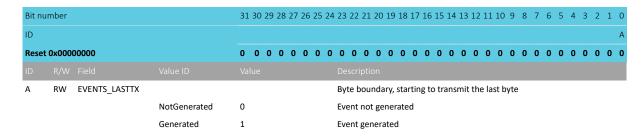
Address offset: 0x150


Transmit sequence started



#### **6.17.8.16 EVENTS LASTRX**

Address offset: 0x15C

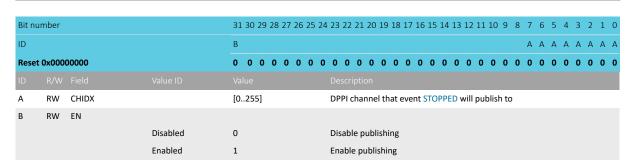

Byte boundary, starting to receive the last byte



#### **6.17.8.17 EVENTS LASTTX**

Address offset: 0x160

Byte boundary, starting to transmit the last byte




#### 6.17.8.18 PUBLISH STOPPED

Address offset: 0x184

Publish configuration for event STOPPED





## 6.17.8.19 PUBLISH\_ERROR

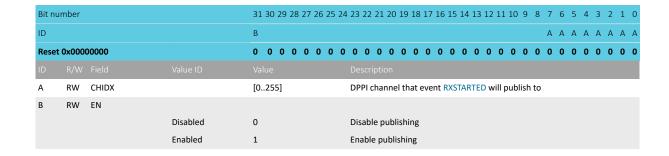
Address offset: 0x1A4

Publish configuration for event ERROR

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event ERROR will publish to                 |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

## 6.17.8.20 PUBLISH\_SUSPENDED

Address offset: 0x1C8

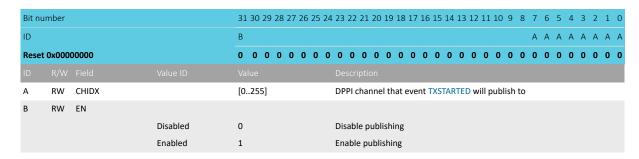

Publish configuration for event SUSPENDED

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|------------------------|------------------------------------------------------------------|
| ID     |         |       |          | В                      | A A A A A A                                                      |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID     |         |       |          |                        |                                                                  |
| Α      | RW      | CHIDX |          | [0255]                 | DPPI channel that event SUSPENDED will publish to                |
| В      | RW      | EN    |          |                        |                                                                  |
|        |         |       | Disabled | 0                      | Disable publishing                                               |
|        |         |       | Enabled  | 1                      | Enable publishing                                                |

## 6.17.8.21 PUBLISH\_RXSTARTED

Address offset: 0x1CC

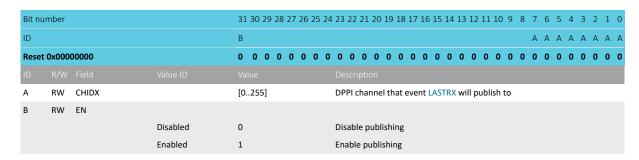
Publish configuration for event RXSTARTED






#### 6.17.8.22 PUBLISH\_TXSTARTED

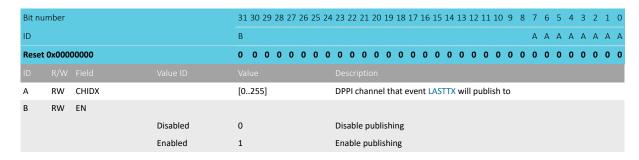
Address offset: 0x1D0


Publish configuration for event TXSTARTED



## 6.17.8.23 PUBLISH\_LASTRX

Address offset: 0x1DC


Publish configuration for event LASTRX



#### 6.17.8.24 PUBLISH LASTTX

Address offset: 0x1E0

Publish configuration for event LASTTX



#### 6.17.8.25 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks



| Bit nu | ımber |                |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|----------------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |                |          |                         | F D C B A                                                       |
| Reset  | 0x000 | 00000          |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |                |          |                         | Description                                                     |
| Α      | RW    | LASTTX_STARTRX |          |                         | Shortcut between event LASTTX and task STARTRX                  |
|        |       |                | Disabled | 0                       | Disable shortcut                                                |
|        |       |                | Enabled  | 1                       | Enable shortcut                                                 |
| В      | RW    | LASTTX_SUSPEND |          |                         | Shortcut between event LASTTX and task SUSPEND                  |
|        |       |                | Disabled | 0                       | Disable shortcut                                                |
|        |       |                | Enabled  | 1                       | Enable shortcut                                                 |
| С      | RW    | LASTTX_STOP    |          |                         | Shortcut between event LASTTX and task STOP                     |
|        |       |                | Disabled | 0                       | Disable shortcut                                                |
|        |       |                | Enabled  | 1                       | Enable shortcut                                                 |
| D      | RW    | LASTRX_STARTTX |          |                         | Shortcut between event LASTRX and task STARTTX                  |
|        |       |                | Disabled | 0                       | Disable shortcut                                                |
|        |       |                | Enabled  | 1                       | Enable shortcut                                                 |
| F      | RW    | LASTRX_STOP    |          |                         | Shortcut between event LASTRX and task STOP                     |
|        |       |                | Disabled | 0                       | Disable shortcut                                                |
|        |       |                | Enabled  | 1                       | Enable shortcut                                                 |

## 6.17.8.26 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit nu | mber  |           |          | 31 | 30 2 | 29 28 | 3 27 2 | 26 25 | 5 24 | 23  | 22 2 | 1 20  | 19   | 18 3  | 17 1 | 6 1 | 5 14  | 13   | 12 1 | 11 1 | 10 9 | 8  | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |
|--------|-------|-----------|----------|----|------|-------|--------|-------|------|-----|------|-------|------|-------|------|-----|-------|------|------|------|------|----|---|---|---|-----|---|---|---|
| ID     |       |           |          |    |      |       |        |       | J    | 1   |      | Н     | G    | F     |      |     |       |      |      |      | D    |    |   |   |   |     |   | Α |   |
| Reset  | 0x000 | 00000     |          | 0  | 0    | 0 0   | 0      | 0 0   | 0    | 0   | 0 (  | 0     | 0    | 0     | 0    | 0 0 | 0     | 0    | 0    | 0    | 0 0  | 0  | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 |
|        |       |           |          |    |      |       |        |       |      |     |      |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| Α      | RW    | STOPPED   |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t ST | OP   | PED  |    |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| D      | RW    | ERROR     |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t ER | RO   | R    |    |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| F      | RW    | SUSPENDED |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t SU | ISP  | ENDE | ED |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| G      | RW    | RXSTARTED |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t RX | STA  | ARTE | D  |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | ble  |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| Н      | RW    | TXSTARTED |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t TX | STA  | ARTE | D  |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | ble  |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| 1      | RW    | LASTRX    |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ever | t LA | STF  | RX   |    |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
| J      | RW    | LASTTX    |          |    |      |       |        |       |      | Ena | able | or di | sabl | le in | terr | upt | for e | ver  | t LA | ST   | ГХ   |    |   |   |   |     |   |   |   |
|        |       |           | Disabled | 0  |      |       |        |       |      | Dis | able |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |
|        |       |           | Enabled  | 1  |      |       |        |       |      | Ena | ble  |       |      |       |      |     |       |      |      |      |      |    |   |   |   |     |   |   |   |

## 6.17.8.27 INTENSET

Address offset: 0x304



## Enable interrupt

| Bit nu | mber  |           |          | 31 | 30 | 29 2 | 28 : | 27 2 | 26 2 | 25 2 | 24 2 | 23 2 | 22 2 | 21 2  | 0 : | 19  | 18   | 17 1 | 6 1 | 5 14  | 13 | 12  | 11  | 10   | 9   | 8  | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 1 ( | O |
|--------|-------|-----------|----------|----|----|------|------|------|------|------|------|------|------|-------|-----|-----|------|------|-----|-------|----|-----|-----|------|-----|----|---|---|---|---|-----|-----|-----|---|
| ID     |       |           |          |    |    |      |      |      |      |      | J I  | L    |      | ŀ     | +   | G   | F    |      |     |       |    |     |     |      | D   |    |   |   |   |   |     | A   | 4   |   |
| Reset  | 0x000 | 00000     |          | 0  | 0  | 0    | 0    | 0    | 0    | 0    | 0 (  | 0 (  | 0    | 0 (   | 0   | 0   | 0    | 0    | 0   | 0     | 0  | 0   | 0   | 0    | 0   | 0  | 0 | 0 | 0 | 0 | 0 ( | ) ( | ) ( | D |
| ID     |       |           |          |    |    |      |      |      |      |      |      |      |      |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| Α      | RW    | STOPPED   |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | e   | nab | le i | ntei | rup | t for | ev | ent | STO | OPP  | ED  |    |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nat  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | ed  |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| D      | RW    | ERROR     |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | eı  | nab | le i | ntei | rup | t for | ev | ent | ERI | ROF  | l   |    |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nat  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| F      | RW    | SUSPENDED |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | e   | nab | le i | ntei | rup | t for | ev | ent | SU  | SPE  | NDI | ED |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nak  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| G      | RW    | RXSTARTED |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | eı  | nab | le i | ntei | rup | for   | ev | ent | RX: | STA  | RTE | D  |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Е    | nak  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | ed  |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| Н      | RW    | TXSTARTED |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | e   | nab | le i | ntei | rup | for   | ev | ent | TXS | STAI | RTE | D  |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nak  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| 1      | RW    | LASTRX    |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | e e | nab | le i | ntei | rup | t for | ev | ent | LAS | STR  | K   |    |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nak  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | Enab  | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
| J      | RW    | LASTTX    |          |    |    |      |      |      |      |      | ٧    | Vrit | e '  | 1' to | e   | nab | le i | ntei | rup | t for | ev | ent | LAS | STT  | (   |    |   |   |   |   |     |     |     |   |
|        |       |           | Set      | 1  |    |      |      |      |      |      | Ε    | nat  | ble  |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | R    | Read | d: [ | Disal | ble | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | R    | Read | d: E | nab   | ole | d   |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |
|        |       |           |          |    |    |      |      |      |      |      |      |      |      |       |     |     |      |      |     |       |    |     |     |      |     |    |   |   |   |   |     |     |     |   |

## 6.17.8.28 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | umber        |          | 31 30 29 28 2 | 27 26 25 2 | 24 23 22 | 21 20 1   | 9 18 1  | 7 16 1  | 5 14 1  | 3 12 1 | 1 10 | 9 8 | 7 | 6 | 5 4 | 3 | 2 | 1 0 |
|--------|--------------|----------|---------------|------------|----------|-----------|---------|---------|---------|--------|------|-----|---|---|-----|---|---|-----|
| ID     |              |          |               |            | JI       | Н         | i F     |         |         |        |      | D   |   |   |     |   |   | Α   |
| Reset  | t 0x00000000 |          | 0 0 0 0       | 0 0 0      | 0 0 0    | 0 0 0     | 0 0     | 0 0     | 0 (     | 0 (    | 0 0  | 0 0 | 0 | 0 | 0 0 | 0 | 0 | 0 0 |
| ID     |              |          |               |            |          |           |         |         |         |        |      |     |   |   |     |   |   |     |
| Α      | RW STOPPED   |          |               |            | Write '  | 1' to dis | able in | iterrup | t for e | vent S | TOPP | ED  |   |   |     |   |   |     |
|        |              | Clear    | 1             |            | Disable  | 9         |         |         |         |        |      |     |   |   |     |   |   |     |
|        |              | Disabled | 0             |            | Read:    | Disabled  | t       |         |         |        |      |     |   |   |     |   |   |     |
|        |              | Enabled  | 1             |            | Read:    | Enabled   |         |         |         |        |      |     |   |   |     |   |   |     |
| D      | RW ERROR     |          |               |            | Write '  | 1' to dis | able in | iterrup | t for e | vent E | RROR |     |   |   |     |   |   |     |
|        |              | Clear    | 1             |            | Disable  | 9         |         |         |         |        |      |     |   |   |     |   |   |     |
|        |              | Disabled | 0             |            | Read:    | Disabled  | ł       |         |         |        |      |     |   |   |     |   |   |     |
|        |              | Enabled  | 1             |            | Read:    | Enabled   |         |         |         |        |      |     |   |   |     |   |   |     |
| F      | RW SUSPENDED |          |               |            | Write '  | 1' to dis | able in | iterrup | t for e | vent S | USPE | NDE | ) |   |     |   |   |     |



| Bit n | umber         |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------------|----------|------------------------|------------------------------------------------------------------|
| ID    |               |          |                        | J I H G F D A                                                    |
| Rese  | et 0x00000000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID    |               |          |                        | Description                                                      |
|       |               | Clear    | 1                      | Disable                                                          |
|       |               | Disabled | 0                      | Read: Disabled                                                   |
|       |               | Enabled  | 1                      | Read: Enabled                                                    |
| G     | RW RXSTARTED  |          |                        | Write '1' to disable interrupt for event RXSTARTED               |
|       |               | Clear    | 1                      | Disable                                                          |
|       |               | Disabled | 0                      | Read: Disabled                                                   |
|       |               | Enabled  | 1                      | Read: Enabled                                                    |
| Н     | RW TXSTARTED  |          |                        | Write '1' to disable interrupt for event TXSTARTED               |
|       |               | Clear    | 1                      | Disable                                                          |
|       |               | Disabled | 0                      | Read: Disabled                                                   |
|       |               | Enabled  | 1                      | Read: Enabled                                                    |
| 1     | RW LASTRX     |          |                        | Write '1' to disable interrupt for event LASTRX                  |
|       |               | Clear    | 1                      | Disable                                                          |
|       |               | Disabled | 0                      | Read: Disabled                                                   |
|       |               | Enabled  | 1                      | Read: Enabled                                                    |
| J     | RW LASTTX     |          |                        | Write '1' to disable interrupt for event LASTTX                  |
|       |               | Clear    | 1                      | Disable                                                          |
|       |               | Disabled | 0                      | Read: Disabled                                                   |
|       |               | Enabled  | 1                      | Read: Enabled                                                    |

## 6.17.8.29 ERRORSRC

Address offset: 0x4C4

Error source

| Bit nu | ımber           |             | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                      |
|--------|-----------------|-------------|------------------------|-------------------------------------------------------------------------------------------------------|
| ID     |                 |             |                        | СВА                                                                                                   |
| Reset  | t 0x00000000    |             | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               |
| ID     |                 |             |                        |                                                                                                       |
| Α      | RW OVERRUN      |             |                        | Overrun error                                                                                         |
|        | W1C             |             |                        | A new byte was received before previous byte got transferred into RXD buffer. (Previous data is lost) |
|        |                 | NotReceived | 0                      | Error did not occur                                                                                   |
|        |                 | Received    | 1                      | Error occurred                                                                                        |
| В      | RW ANACK<br>W1C |             |                        | NACK received after sending the address (write '1' to clear)                                          |
|        |                 | NotReceived | 0                      | Error did not occur                                                                                   |
|        |                 | Received    | 1                      | Error occurred                                                                                        |
| С      | RW DNACK<br>W1C |             |                        | NACK received after sending a data byte (write '1' to clear)                                          |
|        |                 | NotReceived | 0                      | Error did not occur                                                                                   |
|        |                 | Received    | 1                      | Error occurred                                                                                        |

## 6.17.8.30 ENABLE

Address offset: 0x500

**Enable TWIM** 



| Bit nu | mber  |        |          | 31 30 | 29 : | 28 27 | 26 25 | 5 24 | 23 2 | 22 21 | 1 20  | 19    | 18 1 | 7 16 | 15 | 14 | 13 1 | 2 11 | . 10 | 9 | 8 | 7 | 6 | 5 4 | 4 3 | 3 2 | 1 0 |
|--------|-------|--------|----------|-------|------|-------|-------|------|------|-------|-------|-------|------|------|----|----|------|------|------|---|---|---|---|-----|-----|-----|-----|
| ID     |       |        |          |       |      |       |       |      |      |       |       |       |      |      |    |    |      |      |      |   |   |   |   |     | Å   | A   | АА  |
| Reset  | 0x000 | 00000  |          | 0 0   | 0    | 0 0   | 0 0   | 0    | 0    | 0 0   | 0     | 0     | 0 (  | 0    | 0  | 0  | 0 0  | 0    | 0    | 0 | 0 | 0 | 0 | 0 ( | 0 ( | 0   | 0 0 |
| ID     |       |        |          |       |      |       |       |      |      |       |       |       |      |      |    |    |      |      |      |   |   |   |   |     |     |     |     |
| Α      | RW    | ENABLE |          |       |      |       |       |      | Ena  | ble c | or di | sable | e TW | /IM  |    |    |      |      |      |   |   |   |   |     |     |     |     |
|        |       |        | Disabled | 0     |      |       |       |      | Disa | ble ' | TWI   | M     |      |      |    |    |      |      |      |   |   |   |   |     |     |     |     |
|        |       |        | Enabled  | 6     |      |       |       |      | Ena  | ble T | WIN   | Л     |      |      |    |    |      |      |      |   |   |   |   |     |     |     |     |

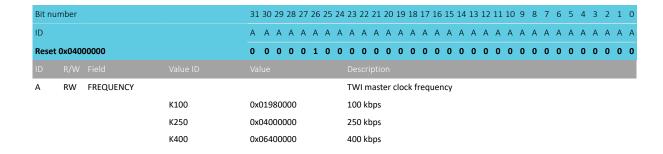
#### 6.17.8.31 PSEL.SCL

Address offset: 0x508

Pin select for SCL signal

| Bit nu | mber   |         |              | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|-----------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                            |
| Reset  | 0xFFFI | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         |
| ID     |        |         |              |                         |                                                                 |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                      |
| В      | RW     | CONNECT |              |                         | Connection                                                      |
|        |        |         | Disconnected | 1                       | Disconnect                                                      |
|        |        |         | Connected    | 0                       | Connect                                                         |

#### 6.17.8.32 PSEL.SDA


Address offset: 0x50C Pin select for SDA signal

| Bit nu | ımber  |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                          |
| Reset  | 0xFFFI | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

## **6.17.8.33 FREQUENCY**

Address offset: 0x524

TWI frequency. Accuracy depends on the HFCLK source selected.





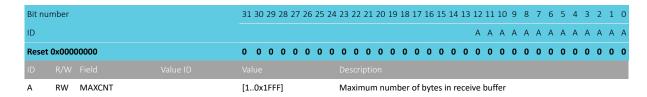
#### 6.17.8.34 RXD

RXD EasyDMA channel

#### 6.17.8.34.1 RXD.PTR

Address offset: 0x534

Data pointer


| Α     | RW     |    | PTR  |  |  |    |      |    |    |    |    |    |    | Dat | ta p | oin | ter |    |      |     |      |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
|-------|--------|----|------|--|--|----|------|----|----|----|----|----|----|-----|------|-----|-----|----|------|-----|------|------|----|----|----|----|---|---|---|---|---|---|---|---|-----|
| ID    |        |    |      |  |  |    |      |    |    |    |    |    |    |     |      |     |     |    |      |     |      |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
| Rese  | t 0x00 | 00 | 0000 |  |  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0   | 0  | 0    | 0 0 | 0    | 0    | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID    |        |    |      |  |  | Α  | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α   | Α   | Α  | A    | 4 Α | A    | . A  | Α  | Α  | Α  | Α  | Α | Α | Α | Α | Α | Α | Α | Α | A A |
| Bit n | umber  |    |      |  |  | 31 | L 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21  | 20  | 19 | 18 1 | 7 1 | 6 15 | 5 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |

See the memory chapter for details about which memories are available for EasyDMA.

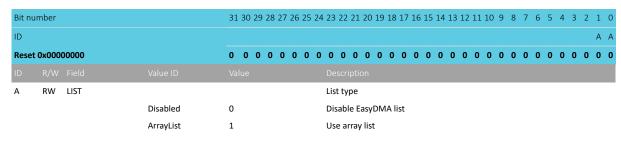
#### 6.17.8.34.2 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer



#### 6.17.8.34.3 RXD.AMOUNT


Address offset: 0x53C


Number of bytes transferred in the last transaction

| Bit n | umber   |        | 31 30 29 28 27 26 2 | 24 | 23 2 | 2 21   | 20 19 | 18    | 17    | 16 1  | 5 14 | 13  | 12  | 11    | 10  | 9   | 8   | 7    | 6   | 5   | 4   | 3   | 2   | 1 0 |
|-------|---------|--------|---------------------|----|------|--------|-------|-------|-------|-------|------|-----|-----|-------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| ID    |         |        |                     |    |      |        |       |       |       |       |      |     | Α   | Α     | Α   | Α   | Α   | Α    | Α   | Α   | Α   | Α   | Α   | А А |
| Rese  | t 0x000 | 00000  | 0 0 0 0 0 0         | 0  | 0 (  | 0 0    | 0 0   | 0     | 0     | 0 (   | 0    | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0 0 |
| ID    |         |        |                     |    |      |        |       |       |       |       |      |     |     |       |     |     |     |      |     |     |     |     |     |     |
| Α     | R       | AMOUNT | [10x1FFF]           | ı  | Num  | ber c  | f byt | es tı | ransf | ferre | d in | the | las | t tra | ans | act | ion | . In | cas | e o | f N | 4CK | err | or, |
|       |         |        |                     | i  | nclu | ides t | he NA | ACK'  | ed b  | vte.  |      |     |     |       |     |     |     |      |     |     |     |     |     |     |

#### 6.17.8.34.4 RXD.LIST

Address offset: 0x540 EasyDMA list type







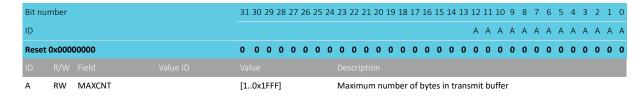
#### 6.17.8.35 TXD

TXD EasyDMA channel

#### 6.17.8.35.1 TXD.PTR

Address offset: 0x544

Data pointer


| Bit nu | ımber |       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21  | 20   | 19 | 18 1 | L7 1 | 6 1 | 5 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|-------|----|----|----|----|----|----|----|----|----|------|-----|------|----|------|------|-----|------|----|----|----|----|---|---|---|---|---|---|---|---|-----|
| ID     |       |       | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α    | Α   | Α    | Α  | Α    | A A  | \ A | A    | Α  | Α  | Α  | Α  | Α | Α | Α | Α | Α | Α | Α | Α | A A |
| Reset  | 0x000 | 00000 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0    | 0  | 0    | 0 0  | ) ( | 0    | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |       |    |    |    |    |    |    |    |    |    |      |     |      |    |      |      |     |      |    |    |    |    |   |   |   |   |   |   |   |   |     |
| Α      | RW    | PTR   |    |    |    |    |    |    |    |    | Da | ta p | oir | nter |    |      |      |     |      |    |    |    |    |   |   |   |   |   |   |   |   |     |

See the memory chapter for details about which memories are available for FasyDMA

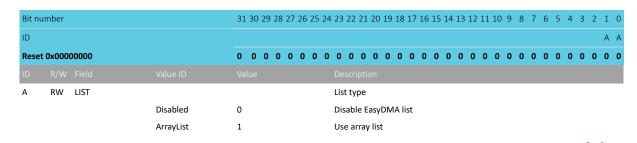
#### 6.17.8.35.2 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer



#### 6.17.8.35.3 TXD.AMOUNT

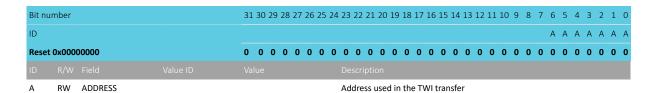

Address offset: 0x54C

Number of bytes transferred in the last transaction

| Bit n | umber   |        | 31 30 29 28 27 26 2 | 24 | 23 2 | 2 21   | 20 19 | 18    | 17    | 16 1  | 5 14 | 13  | 12  | 11    | 10  | 9   | 8   | 7    | 6   | 5   | 4   | 3   | 2   | 1 0 |
|-------|---------|--------|---------------------|----|------|--------|-------|-------|-------|-------|------|-----|-----|-------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| ID    |         |        |                     |    |      |        |       |       |       |       |      |     | Α   | Α     | Α   | Α   | Α   | Α    | Α   | Α   | Α   | Α   | Α   | А А |
| Rese  | t 0x000 | 00000  | 0 0 0 0 0 0         | 0  | 0 (  | 0 0    | 0 0   | 0     | 0     | 0 (   | 0    | 0   | 0   | 0     | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0 0 |
| ID    |         |        |                     |    |      |        |       |       |       |       |      |     |     |       |     |     |     |      |     |     |     |     |     |     |
| Α     | R       | AMOUNT | [10x1FFF]           | ı  | Num  | ber c  | f byt | es tı | ransf | ferre | d in | the | las | t tra | ans | act | ion | . In | cas | e o | f N | 4CK | err | or, |
|       |         |        |                     | i  | nclu | ides t | he NA | ACK'  | ed b  | vte.  |      |     |     |       |     |     |     |      |     |     |     |     |     |     |

#### 6.17.8.35.4 TXD.LIST

Address offset: 0x550 EasyDMA list type






#### 6.17.8.36 ADDRESS

Address offset: 0x588

Address used in the TWI transfer



# 6.17.9 Electrical specification

## 6.17.9.1 TWIM interface electrical specifications

| Symbol                  | Description                                            | Min. | Тур.  | Max. | Units |
|-------------------------|--------------------------------------------------------|------|-------|------|-------|
| f <sub>TWIM,SCL</sub>   | Bit rates for TWIM <sup>24</sup>                       | 100  |       | 400  | kbps  |
| t <sub>TWIM,START</sub> | Time from STARTRX/STARTTX task to transmission started |      | 1.615 |      | μs    |

## 6.17.9.2 Two Wire Interface Master (TWIM) timing specifications

| Symbol                           | Description                                                            | Min.  | Тур. | Max. | Units |
|----------------------------------|------------------------------------------------------------------------|-------|------|------|-------|
| t <sub>TWIM,SU_DAT</sub>         | Data setup time before positive edge on SCL – all modes                | 300   |      |      | ns    |
| t <sub>TWIM,HD_DAT</sub>         | Data hold time after negative edge on SCL – 100, 250 and 400 kbps      | 500   |      |      | ns    |
| t <sub>TWIM,HD_STA,100kbps</sub> | TWIM master hold time for START and repeated START condition, 100 kbps | 10000 |      |      | ns    |
| t <sub>TWIM,HD_STA,250kbps</sub> | TWIM master hold time for START and repeated START condition, 250 kbps | 4000  |      |      | ns    |
| t <sub>TWIM,HD_STA,400kbps</sub> | TWIM master hold time for START and repeated START condition, 400 kbps | 2500  |      |      | ns    |
| t <sub>TWIM,SU_STO,100kbps</sub> | TWIM master setup time from SCL high to STOP condition, 100 kbps       | 5000  |      |      | ns    |
| t <sub>TWIM,SU_STO,250kbps</sub> | TWIM master setup time from SCL high to STOP condition, 250 kbps       | 2000  |      |      | ns    |
| $t_{TWIM,SU\_STO,400kbps}$       | TWIM master setup time from SCL high to STOP condition, 400 kbps       | 1250  |      |      | ns    |
| t <sub>TWIM,BUF,100kbps</sub>    | TWIM master bus free time between STOP and START conditions, 100 kbps  | 5800  |      |      | ns    |
| t <sub>TWIM,BUF,250kbps</sub>    | TWIM master bus free time between STOP and START conditions, 250 kbps  | 2700  |      |      | ns    |
| t <sub>TWIM,BUF,400kbps</sub>    | TWIM master bus free time between STOP and START conditions, 400 kbps  | 2100  |      |      | ns    |

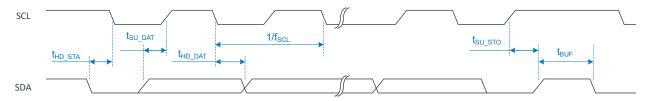



Figure 99: TWIM timing diagram, 1 byte transaction



High bit rates or stronger pull-ups may require GPIOs to be set as High Drive, see GPIO — General purpose input/output on page 162 for more details.

## 6.17.10 Pullup resistor

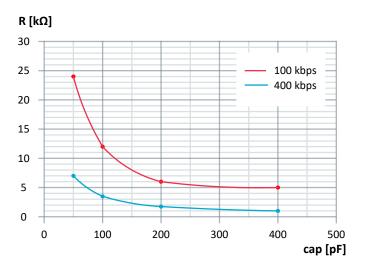



Figure 100: Recommended TWIM pullup value vs. line capacitance

- The I2C specification allows a line capacitance of 400 pF at most.
- The value of internal pullup resistor (R<sub>PU</sub>) for nRF9151 can be found in GPIO General purpose input/output on page 162.

# $6.18 \text{ TWIS} - I^2 \text{C}$ compatible two-wire interface slave with EasyDMA

TWI slave with EasyDMA (TWIS) is compatible with  $I^2C$  operating at 100 kHz and 400 kHz. The TWI transmitter and receiver implement EasyDMA.

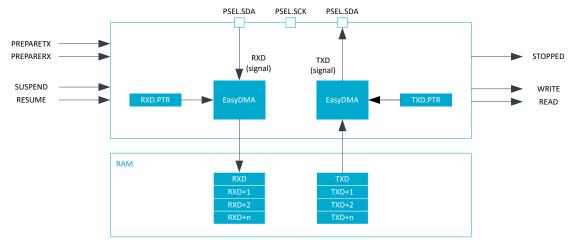



Figure 101: TWI slave with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see the following figure. TWIS is only able to operate with a single master on the TWI bus.



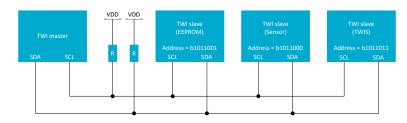



Figure 102: A typical TWI setup comprising one master and three slaves

The following figure shows the TWI slave state machine.

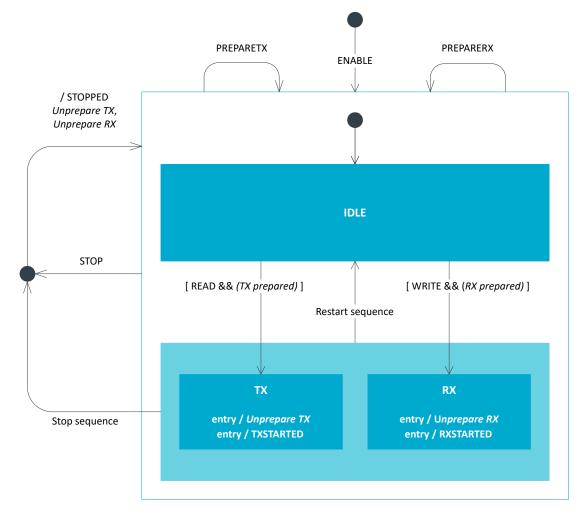



Figure 103: TWI slave state machine

The following table contains descriptions of the symbols used in the state machine.



| Symbol            | Туре         | Description                                                                                              |
|-------------------|--------------|----------------------------------------------------------------------------------------------------------|
| ENABLE            | Register     | The TWI slave has been enabled via the ENABLE register.                                                  |
| PREPARETX         | Task         | The TASKS_PREPARETX task has been triggered.                                                             |
| STOP              | Task         | The TASKS_STOP task has been triggered.                                                                  |
| PREPARERX         | Task         | The TASKS_PREPARERX task has been triggered.                                                             |
| STOPPED           | Event        | The EVENTS_STOPPED event was generated.                                                                  |
| RXSTARTED         | Event        | The EVENTS_RXSTARTED event was generated.                                                                |
| TXSTARTED         | Event        | The EVENTS_TXSTARTED event was generated.                                                                |
| TX prepared       | Internal     | Internal flag indicating that a TASKS_PREPARETX task has been triggered. This flag is not visible to the |
|                   |              | user.                                                                                                    |
| RX prepared       | Internal     | Internal flag indicating that a TASKS_PREPARERX task has been triggered. This flag is not visible to the |
|                   |              | user.                                                                                                    |
| Unprepare TX      | Internal     | Clears the internal 'TX prepared' flag until next TASKS_PREPARETX task.                                  |
| Unprepare RX      | Internal     | Clears the internal 'RX prepared' flag until next TASKS_PREPARERX task.                                  |
| Stop condition    | TWI protocol | A TWI stop condition was detected.                                                                       |
| Restart condition | TWI protocol | A TWI restart condition was detected.                                                                    |

Table 46: TWI slave state machine symbols

The TWI slave can perform clock stretching, with the premise that the master is able to support it.

The TWI slave operates in a low power mode while waiting for a TWI master to initiate a transfer. As long as the TWI slave is not addressed, it will remain in this low power mode.

To secure correct behavior of the TWI slave, PSEL.SCL, PSEL.SDA, CONFIG, and the ADDRESS[n] registers must be configured prior to enabling the TWI slave through the ENABLE register. Similarly, changing these settings must be performed while the TWI slave is disabled. Failing to do so may result in unpredictable behavior.

#### 6.18.1 Shared resources

The TWI slave shares registers and other resources with other peripherals that have the same ID as the TWI slave.

Therefore, you must disable all peripherals that have the same ID as the TWI slave before the TWI slave can be configured and used. Disabling a peripheral that has the same ID as the TWI slave will not reset any of the registers that are shared with the TWI slave. It is therefore important to configure all relevant registers explicitly to secure that the TWI slave operates correctly.

The Instantiation table in Instantiation on page 25 shows which peripherals have the same ID as the TWI slave.

# 6.18.2 EasyDMA

The TWIS implements EasyDMA for accessing RAM without CPU involvement.

The following table shows the Easy DMA channels that the TWIS peripheral implements.

| Channel | Туре   | Register Cluster |
|---------|--------|------------------|
| TXD     | READER | TXD              |
| RXD     | WRITER | RXD              |

Table 47: TWIS EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 46.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.



## 6.18.3 TWI slave responding to a read command

Before the TWI slave can respond to a read command, the TWI slave must be configured correctly and enabled via the ENABLE register. When enabled, the TWI slave will be in its IDLE state. .

A read command is started when the TWI master generates a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 1 (WRITE=0, READ=1). The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the TWI slave.

The TWI slave can listen for up to two addresses at the same time. This is configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the read command if the address presented by the master matches one of the addresses the slave is configured to listen for. The TWI slave will generate a READ event when it acknowledges the read command.

The TWI slave can only detect a read command from the IDLE state.

The TWI slave will set an internal 'TX prepared' flag when the PREPARETX task is triggered.

When the read command is received, the TWI slave will enter the TX state if the internal 'TX prepared' flag is set.

If the internal 'TX prepared' flag is not set when the read command is received, the TWI slave will stretch the master's clock until the PREPARETX task is triggered and the internal 'TX prepared' flag is set.

The TWI slave will generate the TXSTARTED event and clear the 'TX prepared' flag ('unprepare TX') when it enters the TX state. In this state the TWI slave will send the data bytes found in the transmit buffer to the master using the master's clock.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the TX state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will be generated when the transaction has stopped. The TWI slave will clear the 'TX prepared' flag ('unprepare TX') and go back to the IDLE state when it has stopped.

The transmit buffer is located in RAM at the address specified in the TXD.PTR register. The TWI slave will only be able to send TXD.MAXCNT bytes from the transmit buffer for each transaction. If the TWI master forces the slave to send more than TXD.MAXCNT bytes, the slave will send the byte specified in the ORC register to the master instead. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see TXD.PTR etc., are latched when the TXSTARTED event is generated.

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when the TWI slave has stopped. The TWI slave will clear the 'TX prepared' flag and go back to the IDLE state when it has stopped, see also Terminating an ongoing TWI transaction on page 379.

Each byte sent from the slave will be followed by an ACK/NACK bit sent from the master. The TWI master will generate a NACK following the last byte that it wants to receive to tell the slave to release the bus so that the TWI master can generate the stop condition. The TXD.AMOUNT register can be queried after a transaction to see how many bytes were sent.

A typical TWI slave read command response is shown in the following figure. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave following a SUSPEND task.



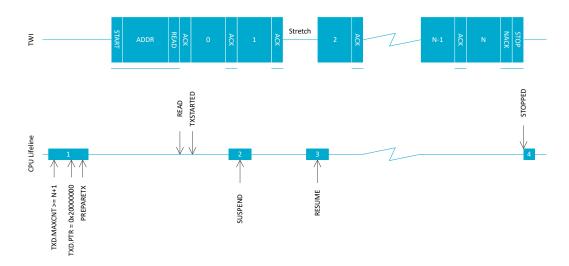



Figure 104: The TWI slave responding to a read command

## 6.18.4 TWI slave responding to a write command

Before the TWI slave can respond to a write command, the TWI slave must be configured correctly and enabled via the ENABLE register. When enabled, the TWI slave will be in its IDLE state.

A write command is started when the TWI master generates a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1). The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the slave.

The TWI slave can listen for up to two addresses at the same time. This is configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the write command if the address presented by the master matches one of the addresses the slave is configured to listen for. The TWI slave will generate a WRITE event if it acknowledges the write command.

The TWI slave can only detect a write command from the IDLE state.

The TWI slave will set an internal 'RX prepared' flag when the PREPARERX task is triggered.

When the write command is received, the TWI slave will enter the RX state if the internal 'RX prepared' flag is set.

If the internal 'RX prepared' flag is not set when the write command is received, the TWI slave will stretch the master's clock until the PREPARERX task is triggered and the internal 'RX prepared' flag is set.

The TWI slave will generate the RXSTARTED event and clear the internal 'RX prepared' flag ('unprepare RX') when it enters the RX state. In this state, the TWI slave will be able to receive the bytes sent by the TWI master.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the RX state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will be generated when the transaction has stopped. The TWI slave will clear the internal 'RX prepared' flag ('unprepare RX') and go back to the IDLE state when it has stopped.

The receive buffer is located in RAM at the address specified in the RXD.PTR register. The TWI slave will only be able to receive as many bytes as specified in the RXD.MAXCNT register. If the TWI master tries to send more bytes to the slave than it can receive, the extra bytes are discarded and NACKed by the slave. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see RXD.PTR etc., are latched when the RXSTARTED event is generated.

NORDIC SEMICONDUCTOR

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when the TWI slave has stopped. The TWI slave will clear the internal 'RX prepared' flag and go back to the IDLE state when it has stopped, see also Terminating an ongoing TWI transaction on page 379.

The TWI slave will generate an ACK after every byte received from the master. The RXD.AMOUNT register can be queried after a transaction to see how many bytes were received.

A typical TWI slave write command response is show in the following figure. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave following a SUSPEND task.

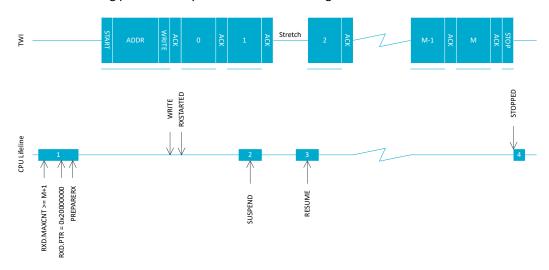



Figure 105: The TWI slave responding to a write command

## 6.18.5 Master repeated start sequence

An example of a repeated start sequence is one in which the TWI master writes two bytes to the slave followed by reading four bytes from the slave.

This is illustrated in the following figure.

In this example, the receiver does not know what the master wants to read in advance. This information is in the first two received bytes of the write in the repeated start sequence. To guarantee that the CPU is able to process the received data before the TWI slave starts to reply to the read command, the SUSPEND task is triggered via a shortcut from the READ event generated when the read command is received. When the CPU has processed the incoming data and prepared the correct data response, the CPU will resume the transaction by triggering the RESUME task.

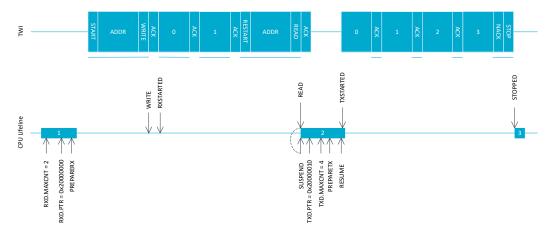



Figure 106: Repeated start sequence



## 6.18.6 Terminating an ongoing TWI transaction

In some situations, e.g. if the external TWI master is not responding correctly, it may be required to terminate an ongoing transaction.

This can be achieved by triggering the STOP task. In this situation, a STOPPED event will be generated when the TWI has stopped independent of whether or not a STOP condition has been generated on the TWI bus. The TWI slave will release the bus when it has stopped and go back to its IDLE state.

## 6.18.7 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.

## 6.18.8 Slave mode pin configuration

The SCL and SDA signals associated with the TWI slave are mapped to physical pins according to the configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI slave is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN\_CNF[n] register. PSEL.SCL and PSEL.SDA must only be configured when the TWI slave is disabled.

To secure correct signal levels on the pins used by the TWI slave when the system is in OFF mode, and when the TWI slave is disabled, these pins must be configured in the GPIO peripheral as described in the following table.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| TWI slave signal | TWI slave pin            | Direction | Output value   | Drive strength |
|------------------|--------------------------|-----------|----------------|----------------|
| SCL              | As specified in PSEL.SCL | Input     | Not applicable | SOD1           |
| SDA              | As specified in PSEL.SDA | Input     | Not applicable | SOD1           |

Table 48: GPIO configuration before enabling peripheral

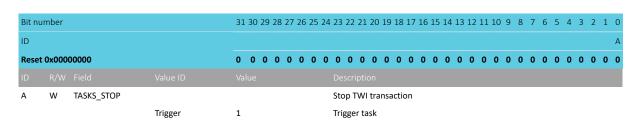
# 6.18.9 Registers

#### **Instances**

| Instance   | Base address | TrustZone |     |            | Split access | Description                |
|------------|--------------|-----------|-----|------------|--------------|----------------------------|
|            |              | Мар       | Att | DMA        |              |                            |
| TWIS0 : S  | 0x50008000   | US        | NS  | SA         | No           | Two-wire interface slave 0 |
| TWIS0 : NS | 0x40008000   | 03        | NS  | JA         | NO           | Two-wife interface slave o |
| TWIS1: S   | 0x50009000   | US        | NS  | SA         | No           | Two-wire interface slave 1 |
| TWIS1: NS  | 0x40009000   | 03        | NS  | <b>3</b> A | NO           | Two wife interface slave 1 |
| TWIS2 : S  | 0x5000A000   | US        | NS  | SA         | No           | Two-wire interface slave 2 |
| TWIS2 : NS | 0x4000A000   | 03        | NS  | <b>3</b> A | 110          | Two wife interface slave 2 |
| TWIS3: S   | 0x5000B000   | US        | NS  | SA         | No           | Two-wire interface slave 3 |
| TWIS3: NS  | 0x4000B000   | 03        | 113 | 5/1        | 110          | Two wife interface slave 5 |

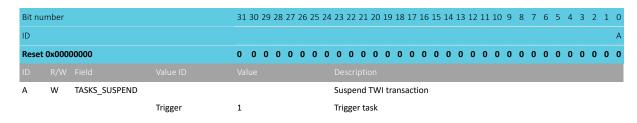


# **Register overview**


| Register            | Offset | TZ | Description                                                                             |
|---------------------|--------|----|-----------------------------------------------------------------------------------------|
| TASKS_STOP          | 0x014  |    | Stop TWI transaction                                                                    |
| TASKS_SUSPEND       | 0x01C  |    | Suspend TWI transaction                                                                 |
| TASKS_RESUME        | 0x020  |    | Resume TWI transaction                                                                  |
| TASKS_PREPARERX     | 0x030  |    | Prepare the TWI slave to respond to a write command                                     |
| TASKS_PREPARETX     | 0x034  |    | Prepare the TWI slave to respond to a read command                                      |
| SUBSCRIBE_STOP      | 0x094  |    | Subscribe configuration for task STOP                                                   |
| SUBSCRIBE_SUSPEND   | 0x09C  |    | Subscribe configuration for task SUSPEND                                                |
| SUBSCRIBE_RESUME    | 0x0A0  |    | Subscribe configuration for task RESUME                                                 |
| SUBSCRIBE_PREPARERX | 0x0B0  |    | Subscribe configuration for task PREPARERX                                              |
| SUBSCRIBE_PREPARETX | 0x0B4  |    | Subscribe configuration for task PREPARETX                                              |
| EVENTS_STOPPED      | 0x104  |    | TWI stopped                                                                             |
| EVENTS_ERROR        | 0x124  |    | TWI error                                                                               |
| EVENTS_RXSTARTED    | 0x14C  |    | Receive sequence started                                                                |
| EVENTS_TXSTARTED    | 0x150  |    | Transmit sequence started                                                               |
| EVENTS_WRITE        | 0x164  |    | Write command received                                                                  |
| EVENTS_READ         | 0x168  |    | Read command received                                                                   |
| PUBLISH_STOPPED     | 0x184  |    | Publish configuration for event STOPPED                                                 |
| PUBLISH_ERROR       | 0x1A4  |    | Publish configuration for event ERROR                                                   |
| PUBLISH_RXSTARTED   | 0x1CC  |    | Publish configuration for event RXSTARTED                                               |
| PUBLISH_TXSTARTED   | 0x1D0  |    | Publish configuration for event TXSTARTED                                               |
| PUBLISH_WRITE       | 0x1E4  |    | Publish configuration for event WRITE                                                   |
| PUBLISH_READ        | 0x1E8  |    | Publish configuration for event READ                                                    |
| SHORTS              | 0x200  |    | Shortcuts between local events and tasks                                                |
| INTEN               | 0x300  |    | Enable or disable interrupt                                                             |
| INTENSET            | 0x304  |    | Enable interrupt                                                                        |
| INTENCLR            | 0x308  |    | Disable interrupt                                                                       |
| ERRORSRC            | 0x4D0  |    | Error source                                                                            |
| MATCH               | 0x4D4  |    | Status register indicating which address had a match                                    |
| ENABLE              | 0x500  |    | Enable TWIS                                                                             |
| PSEL.SCL PSEL.SCL   | 0x508  |    | Pin select for SCL signal                                                               |
| PSEL.SDA            | 0x50C  |    | Pin select for SDA signal                                                               |
| RXD.PTR             | 0x534  |    | RXD Data pointer                                                                        |
| RXD.MAXCNT          | 0x538  |    | Maximum number of bytes in RXD buffer                                                   |
| RXD.AMOUNT          | 0x53C  |    | Number of bytes transferred in the last RXD transaction                                 |
| RXD.LIST            | 0x540  |    | EasyDMA list type                                                                       |
| TXD.PTR             | 0x544  |    | TXD Data pointer                                                                        |
| TXD.MAXCNT          | 0x548  |    | Maximum number of bytes in TXD buffer                                                   |
| TXD.AMOUNT          | 0x54C  |    | Number of bytes transferred in the last TXD transaction                                 |
| TXD.LIST            | 0x550  |    | EasyDMA list type                                                                       |
| ADDRESS[n]          | 0x588  |    | TWI slave address n                                                                     |
| CONFIG              | 0x594  |    | Configuration register for the address match mechanism                                  |
| ORC                 | 0x5C0  |    | Over-read character. Character sent out in case of an over-read of the transmit buffer. |
|                     |        |    |                                                                                         |

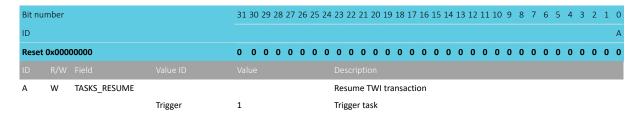
# 6.18.9.1 TASKS\_STOP

Address offset: 0x014


Stop TWI transaction



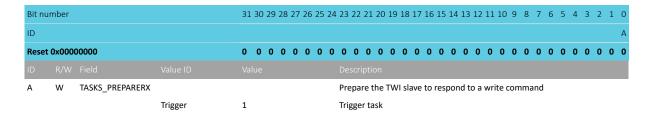



## 6.18.9.2 TASKS SUSPEND

Address offset: 0x01C
Suspend TWI transaction



## 6.18.9.3 TASKS\_RESUME


Address offset: 0x020
Resume TWI transaction



#### 6.18.9.4 TASKS PREPARERX

Address offset: 0x030

Prepare the TWI slave to respond to a write command



#### 6.18.9.5 TASKS\_PREPARETX

Address offset: 0x034

Prepare the TWI slave to respond to a read command





## 6.18.9.6 SUBSCRIBE\_STOP

Address offset: 0x094

Subscribe configuration for task STOP

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A A                                               |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task STOP will subscribe to                 |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

## 6.18.9.7 SUBSCRIBE\_SUSPEND

Address offset: 0x09C

Subscribe configuration for task SUSPEND

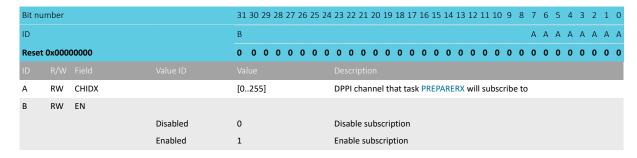
| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task SUSPEND will subscribe to                |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable subscription                                            |
|        |       |       | Enabled  | 1                       | Enable subscription                                             |

## 6.18.9.8 SUBSCRIBE\_RESUME

Address offset: 0x0A0

Subscribe configuration for task RESUME

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                      | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                        | Description                                                     |
| Α      | RW    | CHIDX |          | [0255]                 | DPPI channel that task RESUME will subscribe to                 |
| В      | RW    | EN    |          |                        |                                                                 |
|        |       |       | Disabled | 0                      | Disable subscription                                            |
|        |       |       | Enabled  | 1                      | Enable subscription                                             |


## 6.18.9.9 SUBSCRIBE\_PREPARERX

Address offset: 0x0B0



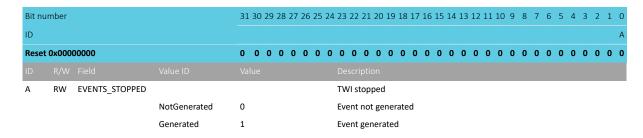


#### Subscribe configuration for task PREPARERX



## 6.18.9.10 SUBSCRIBE\_PREPARETX

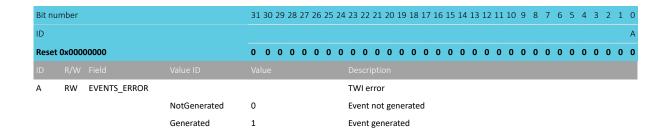
Address offset: 0x0B4


Subscribe configuration for task PREPARETX

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task PREPARETX will subscribe to              |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable subscription                                            |
|        |       |       | Enabled  | 1                       | Enable subscription                                             |

## 6.18.9.11 EVENTS\_STOPPED

Address offset: 0x104


TWI stopped

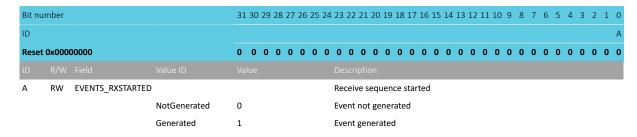



## 6.18.9.12 EVENTS\_ERROR

Address offset: 0x124

TWI error








## 6.18.9.13 EVENTS\_RXSTARTED

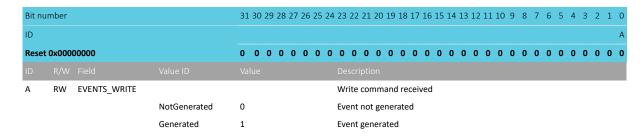
Address offset: 0x14C

Receive sequence started



#### 6.18.9.14 EVENTS TXSTARTED

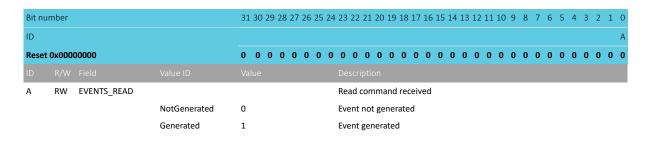
Address offset: 0x150


Transmit sequence started

| Bit no | umber   |                  |              | 31 30 29 28 27 26 25 24 | 1 23 2 | 22 23 | 1 20 : | 19 1  | 8 17  | 16 3 | 15 14 | 4 13 | 12 | 11 1 | .0 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | . 0 |
|--------|---------|------------------|--------------|-------------------------|--------|-------|--------|-------|-------|------|-------|------|----|------|------|---|---|---|---|---|-----|-----|-----|
| ID     |         |                  |              |                         |        |       |        |       |       |      |       |      |    |      |      |   |   |   |   |   |     |     | Α   |
| Rese   | t 0x000 | 00000            |              | 0 0 0 0 0 0 0 0         | 0      | 0 0   | 0      | 0 (   | 0 0   | 0    | 0 0   | 0    | 0  | 0    | 0 (  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0   |
| ID     |         |                  |              |                         |        |       |        |       |       |      |       |      |    |      |      |   |   |   |   |   |     |     |     |
| Α      | RW      | EVENTS_TXSTARTED |              |                         | Trar   | nsmit | t sequ | uenc  | e sta | rted |       |      |    |      |      |   |   |   |   |   |     |     |     |
|        |         |                  | NotGenerated | 0                       | Eve    | nt no | ot ger | nerat | ted   |      |       |      |    |      |      |   |   |   |   |   |     |     |     |
|        |         |                  | Generated    | 1                       | Eve    | nt ge | nera   | ted   |       |      |       |      |    |      |      |   |   |   |   |   |     |     |     |

## 6.18.9.15 **EVENTS\_WRITE**

Address offset: 0x164


Write command received

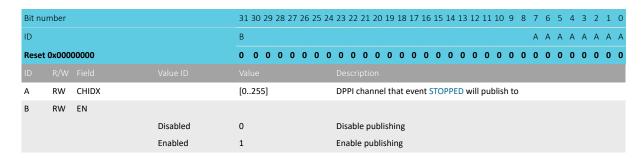


#### 6.18.9.16 EVENTS READ

Address offset: 0x168

Read command received

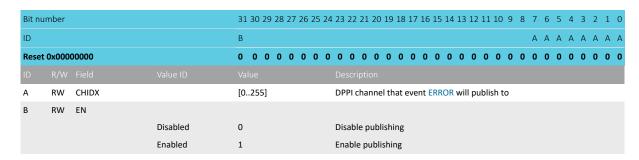



384



## 6.18.9.17 PUBLISH\_STOPPED

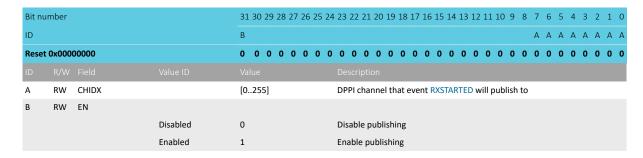
Address offset: 0x184


Publish configuration for event STOPPED



## 6.18.9.18 PUBLISH\_ERROR

Address offset: 0x1A4

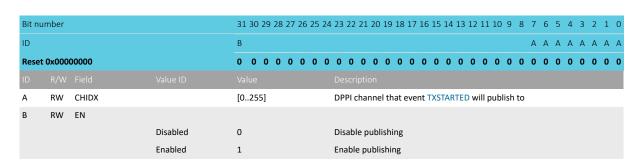

Publish configuration for event ERROR



#### 6.18.9.19 PUBLISH RXSTARTED

Address offset: 0x1CC

Publish configuration for event RXSTARTED




## 6.18.9.20 PUBLISH\_TXSTARTED

Address offset: 0x1D0

Publish configuration for event TXSTARTED





## 6.18.9.21 PUBLISH\_WRITE

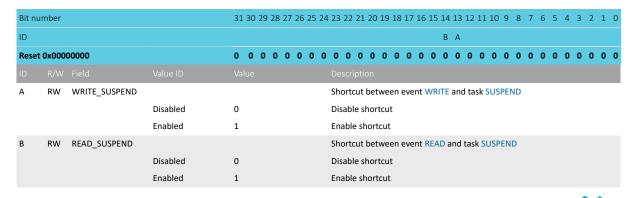
Address offset: 0x1E4

Publish configuration for event WRITE

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event WRITE will publish to                   |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

## 6.18.9.22 PUBLISH\_READ

Address offset: 0x1E8


Publish configuration for event READ

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event READ will publish to                    |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |

## 6.18.9.23 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks





## 6.18.9.24 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit nu | mber  |           |          | 31 | 30 | 29 28 | 3 27 | 26 | 25 24 | 4 2 | 3 22    | 21 2 | 20 1 | 9 18  | 3 17 | 16   | 15   | 14 1  | 13  | 12 1 | 1 1  | 10 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2   | 1 0 |
|--------|-------|-----------|----------|----|----|-------|------|----|-------|-----|---------|------|------|-------|------|------|------|-------|-----|------|------|------|---|---|---|---|---|---|-----|-----|
| ID     |       |           |          |    |    |       |      | Н  | G     |     |         |      | F E  |       |      |      |      |       |     |      |      | В    |   |   |   |   |   |   | ,   | Α   |
| Reset  | 0x000 | 00000     |          | 0  | 0  | 0 0   | 0    | 0  | 0 0   | ) ( | 0 0     | 0    | 0 (  | 0 0   | 0    | 0    | 0    | 0     | 0   | 0    | 0    | 0 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 0 |
|        |       |           |          |    |    |       |      |    |       |     |         |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| Α      | RW    | STOPPED   |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fo | or ev | /en | t ST | OPF  | PED  |   |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | isable  | 9    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| В      | RW    | ERROR     |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fo | or ev | en' | t ER | RO   | R    |   |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | isable  | e    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| E      | RW    | RXSTARTED |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fo | or ev | /en | t RX | STA  | RTE  | D |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | isable  | 9    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| F      | RW    | TXSTARTED |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fc | or ev | /en | t TX | STA  | RTE  | D |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | isable  | 9    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| G      | RW    | WRITE     |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fo | or ev | /en | t WI | RITI | E    |   |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | isable  | 9    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
| Н      | RW    | READ      |          |    |    |       |      |    |       | E   | nable   | or   | disa | ble i | inte | rrup | t fo | or ev | en  | t RE | AD   |      |   |   |   |   |   |   |     |     |
|        |       |           | Disabled | 0  |    |       |      |    |       | D   | oisable | е    |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |
|        |       |           | Enabled  | 1  |    |       |      |    |       | E   | nable   |      |      |       |      |      |      |       |     |      |      |      |   |   |   |   |   |   |     |     |

## 6.18.9.25 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber |           |          | 31 | 30 : | 29 2 | 8 2 | 7 26 | 5 25 | 5 24 | 1 23 | 3 22  | 2 2:  | 1 20 | 19  | 18  | 17  | 16   | 15  | 14  | 13  | 12 : | 11 | 10  | 9   | 8 7 | 7 ( | 5 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|-----------|----------|----|------|------|-----|------|------|------|------|-------|-------|------|-----|-----|-----|------|-----|-----|-----|------|----|-----|-----|-----|-----|-----|---|---|---|-----|
| ID     |       |           |          |    |      |      |     | Н    | G    | i    |      |       |       | F    | Ε   |     |     |      |     |     |     |      |    |     | В   |     |     |     |   |   |   | А   |
| Reset  | 0x000 | 00000     |          | 0  | 0    | 0 (  | 0 0 | 0    | 0    | 0    | 0    | 0     | 0     | 0    | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0    | 0  | 0   | 0   | 0 ( | ) ( | 0   | 0 | 0 | 0 | 0 0 |
| ID     |       |           |          |    |      |      |     |      |      |      |      |       |       |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
| Α      | RW    | STOPPED   |          |    |      |      |     |      |      |      | W    | /rite | e '1' | ' to | ena | ble | int | errı | ıpt | for | eve | nt S | ТО | PPE | D   |     |     |     |   |   |   |     |
|        |       |           | Set      | 1  |      |      |     |      |      |      | Er   | nab   | le    |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Disabled | 0  |      |      |     |      |      |      | Re   | ead   | : Di  | isab | led |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Enabled  | 1  |      |      |     |      |      |      | Re   | ead   | : Er  | nabl | ed  |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
| В      | RW    | ERROR     |          |    |      |      |     |      |      |      | W    | /rite | e '1' | ' to | ena | ble | int | errı | ıpt | for | eve | nt E | RR | OR  |     |     |     |     |   |   |   |     |
|        |       |           | Set      | 1  |      |      |     |      |      |      | Er   | nab   | le    |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Disabled | 0  |      |      |     |      |      |      | Re   | ead   | : Di  | isab | led |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Enabled  | 1  |      |      |     |      |      |      | Re   | ead   | : Er  | nabl | ed  |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
| E      | RW    | RXSTARTED |          |    |      |      |     |      |      |      | W    | /rite | e '1' | ' to | ena | ble | int | errı | ıpt | for | eve | nt F | XS | TAR | TEC | )   |     |     |   |   |   |     |
|        |       |           | Set      | 1  |      |      |     |      |      |      | Er   | nab   | le    |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Disabled | 0  |      |      |     |      |      |      | Re   | ead   | : Di  | isab | led |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Enabled  | 1  |      |      |     |      |      |      | Re   | ead   | : Er  | nabl | ed  |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
| F      | RW    | TXSTARTED |          |    |      |      |     |      |      |      | W    | /rite | e '1' | ' to | ena | ble | int | errı | ıpt | for | eve | nt T | XS | TAR | TEC | )   |     |     |   |   |   |     |
|        |       |           | Set      | 1  |      |      |     |      |      |      | Er   | nab   | le    |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Disabled | 0  |      |      |     |      |      |      | Re   | ead   | : Di  | isab | led |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           | Enabled  | 1  |      |      |     |      |      |      | Re   | ead   | : Er  | nabl | ed  |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |
|        |       |           |          |    |      |      |     |      |      |      |      |       |       |      |     |     |     |      |     |     |     |      |    |     |     |     |     |     |   |   |   |     |



| ımber |                     |                                     | 31 3                                   | 80 29                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 2                                   | 26 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 23                                   | 3 22                                    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 1  | 7 16  | 15   | 14 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L3 1 | 2 11  | 10   | 9    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|---------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                     |                                     |                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŀ                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      | В    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x000 | 00000               |                                     | 0                                      | 0 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 (                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                      | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0    | 0     | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 (  | 0 0   | 0    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                     |                                     |                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RW    | WRITE               |                                     |                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W                                      | /rite                                   | '1' t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in | terrı | ıpt  | for e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ever | nt WI | RITE |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Set                                 | 1                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eı                                     | nabl                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Disabled                            | 0                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                      | ead:                                    | Disa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Enabled                             | 1                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                      | ead:                                    | Ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RW    | READ                |                                     |                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W                                      | /rite                                   | '1' t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in | terrı | ıpt  | for e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ever | nt RE | AD   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Set                                 | 1                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eı                                     | nabl                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Disabled                            | 0                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                      | ead:                                    | Disa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                     | Enabled                             | 1                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Re                                     | ead:                                    | Ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0x0000<br>R/W<br>RW | Ox00000000<br>R/W Field<br>RW WRITE | Ox000000000000000000000000000000000000 | Ox000000000         O           R/W         Field         Value ID         Value           RW         WRITE         Set         1           Disabled         0         Enabled         1           RW         READ         Set         1           Disabled         0         0 | 0x000000000         Qualue ID         Value ID           RW         WRITE         Set         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>NX000000000000000000000000000000000000</th><th>Ox000000000         Ox100 Ox</th><th>NATION NOTICE IN THE COLOR OF THE C</th><th>NX000000000000000000000000000000000000</th><th>UNDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO</th><th>NAME of the late of</th><th>NAME of the late of</th><td>NAME OF THE PARTY OF</td><th>  Note</th><td>  Note</td><td>  Note</td><td>  Note   Note  </td><th>  Note</th><th>  Note</th><th>  Note</th><th>  Note</th><th>  Note   Proper   Pro</th><th>  Note   Proper   Pro</th><th>  Note   Proper Proper   Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Prope</th><th>  Note   Proper   Pro</th><th>  Note   Proper   Pro</th><td>  Note   Proper   Pro</td><td>  Note   Proper   Pro</td><td>  R/W   Field   Value ID   Value   Control   C</td></t<> | NX000000000000000000000000000000000000 | Ox000000000         Ox100 Ox | NATION NOTICE IN THE COLOR OF THE C | NX000000000000000000000000000000000000 | UNDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | NAME of the late of | NAME of the late of | NAME OF THE PARTY OF | Note | Note  | Note | Note   Note | Note | Note  | Note | Note | Note   Proper   Pro | Note   Proper   Pro | Note   Proper Proper   Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Proper Prope | Note   Proper   Pro | Note   Proper   Pro | Note   Proper   Pro | Note   Proper   Pro | R/W   Field   Value ID   Value   Control   C |

## 6.18.9.26 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | mber  |           |          | 31 | 30 | 29 2 | 28 2 | 7 26 | 5 25 | 5 24 | 1 23 | 3 22  | 2 2:  | 1 20 | 19  | 9 18 | 3 17 | 7 16 | 5 15 | 14  | 13   | 12  | 11  | l 10 | ) 9 | 8  | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0   |
|--------|-------|-----------|----------|----|----|------|------|------|------|------|------|-------|-------|------|-----|------|------|------|------|-----|------|-----|-----|------|-----|----|---|---|---|---|-----|-----|-----|
| ID     |       |           |          |    |    |      |      | Н    | l G  | i    |      |       |       | F    | Е   |      |      |      |      |     |      |     |     |      | В   |    |   |   |   |   |     | Δ   | ۱   |
| Reset  | 0x000 | 00000     |          | 0  | 0  | 0 (  | 0 0  | 0 (  | 0    | 0    | 0    | 0     | 0     | 0 (  | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0   | 0    | 0   | 0  | 0 | 0 | 0 | 0 | 0 ( | 0 0 | 0 ( |
|        |       |           |          |    |    |      |      |      |      |      |      |       |       |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| A      | RW    | STOPPED   |          |    |    |      |      |      |      |      | W    | /rite | · '1' | ' to | dis | able | e in | ter  | up   | fo: | r ev | ent | ST  | OP   | PEC | )  |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| В      | RW    | ERROR     |          |    |    |      |      |      |      |      | W    | /rite | · '1' | ' to | dis | able | e in | ter  | up   | fo  | r ev | ent | ER  | RRC  | R   |    |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| E      | RW    | RXSTARTED |          |    |    |      |      |      |      |      | W    | /rite | '1    | ' to | dis | able | e in | ter  | up   | fo  | r ev | ent | R   | (ST  | ART | ED |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| F      | RW    | TXSTARTED |          |    |    |      |      |      |      |      | W    | /rite | · '1' | ' to | dis | able | e in | ter  | up   | fo  | r ev | ent | .TX | (ST/ | ART | ED |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| G      | RW    | WRITE     |          |    |    |      |      |      |      |      | W    | /rite | '1    | ' to | dis | able | e in | ter  | up   | fo  | r ev | ent | W   | RIT  | Έ   |    |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
| Н      | RW    | READ      |          |    |    |      |      |      |      |      | W    | /rite | '1    | ' to | dis | able | e in | ter  | up   | fo  | r ev | ent | RE  | AD   | )   |    |   |   |   |   |     |     |     |
|        |       |           | Clear    | 1  |    |      |      |      |      |      | Di   | isab  | le    |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Disabled | 0  |    |      |      |      |      |      | Re   | ead:  | : Di  | isab | led | ı    |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           | Enabled  | 1  |    |      |      |      |      |      | Re   | ead:  | : Er  | nabl | ed  |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |
|        |       |           |          |    |    |      |      |      |      |      |      |       |       |      |     |      |      |      |      |     |      |     |     |      |     |    |   |   |   |   |     |     |     |

## 6.18.9.27 ERRORSRC

Address offset: 0x4D0

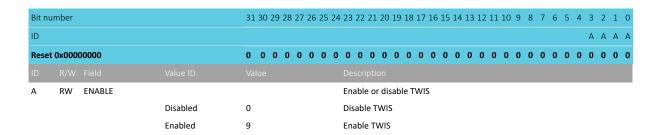
Error source



| Bit nu | ımber       |             | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------------|-------------|------------------------|-----------------------------------------------------------------|
| ID     |             |             |                        | C B A                                                           |
| Reset  | 0x00000000  |             | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |             |             |                        | Description                                                     |
| Α      | RW OVERFLOW |             |                        | RX buffer overflow detected, and prevented                      |
|        | W1C         |             |                        |                                                                 |
|        |             | NotDetected | 0                      | Error did not occur                                             |
|        |             | Detected    | 1                      | Error occurred                                                  |
| В      | RW DNACK    |             |                        | NACK sent after receiving a data byte                           |
|        | W1C         |             |                        |                                                                 |
|        |             | NotReceived | 0                      | Error did not occur                                             |
|        |             | Received    | 1                      | Error occurred                                                  |
| С      | RW OVERREAD |             |                        | TX buffer over-read detected, and prevented                     |
|        | W1C         |             |                        |                                                                 |
|        |             | NotDetected | 0                      | Error did not occur                                             |
|        |             | Detected    | 1                      | Error occurred                                                  |

#### 6.18.9.28 MATCH

Address offset: 0x4D4


Status register indicating which address had a match



#### 6.18.9.29 ENABLE

Address offset: 0x500

**Enable TWIS** 



#### 6.18.9.30 PSEL.SCL

Address offset: 0x508

Pin select for SCL signal



| Bit nu | mber   |         |              | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|-----------------------------------------------------------------|
| ID     |        |         |              | В                       | A A A A                                                         |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         |
| ID     |        |         |              |                         |                                                                 |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                      |
| В      | RW     | CONNECT |              |                         | Connection                                                      |
|        |        |         | Disconnected | 1                       | Disconnect                                                      |
|        |        |         | Connected    | 0                       | Connect                                                         |

## 6.18.9.31 PSEL.SDA

Address offset: 0x50C

Pin select for SDA signal

| Bit nu | ımber  |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                          |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         |                                                               |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

#### 6.18.9.32 RXD

RXD EasyDMA channel

6.18.9.32.1 RXD.PTR

Address offset: 0x534 RXD Data pointer

| Bit nu | mber  |       |  |   | 3: | 1 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21  | 20  | 19  | 18 1 | 7 1 | 6 1 | 5 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2   | 1 0 |
|--------|-------|-------|--|---|----|------|----|----|----|----|----|----|----|-----|-----|-----|-----|------|-----|-----|------|----|----|----|----|---|---|---|---|---|---|---|-----|-----|
| ID     |       |       |  |   | А  | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α   | Α   | Α   | Α    | Α Α | Λ Δ | A    | Α  | Α  | Α  | Α  | Α | Α | Α | Α | Α | Α | Α | Α / | А А |
| Reset  | 0x000 | 00000 |  |   | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0    | 0 ( | 0   | 0    | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 0 |
| ID     |       |       |  | D |    |      |    |    |    |    |    |    |    |     |     |     |     |      |     |     |      |    |    |    |    |   |   |   |   |   |   |   |     |     |
| Α      | RW    | PTR   |  |   |    |      |    |    |    |    |    |    | RX | D D | ata | poi | nte | r    |     |     |      |    |    |    |    |   |   |   |   |   |   |   |     |     |

See the memory chapter for details about which memories are available for EasyDMA.

#### 6.18.9.32.2 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in RXD buffer

| Α      | RW      | MAXCNT | [10x1FFF]              | Maximum number of bytes in RXD buffer                         |
|--------|---------|--------|------------------------|---------------------------------------------------------------|
| ID     |         |        |                        |                                                               |
| Rese   | t 0x000 | 00000  | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |         |        |                        | A A A A A A A A A A A A A A A A A A A                         |
| Bit nu | umber   |        | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 |





#### 6.18.9.32.3 RXD.AMOUNT

Address offset: 0x53C

Number of bytes transferred in the last RXD transaction

| Α     | R       | AMOUNT | [10x1FFF] Nu               | mber of bytes transferred in the last RXD transaction      |
|-------|---------|--------|----------------------------|------------------------------------------------------------|
| ID    |         |        |                            |                                                            |
| Rese  | t 0x000 | 00000  | 0 0 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                    |
| ID    |         |        |                            | A A A A A A A A A A A A A A A A A A A                      |
| Bit n | umber   |        | 31 30 29 28 27 26 25 24 23 | 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |

#### 6.18.9.32.4 RXD.LIST

Address offset: 0x540

EasyDMA list type

| Bit no | umber   |       |           | 31 30 29 2 | 28 27 2 | 26 25 2 | 4 23 2 | 22 21 | 20 19 | 9 18 1 | 7 16 | 15 1 | 4 13 | 12 1 | 11 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 : | 1 0 |
|--------|---------|-------|-----------|------------|---------|---------|--------|-------|-------|--------|------|------|------|------|-------|---|---|---|---|---|---|---|-----|-----|
| ID     |         |       |           |            |         |         |        |       |       |        |      |      |      |      |       |   |   |   |   |   |   |   | ,   | A A |
| Rese   | t 0x000 | 00000 |           | 0 0 0      | 0 0 (   | 0 0 (   | 0 0    | 0 0   | 0 0   | 0      | 0 0  | 0 (  | 0    | 0    | 0 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   |
| ID     |         |       |           |            |         |         |        |       |       |        |      |      |      |      |       |   |   |   |   |   |   |   |     |     |
| Α      | RW      | LIST  |           |            |         |         | List   | type  |       |        |      |      |      |      |       |   |   |   |   |   |   |   |     |     |
|        |         |       | Disabled  | 0          |         |         | Disa   | ble E | asyDN | ΛA lis | t    |      |      |      |       |   |   |   |   |   |   |   |     |     |
|        |         |       | ArrayList | 1          |         |         | Use    | array | list  |        |      |      |      |      |       |   |   |   |   |   |   |   |     |     |

## 6.18.9.33 TXD

TXD EasyDMA channel

#### 6.18.9.33.1 TXD.PTR

Address offset: 0x544

TXD Data pointer

| ID    | R/W     | Field | Value ID | Valu | ıe |    |    |    |    |    |    | De: | scri | ptic | n  |    |    |      |      |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|-------|---------|-------|----------|------|----|----|----|----|----|----|----|-----|------|------|----|----|----|------|------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| Rese  | t 0x000 | 00000 |          | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | כ |
| ID    |         |       |          | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α    | Α  | Α  | Α  | Α    | Α    | Α  | Α  | Α  | Α  | Α  | Α  | Α | Α | Α | Α | Α | Α | Α | Α | Α | 4 |
| Bit n | umber   |       |          | 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21   | 20 | 19 | 18 | 17 : | 16 1 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ) |

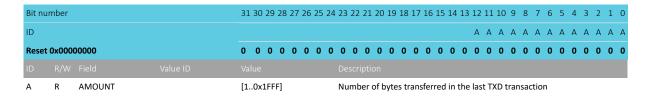
See the memory chapter for details about which memories are available for EasyDMA.

#### 6.18.9.33.2 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in TXD buffer

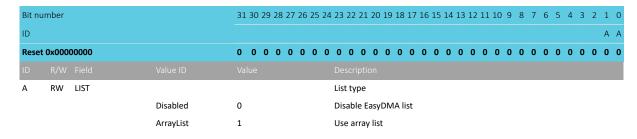
|        |        |       | [1 Ox1EEE]             |                                                                 |
|--------|--------|-------|------------------------|-----------------------------------------------------------------|
| ID     |        |       |                        |                                                                 |
| Reset  | 0x0000 | 00000 | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |        |       |                        | A A A A A A A A A A A A A A A A A A A                           |
| Bit nu | ımber  |       | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |






#### 6.18.9.33.3 TXD.AMOUNT

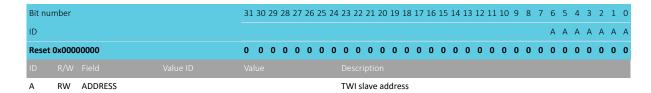
Address offset: 0x54C


Number of bytes transferred in the last TXD transaction



#### 6.18.9.33.4 TXD.LIST

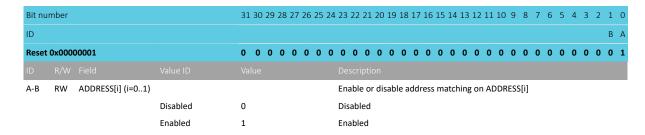
Address offset: 0x550


EasyDMA list type



#### 6.18.9.34 ADDRESS[n] (n=0..1)

Address offset:  $0x588 + (n \times 0x4)$ 

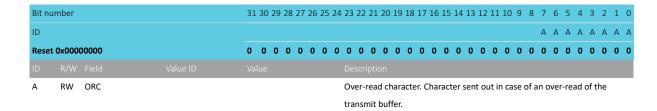

TWI slave address n



#### 6.18.9.35 CONFIG

Address offset: 0x594

Configuration register for the address match mechanism




#### 6.18.9.36 ORC

Address offset: 0x5C0



Over-read character. Character sent out in case of an over-read of the transmit buffer.



# 6.18.10 Electrical specification

## 6.18.10.1 TWIS slave timing specifications

| Symbol                           | Description                                                                    | Min. | Тур. | Max. | Units |
|----------------------------------|--------------------------------------------------------------------------------|------|------|------|-------|
| f <sub>TWIS,SCL</sub>            | Bit rates for TWIS <sup>25</sup>                                               | 100  |      | 400  | kbps  |
| t <sub>TWIS,START</sub>          | Time from PREPARERX/PREPARETX task to ready to receive/transmit                |      | 1.5  |      | μs    |
| t <sub>TWIS,SU_DAT</sub>         | Data setup time before positive edge on SCL – all modes                        | 300  |      |      | ns    |
| t <sub>TWIS,HD_DAT</sub>         | Data hold time after negative edge on SCL – all modes                          | 500  |      |      | ns    |
| t <sub>TWIS,HD_STA,100kbps</sub> | TWI slave hold time from for START condition (SDA low to SCL low), 100 kbps $$ | 5200 |      |      | ns    |
| t <sub>TWIS,HD_STA,400kbps</sub> | TWI slave hold time from for START condition (SDA low to SCL low), 400 kbps $$ | 1300 |      |      | ns    |
| t <sub>TWIS,SU_STO,100kbps</sub> | TWI slave setup time from SCL high to STOP condition, 100 kbps                 | 5200 |      |      | ns    |
| t <sub>TWIS,SU_STO,400kbps</sub> | TWI slave setup time from SCL high to STOP condition, 400 kbps                 | 1300 |      |      | ns    |
| t <sub>TWIS,BUF,100kbps</sub>    | TWI slave bus free time between STOP and START conditions, 100 kbps            |      | 4700 |      | ns    |
| t <sub>TWIS,BUF,400kbps</sub>    | TWI slave bus free time between STOP and START conditions, 400 kbps            |      | 1300 |      | ns    |

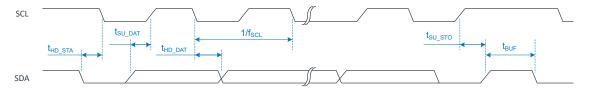



Figure 107: TWIS timing diagram, 1 byte transaction

# 6.19 UARTE — Universal asynchronous receiver/transmitter with EasyDMA

The Universal asynchronous receiver/transmitter with EasyDMA (UARTE) offers fast, full-duplex, asynchronous serial communication with built-in flow control (CTS, RTS) support in hardware at a rate up to 1 Mbps, and EasyDMA data transfer from/to RAM.

Listed here are the main features for UARTE:

- Full-duplex operation
- Automatic hardware flow control
- Optional even parity bit checking and generation
- EasyDMA
- Up to 1 Mbps baudrate
- · Return to IDLE between transactions supported (when using HW flow control)
- One or two stop bit



High bit rates or stronger pull-ups may require GPIOs to be set as High Drive, see GPIO chapter for more details.

#### · Least significant bit (LSB) first

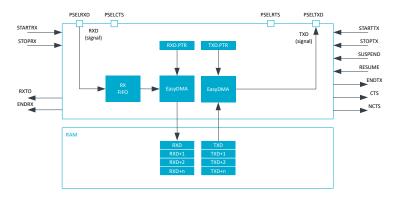



Figure 108: UARTE configuration

The GPIOs used for each UART interface can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

**Note:** The external crystal oscillator must be enabled to obtain sufficient clock accuracy for stable communication. See CLOCK — Clock control on page 73 for more information.

#### 6.19.1 EasyDMA

The UARTE implements EasyDMA for reading and writing to and from the RAM.

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 21 for more information about the different memory regions.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The ENDRX and ENDTX events indicate that the EasyDMA is finished accessing the RX or TX buffer in RAM.

#### 6.19.2 Transmission

The first step of a DMA transmission is storing bytes in the transmit buffer and configuring EasyDMA. This is achieved by writing the initial address pointer to TXD.PTR, and the number of bytes in the RAM buffer to TXD.MAXCNT. The UARTE transmission is started by triggering the STARTTX task.

After each byte has been sent over the TXD line, a TXDRDY event will be generated.

When all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have been transmitted, the UARTE transmission will end automatically and an ENDTX event will be generated.

A UARTE transmission sequence is stopped by triggering the STOPTX task. A TXSTOPPED event will be generated when the UARTE transmitter has stopped.

If the ENDTX event has not already been generated when the UARTE transmitter has come to a stop, the UARTE will generate the ENDTX event explicitly even though all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have not been transmitted.

If flow control is enabled through the HWFC field in the CONFIG register, a transmission will be automatically suspended when CTS is deactivated and resumed when CTS is activated again, as shown in the following figure. A byte that is in transmission when CTS is deactivated will be fully transmitted before the transmission is suspended.



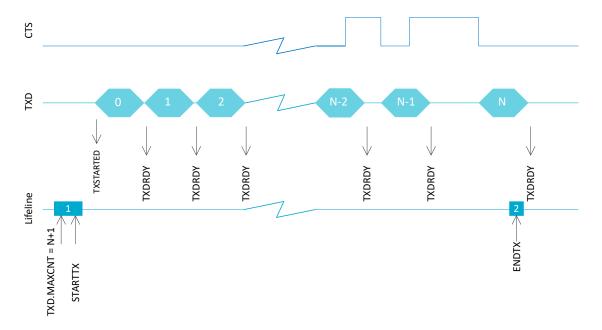



Figure 109: UARTE transmission

The UARTE transmitter will be in its lowest activity level, and consume the least amount of energy, when it is stopped, i.e. before it is started via STARTTX or after it has been stopped via STOPTX and the TXSTOPPED event has been generated. See POWER — Power control on page 67 for more information about power modes.

## 6.19.3 Reception

The UARTE receiver is started by triggering the STARTRX task. The UARTE receiver is using EasyDMA to store incoming data in an RX buffer in RAM.

The RX buffer is located at the address specified in the RXD.PTR register. The RXD.PTR register is double-buffered and it can be updated and prepared for the next STARTRX task immediately after the RXSTARTED event is generated. The size of the RX buffer is specified in the RXD.MAXCNT register. The UARTE generates an ENDRX event when it has filled up the RX buffer, as seen in the following figure.

For each byte received over the RXD line, an RXDRDY event will be generated. This event is likely to occur before the corresponding data has been transferred to Data RAM.

The RXD.AMOUNT register can be queried following an ENDRX event to see how many new bytes have been transferred to the RX buffer in RAM since the previous ENDRX event.



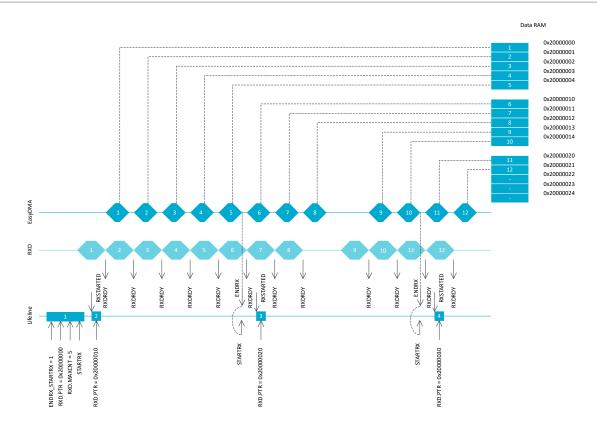



Figure 110: UARTE reception

The UARTE receiver is stopped by triggering the STOPRX task. An RXTO event is generated when the UARTE has stopped. The UARTE will make sure that an impending ENDRX event will be generated before the RXTO event is generated. This means that the UARTE will guarantee that no ENDRX event will be generated after RXTO, unless the UARTE is restarted or a FLUSHRX command is issued after the RXTO event is generated.

**Note:** If the ENDRX event has not been generated when the UARTE receiver stops, indicating that all pending content in the RX FIFO has been moved to the RX buffer, the UARTE will generate the ENDRX event explicitly even though the RX buffer is not full. In this scenario the ENDRX event will be generated before the RXTO event is generated.

To determine the amount of bytes the RX buffer has received, the CPU can read the RXD.AMOUNT register following the ENDRX event or the RXTO event.

The UARTE is able to receive up to four bytes after the STOPRX task has been triggered, as long as these are sent in succession immediately after the RTS signal is deactivated. After the RTS is deactivated, the UART is able to receive bytes for a period of time equal to the time needed to send four bytes on the configured baud rate.

After the RXTO event is generated the internal RX FIFO may still contain data, and to move this data to RAM the FLUSHRX task must be triggered. To make sure that this data does not overwrite data in the RX buffer, the RX buffer should be emptied or the RXD.PTR should be updated before the FLUSHRX task is triggered. To make sure that all data in the RX FIFO is moved to the RX buffer, the RXD.MAXCNT register must be set to RXD.MAXCNT > 4, as seen in the following figure. The UARTE will generate the ENDRX event after completing the FLUSHRX task even if the RX FIFO was empty or if the RX buffer does not get filled up. To be able to know how many bytes have actually been received into the RX buffer in this case, the CPU can read the RXD.AMOUNT register following the ENDRX event.



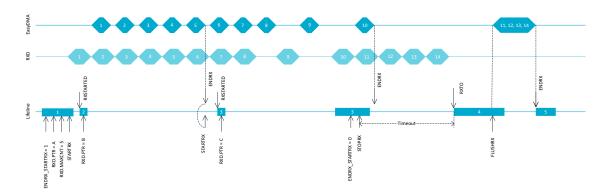



Figure 111: UARTE reception with forced stop via STOPRX

If HW flow control is enabled through the HWFC field in the CONFIG register, the RTS signal will be deactivated when the receiver is stopped via the STOPRX task or when the UARTE is only able to receive four more bytes in its internal RX FIFO.

With flow control disabled, the UARTE will function in the same way as when the flow control is enabled except that the RTS line will not be used. This means that no signal will be generated when the UARTE has reached the point where it is only able to receive four more bytes in its internal RX FIFO. Data received when the internal RX FIFO is filled up, will be lost.

The UARTE receiver will be in its lowest activity level, and consume the least amount of energy, when it is stopped, i.e. before it is started via STARTRX or after it has been stopped via STOPRX and the RXTO event has been generated. See POWER — Power control on page 67 for more information about power modes.

#### 6.19.4 Frror conditions

An ERROR event, in the form of a framing error, will be generated if a valid stop bit is not detected in a frame. Another ERROR event, in the form of a break condition, will be generated if the RXD line is held active low for longer than the length of a data frame. Effectively, a framing error is always generated before a break condition occurs.

An ERROR event will not stop reception. If the error was a parity error, the received byte will still be transferred into Data RAM, and so will following incoming bytes. If there was a framing error (wrong stop bit), that specific byte will NOT be stored into Data RAM, but following incoming bytes will.

# 6.19.5 Using the UARTE without flow control

If flow control is not enabled, the interface will behave as if the CTS and RTS lines are kept active all the time.

# 6.19.6 Parity and stop bit configuration

Automatic even parity generation for both transmission and reception can be configured using the register CONFIG on page 415. See the register description for details.

The amount of stop bits can also be configured through the register CONFIG on page 415.

# 6.19.7 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOPTX and STOPRX tasks may not be always needed (the peripheral might already be stopped), but if STOPTX and/or STOPRX is sent, software shall wait until the TXSTOPPED and/or RXTO event is received in response, before disabling the peripheral through the ENABLE register.



# 6.19.8 Pin configuration

The different signals RXD, CTS (Clear To Send, active low), RTS (Request To Send, active low), and TXD associated with the UARTE are mapped to physical pins according to the configuration specified in the PSEL.RXD, PSEL.RTS, and PSEL.TXD registers respectively.

The PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers and their configurations are only used as long as the UARTE is enabled, and retained only for the duration the device is in ON mode. PSEL.RXD, PSEL.RTS, PSEL.RTS, and PSEL.TXD must only be configured when the UARTE is disabled.

To secure correct signal levels on the pins by the UARTE when the system is in OFF mode, the pins must be configured in the GPIO peripheral as described in the following table.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

| UARTE signal | UARTE pin                | Direction | Output value   |
|--------------|--------------------------|-----------|----------------|
| RXD          | As specified in PSEL.RXD | Input     | Not applicable |
| CTS          | As specified in PSEL.CTS | Input     | Not applicable |
| RTS          | As specified in PSEL.RTS | Output    | 1              |
| TXD          | As specified in PSEL.TXD | Output    | 1              |

Table 49: GPIO configuration before enabling peripheral

## 6.19.9 Registers

#### **Instances**

| Instance    | Base address | TrustZone |     |     | Split access | Description                      |
|-------------|--------------|-----------|-----|-----|--------------|----------------------------------|
|             |              | Мар       | Att | DMA |              |                                  |
| UARTEO: S   | 0x50008000   | US        | NS  | SA  | No           | Universal asynchronous receiver/ |
| UARTEO: NS  | 0x40008000   | 03        | INS | ЭА  | NO           | transmitter with EasyDMA 0       |
| UARTE1:S    | 0x50009000   | US        | NS  | SA  | No           | Universal asynchronous receiver/ |
| UARTE1: NS  | 0x40009000   | 03        | NS  | JA  | NO           | transmitter with EasyDMA 1       |
| UARTE2:S    | 0x5000A000   | US        | NS  | SA  | No           | Universal asynchronous receiver/ |
| UARTE2 : NS | 0x4000A000   | 03        | NS  | JA  | NO           | transmitter with EasyDMA 2       |
| UARTE3:S    | 0x5000B000   | US        | NS  | SA  | No           | Universal asynchronous receiver/ |
| UARTE3: NS  | 0x4000B000   | 03        | INS | JA  | NO           | transmitter with EasyDMA 3       |

#### **Register overview**

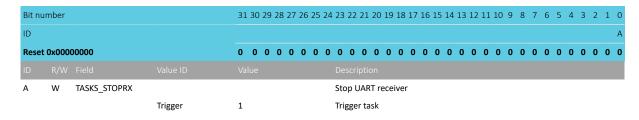
| Register          | Offset | TZ | Description                                       |
|-------------------|--------|----|---------------------------------------------------|
| TASKS_STARTRX     | 0x000  |    | Start UART receiver                               |
| TASKS_STOPRX      | 0x004  |    | Stop UART receiver                                |
| TASKS_STARTTX     | 0x008  |    | Start UART transmitter                            |
| TASKS_STOPTX      | 0x00C  |    | Stop UART transmitter                             |
| TASKS_FLUSHRX     | 0x02C  |    | Flush RX FIFO into RX buffer                      |
| SUBSCRIBE_STARTRX | 0x080  |    | Subscribe configuration for task STARTRX          |
| SUBSCRIBE_STOPRX  | 0x084  |    | Subscribe configuration for task STOPRX           |
| SUBSCRIBE_STARTTX | 0x088  |    | Subscribe configuration for task STARTTX          |
| SUBSCRIBE_STOPTX  | 0x08C  |    | Subscribe configuration for task STOPTX           |
| SUBSCRIBE_FLUSHRX | 0x0AC  |    | Subscribe configuration for task FLUSHRX          |
| EVENTS_CTS        | 0x100  |    | CTS is activated (set low). Clear To Send.        |
| EVENTS_NCTS       | 0x104  |    | CTS is deactivated (set high). Not Clear To Send. |



| Register          | Offset | TZ | Description                                                            |
|-------------------|--------|----|------------------------------------------------------------------------|
| EVENTS_RXDRDY     | 0x108  |    | Data received in RXD (but potentially not yet transferred to Data RAM) |
| EVENTS_ENDRX      | 0x110  |    | Receive buffer is filled up                                            |
| EVENTS_TXDRDY     | 0x11C  |    | Data sent from TXD                                                     |
| EVENTS_ENDTX      | 0x120  |    | Last TX byte transmitted                                               |
| EVENTS_ERROR      | 0x124  |    | Error detected                                                         |
| EVENTS_RXTO       | 0x144  |    | Receiver timeout                                                       |
| EVENTS_RXSTARTED  | 0x14C  |    | UART receiver has started                                              |
| EVENTS_TXSTARTED  | 0x150  |    | UART transmitter has started                                           |
| EVENTS_TXSTOPPED  | 0x158  |    | Transmitter stopped                                                    |
| PUBLISH_CTS       | 0x180  |    | Publish configuration for event CTS                                    |
| PUBLISH_NCTS      | 0x184  |    | Publish configuration for event NCTS                                   |
| PUBLISH_RXDRDY    | 0x188  |    | Publish configuration for event RXDRDY                                 |
| PUBLISH_ENDRX     | 0x190  |    | Publish configuration for event ENDRX                                  |
| PUBLISH_TXDRDY    | 0x19C  |    | Publish configuration for event TXDRDY                                 |
| PUBLISH_ENDTX     | 0x1A0  |    | Publish configuration for event ENDTX                                  |
| PUBLISH_ERROR     | 0x1A4  |    | Publish configuration for event ERROR                                  |
| PUBLISH_RXTO      | 0x1C4  |    | Publish configuration for event RXTO                                   |
| PUBLISH_RXSTARTED | 0x1CC  |    | Publish configuration for event RXSTARTED                              |
| PUBLISH_TXSTARTED | 0x1D0  |    | Publish configuration for event TXSTARTED                              |
| PUBLISH_TXSTOPPED | 0x1D8  |    | Publish configuration for event TXSTOPPED                              |
| SHORTS            | 0x200  |    | Shortcuts between local events and tasks                               |
| INTEN             | 0x300  |    | Enable or disable interrupt                                            |
| INTENSET          | 0x304  |    | Enable interrupt                                                       |
| INTENCLR          | 0x308  |    | Disable interrupt                                                      |
| ERRORSRC          | 0x480  |    | Error source                                                           |
|                   |        |    | This register is read/write one to clear.                              |
| ENABLE            | 0x500  |    | Enable UART                                                            |
| PSEL.RTS          | 0x508  |    | Pin select for RTS signal                                              |
| PSEL.TXD          | 0x50C  |    | Pin select for TXD signal                                              |
| PSEL.CTS          | 0x510  |    | Pin select for CTS signal                                              |
| PSEL.RXD          | 0x514  |    | Pin select for RXD signal                                              |
| BAUDRATE          | 0x524  |    | Baud rate. Accuracy depends on the HFCLK source selected.              |
| RXD.PTR           | 0x534  |    | Data pointer                                                           |
| RXD.MAXCNT        | 0x538  |    | Maximum number of bytes in receive buffer                              |
| RXD.AMOUNT        | 0x53C  |    | Number of bytes transferred in the last transaction                    |
| TXD.PTR           | 0x544  |    | Data pointer                                                           |
| TXD.MAXCNT        | 0x548  |    | Maximum number of bytes in transmit buffer                             |
| TXD.AMOUNT        | 0x54C  |    | Number of bytes transferred in the last transaction                    |
| CONFIG            | 0x56C  |    | Configuration of parity and hardware flow control                      |
|                   | 0500   |    | g                                                                      |

# 6.19.9.1 TASKS\_STARTRX

Address offset: 0x000 Start UART receiver


| Bit nu | ımber |               |         | 31 3 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 4 23 | 3 2 | 2 2 | 1 2  | 0 1 | 9 1  | L8 1 | 7 1 | 6 1 | 5 1 | 4 1 | 3 1 | .2 1 | 11 1 | .0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|---------------|---------|------|----|----|----|----|----|----|----|------|-----|-----|------|-----|------|------|-----|-----|-----|-----|-----|------|------|----|---|---|---|---|---|---|---|---|---|---|
| ID     |       |               |         |      |    |    |    |    |    |    |    |      |     |     |      |     |      |      |     |     |     |     |     |      |      |    |   |   |   |   |   |   |   |   |   | Α |
| Rese   | 0x000 | 00000         |         | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | C   | ) ( | ) (  | 0 ( | 0    | 0    | 0 ( | ) ( | ) ( | )   | 0 ( | 0    | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |       |               |         |      |    |    |    |    |    |    |    |      |     |     |      |     |      |      |     |     |     |     |     |      |      |    |   |   |   |   |   |   |   |   |   |   |
| Α      | W     | TASKS_STARTRX |         |      |    |    |    |    |    |    |    | St   | art | :UA | ART  | rec | ceiv | /er  |     |     |     |     |     |      |      |    |   |   |   |   |   |   |   |   |   |   |
|        |       |               | Trigger | 1    |    |    |    |    |    |    |    | Tr   | igg | er  | tasl | k   |      |      |     |     |     |     |     |      |      |    |   |   |   |   |   |   |   |   |   |   |

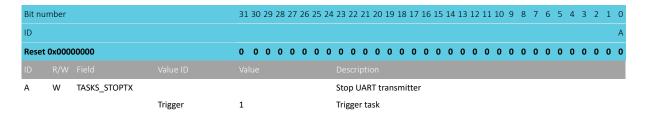
399



## 6.19.9.2 TASKS\_STOPRX

Address offset: 0x004 Stop UART receiver

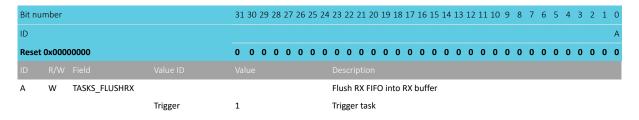



#### 6.19.9.3 TASKS STARTTX

Address offset: 0x008 Start UART transmitter

| Bit nu | umber   |               |         | 31 30 29 28 2 | 27 26 25 | 24 23 | 22 21  | . 20 1 | 19 18 | 17 16 | 5 15 1 | 14 13 | 12 1 | .1 10 | 9 | 8 | 7 6 | 5 5 | 4 | 3 2 | 2 1 | 0 |
|--------|---------|---------------|---------|---------------|----------|-------|--------|--------|-------|-------|--------|-------|------|-------|---|---|-----|-----|---|-----|-----|---|
| ID     |         |               |         |               |          |       |        |        |       |       |        |       |      |       |   |   |     |     |   |     |     | Α |
| Rese   | t 0x000 | 00000         |         | 0 0 0 0       | 0 0 0    | 0 0   | 0 0    | 0 (    | 0 0   | 0 0   | 0      | 0 0   | 0    | 0 0   | 0 | 0 | 0 ( | 0   | 0 | 0 ( | 0   | 0 |
| ID     |         |               |         |               |          |       |        |        |       |       |        |       |      |       |   |   |     |     |   |     |     |   |
| Α      | W       | TASKS_STARTTX |         |               |          | Sta   | art UA | RT tra | ansmi | tter  |        |       |      |       |   |   |     |     |   |     |     |   |
|        |         |               | Trigger | 1             |          | Tri   | gger t | ask    |       |       |        |       |      |       |   |   |     |     |   |     |     |   |

### 6.19.9.4 TASKS\_STOPTX

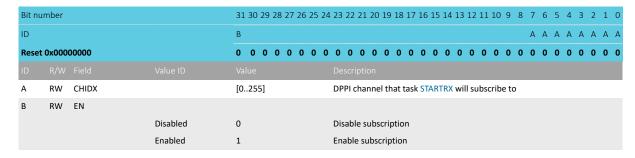

Address offset: 0x00C Stop UART transmitter



#### 6.19.9.5 TASKS\_FLUSHRX

Address offset: 0x02C

Flush RX FIFO into RX buffer




# 6.19.9.6 SUBSCRIBE\_STARTRX

Address offset: 0x080



#### Subscribe configuration for task STARTRX



# 6.19.9.7 SUBSCRIBE\_STOPRX

Address offset: 0x084

Subscribe configuration for task STOPRX

| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that task STOPRX will subscribe to                 |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable subscription                                            |
|        |         |       | Enabled  | 1                       | Enable subscription                                             |

## 6.19.9.8 SUBSCRIBE\_STARTTX

Address offset: 0x088

Subscribe configuration for task STARTTX

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task STARTTX will subscribe to              |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       | Enabled  | 1                       | Enable subscription                                           |

# 6.19.9.9 SUBSCRIBE\_STOPTX

Address offset: 0x08C

Subscribe configuration for task STOPTX



| Bit nu | mber  |       |          | 31 30 29 | 28 27 | 26 25 | 24 23 | 3 22 3 | 21 20  | 19    | 18 1  | 7 16  | 15 1 | 14 1 | 3 12   | 11 1  | 10 9  | 8 | 7 | 6 | 5   | 4   | 3 2 | 1 | 0 |
|--------|-------|-------|----------|----------|-------|-------|-------|--------|--------|-------|-------|-------|------|------|--------|-------|-------|---|---|---|-----|-----|-----|---|---|
| ID     |       |       |          | В        |       |       |       |        |        |       |       |       |      |      |        |       |       |   | Α | Α | Α . | A . | A A | Α | A |
| Reset  | 0x000 | 00000 |          | 0 0 0    | 0 0   | 0 0   | 0 0   | 0      | 0 0    | 0     | 0 (   | 0 0   | 0    | 0 0  | 0      | 0     | 0 0   | 0 | 0 | 0 | 0   | 0   | 0 0 | 0 | 0 |
| ID     |       |       |          |          |       |       |       |        |        |       |       |       |      |      |        |       |       |   |   |   |     |     |     |   | ı |
| Α      | RW    | CHIDX |          | [0255]   |       |       | DF    | PPI cl | hanne  | el th | at ta | sk ST | OPT  | X wi | ll sul | bscri | be to | ) |   |   |     |     |     |   |   |
| В      | RW    | EN    |          |          |       |       |       |        |        |       |       |       |      |      |        |       |       |   |   |   |     |     |     |   |   |
|        |       |       | Disabled | 0        |       |       | Di    | sable  | e subs | scrip | otion |       |      |      |        |       |       |   |   |   |     |     |     |   |   |
|        |       |       | Enabled  | 1        |       |       | En    | nable  | subs   | cript | tion  |       |      |      |        |       |       |   |   |   |     |     |     |   |   |

## 6.19.9.10 SUBSCRIBE\_FLUSHRX

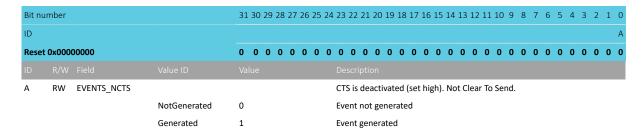
Address offset: 0x0AC

Subscribe configuration for task FLUSHRX

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                   |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |       |          |                         |                                                                 |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task FLUSHRX will subscribe to                |
| В      | RW    | EN    |          |                         |                                                                 |
|        |       |       | Disabled | 0                       | Disable subscription                                            |
|        |       |       | Enabled  | 1                       | Enable subscription                                             |

## 6.19.9.11 EVENTS\_CTS

Address offset: 0x100


CTS is activated (set low). Clear To Send.

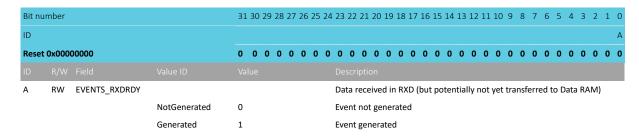
| Bit no | umber   |            |              | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|------------|--------------|------------------------|-----------------------------------------------------------------|
| ID     |         |            |              |                        | A                                                               |
| Rese   | t 0x000 | 00000      |              | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |            |              |                        |                                                                 |
| Α      | RW      | EVENTS_CTS |              |                        | CTS is activated (set low). Clear To Send.                      |
|        |         |            | NotGenerated | 0                      | Event not generated                                             |
|        |         |            | Generated    | 1                      | Event generated                                                 |

#### 6.19.9.12 EVENTS\_NCTS

Address offset: 0x104

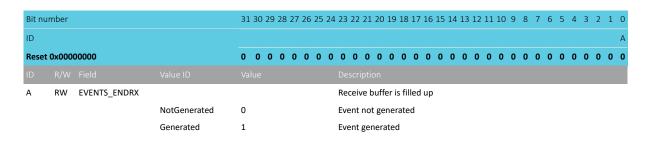
CTS is deactivated (set high). Not Clear To Send.




### 6.19.9.13 EVENTS\_RXDRDY

Address offset: 0x108

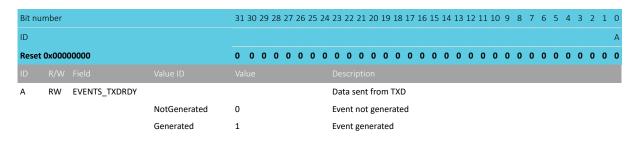





#### Data received in RXD (but potentially not yet transferred to Data RAM)

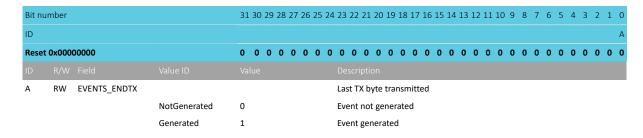


#### 6.19.9.14 EVENTS ENDRX


Address offset: 0x110 Receive buffer is filled up



#### 6.19.9.15 EVENTS TXDRDY

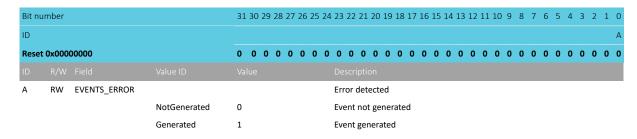

Address offset: 0x11C

Data sent from TXD



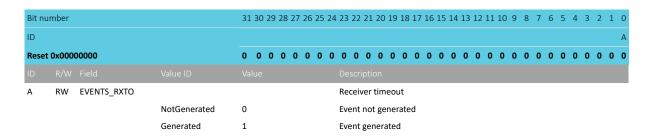
#### 6.19.9.16 EVENTS ENDTX

Address offset: 0x120 Last TX byte transmitted




#### 6.19.9.17 EVENTS ERROR

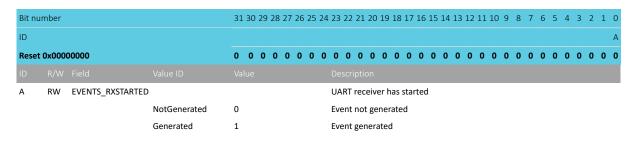
Address offset: 0x124




#### Error detected



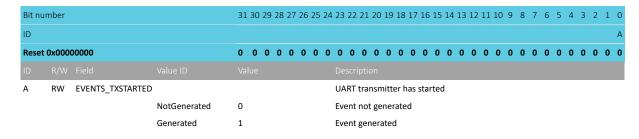
#### 6.19.9.18 EVENTS RXTO


Address offset: 0x144
Receiver timeout



#### 6.19.9.19 EVENTS RXSTARTED

Address offset: 0x14C

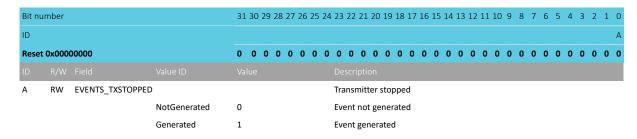

UART receiver has started



#### 6.19.9.20 EVENTS TXSTARTED

Address offset: 0x150

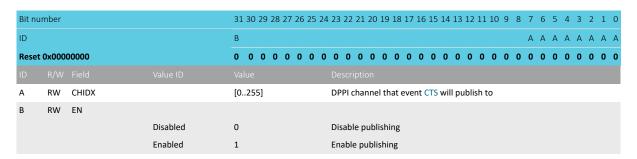
**UART** transmitter has started




#### 6.19.9.21 EVENTS\_TXSTOPPED

Address offset: 0x158




#### Transmitter stopped



#### 6.19.9.22 PUBLISH CTS

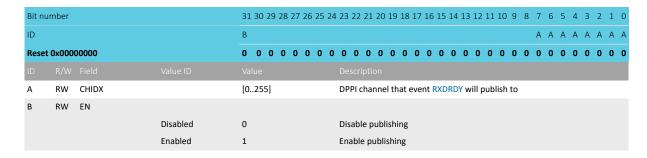
Address offset: 0x180

Publish configuration for event CTS



### 6.19.9.23 PUBLISH\_NCTS

Address offset: 0x184

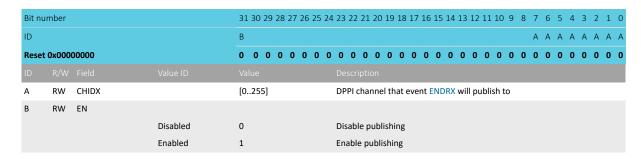

Publish configuration for event NCTS

| Bit nu | umber    |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|----------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |          |       |          | В                       | A A A A A A A                                                 |
| Rese   | t 0x0000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |          |       |          |                         |                                                               |
| Α      | RW       | CHIDX |          | [0255]                  | DPPI channel that event NCTS will publish to                  |
| В      | RW       | EN    |          |                         |                                                               |
|        |          |       | Disabled | 0                       | Disable publishing                                            |
|        |          |       | Enabled  | 1                       | Enable publishing                                             |

#### 6.19.9.24 PUBLISH\_RXDRDY

Address offset: 0x188

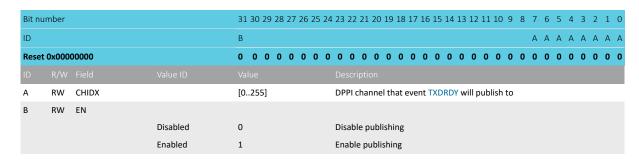
Publish configuration for event RXDRDY






#### 6.19.9.25 PUBLISH\_ENDRX

Address offset: 0x190


Publish configuration for event ENDRX



#### 6.19.9.26 PUBLISH\_TXDRDY

Address offset: 0x19C

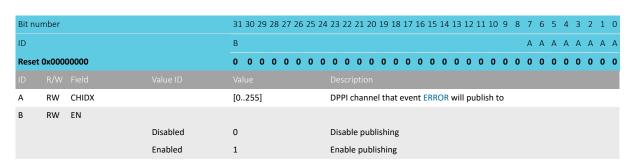
Publish configuration for event TXDRDY



#### 6.19.9.27 PUBLISH ENDTX

Address offset: 0x1A0

Publish configuration for event ENDTX




#### 6.19.9.28 PUBLISH\_ERROR

Address offset: 0x1A4

Publish configuration for event ERROR





# 6.19.9.29 PUBLISH\_RXTO

Address offset: 0x1C4

Publish configuration for event RXTO

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |       |       |          |                         |                                                               |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that event RXTO will publish to                  |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable publishing                                            |
|        |       |       | Enabled  | 1                       | Enable publishing                                             |

## 6.19.9.30 PUBLISH\_RXSTARTED

Address offset: 0x1CC

Publish configuration for event RXSTARTED

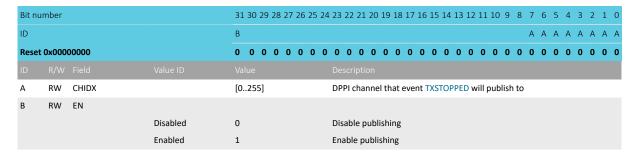
| Bit nu | ımber   |       |          | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|------------------------|------------------------------------------------------------------|
| ID     |         |       |          | В                      | A A A A A A A                                                    |
| Reset  | t 0x000 | 00000 |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID     |         |       |          |                        |                                                                  |
| Α      | RW      | CHIDX |          | [0255]                 | DPPI channel that event RXSTARTED will publish to                |
| В      | RW      | EN    |          |                        |                                                                  |
|        |         |       | Disabled | 0                      | Disable publishing                                               |
|        |         |       | Enabled  | 1                      | Enable publishing                                                |

## 6.19.9.31 PUBLISH\_TXSTARTED

Address offset: 0x1D0

Publish configuration for event TXSTARTED

| Bit nu | umber   |       |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |          | В                       | A A A A A A A                                                   |
| Rese   | t 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |          |                         |                                                                 |
| Α      | RW      | CHIDX |          | [0255]                  | DPPI channel that event TXSTARTED will publish to               |
| В      | RW      | EN    |          |                         |                                                                 |
|        |         |       | Disabled | 0                       | Disable publishing                                              |
|        |         |       | Enabled  | 1                       | Enable publishing                                               |


407



## 6.19.9.32 PUBLISH\_TXSTOPPED

Address offset: 0x1D8

Publish configuration for event TXSTOPPED



#### 6.19.9.33 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

| Bit nu | ımber |               |          | 31 | 30 | 29 2 | 28 | 27 2 | 26 | 25 | 24 | 23  | 22   | 21   | 20   | 19  | 18 1 | 17 1 | 16 : | 15  | 14 | 13  | 12   | 11   | 10   | 9   | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|-------|---------------|----------|----|----|------|----|------|----|----|----|-----|------|------|------|-----|------|------|------|-----|----|-----|------|------|------|-----|---|---|---|---|---|---|---|-----|
| ID     |       |               |          |    |    |      |    |      |    |    |    |     |      |      |      |     |      |      |      |     |    |     |      |      |      |     |   |   | D | С |   |   |   |     |
| Reset  | 0x000 | 00000         |          | 0  | 0  | 0    | 0  | 0    | 0  | 0  | 0  | 0   | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0   | 0  | 0   | 0    | 0    | 0    | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |
| ID     |       |               |          |    |    |      |    |      |    |    |    |     |      |      |      |     |      |      |      |     |    |     |      |      |      |     |   |   |   |   |   |   |   |     |
| С      | RW    | ENDRX_STARTRX |          |    |    |      |    |      |    |    |    | Sho | ortc | ut l | betv | vee | en e | ven  | t El | NDI | RX | anc | l ta | sk S | STAI | RTR | X |   |   |   |   |   |   |     |
|        |       |               | Disabled | 0  |    |      |    |      |    |    |    | Dis | able | e sł | hort | cut |      |      |      |     |    |     |      |      |      |     |   |   |   |   |   |   |   |     |
|        |       |               | Enabled  | 1  |    |      |    |      |    |    |    | Ena | able | sh   | ort  | cut |      |      |      |     |    |     |      |      |      |     |   |   |   |   |   |   |   |     |
| D      | RW    | ENDRX_STOPRX  |          |    |    |      |    |      |    |    |    | Sho | ortc | ut l | betv | wee | en e | ven  | t El | NDI | RX | anc | l ta | sk S | STO  | PRX | ( |   |   |   |   |   |   |     |
|        |       |               | Disabled | 0  |    |      |    |      |    |    |    | Dis | able | e sł | hort | cut |      |      |      |     |    |     |      |      |      |     |   |   |   |   |   |   |   |     |
|        |       |               | Enabled  | 1  |    |      |    |      |    |    |    | Ena | able | sh   | ort  | cut |      |      |      |     |    |     |      |      |      |     |   |   |   |   |   |   |   |     |

#### 6.19.9.34 INTEN

Address offset: 0x300

Enable or disable interrupt

| Bit nu | ımber |        |          | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|--------|----------|------------------------|-----------------------------------------------------------------|
| ID     |       |        |          |                        | L JIH GFE D CBA                                                 |
| Reset  | 0x000 | 00000  |          | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |       |        |          |                        | Description                                                     |
| Α      | RW    | CTS    |          |                        | Enable or disable interrupt for event CTS                       |
|        |       |        | Disabled | 0                      | Disable                                                         |
|        |       |        | Enabled  | 1                      | Enable                                                          |
| В      | RW    | NCTS   |          |                        | Enable or disable interrupt for event NCTS                      |
|        |       |        | Disabled | 0                      | Disable                                                         |
|        |       |        | Enabled  | 1                      | Enable                                                          |
| С      | RW    | RXDRDY |          |                        | Enable or disable interrupt for event RXDRDY                    |
|        |       |        | Disabled | 0                      | Disable                                                         |
|        |       |        | Enabled  | 1                      | Enable                                                          |
| D      | RW    | ENDRX  |          |                        | Enable or disable interrupt for event ENDRX                     |
|        |       |        | Disabled | 0                      | Disable                                                         |
|        |       |        | Enabled  | 1                      | Enable                                                          |
| Ε      | RW    | TXDRDY |          |                        | Enable or disable interrupt for event TXDRDY                    |



| Bit nu | mber  |           |          | 31 | 30 | 29 2 | 28 27 | 7 26 | 25 2 | 4 2 | 23 2 | 2 21  | . 20  | 19  | 18   | 17   | 16  | 15   | 14   | 13  | 12   | 11   | 10  | 9   | 8 | 7 | 6 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|-----------|----------|----|----|------|-------|------|------|-----|------|-------|-------|-----|------|------|-----|------|------|-----|------|------|-----|-----|---|---|-----|---|---|---|---|---|
| ID     |       |           |          |    |    |      |       |      |      |     | l    | -     | J     | -1  |      | Н    |     |      |      |     |      |      |     | G   | F | Ε |     | D |   | С | В | Α |
| Reset  | 0x000 | 00000     |          | 0  | 0  | 0 (  | 0 0   | 0    | 0    | 0   | 0 (  | 0     | 0     | 0   | 0    | 0    | 0   | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 |
|        |       |           |          |    |    |      |       |      |      |     |      |       |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enat | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| F      | RW    | ENDTX     |          |    |    |      |       |      |      | E   | Enat | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t EN | ND1  | ГХ  |     |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enab | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| G      | RW    | ERROR     |          |    |    |      |       |      |      | E   | Enat | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t EF | RRC  | DR  |     |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enat | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| Н      | RW    | RXTO      |          |    |    |      |       |      |      | E   | Enat | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t R) | KTC  | )   |     |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enat | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| 1      | RW    | RXSTARTED |          |    |    |      |       |      |      | E   | Enab | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t RX | KST  | AR  | ΓED |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enat | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| J      | RW    | TXSTARTED |          |    |    |      |       |      |      | E   | Enak | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t T> | (ST/ | AR1 | ΓED |   |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enat | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
| L      | RW    | TXSTOPPED |          |    |    |      |       |      |      | E   | Enak | ole o | r dis | sab | e ir | nter | rup | t fo | r ev | /en | t T  | (ST  | OPI | PEC | ) |   |     |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |       |      |      | [   | Disa | ble   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |       |      |      | E   | Enab | ole   |       |     |      |      |     |      |      |     |      |      |     |     |   |   |     |   |   |   |   |   |

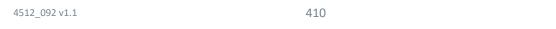
# 6.19.9.35 INTENSET

Address offset: 0x304

Enable interrupt

| Bit nu | ımber      |     |          | 31 3 | 0 29 2 | 28 27 | 26 25 | 5 24 | 23 2 | 22 21  | L 20 | 19 1   | 8 17  | 16 3 | L5 14  | 13  | 12 1: | 1 10 | 9 | 8 | 7 | 6 5 | 4 | 3 2 | 2 1 | 0 |
|--------|------------|-----|----------|------|--------|-------|-------|------|------|--------|------|--------|-------|------|--------|-----|-------|------|---|---|---|-----|---|-----|-----|---|
| ID     |            |     |          |      |        |       |       |      |      | L      | J    | 1      | Н     |      |        |     |       |      | G | F | E |     | D | (   | СВ  | Α |
| Reset  | 0x00000000 |     |          | 0 (  | 0 0    | 0 0   | 0 0   | 0    | 0    | 0 0    | 0    | 0 0    | 0     | 0    | 0 0    | 0   | 0 0   | 0    | 0 | 0 | 0 | 0 0 | 0 | 0 ( | 0 0 | 0 |
| ID     |            |     |          |      |        |       |       |      |      |        |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
| Α      | RW CTS     |     |          |      |        |       |       |      | Wri  | te '1' | to e | enabl  | e int | erru | ot for | eve | nt C1 | S    |   |   |   |     |   |     |     |   |
|        |            | 9   | Set      | 1    |        |       |       |      | Ena  | ble    |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | [   | Disabled | 0    |        |       |       |      | Rea  | ıd: Di | sabl | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | E   | Enabled  | 1    |        |       |       |      | Rea  | ıd: En | able | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
| В      | RW NCTS    | S   |          |      |        |       |       |      | Wri  | te '1' | to e | enable | e int | erru | ot for | eve | nt No | CTS  |   |   |   |     |   |     |     |   |
|        |            | 9   | Set      | 1    |        |       |       |      | Ena  | ble    |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | [   | Disabled | 0    |        |       |       |      | Rea  | d: Di  | sabl | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | E   | Enabled  | 1    |        |       |       |      | Rea  | ıd: En | able | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
| С      | RW RXDI    | RDY |          |      |        |       |       |      | Wri  | te '1' | to e | enable | e int | erru | ot for | eve | nt R  | (DRD | Υ |   |   |     |   |     |     |   |
|        |            | 9   | Set      | 1    |        |       |       |      | Ena  | ble    |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | [   | Disabled | 0    |        |       |       |      | Rea  | d: Di  | sabl | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | E   | Enabled  | 1    |        |       |       |      | Rea  | ıd: En | able | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
| D      | RW ENDI    | RX  |          |      |        |       |       |      | Wri  | te '1' | to e | enabl  | e int | erru | ot for | eve | nt EN | IDRX | ( |   |   |     |   |     |     |   |
|        |            | S   | Set      | 1    |        |       |       |      | Ena  | ble    |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | Ι   | Disabled | 0    |        |       |       |      | Rea  | d: Di  | sabl | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | E   | Enabled  | 1    |        |       |       |      | Rea  | ıd: En | able | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
| E      | RW TXDF    | RDY |          |      |        |       |       |      | Wri  | te '1' | to e | enabl  | e int | erru | ot for | eve | nt TX | DRD  | Υ |   |   |     |   |     |     |   |
|        |            | 9   | Set      | 1    |        |       |       |      | Ena  | ble    |      |        |       |      |        |     |       |      |   |   |   |     |   |     |     |   |
|        |            | [   | Disabled | 0    |        |       |       |      | Rea  | d: Di  | sabl | ed     |       |      |        |     |       |      |   |   |   |     |   |     |     |   |




| Bit nu | mber  |           |          | 31 | 30 | 29 2 | 28 2 | 27 26 | 6 2 | 5 24 | 23  | 22    | 21       | 20   | 19  | 18    | 17  | 16   | 15  | 14  | 13  | 12 1 | l1 | 10  | 9  | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|-----------|----------|----|----|------|------|-------|-----|------|-----|-------|----------|------|-----|-------|-----|------|-----|-----|-----|------|----|-----|----|---|---|---|---|---|---|---|---|---|
| ID     |       |           |          |    |    |      |      |       |     |      |     | L     |          | J    | L   |       | Н   |      |     |     |     |      |    |     | G  | F | Ε |   |   | D |   | С | В | Α |
| Reset  | 0x000 | 00000     |          | 0  | 0  | 0    | 0    | 0 0   | 0   | 0    | 0   | 0     | 0        | 0    | 0   | 0     | 0   | 0    | 0   | 0   | 0   | 0    | 0  | 0   | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |       |           |          |    |    |      |      |       |     |      |     |       |          |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: ۱ | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| F      | RW    | ENDTX     |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nat | ole i | int | errı | ıpt | for | eve | nt E | NE | XTC |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | •        |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: ۱ | Disa     | ble  | ed  |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: I | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| G      | RW    | ERROR     |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nab | ole i | int | errı | ıpt | for | eve | nt E | RR | OR  |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | 9        |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: ۱ | Disa     | ble  | ed  |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: I | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| Н      | RW    | RXTO      |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nat | ole i | int | errı | ıpt | for | eve | nt R | XT | O   |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | <u>;</u> |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: I | Disa     | able | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: I | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| I      | RW    | RXSTARTED |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nat | ole i | int | errı | ıpt | for | eve | nt R | XS | TAR | TE | D |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | 2        |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: I | Disa     | ble  | ed  |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: I | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| J      | RW    | TXSTARTED |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nab | ole i | int | errı | ıpt | for | eve | nt T | XS | TAR | TE | D |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | •        |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: I | Disa     | ble  | ed  |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: ۱ | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
| L      | RW    | TXSTOPPED |          |    |    |      |      |       |     |      | Wr  | ite ' | '1' t    | o e  | nab | ole   | int | errı | ıpt | for | eve | nt T | XS | TOF | PE | D |   |   |   |   |   |   |   |   |
|        |       |           | Set      | 1  |    |      |      |       |     |      | Ena | able  | 2        |      |     |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Disabled | 0  |    |      |      |       |     |      | Rea | ad: ۱ | Disa     | ble  | ed  |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |
|        |       |           | Enabled  | 1  |    |      |      |       |     |      | Rea | ad: ۱ | Ena      | ble  | d   |       |     |      |     |     |     |      |    |     |    |   |   |   |   |   |   |   |   |   |

# 6.19.9.36 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | ımber |        |          | 31 3 | 0 29 | 28 27 | 7 26 | 25 24 | 4 23 | 22   | 21 2   | 20 1  | 9 18  | 3 17  | 16   | 15  | 14  | 13  | 12 1 | 1 10 | 9  | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | 0 |
|--------|-------|--------|----------|------|------|-------|------|-------|------|------|--------|-------|-------|-------|------|-----|-----|-----|------|------|----|---|---|---|---|---|-----|-----|---|
| ID     |       |        |          |      |      |       |      |       |      | L    |        | J     | ı     | Н     |      |     |     |     |      |      | G  | F | Ε |   |   | D | (   | СВ  | Α |
| Reset  | 0x000 | 00000  |          | 0 (  | 0 0  | 0 0   | 0    | 0 0   | 0    | 0    | 0      | 0 (   | 0 0   | 0     | 0    | 0   | 0   | 0   | 0 (  | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0 |
| ID     |       |        |          |      |      |       |      |       |      |      |        |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
| Α      | RW    | CTS    |          |      |      |       |      |       | W    | rite | '1' to | o dis | sable | e int | erru | ıpt | for | eve | nt C | TS   |    |   |   |   |   |   |     |     |   |
|        |       |        | Clear    | 1    |      |       |      |       | Dis  | sabl | le     |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Disabled | 0    |      |       |      |       | Re   | ad:  | Disa   | ble   | b     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Enabled  | 1    |      |       |      |       | Re   | ad:  | Enal   | bled  | l     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
| В      | RW    | NCTS   |          |      |      |       |      |       | W    | rite | '1' to | o dis | sable | e int | erru | ıpt | for | eve | nt N | CTS  |    |   |   |   |   |   |     |     |   |
|        |       |        | Clear    | 1    |      |       |      |       | Dis  | sabl | le     |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Disabled | 0    |      |       |      |       | Re   | ad:  | Disa   | ble   | b     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Enabled  | 1    |      |       |      |       | Re   | ad:  | Enal   | bled  | l     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
| С      | RW    | RXDRDY |          |      |      |       |      |       | W    | rite | '1' to | o dis | sable | e int | erru | ıpt | for | eve | nt R | XDF  | DY |   |   |   |   |   |     |     |   |
|        |       |        | Clear    | 1    |      |       |      |       | Dis  | sabl | le     |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Disabled | 0    |      |       |      |       | Re   | ad:  | Disa   | ble   | d     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        | Enabled  | 1    |      |       |      |       | Re   | ad:  | Enal   | bled  | l     |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
| D      | RW    | ENDRX  |          |      |      |       |      |       | W    | rite | '1' to | o dis | sable | e int | erru | ıpt | for | eve | nt E | NDF  | RX |   |   |   |   |   |     |     |   |
|        |       |        | Clear    | 1    |      |       |      |       | Dis  | sabl | le     |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |
|        |       |        |          |      |      |       |      |       |      |      |        |       |       |       |      |     |     |     |      |      |    |   |   |   |   |   |     |     |   |





| Bit nu | mber  |           |          | 33 | 1 30 | 29 | 28 | 27 2 | 26 | 25 2 | 4 23 | 3 22  | 21    | 20   | 19 1 | .8 1  | 7 1  | 5 15 | 14   | 13 | 12  | 11  | 10   | 9   | 8 | 7 | 6 ! | 5 4 | 3 | 2 | 1 | 0 |
|--------|-------|-----------|----------|----|------|----|----|------|----|------|------|-------|-------|------|------|-------|------|------|------|----|-----|-----|------|-----|---|---|-----|-----|---|---|---|---|
| ID     |       |           |          |    |      |    |    |      |    |      |      | L     |       | J    | l l  | ŀ     | 4    |      |      |    |     |     |      | G   | F | E |     | D   |   | С | В | Α |
| Reset  | 0x000 | 00000     |          | 0  | 0    | 0  | 0  | 0    | 0  | 0 (  | 0    | 0     | 0     | 0    | 0 (  | 0 (   | 0 0  | 0    | 0    | 0  | 0   | 0   | 0    | 0   | 0 | 0 | 0 ( | 0   | 0 | 0 | 0 | 0 |
|        |       |           |          |    |      |    |    |      |    |      |      |       |       |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | ble  | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   | Ī |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| E      | RW    | TXDRDY    |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | TX  | DRD  | Υ   |   |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | able | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| F      | RW    | ENDTX     |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | EN  | DTX  |     |   |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | able | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| G      | RW    | ERROR     |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | ER  | ROR  |     |   |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | able | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| Н      | RW    | RXTO      |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | RX  | ТО   |     |   |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | ble  | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| I      | RW    | RXSTARTED |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | RX: | STAF | RTE | D |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | able | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| J      | RW    | TXSTARTED |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | TX: | STAF | TE  | D |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | able | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
| L      | RW    | TXSTOPPED |          |    |      |    |    |      |    |      | W    | /rite | '1' t | o d  | isab | le ii | nter | rup  | t fo | ev | ent | TX: | STOR | PE  | D |   |     |     |   |   |   |   |
|        |       |           | Clear    | 1  |      |    |    |      |    |      | Di   | isabl | e     |      |      |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Disabled | 0  |      |    |    |      |    |      | Re   | ead:  | Disa  | ble  | ed   |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |
|        |       |           | Enabled  | 1  |      |    |    |      |    |      | Re   | ead:  | Ena   | ble  | d    |       |      |      |      |    |     |     |      |     |   |   |     |     |   |   |   |   |

# 6.19.9.37 ERRORSRC

Address offset: 0x480

Error source

This register is read/write one to clear.

| Bit nu | umber        |            | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                            |
|--------|--------------|------------|----------------------|---------------------------------------------------------------------------------------------|
| ID     |              |            |                      | D C B A                                                                                     |
| Reset  | t 0x00000000 |            | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |
| ID     |              |            |                      |                                                                                             |
| Α      | RW OVERRUN   |            |                      | Overrun error                                                                               |
|        | W1C          |            |                      | A start bit is received while the previous data still lies in RXD. (Previous data is lost.) |
|        |              | NotPresent | 0                    | Read: error not present                                                                     |
|        |              | Present    | 1                    | Read: error present                                                                         |
| В      | RW PARITY    |            |                      | Parity error                                                                                |
|        | W1C          |            |                      | A character with bad parity is received, if HW parity check is enabled.                     |





| Bit nu | umber        |            | 31 30 29 28 27 26 25 | 5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0             |
|--------|--------------|------------|----------------------|--------------------------------------------------------------------------------|
| ID     |              |            |                      | D C B A                                                                        |
| Rese   | t 0x00000000 |            | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                        |
| ID     |              |            |                      | Description                                                                    |
|        |              | NotPresent | 0                    | Read: error not present                                                        |
|        |              | Present    | 1                    | Read: error present                                                            |
| С      | RW FRAMING   |            |                      | Framing error occurred                                                         |
|        | W1C          |            |                      | A valid stop bit is not detected on the serial data input after all bits in a  |
|        |              |            |                      | character have been received.                                                  |
|        |              | NotPresent | 0                    | Read: error not present                                                        |
|        |              | Present    | 1                    | Read: error present                                                            |
| D      | RW BREAK     |            |                      | Break condition                                                                |
|        | W1C          |            |                      | The serial data input is '0' for longer than the length of a data frame. (The  |
|        |              |            |                      | data frame length is 10 bits without parity bit, and 11 bits with parity bit). |
|        |              | NotPresent | 0                    | Read: error not present                                                        |
|        |              | Present    | 1                    | Read: error present                                                            |

#### 6.19.9.38 ENABLE

Address offset: 0x500

**Enable UART** 

| Bit n | umber   |        |          | 31 30 29 28 27 26 2 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|--------|----------|---------------------|---------------------------------------------------------------------|
| ID    |         |        |          |                     | ААА                                                                 |
| Rese  | t 0x000 | 00000  |          | 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID    |         |        |          |                     |                                                                     |
| Α     | RW      | ENABLE |          |                     | Enable or disable UARTE                                             |
|       |         |        | Disabled | 0                   | Disable UARTE                                                       |
|       |         |        | Enabled  | 8                   | Enable UARTE                                                        |

### 6.19.9.39 PSEL.RTS

Address offset: 0x508

Pin select for RTS signal

| Bit nu | ımber  |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | ААААА                                                         |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

## 6.19.9.40 PSEL.TXD

Address offset: 0x50C Pin select for TXD signal



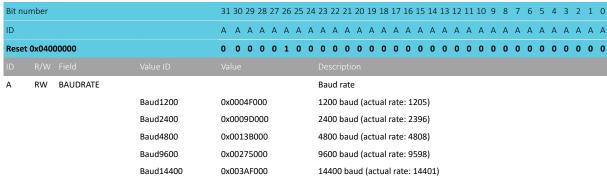
| Bit nu | mber   |         |              | 31 30 29 | 28 2 | 7 26 | 5 25 2 | 24 23 | 3 22 | 21 20 | 0 19 | 9 18 | 17 1 | 16 1 | 5 14 | 13 | 12 1 | 11 10 | 9 | 8 | 7 | 6 | 5 4 | 4 3 | 3 2 | 1 | 0 |
|--------|--------|---------|--------------|----------|------|------|--------|-------|------|-------|------|------|------|------|------|----|------|-------|---|---|---|---|-----|-----|-----|---|---|
| ID     |        |         |              | В        |      |      |        |       |      |       |      |      |      |      |      |    |      |       |   |   |   |   | 1   | 4 / | 4 A | Α | Α |
| Reset  | 0xFFFI | FFFF    |              | 1 1 1    | 1 1  | 1 1  | 1      | 1 1   | 1    | 1 1   | . 1  | 1    | 1    | 1 1  | . 1  | 1  | 1    | 1 1   | 1 | 1 | 1 | 1 | 1 : | 1 : | 1 1 | 1 | 1 |
| ID     |        |         |              |          |      |      |        |       |      |       |      |      |      |      |      |    |      |       |   |   |   |   |     |     |     |   |   |
| Α      | RW     | PIN     |              | [031]    |      |      |        | Pi    | n nu | mbei  | r    |      |      |      |      |    |      |       |   |   |   |   |     |     |     |   |   |
| В      | RW     | CONNECT |              |          |      |      |        | Co    | onne | ction | ı    |      |      |      |      |    |      |       |   |   |   |   |     |     |     |   |   |
|        |        |         | Disconnected | 1        |      |      |        | Di    | scor | nect  |      |      |      |      |      |    |      |       |   |   |   |   |     |     |     |   |   |
|        |        |         | Connected    | 0        |      |      |        | Co    | onne | ct    |      |      |      |      |      |    |      |       |   |   |   |   |     |     |     |   |   |

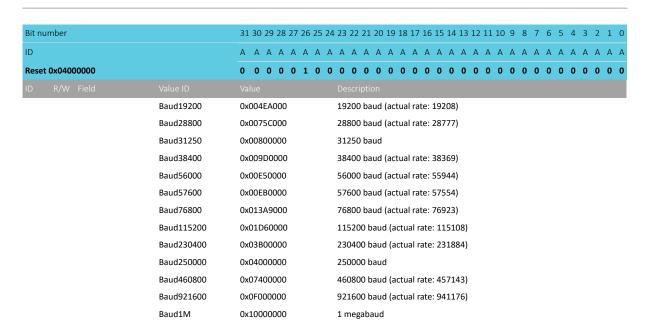
#### 6.19.9.41 PSEL.CTS

Address offset: 0x510 Pin select for CTS signal

| Bit nu | mber   |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | АААА                                                          |
| Reset  | 0xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | 0                       | Connect                                                       |

#### 6.19.9.42 PSEL.RXD


Address offset: 0x514
Pin select for RXD signal


| Bit nu | ımber  |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|---------|--------------|-------------------------|---------------------------------------------------------------|
| ID     |        |         |              | В                       | ААААА                                                         |
| Reset  | 0xFFFI | FFFF    |              | 1 1 1 1 1 1 1 1         | 11111111111111111111111111111                                 |
| ID     |        |         |              |                         | Description                                                   |
| Α      | RW     | PIN     |              | [031]                   | Pin number                                                    |
| В      | RW     | CONNECT |              |                         | Connection                                                    |
|        |        |         | Disconnected | 1                       | Disconnect                                                    |
|        |        |         | Connected    | •                       | Connect                                                       |

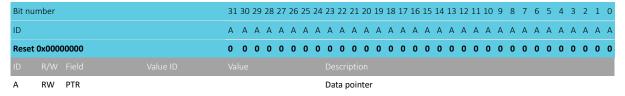
#### 6.19.9.43 BAUDRATE

Address offset: 0x524

Baud rate. Accuracy depends on the HFCLK source selected.






#### 6.19.9.44 RXD

**RXD EasyDMA channel** 

#### 6.19.9.44.1 RXD.PTR

Address offset: 0x534

Data pointer

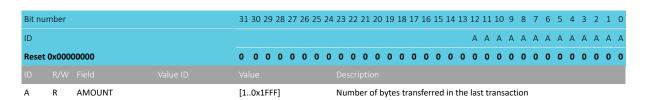


See the memory chapter for details about which memories are available for EasyDMA.

#### 6.19.9.44.2 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer


| Α     | RW      | MAXCNT | [10x1FFF]              | Maximum number of bytes in receive buffer                       |
|-------|---------|--------|------------------------|-----------------------------------------------------------------|
| ID    |         |        |                        |                                                                 |
| Rese  | t 0x000 | 00000  | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID    |         |        |                        | A A A A A A A A A A A A A A A A A A A                           |
| Bit n | umber   |        | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |

#### 6.19.9.44.3 RXD.AMOUNT

Address offset: 0x53C

Number of bytes transferred in the last transaction





#### 6.19.9.45 TXD

TXD EasyDMA channel

#### 6.19.9.45.1 TXD.PTR

Address offset: 0x544

Data pointer

| Α     | RW      | PTR   |      |      |    |    |    |    |    | Dat | ар   | nint | ter  |      |      |     |            |     |            |     |     |     |    |   |   |   |   |   |     |   |   |   |
|-------|---------|-------|------|------|----|----|----|----|----|-----|------|------|------|------|------|-----|------------|-----|------------|-----|-----|-----|----|---|---|---|---|---|-----|---|---|---|
| ID    |         |       |      |      |    |    |    |    |    | Des |      |      |      |      |      |     |            |     |            |     |     |     |    |   |   |   |   |   |     |   |   |   |
| Rese  | t 0x000 | 00000 | 0    | 0 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0    | 0    | 0 (  | 0 (  | ) ( | ) (        | ) ( | ) (        | ) ( | ) ( | 0 ( | 0  | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 |
| ID    |         |       | Α .  | 4 А  | Α  | Α  | Α  | Α  | Α  | Α   | Α    | Α    | Α .  | Α ,  | Δ ,  | Α Α | \ <i>A</i> | A A | \ <i>A</i> | Δ , | ۱ ۸ | Δ , | Δ. | Α | Α | Α | Α | Α | ΑД  | A | Α | Α |
| Bit n | umber   |       | 31 3 | 0 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 : | 21 : | 20 1 | 19 1 | .8 1 | 7 1 | 6 1        | 5 1 | 4 1        | 3 1 | 2 1 | 1 1 | .0 | 9 | 8 | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |

See the memory chapter for details about which memories are available for EasyDMA.

#### 6.19.9.45.2 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer

| Α      | RW MAXCNT |       |  |      |      | :]    |      |      | Ma | ximı | um r  | numl | oer o | f byt | es i | n tra | nsn  | nit b | uffe | r |   |   |   |   |     |     |   |   |
|--------|-----------|-------|--|------|------|-------|------|------|----|------|-------|------|-------|-------|------|-------|------|-------|------|---|---|---|---|---|-----|-----|---|---|
| ID     |           |       |  |      |      |       |      |      |    |      |       |      |       |       |      |       |      |       |      |   |   |   |   |   |     |     |   |   |
| Reset  | t 0x000   | 00000 |  | 0 (  | 0    | 0 0   | 0 (  | 0 0  | 0  | 0    | 0 0   | 0    | 0 (   | 0     | 0    | 0     | 0    | 0     | 0    | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 0 | 0 | 0 |
| ID     |           |       |  |      |      |       |      |      |    |      |       |      |       |       |      |       |      | Δ Δ   | Α    | Α | Α | Α | Α | Α | Α , | 4 Δ | A | Α |
| Bit nu | ımber     |       |  | 31 3 | 0 29 | 28 27 | 26 2 | 5 24 | 23 | 22 2 | 21 20 | 0 19 | 18 1  | 7 16  | 15   | 14    | 13 1 | 2 1:  | 10   | 9 | 8 | 7 | 6 | 5 | 4   | 3 2 | 1 | 0 |

#### 6.19.9.45.3 TXD.AMOUNT

Address offset: 0x54C

Number of bytes transferred in the last transaction

| Α     | R        | AMOUNT | [10x1FFF]              | Numbe     | er of b | vtes t | ransfe | rred | l in t | he la | st ti | rans | acti | ion |   |   |     |   |   |   |   |
|-------|----------|--------|------------------------|-----------|---------|--------|--------|------|--------|-------|-------|------|------|-----|---|---|-----|---|---|---|---|
| ID    |          |        |                        |           |         |        |        |      |        |       |       |      |      |     |   |   |     |   |   |   |   |
| Rese  | et 0x000 | 000000 | 0 0 0 0 0 0 0          | 0 0       | 0 0     | 0 0    | 0 0    | 0    | 0      | 0 0   | 0     | 0    | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0 | 0 |
| ID    |          |        |                        |           |         |        |        |      |        | A     | A     | Α    | Α    | Α   | Α | A | Δ Δ | A | Α | Α | Α |
| Bit n | umber    |        | 31 30 29 28 27 26 25 2 | 4 23 22 2 | 21 20   | 19 18  | 17 1   | 6 15 | 14     | 13 1  | 2 11  | 10   | 9    | 8   | 7 | 6 | 5 4 | 3 | 2 | 1 | 0 |

#### 6.19.9.46 CONFIG

Address offset: 0x56C

Configuration of parity and hardware flow control

NORDIC\*

| Bit nu | mhor   |        |          | 21 20 20 20 27 26 25 27 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|--------|--------|----------|-------------------------|---------------------------------------------------------------|
|        | ilibei |        |          | 31 30 29 26 27 20 23 24 |                                                               |
| ID     |        |        |          |                         | C B B B                                                       |
| Reset  | 0x0000 | 00000  |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID     |        |        |          |                         | Description                                                   |
|        | RW     | HWFC   |          |                         | Hardware flow control                                         |
|        |        |        | Disabled | 0                       | Disabled                                                      |
|        |        |        | Enabled  | 1                       | Enabled                                                       |
| В      | RW     | PARITY |          |                         | Parity                                                        |
|        |        |        | Excluded | 0x0                     | Exclude parity bit                                            |
|        |        |        | Included | 0x7                     | Include even parity bit                                       |
| С      | RW     | STOP   |          |                         | Stop bits                                                     |
|        |        |        | One      | 0                       | One stop bit                                                  |
|        |        |        | Two      | 1                       | Two stop bits                                                 |

# 6.19.10 Electrical specification

### 6.19.10.1 UARTE electrical specification

| Symbol                   | Description                                            | Min. | Тур. | Max. | Units |
|--------------------------|--------------------------------------------------------|------|------|------|-------|
| f <sub>UARTE</sub>       | Baud rate for UARTE <sup>26</sup> .                    |      |      | 1000 | kbps  |
| t <sub>UARTE,CTSH</sub>  | CTS high time                                          | 1    |      |      | μs    |
| t <sub>UARTE,START</sub> | Time from STARTRX/STARTTX task to transmission started |      | 0.25 |      | μs    |

# 6.20 WDT — Watchdog timer

A countdown watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust protection against application lock-up.

The watchdog timer is started by triggering the START task.

The watchdog can be paused during long CPU sleep periods for low power applications and when the debugger has halted the CPU. The watchdog is implemented as a down-counter that generates a TIMEOUT event when it wraps over after counting down to 0. When the watchdog timer is started through the START task, the watchdog counter is loaded with the value specified in the CRV register. This counter is also reloaded with the value specified in the CRV register when a reload request is granted.

The watchdog's timeout period is given by:

```
timeout [s] = ( CRV + 1 ) / 32768
```

When started, the watchdog will automatically force the 32.768 kHz RC oscillator on as long as no other 32.768 kHz clock source is running and generating the 32.768 kHz system clock, see chapter CLOCK — Clock control on page 73.

#### 6.20.1 Reload criteria

The watchdog has eight separate reload request registers, which shall be used to request the watchdog to reload its counter with the value specified in the CRV register. To reload the watchdog counter, the special value 0x6E524635 needs to be written to all enabled reload registers.

One or more RR registers can be individually enabled through the RREN register.



High baud rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

## 6.20.2 Temporarily pausing the watchdog

By default, the watchdog will be active counting down the down-counter while the CPU is sleeping and when it is halted by the debugger. It is however possible to configure the watchdog to automatically pause while the CPU is sleeping as well as when it is halted by the debugger.

# 6.20.3 Watchdog reset

A TIMEOUT event will automatically lead to a watchdog reset.

See Reset on page 58 for more information about reset sources. If the watchdog is configured to generate an interrupt on the TIMEOUT event, the watchdog reset will be postponed with two 32.768 kHz clock cycles after the TIMEOUT event has been generated. Once the TIMEOUT event has been generated, the impending watchdog reset will always be effectuated.

The watchdog must be configured before it is started. After it is started, the watchdog's configuration registers, which comprise registers CRV, RREN, and CONFIG, will be blocked for further configuration.

The watchdog can be reset from several reset sources, see Reset behavior on page 59.

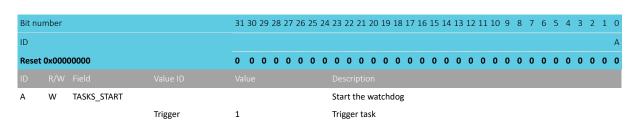
When the device starts running again, after a reset, or waking up from OFF mode, the watchdog configuration registers will be available for configuration again.

### 6.20.4 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description    |
|----------|--------------|-----------|-----|-----|--------------|----------------|
|          |              | Мар       | Att | DMA |              |                |
| WDT : S  | 0x50018000   | uc        | NC  | NIA | N-           | Matabalantina  |
| WDT : NS | 0x40018000   | US        | NS  | NA  | No           | Watchdog timer |

#### **Register overview**


| Register        | Offset | TZ | Description                                  |
|-----------------|--------|----|----------------------------------------------|
| TASKS_START     | 0x000  |    | Start the watchdog                           |
| SUBSCRIBE_START | 0x080  |    | Subscribe configuration for task START       |
| EVENTS_TIMEOUT  | 0x100  |    | Watchdog timeout                             |
| PUBLISH_TIMEOUT | 0x180  |    | Publish configuration for event TIMEOUT      |
| INTENSET        | 0x304  |    | Enable interrupt                             |
| INTENCLR        | 0x308  |    | Disable interrupt                            |
| RUNSTATUS       | 0x400  |    | Run status                                   |
| REQSTATUS       | 0x404  |    | Request status                               |
| CRV             | 0x504  |    | Counter reload value                         |
| RREN            | 0x508  |    | Enable register for reload request registers |
| CONFIG          | 0x50C  |    | Configuration register                       |
| RR[n]           | 0x600  |    | Reload request n                             |

#### 6.20.4.1 TASKS START

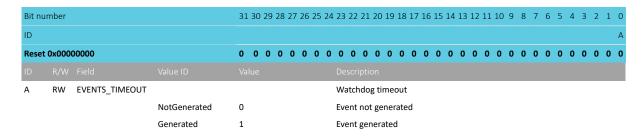
Address offset: 0x000

Start the watchdog





### 6.20.4.2 SUBSCRIBE\_START


Address offset: 0x080

Subscribe configuration for task START

| Bit nu | ımber |       |          | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|-------|----------|-------------------------|---------------------------------------------------------------|
| ID     |       |       |          | В                       | A A A A A A A                                                 |
| Reset  | 0x000 | 00000 |          | 0 0 0 0 0 0 0 0         | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                     |
| ID     |       |       |          |                         | Description                                                   |
| Α      | RW    | CHIDX |          | [0255]                  | DPPI channel that task START will subscribe to                |
| В      | RW    | EN    |          |                         |                                                               |
|        |       |       | Disabled | 0                       | Disable subscription                                          |
|        |       |       |          |                         |                                                               |

#### 6.20.4.3 EVENTS\_TIMEOUT

Address offset: 0x100 Watchdog timeout



## 6.20.4.4 PUBLISH\_TIMEOUT

Address offset: 0x180

Publish configuration for event TIMEOUT

| Bit nu | umber   |       |          | 31 | 30 29 | 28 | 27 | 26 25 | 5 24 | 23  | 22   | 21   | 20   | 19    | 18   | 17 : | 16 1 | .5 1 | 4 1 | 3 12 | 11   | 10    | 9    | 8 | 7 | 6 | 5 4 | - 3 | 2 | 1 0 |
|--------|---------|-------|----------|----|-------|----|----|-------|------|-----|------|------|------|-------|------|------|------|------|-----|------|------|-------|------|---|---|---|-----|-----|---|-----|
| ID     |         |       |          | В  |       |    |    |       |      |     |      |      |      |       |      |      |      |      |     |      |      |       |      |   | Α | Α | A A | A   | Α | Α Α |
| Reset  | t 0x000 | 00000 |          | 0  | 0 0   | 0  | 0  | 0 0   | 0    | 0   | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0 (  | 0   | 0    | 0    | 0     | 0    | 0 | 0 | 0 | 0 0 | 0   | 0 | 0 0 |
| ID     |         |       |          |    |       |    |    |       |      |     |      |      |      |       |      |      |      |      |     |      |      |       |      |   |   |   |     |     |   |     |
| Α      | RW      | CHIDX |          | [0 | 255]  |    |    |       |      | DP  | PI c | han  | nel  | l tha | at e | ven  | t TI | ME   | TUC | wil  | l pu | blisl | n to |   |   |   |     |     |   |     |
| В      | RW      | EN    |          |    |       |    |    |       |      |     |      |      |      |       |      |      |      |      |     |      |      |       |      |   |   |   |     |     |   |     |
|        |         |       | Disabled | 0  |       |    |    |       |      | Dis | abl  | е рі | ubli | shir  | ng   |      |      |      |     |      |      |       |      |   |   |   |     |     |   |     |
|        |         |       | Enabled  | 1  |       |    |    |       |      | Ena | able | e pu | blis | shin  | ıg   |      |      |      |     |      |      |       |      |   |   |   |     |     |   |     |

#### 6.20.4.5 INTENSET

Address offset: 0x304

**Enable interrupt** 





| Bit n | umber   |         |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-------|---------|---------|----------|----------------------|------------------------------------------------------------------|
| ID    |         |         |          |                      | ,                                                                |
| Rese  | t 0x000 | 00000   |          | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID    |         |         |          |                      |                                                                  |
| Α     | RW      | TIMEOUT |          |                      | Write '1' to enable interrupt for event TIMEOUT                  |
|       |         |         | Set      | 1                    | Enable                                                           |
|       |         |         | Disabled | 0                    | Read: Disabled                                                   |
|       |         |         | Enabled  | 1                    | Read: Enabled                                                    |

#### 6.20.4.6 INTENCLR

Address offset: 0x308

Disable interrupt

| Bit nu | ımber |         |          | 31 30 29 28 27 26 | 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|-------|---------|----------|-------------------|---------------------------------------------------------------------|
| ID     |       |         |          |                   | А                                                                   |
| Reset  | 0x000 | 00000   |          | 0 0 0 0 0 0       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
| ID     |       |         |          |                   |                                                                     |
| Α      | RW    | TIMEOUT |          |                   | Write '1' to disable interrupt for event TIMEOUT                    |
|        |       |         | Clear    | 1                 | Disable                                                             |
|        |       |         | Disabled | 0                 | Read: Disabled                                                      |
|        |       |         | Enabled  | 1                 | Read: Enabled                                                       |

# 6.20.4.7 RUNSTATUS

Address offset: 0x400

Run status

| Bit nu | mber  |              |            | 31 3 | 0 29 | 28 2 | 27 26 | 6 25 | 24 | 23 2 | 22 2  | 21 2  | 0 19  | 18   | 17   | 16 1  | .5 1 | 4 13 | 3 12 | 11   | 10  | 9   | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | . 0 |
|--------|-------|--------------|------------|------|------|------|-------|------|----|------|-------|-------|-------|------|------|-------|------|------|------|------|-----|-----|---|---|---|---|---|-----|-----|-----|
| ID     |       |              |            |      |      |      |       |      |    |      |       |       |       |      |      |       |      |      |      |      |     |     |   |   |   |   |   |     |     |     |
| Reset  | 0x000 | 00000        |            | 0 0  | 0    | 0 (  | 0 0   | 0    | 0  | 0    | 0 (   | 0 0   | 0     | 0    | 0    | 0     | 0 0  | 0    | 0    | 0    | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 ( | ) ( | 0   |
| ID     |       |              |            |      |      |      |       |      |    |      |       |       |       |      |      |       |      |      |      |      |     |     |   |   |   |   |   |     |     |     |
|        | R     | RUNSTATUSWDT |            |      |      |      |       |      |    | Indi | icate | es w  | het   | her  | or n | ot tl | ne w | /atc | hdo  | g is | run | nin | g |   |   |   |   |     |     |     |
|        |       |              | NotRunning | 0    |      |      |       |      |    | Wat  | tchd  | log   | not   | runr | ning |       |      |      |      |      |     |     |   |   |   |   |   |     |     |     |
|        |       |              | Running    | 1    |      |      |       |      |    | Wat  | tchd  | log i | is ru | nnir | ng   |       |      |      |      |      |     |     |   |   |   |   |   |     |     |     |

#### **6.20.4.8 REQSTATUS**

Address offset: 0x404

Request status

|        |       |              | DisabledOrRec | juested0          |         | RR[i] r | egister | is no  | ot en | abled  | d, or | are a | alrea | dy re | que | estin | g re | load | i |     |     |   |
|--------|-------|--------------|---------------|-------------------|---------|---------|---------|--------|-------|--------|-------|-------|-------|-------|-----|-------|------|------|---|-----|-----|---|
| A-H    | R     | RR[i] (i=07) |               |                   |         | Reque   | st stat | us for | r RR[ | i] reg | ister |       |       |       |     |       |      |      |   |     |     |   |
| ID     |       |              |               |                   |         |         |         |        |       |        |       |       |       |       |     |       |      |      |   |     |     |   |
| Reset  | 0x000 | 00001        |               | 0 0 0 0 0         | 0 0     | 0 0     | 0 0     | 0 0    | 0     | 0 (    | 0     | 0     | 0 0   | 0     | 0   | 0 (   | 0    | 0    | 0 | 0 ( | 0   | 1 |
| ID     |       |              |               |                   |         |         |         |        |       |        |       |       |       |       |     | H     | l G  | F    | Ε | D ( | СВ  | Α |
| Bit nu | mber  |              |               | 31 30 29 28 27 20 | 6 25 24 | 23 22   | 21 20   | 19 1   | 8 17  | 16 1   | 5 14  | 13    | 12 13 | 1 10  | 9   | 8 7   | 7 6  | 5    | 4 | 3   | 2 1 | 0 |


#### 6.20.4.9 CRV

Address offset: 0x504





#### Counter reload value



#### 6.20.4.10 RREN

Address offset: 0x508

Enable register for reload request registers

| Bit nu | mber   |              |          | 31 30 29 28 27 26 25 | 24 | 23  | 22 : | 21 2 | 20 1   | 9 1  | 8 17 | 16    | 15   | 14  | 13 | 12 | 11 | 10 | 9 8 | 3 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|--------|--------|--------------|----------|----------------------|----|-----|------|------|--------|------|------|-------|------|-----|----|----|----|----|-----|-----|---|---|---|---|---|-----|
| ID     |        |              |          |                      |    |     |      |      |        |      |      |       |      |     |    |    |    |    |     | Н   | G | F | Ε | D | С | ВА  |
| Reset  | 0x0000 | 00001        |          | 0 0 0 0 0 0 0        | 0  | 0   | 0    | 0    | 0 (    | ) (  | 0    | 0     | 0    | 0   | 0  | 0  | 0  | 0  | 0 0 | 0   | 0 | 0 | 0 | 0 | 0 | 0 1 |
| ID     |        |              |          |                      |    |     |      |      |        |      |      |       |      |     |    |    |    |    |     |     |   |   |   |   |   |     |
| A-H    | RW     | RR[i] (i=07) |          |                      |    | Ena | ble  | or   | disa   | ble  | RR[  | i] re | gist | ter |    |    |    |    |     |     |   |   |   |   |   |     |
|        |        |              | Disabled | 0                    |    | Dis | able | e RR | k[i] r | egi  | ster |       |      |     |    |    |    |    |     |     |   |   |   |   |   |     |
|        |        |              | Enabled  | 1                    |    | Ena | ble  | RR   | [i] re | egis | ter  |       |      |     |    |    |    |    |     |     |   |   |   |   |   |     |

#### 6.20.4.11 CONFIG

Address offset: 0x50C Configuration register

| Bit nu | mber  |       |       | 31 30 | 29 28 | 3 27 : | 26 2 | 5 24 | 23 2   | 22 21 | 1 20 | 19   | 18   | 17   | 16 1 | .5 1 | 4 1  | 3 12  | 11   | 10     | 9 8   | 3 7   | 6     | 5    | 4    | 3 2   | 2 : | 1 0 |
|--------|-------|-------|-------|-------|-------|--------|------|------|--------|-------|------|------|------|------|------|------|------|-------|------|--------|-------|-------|-------|------|------|-------|-----|-----|
| ID     |       |       |       |       |       |        |      |      |        |       |      |      |      |      |      |      |      |       |      |        |       |       |       |      |      | С     |     |     |
| Reset  | 0x000 | 00001 |       | 0 0   | 0 0   | 0      | 0 (  | 0    | 0 (    | 0 0   | 0    | 0    | 0    | 0    | 0    | 0 (  | 0 0  | 0     | 0    | 0      | 0 (   | 0     | 0     | 0    | 0    | 0 (   | ) ( | 0 1 |
| ID     |       |       |       |       |       |        |      |      |        |       |      |      |      |      |      |      |      |       |      |        |       |       |       |      |      |       |     |     |
|        | RW    | SLEEP |       |       |       |        |      |      | Con    | figur | e th | ne w | atcl | hdo  | g to | eit  | her  | be p  | aus  | ed, d  | or ke | ept i | unn   | ing, | , wh | ile t | he  | CPU |
|        |       |       |       |       |       |        |      |      | is sle | eepii | ng   |      |      |      |      |      |      |       |      |        |       |       |       |      |      |       |     |     |
|        |       |       | Pause | 0     |       |        |      |      | Paus   | se w  | atch | ndog | g wł | nile | the  | CPl  | J is | sleep | oing |        |       |       |       |      |      |       |     |     |
|        |       |       | Run   | 1     |       |        |      |      | Keep   | p the | e wa | atch | dog  | rur  | nnin | g w  | hile | the   | CPL  | l is s | leep  | oing  |       |      |      |       |     |     |
| С      | RW    | HALT  |       |       |       |        |      |      | Con    | figur | e th | ne w | atcl | hdo  | g to | eit  | her  | be p  | aus  | ed, d  | or ke | ept i | unn   | ing, | , wh | ile t | he  | CPU |
|        |       |       |       |       |       |        |      |      | is ha  | alted | l by | the  | deb  | oug  | ger  |      |      |       |      |        |       |       |       |      |      |       |     |     |
|        |       |       | Pause | 0     |       |        |      |      | Paus   | se w  | atch | ndog | g wł | nile | the  | CPl  | J is | nalte | ed b | y th   | e de  | bug   | ger   |      |      |       |     |     |
|        |       |       | Run   | 1     |       |        |      |      | Keep   | p the | e wa | atch | dog  | rur  | nnin | g w  | hile | the   | CPL  | l is h | alte  | d b   | / the | e de | bug  | ger   |     |     |

# 6.20.4.12 RR[n] (n=0..7)

Address offset:  $0x600 + (n \times 0x4)$ 

Reload request n

|        |         |       | Reload | 0x6E524635          | Value to  | reque  | st a rel | oad  | of the | watc | hdog | tim | er  |   |   |   |   |   |     |   |
|--------|---------|-------|--------|---------------------|-----------|--------|----------|------|--------|------|------|-----|-----|---|---|---|---|---|-----|---|
| Α      | W       | RR    |        |                     | Reload    | reques | t regist | er   |        |      |      |     |     |   |   |   |   |   |     |   |
| ID     |         |       |        |                     |           |        |          |      |        |      |      |     |     |   |   |   |   |   |     |   |
| Rese   | t 0x000 | 00000 |        | 0 0 0 0 0 0         | 0 0       | 0 0    | 0 0      | 0    | 0 0    | 0 0  | 0    | 0   | 0 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0 |
| ID     |         |       |        | A A A A A A         | . A A .   | AAA    | A A A    | . A  | A A    | ΑА   | A    | A   | А А | Α | Α | Α | Α | A | 4 A | Α |
| Bit ni | umber   |       |        | 31 30 29 28 27 26 2 | 1 23 22 2 | 1 20 1 | 9 18 17  | 7 16 | 15 14  | 13 1 | 2 11 | 10  | 9 8 | 7 | 6 | 5 | 4 | 3 | 2 1 | 0 |





# 6.20.5 Electrical specification

# 6.20.5.1 Watchdog Timer Electrical Specification

| Symbol           | Description       | Min.  | Тур. | Max. | Units |
|------------------|-------------------|-------|------|------|-------|
| t <sub>WDT</sub> | Time out interval | 31 μs |      | 36 h |       |



# 7 LTE modem

The nRF9151 SiP contains a Low-Power Wide-Area (LPWA) network processor with dedicated flash memory and RAM, which controls the radio and baseband hardware components. After installing Nordic Semiconductor firmware, long term evolution (LTE) capabilities are available and comply with release 14 of the 3GPP LTE Cat-M1 and Cat-NB1/NB2 standards and release 17 of the 3GPP IoT NTN standard.

The key features of the LTE modem are the following:

- Complete modem with baseband and RF transceiver
- 3GPP release 14 compliant LTE categories:
  - Cat-M1 (eMTC enhanced machine type communication)
  - Cat-NB1 (NB-IoT narrowband Internet of things)
  - Cat-NB2 (NB-IoT)
- 3GPP release 17 compliant LTE categories:
  - Internet of Things Non-Terrestrial Network (IoT NTN)
  - IoT NTN is based on Cat-NB1/NB2
- · Power saving modes
- Supports LTE bands from 700 MHz to 2.2 GHz through a single 50  $\Omega$  antenna pin
- 1.8 V MIPI RF Front-End (MIPI RFFE) digital control interface and MAGPIO control interface for external RF applications
- LTE modem internal ADC for some AT command interface services
- 1.8 V UICC (universal integrated circuit card) interface, based on ISO/IEC 7816-3 that is compliant with the following:
  - UICC (ETSI TS 102 221)
  - eUICC (ETSI TS 103 383)

The following figure is an overview of the key components of the LTE modem.

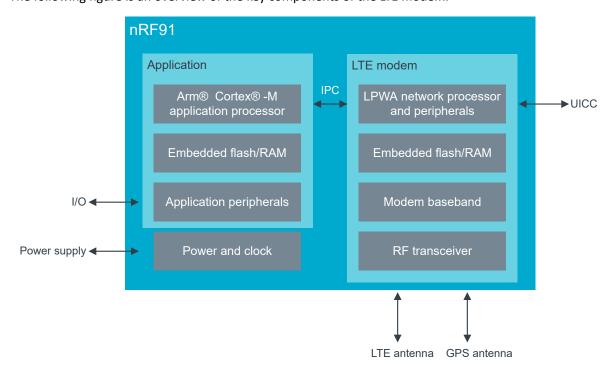



Figure 112: nRF9151 LTE modem functional overview



These components provide functions for the LTE L1, L2, and L3 (layers 1, 2, and 3 respectively), as well as IP communication layers. Peripherals provide hardware services for the LPWA network processor operating system and ensure a secure execution environment.

Application and LPWA network domains interact through the interprocessor communication (IPC) mechanism. The LTE modem is accessible through the modem API.

The application processor is the system manager and is responsible for starting and stopping the LTE modem. The LPWA network processor enables the clocks and power required for operation while the platform handles shared resources, such as clocks. When a hard fault is detected in the modem, the application domain will perform a hard reset of the modem.

The nRF9151 LTE modem feature set is dependent on the modem firmware version and the application firmware. For more information on the LTE modem API, see nRF Connect SDK API documentation and nRF91 AT Commands.

# 7.1 Non-Terrestrial Network

The LTE modem supports 3GPP Internet of Things Non-Terrestrial Network (IoT NTN) based on Cat-NB1/NB2. This feature is available after installing firmware that implements the modified Cat-NB1/NB2 physical layer (PHY) and layer 2 and 3 level operation of the NTN radio protocol stack according to 3GPP specifications.

The IoT NTN radio layer extends cellular radio capabilities. The following are key features of IoT NTN:

- Supports major global Mobile Satellite Service (MSS) bands, including B249 in TDD mode
- Built-in coexistence of terrestrial networks in the same location
- Full integration into 3GPP network architectures and ecosystem
- Cat-NB1 and Cat-NB2 support
- Single-tone and multi-tone transmission
- · UE location from an external GNSS source
- Support for different satellite deployment models, with simultaneous UE support
- UE ability to pre-compensate its Timing Advance and the frequency Doppler shift relative to the satellite position and satellite velocity through the network provided satellite ephemeris and a valid UE GNSS position
- Skylo proprietary optimisations

See 3GPP TS 36.300 and 3GPP TS 36.306 for more information.

IoT NTN operates on the global MSS bands, which are distinct from terrestrial bands. A satellite cell may cover a large geographical area up to hundreds of kilometres in diameter. The large earth fixed cells, and specifically moving cells, can cross country borders or cover areas with no territorial claims. Therefore, regulatory aspects also need to be carefully considered (see 3GPP TR 22.926).

IOT NTN is based on Cat-NB1/NB2 cellular radio standard that is included as part of the 3GPP R17 and later, with a priority on non-terrestrial (satellite) access. The standard covers both the transparent payload (non-regenerative) and the non-transparent (regenerative) payload deployment cases.

Support for non-terrestrial networks encompasses platforms that provide radio access through Geosynchronous Orbit (GSO) and Non-Geosynchronous Orbit (NGSO), which includes Low Earth Orbit (LEO) and Medium Earth Orbit (MEO). Typical orbiting altitudes above the Earth's equator are the following:

- LEO 500 km to 2000 km
- MEO 8000 km to 20,000 km
- GSO 35,786 km



UEs equipped with normal terrestrial antenna design can communicate with LEO satellites, and depending on the antenna design, GSO satellites.

Depending on the satellite system and the constellation that is used, the following three types of service links between the UE and the satellite are supported:

- Earth fixed provisioned by beam(s) continuously covering the same geographical areas all the time (for example, GSO satellites)
- Quasi Earth fixed provisioned by beam(s) covering one geographic area for a limited period and a
  different geographic area during another period (for example, NGSO satellites generating steerable
  beams)
- Earth moving provisioned by beam(s) whose coverage area slides over the Earth's surface (for example, NGSO satellites generating fixed or non-steerable beams)

#### **IoT NTN on nRF9151**

Nordic Semiconductor provides 3GPP IoT NTN enabled firmware that implements a modified Cat-NB1/NB2 PHY, Layer 2, and Layer 3 level operation of the NTN radio protocol stack for Cat-NB1/NB2 according to 3GPP R17 and later specifications. The stack provides support for all GSO and NGSO satellite systems operating above an altitude of 500 km.

**Note:** While running the IoT NTN enabled firmware, the nRF9151 supports switching between terrestrial and non-terrestrial radio access. While accessing another radio technology, the UE/NW context of non-terrestrial access can be preserved allowing rapid and low (zero) signalling overhead switch between terrestrial and non-terrestrial access technologies.

#### **Supported IoT NTN bands**

| E UTRA operating band | Duplex mode | Common name            | Uplink (MHz)        | Downlink<br>(MHz) | Duplex spacing (MHz) |
|-----------------------|-------------|------------------------|---------------------|-------------------|----------------------|
| 249                   | TDD         |                        | 1616 to 1626.5      | 1616 to 1626.5    | -                    |
| 23/252                | FDD         | S-BAND NTN             | 2000 to 2020        | 2180 to 2200      | 160                  |
| 255                   | FDD         | L-Band (global)<br>NTN | 1626.5<br>to 1660.5 | 1525 to 1559      | -101.5               |
| 256                   | FDD         | S-band (Europe)<br>NTN | 1980 to 2010        | 2170 to 2200      | 190                  |

Table 50: Supported IoT NTN bands

See 3GPP TS 36.102 for more information.



#### **Supported 3GPP IoT NTN Satellite Systems**

| Satellite System | Notes                                     |
|------------------|-------------------------------------------|
| GSO              | 3GPP R17 support Skylo specific features  |
| NGSO             | 3GPP R17 LEO/MEO 3GPP R19 LEO in TDD Mode |

Table 51: Supported 3GPP IoT NTN Satellite Systems

# 7.2 SIM card interface

The LTE modem supports the universal integrated circuit card (UICC) interface.

Only UICCs with electrical interfaces specified in ISO/IEC 7816-3 are supported. UICCs with IC-USB, CLF or MMC interfaces are not supported.

The supported UICC/eUICC interface is compliant with:

- ETSI TS 102 221: Smart Cards; UICC-Terminal interface; Physical and logical characteristics
- ETSI TS 103 383: Smart Cards; Embedded UICC; Requirements Specification

The physical interface towards the eUICC is the same as that towards the removable UICC.

By default, only the class C (supply voltage 1.8 V nominal) operation is supported. Support for legacy class B (supply voltage 3.0 V nominal) operation must be built with external components, including an external power supply and the level shifters towards the LTE modem UICC interface.

The LTE modem supports powering down the UICC during PSM and eDRX idle mode if the UICC supports this feature as specified in 3GPP TS 24.301. To reach the lowest total power consumption of the complete cellular IoT product, only UICCs supporting power down mode during PSM and eDRX idle mode sleep intervals should be considered.

The LTE modem controls the physical interfaces towards the UICC and implements the transport protocol over the four-pin ISO/IEC 7816-3 interface:

- VCC (power supply) LTE modem drives this
- CLK (clock signal) LTE modem drives this
- RST (reset signal) LTE modem drives this
- I/O (input/output serial data) Bi-directional

The interface between the LTE modem, the UICC (SIM card) connector, and the ESD device is shown in the following figure.



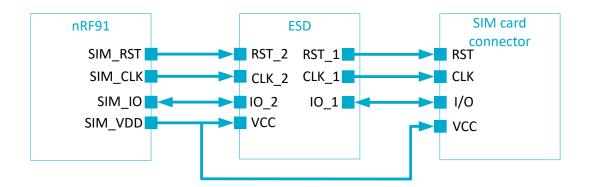



Figure 113: Connections between LTE modem, card connector, and the ESD device

Only standard transmission speeds are supported as specified in ETSI TS 102 221.

Note: Before removing the UICC, the LTE modem must be stopped through the modem API.

An electrostatic discharge (ESD) protection device compatible with UICC cards must be used between the removable card and the LTE modem, to protect LTE modem against harmful ESD from the card connector.

# 7.3 LTE coexistence interface

The LTE modem uses a dedicated three-pin interface for RF interference avoidance towards a companion radio device such as an external positioning device or *Bluetooth*<sup>®</sup> Low Energy device.

The interface has the following outputs:

- COEX0 Output from the LTE modem to the external device. When internal GPS is used, COEX0 can be
  used as active high control for the external LNA component.
- COEX1 Output from the LTE modem to the external device. When internal GPS is used, COEX1
  delivers the GPS 1PPS (one pulse per second) time mark pulse. The 1PPS feature must not be used
  when LTE is enabled.
- COEX2 Output from the LTE modem to the external device. When active high, this indicates that the
  LTE modem transceiver is turned on. COEX2 can also be treated as an active low grant from the LTE
  modem to the external device, indicating permission to transmit and receive.

**Note:** Using the COEX2 pin requires an external pull-down resistor in the 100 k $\Omega$  size range.

The COEX interface timing in relation to the LTE modem state is shown in the following figure.

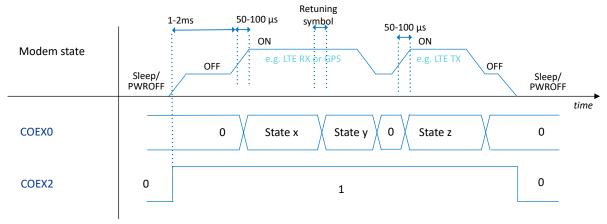



Figure 114: COEX interface timing



# 7.4 LTE RF control external interface

The LTE modem provides dedicated 1.8 V digital interfaces for controlling external RF applications, such as antenna tuner devices.

The LTE modem supports the following pins:

- MIPI RFFE interface pins VIO, SCLK, and SDATA
  - Only one connected RFFE component supported at a time
- MAGPIO[0..2] interface pins

The LTE modem drives the timing of these applications according to the LTE protocol. The LTE modem API must be used to inform the LTE modem about an external RF application, before the LTE modem can drive it.

Note: The MIPI RFFE capacitive load on the SCLK or SDATA pin must not exceed 15 pF.

The MIPI RFFE interface timing in relation to modem state is shown in the following figure.

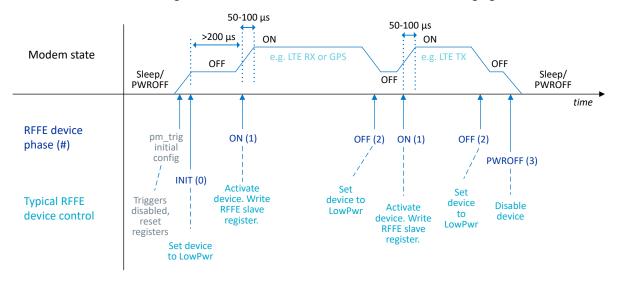



Figure 115: MIPI RFFE interface timing

The MAGPIO interface timing in relation to the LTE modem state is shown in the following figure.

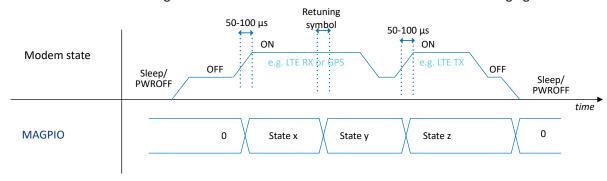



Figure 116: MAGPIO interface timing

# 7.5 RF front-end interface

The nRF9151 has a single-ended (SE) 50  $\Omega$  antenna interface to which an antenna is directly connected.



# 7.6 Electrical specification

# 7.6.1 Key RF parameters for Cat-M1

Note: For certification status, please refer to Regulatory information on page 533.

| Symbol                 | Description             | Min. | Тур.        | Max. | Units |
|------------------------|-------------------------|------|-------------|------|-------|
| Supported LTE          | Supported LTE standards |      | LTE Rel-14  |      |       |
|                        |                         |      | Cat-M1 HD   |      |       |
|                        |                         |      | FDD         |      |       |
| Bands supported        | Bands supported         |      | B1, B2, B3, |      |       |
|                        |                         |      | B4, B5, B8, |      |       |
|                        |                         |      | B12, B13,   |      |       |
|                        |                         |      | B18, B19,   |      |       |
|                        |                         |      | B20, B25,   |      |       |
|                        |                         |      | B26, B28,   |      |       |
|                        |                         |      | B66, B85,   |      |       |
|                        |                         |      | B106        |      |       |
| Transmission bandwidth | Maximum bandwidth       |      | 1.4         |      | MHz   |

# 7.6.2 Key RF parameters for Cat-NB1 and Cat-NB2

**Note:** For certification status, please refer to Regulatory information on page 533.

**Note:** There is no foreseen NB-IoT network deployment for FCC bands closer than 200 kHz from band edge, hence our device will not transmit in FCC bands on channels that are closer than 200kHz to band edge.

| Symbol                 | Description             | Min. | Тур.        | Max. | Units |
|------------------------|-------------------------|------|-------------|------|-------|
| Supported LTE          | Supported LTE standards |      | LTE Rel-14  |      |       |
|                        |                         |      | Cat-NB1     |      |       |
|                        |                         |      | and Cat-    |      |       |
|                        |                         |      | NB2 HD-     |      |       |
|                        |                         |      | FDD         |      |       |
| Bands supported        | Bands supported         |      | B1, B2, B3, |      |       |
|                        |                         |      | B4, B5, B8, |      |       |
|                        |                         |      | B12, B13,   |      |       |
|                        |                         |      | B17, B19,   |      |       |
|                        |                         |      | B20, B25,   |      |       |
|                        |                         |      | B26, B28,   |      |       |
|                        |                         |      | B65, B66,   |      |       |
|                        |                         |      | B85, B106   |      |       |
| Transmission bandwidth | Maximum bandwidth       |      | 200         |      | kHz   |

# 7.6.3 Key RF parameters for IoT NTN

Note: For certification status, please refer to Regulatory information on page 533.



**Note:** There is no foreseen IoT NTN network deployment for FCC bands closer than 200 kHz from band edge, hence our device will not transmit in FCC bands on channels that are closer than 200kHz to band edge.

| Symbol                 | Description             | Min. | Тур.        | Max. | Units |
|------------------------|-------------------------|------|-------------|------|-------|
| Supported LTE          | Supported LTE standards |      | LTE Rel-17  |      |       |
|                        |                         |      | IoT NTN     |      |       |
| Bands supported        | Bands supported         |      | B23, B249,  |      |       |
|                        |                         |      | B252, B255, |      |       |
|                        |                         |      | B256        |      |       |
| Transmission bandwidth | Maximum bandwidth       |      | 200         |      | kHz   |

# 7.6.4 Receiver parameters for Cat-M1

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_RX</sub> | RX operation frequency range at ANT pin | 728  |      | 2200 | MHz   |
| Z <sub>in</sub>              | Input impedance, single-ended           |      | 50   |      | Ω     |
| Sensitivity, low band        | LTE 1.4 MHz without coverage extension  | -103 | -108 |      | dBm   |
| Sensitivity, mid band        | LTE 1.4 MHz without coverage extension  | -103 | -107 |      | dBm   |

# 7.6.5 Receiver parameters for Cat-NB1 and Cat-NB2

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_RX</sub> | RX operation frequency range at ANT pin | 728  |      | 2200 | MHz   |
| Z <sub>in</sub>              | Input impedance, single-ended           |      | 50   |      | Ω     |
| Sensitivity, low band        | NB 200 kHz without coverage extension   | -108 | -114 |      | dBm   |
| Sensitivity, mid band        | NB 200 kHz without coverage extension   | -108 | -113 |      | dBm   |

# 7.6.6 Receiver parameters for IoT NTN

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_RX</sub> | RX operation frequency range at ANT pin | 728  |      | 2200 | MHz   |
| Z <sub>in</sub>              | Input impedance, single-ended           |      | 50   |      | Ω     |
| Sensitivity, mid band        | NB 200 kHz without coverage extension   | -108 | -113 |      | dBm   |

# 7.6.7 Transmitter parameters for Cat-M1

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_TX</sub> | TX operation frequency range at ANT pin | 698  |      | 1980 | MHz   |
| Z <sub>out</sub>             | Output impedance, single-ended          |      | 50   |      | Ω     |
| PC3 maximum output           | Power Class 3 maximum output power      |      | 23   |      | dBm   |
| power                        |                                         |      |      |      |       |
| PC5 maximum output           | Power Class 5 maximum output power      |      | 20   |      | dBm   |
| power                        |                                         |      |      |      |       |
| Minimum output power         | Minimum output power                    |      | -40  |      | dBm   |
| Pout maximum accuracy        | Pout maximum accuracy                   |      | ±2   |      | dB    |



# 7.6.8 Transmitter parameters for Cat-NB1 and Cat-NB2

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_TX</sub> | TX operation frequency range at ANT pin | 698  |      | 2010 | MHz   |
| Z <sub>out</sub>             | Output impedance, single-ended          |      | 50   |      | Ω     |
| PC3 maximum output           | Power Class 3 maximum output power      |      | 23   |      | dBm   |
| power                        |                                         |      |      |      |       |
| PC5 maximum output           | Power Class 5 maximum output power      |      | 20   |      | dBm   |
| power                        |                                         |      |      |      |       |
| Minimum output power         | Minimum output power                    |      | -40  |      | dBm   |
| Pout maximum accuracy        | Pout maximum accuracy                   |      | ±2   |      | dB    |

# 7.6.9 Transmitter parameters for IoT NTN

| Symbol                       | Description                             | Min. | Тур. | Max. | Units |
|------------------------------|-----------------------------------------|------|------|------|-------|
| Freq <sub>range_ANT_TX</sub> | TX operation frequency range at ANT pin | 1616 |      | 2020 | MHz   |
| Z <sub>out</sub>             | Output impedance, single-ended          |      | 50   |      | Ω     |
| PC3 maximum output           | Power Class 3 maximum output power      |      | 23   |      | dBm   |
| power                        |                                         |      |      |      |       |
| PC5 maximum output           | Power Class 5 maximum output power      |      | 20   |      | dBm   |
| power                        |                                         |      |      |      |       |
| Minimum output power         | Minimum output power                    |      | -40  |      | dBm   |
| Pout maximum accuracy        | Pout maximum accuracy                   |      | ±2   |      | dB    |



# 8 DECT NR+

The nRF9151 SiP contains a Low-Power Wide-Area (LPWA) network processor with dedicated flash/RAM, which controls the radio and baseband hardware components. DECT NR+ (NR+) capabilities are provided by installing Nordic Semiconductor firmware, that implements the physical layer (PHY) level operation of the NR+ radio protocol stack according to ETSI specifications (TS 103 636-2 and TS 103 636-3). Current implementation supports standard v1.5.1.

NR+ runs an alternative modem firmware that is separately available from Nordic Semiconductor. When using NR+, the LTE and GPS functionality cannot be used.

NR+ is a non-cellular radio standard included as part of the 5G standards by the International Telecommunication Union (ITU). It is designed for massive Machine Type Communication (mMTC) and for Ultra-Reliable Low Latency Communication (URLLC).

NR+ operates on the global and license-exempt 1.9 GHz band, which significantly cuts deployment costs by eliminating the need for frequency planning or heavy certification. The NR+ device developer can design optimal radio behavior since there is no need for third-party cellular infrastructure. Additionally, the range and dense topology properties of NR+ make it highly scalable. A square kilometer can be covered by as little as 100 devices or scaled up to over 1 million devices while maintaining the same reliable, low-latency communication.

The physical radio layer in NR+ reuses known techniques from cellular radios, reaching the same level of reliability that is proven by billions of devices already in the field.

The following are key features of NR+:

- · License-exempt global band
- Built-in coexistence of multiple networks in the same location
- Flexible, low-latency system and network architectures
- High reliability, using hybrid ARQ
- Possibility of hiding the network, using AES-128 encryption and integrity protection
- Peak data rate up to 3.4 Mbps, depending on modulation

See ETSI TS 103 636-1 for more information.



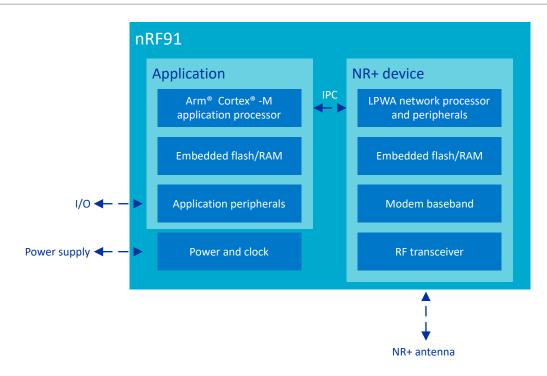



Figure 117: nRF9151 NR+ device functional overview

Application and LPWA network domains interact through the interprocessor communication (IPC) mechanism. The application processor is the system master and is responsible for starting and stopping the NR+ device. The LPWA network processor enables the clocks and power required for its own operation. The platform handles shared resources, such as clocks, and does not need user participation.

# 8.1 massive Machine Type Communication (mMTC)

mMTC is used for large networks with machine-type devices, connecting tens of billions of nodes that operate for many years using small batteries and transmit small amounts of data.

Typical use cases involve collecting measurements from many sensors, such as smart metering, which requires a low-maintenance and low-cost autonomous network structure.

A key feature of NR+ is its self-healing and self-organizing properties. Each node can function as a router to an access point with a connection to the internet. Nodes can change to a routing role based on the needs of the network. Multiple access points to the internet can be supported in a single network. These properties eliminates single points of failure and resolves high-traffic situations that can occur in dense IoT networks.

# 8.2 Ultra-Reliable Low-Latency Communication (URLLC)

URLLC enables mission-critical wireless use cases where failure is not an option.

Examples include management of self-driving factory vehicles, high-speed robots working alongside human operators in warehouses, and critical infrastructure in buildings, cities, and utilities.

NR+ is designed to reach one-millisecond latency between devices, opening the possibility for low-latency systems to consider wireless operation, even where ranges are over a kilometer. This makes NR+ an open, standardized alternative to existing proprietary technology.



# 8.3 DECT NR+ on the nRF9151

Nordic Semiconductor provides NR+ firmware that implements the physical layer (PHY) level operation of the NR+ radio protocol stack according to ETSI specifications (*TS 103 636-2 and TS 103 636-3*).

The antenna interface and recommendations are the same as for the LTE modem. NR+ does not require a SIM or eSIM.

**Note:** While running DECT NR+ firmware, the nRF9151 SiP does not support the LTE modem or GPS receiver. See the LTE modem section for more information on alternative firmware.

# 8.4 Key RF Parameters

NR+ RF performance parameters are shown in the following table.

| Description                     | Min | Тур                                                                                              | Max | Unit |
|---------------------------------|-----|--------------------------------------------------------------------------------------------------|-----|------|
| Bands supported                 |     | 1, 2, 4, 9, 22                                                                                   |     |      |
| Transmission Bandwidth          |     | 1.728                                                                                            |     | MHz  |
| Occupied Bandwidth              |     | 1.539                                                                                            |     | MHz  |
| Antenna impedance, single-ended |     | 50                                                                                               |     | Ω    |
| RX: Sensitivity                 |     | -105 dBm, PLCF Type 1 (beacon reception, MCS 0) -103 dBm, PLCF Type 2 (unicast reception, MCS 1) |     | dBm  |
| TX: Maximum output power        |     | 19 dBm on band 4<br>21 dBm on bands 1, 2, 9, 22                                                  |     | dBm  |
| TX: Minimum output power        |     | -40                                                                                              |     | dBm  |

Table 52: Common parameters

**Note:** The RX sensitivity level has not been measured using the same method as described in *ETSI TS 103 636-2* chapter "7.2 Reference sensitivity". The reported sensitivity level is the signal level where 10% packet error rate (PER) occurs. This measurement method does not measure the throughput and does not include HARQ., modulation MCS1.

# 8.5 DECT NR+ coexistence interface

NR+ uses a dedicated two-pin coexistence interface to avoid RF interference to a companion radio device such as an external positioning device or a Bluetooth Low Energy device.

The user can configure COEX0 and COEX2 pin functions through the NR+ AT commands.

**Note:** Using the COEX2 pin requires an external pull-down resistor in the 100 k $\Omega$  range.



# 9 GPS receiver

The LPWA network processor supports GPS reception, if the onboard network protocol firmware supports it.

GPS receiver operation is time multiplexed with the LTE modem, and GPS and QZSS position can be received while the LTE modem is in RRC Idle mode, power saving mode (PSM), or completely deactivated.

The application processor is the system master and responsible for starting and stopping the GPS receiver. GPS can be run standalone or concurrently with QZSS. The GPS and QZSS reception can be configured through the GNSS interface API.

**Note:** For details regarding the GNSS API, refer to nRF Connect SDK API documentation.

Key features of the GPS receiver are as follows:

- GPS L1 C/A reception
- QZSS L1 C/A reception
- Optimized for low-power and low-cost IoT applications
- Modes of operation:
  - Single shot
  - Position fix per fixed interval, configurable to a value between 10 s to 65536 s
  - · Continuous tracking
- Power saving mode:
  - · Duty-cycled continuous tracking operation
- One pulse per second (1PPS) signal:
  - A pulse repeating once per second, accurately synchronized to coordinated universal time (UTC) full seconds
  - For more details on 1PPS programmability and power vs. accuracy trade-offs, see GNSS API documentation
  - Available on device COEX1 pin
    - For more details, see LTE modem on page 422, coexistence interface
- Antenna interface:
  - · External low-noise amplifier (LNA) with SAW filter recommended on the GPS antenna input
  - · Dedicated GPS antenna, or shared antenna with LTE
  - · GPS antenna pin is DC grounded

**Note:** There must be minimum 27dB attenuation to out of band power to avoid blocking high power RF signals to GPS receiver input. This can be achieved by using a SAW filter, for example, at the external LNA output.

# 9.1 Electrical specification

The following is a summary of GPS receiver performance parameters.



| Condition        | Value    |
|------------------|----------|
| Environment      | Open sky |
| Temperature      | 25°C     |
| GPS clock source | тсхо     |

Table 53: Common typical conditions

Note: Local and temporal conditions might lead to considerable variation in TTFF, positioning accuracy, 1PPS signal accuracy.

The figures in the following table assume the use of an external low-noise amplifier (LNA) with SAW filter.

| Symbol                          | Description                                                                            | Value  | Unit |
|---------------------------------|----------------------------------------------------------------------------------------|--------|------|
| Sensitivity, cold               | Acquisition sensitivity, cold start                                                    | -146.5 | dBm  |
| Sensitivity, hot                | Acquisition sensitivity, hot start                                                     | -152.5 | dBm  |
| Sensitivity,<br>tracking        | Tracking sensitivity                                                                   | -156.5 | dBm  |
| TTFF, cold                      | Time to first fix (TTFF), cold start                                                   | 30.5   | s    |
| TTFF, hot                       | TTFF, hot start                                                                        | 1.3    | s    |
| TTFF, A-GPS                     | TTFF, A-GPS start                                                                      | 1.3    | S    |
| Accuracy, 2D, periodic          | Positioning accuracy (CEP50), periodic tracking <sup>27</sup>                          | 3.4    | m    |
| Accuracy, 2D, periodic, A-GPS   | Positioning accuracy (CEP50), periodic tracking <sup>27</sup> with A-GPS <sup>28</sup> | 3.1    | m    |
| Accuracy, 2D, continuous        | Positioning accuracy (CEP50), continuous tracking                                      | 2.0    | m    |
| Accuracy, 2D, continuous, A-GPS | Positioning accuracy (CEP50), continuous tracking with A-GPS <sup>28</sup>             | 1.8    | m    |
| 1PPS accuracy                   | 1PPS signal accuracy, continuous tracking                                              | ±35    | ns   |

Table 54: GPS electrical specification



<sup>&</sup>lt;sup>27</sup> Fix interval 2 min.

<sup>&</sup>lt;sup>28</sup> Including NeQuick ionospheric model parameters.

# 10 Debug and trace

The debug and trace system offers a flexible and powerful mechanism for non-intrusive debugging.

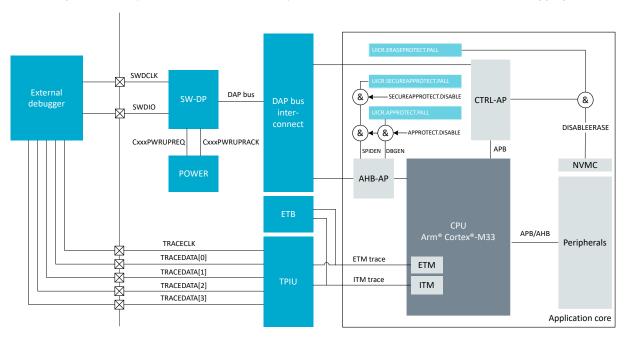



Figure 118: Debug and trace overview

The main features of the debug and trace system include:

- Two-pin serial wire debug (SWD) interface, protocol version 1
- Access port connection
  - Breakpoint unit (BPU) supports eight hardware breakpoint comparators
  - Data watchpoint and trace (DWT) unit supports four watchpoint comparators
  - Instrumentation trace macrocell (ITM)
  - Embedded trace macrocell (ETM)
  - Access protection through APPROTECT, ERASEPROTECT and SECUREAPPROTECT
- Embedded trace buffer (ETB)
- · Trace port interface unit (TPIU)
  - 4-bit parallel trace of ITM and ETM trace data

**Note:** When a system contains multiple CPU domains, it is important to be aware that if one domain (subsystem A) has master rights on another domain (subsystem B), the master subsystem can access some data from the slave subsytem. In this example, even if subsystem B is locked by APPROTECT or ERASEPROTECT, subsystem A can access some data for subsystem B. Consequently, even if the security permissions are managed per subsystem, it is mandatory to have a global approach to the protection. Protecting a slave subsystem does not guarantee system security if the master subsystem is not protected.

# 10.1 DAP - Debug access port

An external debugger can access the device via the debug access port (DAP).

NORDIC\*

The DAP implements a standard Arm CoreSight serial wire debug port (SW-DP). The SW-DP implements the serial wire debug (SWD) protocol that is a two-pin serial interface, see SWDCLK and SWDIO illustrated in figure Debug and trace overview on page 436.

In addition to the default access port in the application CPU (AHB-AP), the DAP includes a custom control access port (CTRL-AP), described in more detail in CTRL-AP - Control access port on page 505.

#### Note:

- The SWDIO line has an internal pull-up resistor.
- The SWDCLK line has an internal pull-down resistor.

There are several access ports that connect to different parts of the system. An overview is given in the table below.

| AP ID | Туре    | Description                               |
|-------|---------|-------------------------------------------|
| 0     | AHB-AP  | Application subsystem access port         |
| 3     | APB-AP  | CoreSight subsystem access port           |
| 4     | CTRI-AP | Application subsystem control access port |

Table 55: Access port overview

The standard Arm components are documented in *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*. The control access port (CTRL-AP) is proprietary, and described in more detail in CTRL-AP - Control access port on page 505.

# 10.2 Access port protection

Access port protection blocks the debugger from read and write access to all CPU registers and memory-mapped addresses when enabled. If needed, a debugger can be restricted to debug non-secure code only and access non-secure memory regions and peripherals using register SECUREAPPROTECT on page 44. Register APPROTECT on page 42 blocks all debugger access.

The following table gives an overview of the access port protection methods.

| Debugging capability | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-secure code      | The application core AHB-AP DBGEN signal controls all non-secure access through the application core AHB-AP. This can be used to provide readback protection of the flash contents. See Debugger access control for non-secure debug access on page 438. For more information about the DBGEN signal, see the <i>Arm CoreSight SoC-400 Technical Reference Manual, Revision r3p2</i> .                                                                                                             |
| Secure code          | The application core AHB-AP SPIDEN signal controls all secure access through the application core AHB-AP. This means that only the non-secure code can be debugged and accessed when secure accesses are blocked. To enable access to the secure access port, non-secure code must be unprotected. See Debugger access control for secure debug access on page 438. For more information about the SPIDEN signal, see the <i>Arm CoreSight SoC-400 Technical Reference Manual, Revision r3p2</i> . |

Table 56: Application core access port protection overview



If a RAM or flash region has its permission set to allow code execution, the content of this region is visible to the debugger even if the read permission is not set. This allows a debugger to display the content of the code being executed. For more information on configuring permissions, see SPU — System protection unit on page 322.

### Access port protection controlled by hardware and software

By default, access port protection is enabled.

The following table describes how non-secure debugger access is controlled.

| Debugging capability  | UICR.APPROTECT. PALL | APPROTECT. DISABLE | APPROTECT. FORCEPROTECT | Secure debug access |
|-----------------------|----------------------|--------------------|-------------------------|---------------------|
| Non-secure code       | HwUnprotected        | SwUnprotected      | Reset value             | -                   |
| No debugging possible | Protected            | Reset value        | Force                   | -                   |

Table 57: Debugger access control for non-secure debug access

The following table describes how secure debugger access is controlled.

| Debugging capability  | UICR.<br>SECUREAPPROTECT.<br>PALL | SECUREAPPROTECT. DISABLE | SECUREAPPROTECT. FORCEPROTECT | Non-secure debug access |
|-----------------------|-----------------------------------|--------------------------|-------------------------------|-------------------------|
| Secure code           | HwUnprotected                     | SwUnprotected            | Reset value                   | Permitted               |
| No debugging possible | Protected                         | Reset value              | Force                         | Permitted               |
| No debugging possible | -                                 | -                        | -                             | Not permitted           |

Table 58: Debugger access control for secure debug access

Access port protection is enabled when the hardware and software disabling conditions are not present. For additional security, it is recommended to write Protected to UICR.SECUREAPPROTECT and UICR.APPROTECT, and have firmware write Force to SECUREAPPROTECT.FORCEPROTECT and APPROTECT.FORCEPROTECT.

**Note:** Registers SECUREAPPROTECT.FORCEPROTECT and APPROTECT.FORCEPROTECT are reset in System ON IDLE or after any reset.

Access port protection is disabled by issuing an ERASEALL command through CTRL-AP. Read ERASEALLSTATUS until the ERASEALL sequence is ready. When ERASEALL is ready, trigger and then release soft reset from the RESET register. Read APPROTECT.STATUS to ensure that access port protection is disabled. If access port is not disabled, do a reset and repeat the ERASEALL command. This command erases the flash, UICR, and RAM, including UICR.SECUREAPPROTECT and UICR.APPROTECT. CTRL-AP is described in more detail in CTRL-AP - Control access port on page 505. Access port protection remains disabled until one of the following occurs:

- Pin reset
- Power or brownout reset



- Watchdog reset
- · Wake from System OFF if not in Emulated System OFF

To keep access port protection disabled, the following actions must be performed:

- Program UICR.SECUREAPPROTECT and UICR.APPROTECT to HwUnprotected. This disables the hardware part of the access port protection scheme after the first reset of any type. The hardware part of the access port protection stays disabled as long as UICR.SECUREAPPROTECT and UICR.APPROTECT are not overwritten.
- Firmware must write SECUREAPPROTECT.DISABLE and APPROTECT.DISABLE to SwUnprotected. This disables the software part of the access port protection scheme.

**Note:** Register SECUREAPPROTECT.DISABLE and APPROTECT.DISABLE are reset in System ON IDLE or after pin reset, power or brownout reset, watchdog reset, or wake from System OFF as mentioned above.

The following figure shows how a device with access port protection enabled is erased, programmed, and configured to allow debugging. Operations sent from the debugger and registers written by firmware affects the access port state.

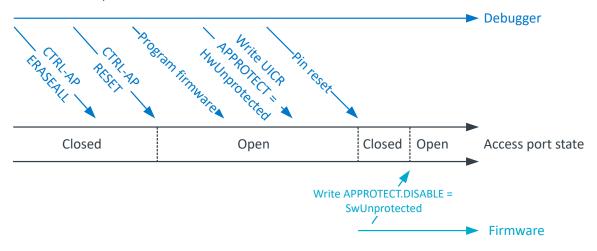



Figure 119: Access port unlocking

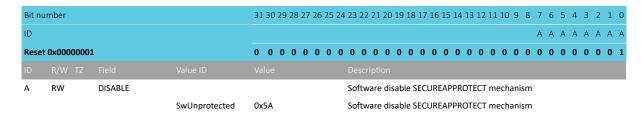
# 10.2.2 Registers

#### **Instances**

| Instance       | Base address | TrustZone |     |     | Split access | Description       |
|----------------|--------------|-----------|-----|-----|--------------|-------------------|
|                |              | Мар       | Att | DMA |              |                   |
| APPROTECT : S  | 0x50039000   | HF        | NS  | NA  | Yes          | APPROTECT control |
| APPROTECT : NS | 0x40039000   | ПГ        | INS | NA  | res          | APPROTECT CONTrol |

#### **Register overview**

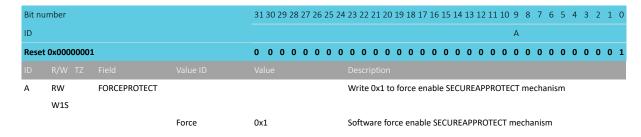
| Register                     | Offset | TZ | Description                                |
|------------------------------|--------|----|--------------------------------------------|
| SECUREAPPROTECT.DISABLE      | 0xE00  | S  | Software disable SECUREAPPROTECT mechanism |
| SECUREAPPROTECT.FORCEPROTECT | 0xE00  | S  | Software force SECUREAPPROTECT mechanism   |
| APPROTECT.DISABLE            | 0xE10  | NS | Software disable APPROTECT mechanism       |
| APPROTECT.FORCEPROTECT       | 0xE10  | NS | Software force APPROTECT mechanism         |






#### 10.2.2.1 SECUREAPPROTECT. DISABLE

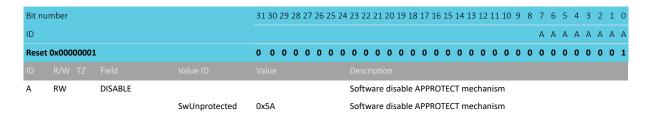
Address offset: 0xE00


Software disable SECUREAPPROTECT mechanism



# 10.2.2.2 SECUREAPPROTECT.FORCEPROTECT

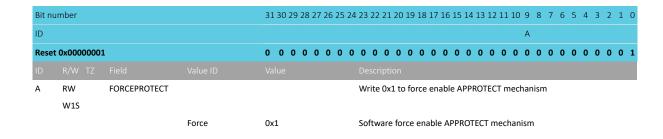
Address offset: 0xE00


Software force SECUREAPPROTECT mechanism



#### 10.2.2.3 APPROTECT.DISABLE

Address offset: 0xE10


Software disable APPROTECT mechanism



#### 10.2.2.4 APPROTECT.FORCEPROTECT

Address offset: 0xE10

Software force APPROTECT mechanism







# 10.3 Debug interface mode

Before the external debugger can access the CPU's access port (AHB-AP) or the control access port (CTRL-AP), the debugger must first request the device to power up via CxxxPWRUPREQ in the SWJ-DP.

As long as the debugger is requesting power via CxxxPWRUPREQ, the device will be in debug interface mode. Otherwise, the device is in normal mode. When a debug session is over, the external debugger must make sure to put the device back into normal mode and then a pin reset should be performed. The reason is that the overall power consumption is higher in debug interface mode compared to normal mode.

Some peripherals behave differently in debug interface mode compared to normal mode. The differences are described in more detail in the chapters of the affected peripherals.

For details on how to use the debug capabilities, please read the debug documentation of your IDE.

If the device is in System OFF when power is requested via CxxxPWRUPREQ, the system will wake up and the DIF flag in RESETREAS on page 72 will be set.

# 10.4 Real-time debug

The device supports real-time debugging, which allows interrupts to execute to completion in real time when breakpoints are set in thread mode or lower priority interrupts.

Real-time debugging thus enables the developer to set a breakpoint and single-step through their code without a failure of the real-time event-driven threads running at higher priority. For example, this enables the device to continue to service the high-priority interrupts of an external controller or sensor without failure or loss of state synchronization while the developer steps through code in a low-priority thread.

# 10.5 Registers

#### **Register overview**

| Register | Offset | Description                                                                                        |
|----------|--------|----------------------------------------------------------------------------------------------------|
| TARGETID | 0x042  | The TARGETID register provides information about the target when the host is connected to a single |
|          |        | device.                                                                                            |
|          |        | The TARGETID register is accessed by a read of DP register 0x4 when the DPBANKSEL bit in the       |
|          |        | SELECT register is set to 0x2.                                                                     |

#### **10.5.1 TARGETID**

Address offset: 0x042

The TARGETID register provides information about the target when the host is connected to a single device.

The TARGETID register is accessed by a read of DP register 0x4 when the DPBANKSEL bit in the SELECT register is set to 0x2.



| Bit nu | mber  |           |            | 31 3 | 30 29 | 28 | 27 | 26 2 | 5 24 | 1 23 | 22    | 21 : | 20 1  | 9 1   | 8 17 | 16   | 15  | 14   | 13   | 12  | 11  | 10   | 9  | 8   | 7    | 6   | 5 .   | 4 3 | 3 2  | 1    | 0 |
|--------|-------|-----------|------------|------|-------|----|----|------|------|------|-------|------|-------|-------|------|------|-----|------|------|-----|-----|------|----|-----|------|-----|-------|-----|------|------|---|
| ID     |       |           |            | D    | D D   | D  | С  | C (  | С    | С    | С     | С    | C (   | 2 0   | . c  | С    |     |      |      |     | В   | В    | В  | В   | В    | В   | В     | ВЕ  | 3 B  | В    | Α |
| Reset  | 0x100 | 90289     |            | 0    | 0 0   | 1  | 0  | 0 (  | 0    | 0    | 0     | 0    | 0     | 1 (   | 0    | 1    | 0   | 0    | 0    | 0   | 0   | 0    | 1  | 0   | 1    | 0   | 0     | 0 1 | ۰ 0  | 0    | 1 |
|        |       |           |            |      |       |    |    |      |      |      |       |      |       |       |      |      |     |      |      |     |     |      |    |     |      |     |       |     |      |      |   |
| Α      | R     | UNUSED    |            |      |       |    |    |      |      | Re   | serv  | ed,  | rea   | d-as  | -one | 9    |     |      |      |     |     |      |    |     |      |     |       |     |      |      |   |
| В      | R     | TDESIGNER |            |      |       |    |    |      |      | An   | 11-   | bit  | code  | e: JE | DEC  | JEP  | 10  | 6 cc | onti | nua | tio | n cc | de | and | l id | ent | ity c | ode | . Th | e II | ) |
|        |       |           |            |      |       |    |    |      |      | ide  | entif | ies  | the   | desi  | gne  | r of | the | pa   | rt.  |     |     |      |    |     |      |     |       |     |      |      |   |
|        |       |           | NordicSemi | 0x1  | 44    |    |    |      |      | No   | ordic | Sei  | mico  | ndı   | ıcto | r AS | Α   |      |      |     |     |      |    |     |      |     |       |     |      |      |   |
| С      | R     | TPARTNO   |            |      |       |    |    |      |      | Pa   | rt n  | umb  | oer   |       |      |      |     |      |      |     |     |      |    |     |      |     |       |     |      |      |   |
| D      | R     | TREVISION |            |      |       |    |    |      |      | Tai  | rget  | rev  | isior | 1     |      |      |     |      |      |     |     |      |    |     |      |     |       |     |      |      |   |

# 10.6 Electrical specification

# 10.6.1 Trace port

| Symbol           | Description                                                                 | Min. | Тур. | Max. | Units |
|------------------|-----------------------------------------------------------------------------|------|------|------|-------|
| T <sub>cyc</sub> | Clock period, as defined by ARM (See ARM Infocenter, Embedded Trace         | 62.5 |      |      | ns    |
|                  | Macrocell Architecture Specification, Trace Port Physical Interface, Timing |      |      |      |       |
|                  | specifications)                                                             |      |      |      |       |

# 10.7 Trace

The nRF9151 supports ETM and ITM trace.

Available trace sinks:

- 2 kB internal embedded trace buffer (ETB)
- External trace port interface through TPIU

Trace data from the ETM and the ITM can be sent to an internal embedded trace buffer (ETB) or an external debugger via a 4-bit wide parallel trace port (TPIU), see TRACEDATA[0] through TRACEDATA[3], and TRACECLK in Debug and trace overview on page 436.

The following diagram shows the trace components architecture of the device's embedded Arm CoreSight subsystem.

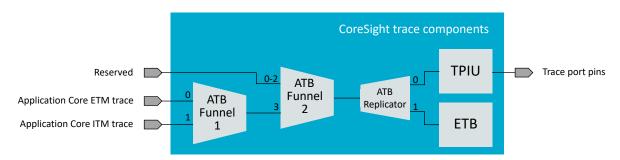



Figure 120: Trace components architecture

The standard Arm components are documented in *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*. For details on how to use the trace capabilities, please read the debug documentation of your IDE.

TPIU's trace pins are multiplexed with GPIOs, see Pin assignments on page 518 for more information.

NORDIC

**Note:** To configure the trace data delivery to the device trace port, use the MDK system start-up file included as of MDK version 8.26.0.

Trace speed is configured in the TRACEPORTSPEED (Retained) on page 516 register. The speed of the trace pins depends on the DRIVE setting of the GPIOs that the trace pins are multiplexed with. See GPIO — General purpose input/output on page 162 for information about how to set drive settings. Only SOS1 and H0H1 drives are suitable for debugging. SOS1 is the default DRIVE at reset. If parallel or serial trace port signals are not fast enough in the debugging conditions, all GPIOs in use for tracing should be set to high drive (H0H1). The user shall make sure that DRIVE setting for these GPIOs is not overwritten by software during the debugging session.

#### 10.7.1 ATB Funnel

The ARM® ATB Funnel funnels trace bus mesages from several sources into one output bus.

This document only provides a register-level description of this ARM component. See the ARM<sup>®</sup> CoreSight<sup>™</sup> SoC-400 Technical Reference Manual for more details

# 10.7.1.1 Registers

#### **Instances**

| Instance   | Base address | TrustZone |     |     | Split access | Description      |
|------------|--------------|-----------|-----|-----|--------------|------------------|
|            |              | Мар       | Att | DMA |              |                  |
| ATBFUNNEL1 | 0xE005A000   | HF        | NS  | NA  | No           | ATBFUNNEL unit 1 |
| ATBFUNNEL2 | 0xE005B000   | HF        | NS  | NA  | No           | ATBFUNNEL unit 2 |

# **Register overview**

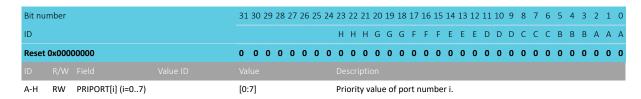
| Register        | Offset | TZ | Description                                                                                     |
|-----------------|--------|----|-------------------------------------------------------------------------------------------------|
| CTRLREG         | 0x000  |    | The IDFILTERO register enables the programming of ID filtering for master port 0.               |
| PRIORITYCTRLREG | 0x004  |    | The Priority_Ctrl_Reg register defines the order in which inputs are selected. Each 3-bit field |
|                 |        |    | is a priority for each particular slave interface.                                              |
| ITATBDATA0      | 0xEEC  |    | The ITATBDATA0 register performs different functions depending on whether the access is a       |
|                 |        |    | read or a write.                                                                                |
| ITATBCTR2       | 0xEF0  |    | The ITATBCTR2 register performs different functions depending on whether the access is a        |
|                 |        |    | read or a write.                                                                                |
| ITATBCTR1       | 0xEF4  |    | The ITATBCTR1 register performs different functions depending on whether the access is a        |
|                 |        |    | read or a write.                                                                                |
| ITATBCTR0       | 0xEF8  |    | The ITATBCTRO register performs different functions depending on whether the access is a        |
|                 |        |    | read or a write.                                                                                |
| ITCTRL          | 0xF00  |    | The ITCTRL register enables the component to switch from a functional mode, which is the        |
|                 |        |    | default behavior, to integration mode where the inputs and outputs of the component can be      |
|                 |        |    | directly controlled for the purposes of integration testing and topology detection.             |
| CLAIMSET        | 0xFA0  |    | Software can use the claim tag to coordinate application and debugger access to trace           |
|                 |        |    | unit functionality. The claim tags have no effect on the operation of the component. The        |
|                 |        |    | CLAIMSET register sets bits in the claim tag, and determines the number of claim bits           |
|                 |        |    | implemented.                                                                                    |
| CLAIMCLR        | 0xFA4  |    | Software can use the claim tag to coordinate application and debugger access to trace           |
|                 |        |    | unit functionality. The claim tags have no effect on the operation of the component. The        |
|                 |        |    | CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the   |
|                 |        |    | claim tag.                                                                                      |
| LAR             | 0xFB0  |    | This is used to enable write access to device registers.                                        |



|            |        | _  |                                                                                               |
|------------|--------|----|-----------------------------------------------------------------------------------------------|
| Register   | Offset | TZ | Description                                                                                   |
| LSR        | 0xFB4  |    | This indicates the status of the lock control mechanism. This lock prevents accidental writes |
|            |        |    | by code under debug. Accesses to the extended stimulus port registers are not affected by     |
|            |        |    | the lock mechanism. This register must always be present although there might not be any      |
|            |        |    | lock access control mechanism. The lock mechanism, where present and locked, must block       |
|            |        |    | write accesses to any control register, except the Lock Access Register. For most components  |
|            |        |    | this covers all registers except for the Lock Access Register.                                |
| AUTHSTATUS | 0xFB8  |    | Indicates the current level of tracing permitted by the system                                |
| DEVID      | 0xFC8  |    | Indicates the capabilities of the component.                                                  |
| DEVTYPE    | 0xFCC  |    | The DEVTYPE register provides a debugger with information about the component when the        |
|            |        |    | Part Number field is not recognized. The debugger can then report this information.           |
| PIDR4      | 0xFD0  |    | Coresight peripheral identification registers.                                                |
| PIDR[0]    | 0xFE0  |    | Coresight peripheral identification registers.                                                |
| PIDR[1]    | 0xFE4  |    | Coresight peripheral identification registers.                                                |
| PIDR[2]    | 0xFE8  |    | Coresight peripheral identification registers.                                                |
| PIDR[3]    | 0xFEC  |    | Coresight peripheral identification registers.                                                |
| CIDR[0]    | 0xFF0  |    | Coresight component identification registers.                                                 |
| CIDR[1]    | 0xFF4  |    | Coresight component identification registers.                                                 |
| CIDR[2]    | 0xFF8  |    | Coresight component identification registers.                                                 |
| CIDR[3]    | 0xFFC  |    | Coresight component identification registers.                                                 |

#### 10.7.1.1.1 CTRLREG

Address offset: 0x000


The IDFILTERO register enables the programming of ID filtering for master port 0.

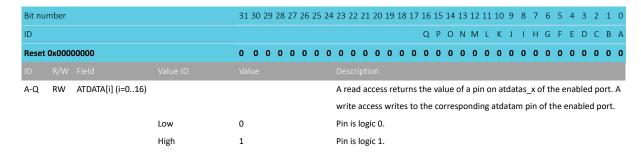
| Bit nu | mber  |               |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0             |
|--------|-------|---------------|----------|-------------------------|-----------------------------------------------------------------------------|
| ID     |       |               |          |                         | IIIIHGFEDCBA                                                                |
| Reset  | 0x000 | 00000         |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                     |
| ID     |       |               |          |                         | Description                                                                 |
| A-H    | RW    | ENS[i] (i=07) |          |                         | Enable slave port i.                                                        |
|        |       |               | Disabled | 0                       | Slave port disabled. This excludes the port from the priority selection     |
|        |       |               |          |                         | scheme.                                                                     |
|        |       |               | Enabled  | 1                       | Slave port enabled.                                                         |
| 1      | RW    | нт            |          | [0:14]                  | Hold Time. The formatting scheme can become inefficient when fast           |
|        |       |               |          |                         | switching occurs, and you can use this setting to minimize switching.       |
|        |       |               |          |                         | When a source has nothing to transmit, then another source is selected      |
|        |       |               |          |                         | irrespective of the minimum number of transactions. The ATB funnel holds    |
|        |       |               |          |                         | for the minimum hold time and one additional transaction. The actual hold   |
|        |       |               |          |                         | time is the register value plus 1. The maximum value that can be entered is |
|        |       |               |          |                         | 0b1110 and this equates to 15 transactions. 0b1111 is reserved.             |

# 10.7.1.1.2 PRIORITYCTRLREG

Address offset: 0x004

The Priority\_Ctrl\_Reg register defines the order in which inputs are selected. Each 3-bit field is a priority for each particular slave interface.

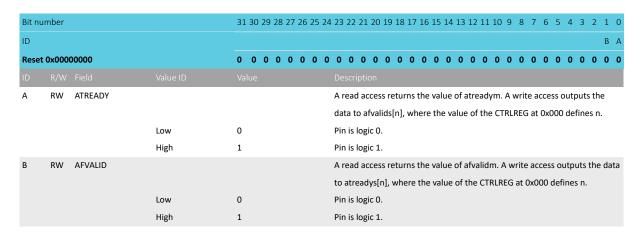







#### 10.7.1.1.3 ITATBDATA0

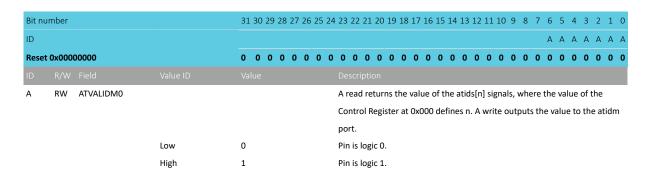
Address offset: 0xEEC


The ITATBDATAO register performs different functions depending on whether the access is a read or a write.



#### 10.7.1.1.4 ITATBCTR2

Address offset: 0xEF0


The ITATBCTR2 register performs different functions depending on whether the access is a read or a write.



#### 10.7.1.1.5 ITATBCTR1

Address offset: 0xEF4

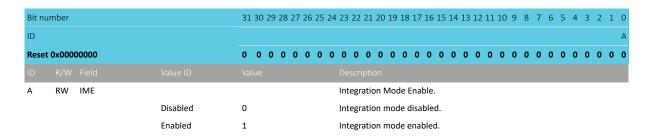
The ITATBCTR1 register performs different functions depending on whether the access is a read or a write.



#### 10.7.1.1.6 ITATBCTR0

Address offset: 0xEF8

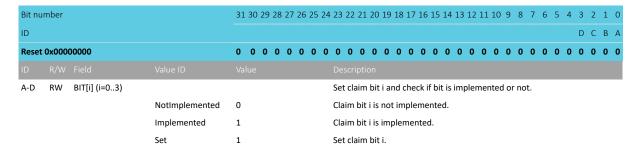
The ITATBCTRO register performs different functions depending on whether the access is a read or a write.




| Bit nu | ımber |         |      | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0            |
|--------|-------|---------|------|-------------------------|----------------------------------------------------------------------------|
| ID     |       |         |      |                         | C C B A                                                                    |
| Reset  | 0x000 | 00000   |      | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                    |
| ID     |       |         |      |                         | Description                                                                |
| Α      | RW    | ATVALID |      |                         | A read returns the value of the atvalids[n] signal, where the value of the |
|        |       |         |      |                         | CTRLREG at 0x000 defines n. A write outputs the value to atvalidm.         |
|        |       |         | Low  | 0                       | Pin is logic 0.                                                            |
|        |       |         | High | 1                       | Pin is logic 1.                                                            |
| В      | RW    | AFREADY |      |                         | A read returns the value of the afreadys[n] signal, where the value of the |
|        |       |         |      |                         | Ctrl_Reg at 0x000 defines n. A write outputs the value to afreadym.        |
|        |       |         | Low  | 0                       | Pin is logic 0.                                                            |
|        |       |         | High | 1                       | Pin is logic 1.                                                            |
| С      | RW    | ATBYTES |      |                         | A read returns the value of the atbytess[n] signal, where the value of the |
|        |       |         |      |                         | Ctrl_Reg at 0x000 defines n. A write outputs the value to atbytesm.        |
|        |       |         | Low  | 0                       | Pin is logic 0.                                                            |
|        |       |         | High | 1                       | Pin is logic 1.                                                            |

#### 10.7.1.1.7 ITCTRL

Address offset: 0xF00

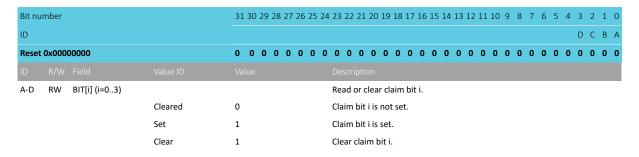

The ITCTRL register enables the component to switch from a functional mode, which is the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.



#### 10.7.1.1.8 CLAIMSET

Address offset: 0xFA0

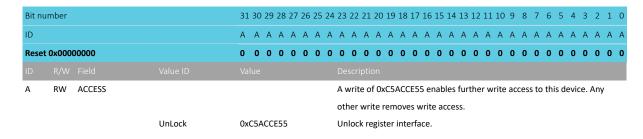
Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.




#### 10.7.1.1.9 CLAIMCLR

Address offset: 0xFA4




Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.



#### 10.7.1.1.10 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.



# 10.7.1.1.11 LSR

Address offset: 0xFB4

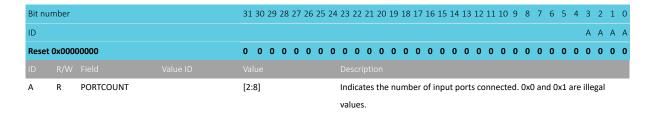
This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.

| Bit n | umber   |         |                | 31 30 29 28 27 26 25 2 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|---------|---------|----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID    |         |         |                |                        | СВА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rese  | t 0x000 | 00000   |                | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ID    |         |         |                |                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Α     | RW      | PRESENT |                |                        | Indicates that a lock control mechanism exists for this device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |         |         | NotImplemented | 0                      | No lock control mechanism exists, writes to the Lock Access Register are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |         |         |                |                        | ignored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |         |         | Implemented    | 1                      | Lock control mechanism is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| В     | RW      | LOCKED  |                |                        | Returns the current status of the Lock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |         |         | UnLocked       | 0                      | Write access is allowed to this device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |         |         | Locked         | 1                      | Write access to the component is blocked. All writes to control registers are $% \left( 1\right) =\left( 1\right) \left( $ |
|       |         |         |                |                        | ignored. Reads are permitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| С     | RW      | TYPE    |                |                        | Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |         |         | Bits32         | 0                      | This component implements a 32-bit Lock Access Register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |         |         | Bits8          | 1                      | This component implements an 8-bit Lock Access Register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



#### 10.7.1.1.12 AUTHSTATUS

Address offset: 0xFB8


Indicates the current level of tracing permitted by the system

| nber  |                 |                           | 31 30 29 28 27 26 25 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D D C C B B A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )x000 | 00000           |                           | 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RW    | NSID            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-secure Invasive Debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                 | NotImplemented            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is not implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 | Implemented               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RW    | NSNID           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-secure Non-Invasive Debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 | NotImplemented            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is not implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 | Implemented               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RW    | SID             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Secure Invasive Debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                 | NotImplemented            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is not implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 | Implemented               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RW    | SNID            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Secure Non-Invasive Debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                 | NotImplemented            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is not implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 | Implemented               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The feature is implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | R/W<br>RW<br>RW | R/W Field RW NSID  RW SID | R/W Field Value ID  RW NSID  NotImplemented Implemented ImplementeDelicity Implement | Notimplemented   1   Notimpl |

#### 10.7.1.1.13 DEVID

Address offset: 0xFC8

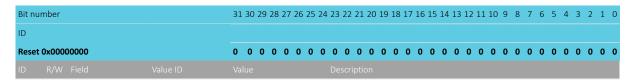
Indicates the capabilities of the component.



#### 10.7.1.1.14 DEVTYPE

Address offset: 0xFCC

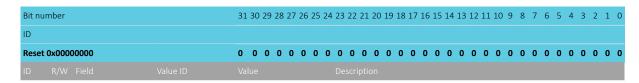
The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.


| Bi | number   |        |                   | 31 | 30 2 | 9 2 | 8 27 | 26 | 25 | 24 | 23 2 | 22 2 | 21 2              | 0 1  | 9 18  | 8 17 | 7 16 | 15   | 14   | 13  | 12  | 11  | 10   | 9    | 8    | 7    | 6    | 5   | 4  | 3   | 2  | 1 0 |
|----|----------|--------|-------------------|----|------|-----|------|----|----|----|------|------|-------------------|------|-------|------|------|------|------|-----|-----|-----|------|------|------|------|------|-----|----|-----|----|-----|
| ID |          |        |                   |    |      |     |      |    |    |    |      |      |                   |      |       |      |      |      |      |     |     |     |      |      |      | В    | В    | В   | В  | A   | Α. | А А |
| Re | set 0x00 | 000000 |                   | 0  | 0 0  | ) ( | 0    | 0  | 0  | 0  | 0    | 0    | 0 (               | ) (  | 0     | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0   | 0  | 0 ( | 0  | 0 0 |
| ID |          |        |                   |    |      |     |      |    |    |    |      |      |                   |      |       |      |      |      |      |     |     |     |      |      |      |      |      |     |    |     |    |     |
| Α  | R        | MAJOR  |                   |    |      |     |      |    |    |    | The  | ma   | in t              | ype  | of    | the  | con  | npo  | ner  | nt  |     |     |      |      |      |      |      |     |    |     |    |     |
|    |          |        | InputOutputDevice | 2  |      |     |      |    |    |    | Indi | cat  | es th             | nat  | this  | со   | mpc  | ne   | nt h | as  | ATB | inp | outs | an   | d ou | ıtpı | uts. |     |    |     |    |     |
| В  | R        | SUB    |                   |    |      |     |      |    |    |    | The  | sul  | o-ty <sub>l</sub> | pe o | of th | ne c | om   | pon  | ent  |     |     |     |      |      |      |      |      |     |    |     |    |     |
|    |          |        | Replicator        | 1  |      |     |      |    |    |    | This | со   | mpc               | one  | nt a  | rbit | rate | es A | ТВ   | inp | uts | ma  | ppir | ng t | о АТ | Вс   | out  | put | s. |     |    |     |

#### 10.7.1.1.15 PIDR4

Address offset: 0xFD0

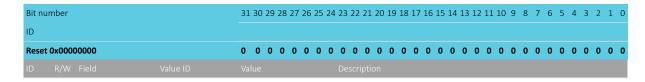



Coresight peripheral identification registers.



# 10.7.1.1.16 PIDR[0]

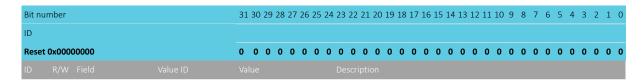
Address offset: 0xFE0


Coresight peripheral identification registers.



# 10.7.1.1.17 PIDR[1]

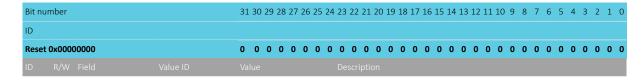
Address offset: 0xFE4


Coresight peripheral identification registers.



### 10.7.1.1.18 PIDR[2]

Address offset: 0xFE8

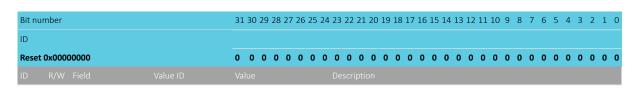

Coresight peripheral identification registers.



#### 10.7.1.1.19 PIDR[3]

Address offset: 0xFEC

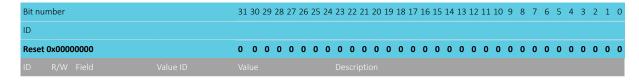
Coresight peripheral identification registers.




# 10.7.1.1.20 CIDR[0]

Address offset: 0xFF0

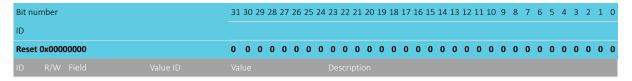
Coresight component identification registers.






# 10.7.1.1.21 CIDR[1]

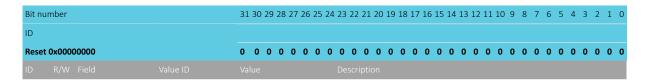
Address offset: 0xFF4


Coresight component identification registers.



# 10.7.1.1.22 CIDR[2]

Address offset: 0xFF8


Coresight component identification registers.



# 10.7.1.1.23 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.



# 10.7.2 ATB Replicator

The ARM® ATB Replicator replicates incoming trace bus mesages across its outputs.

This document only provides a register-level description of this ARM component. See the ARM<sup>®</sup> CoreSight<sup>™</sup> SoC-400 Technical Reference Manual for more details

#### **10.7.2.1** Registers

#### **Instances**

| Instance      | Base address | TrustZone | :   |     | Split access | Description   |
|---------------|--------------|-----------|-----|-----|--------------|---------------|
|               |              | Мар       | Att | DMA |              |               |
| ATBREPLICATOR | 0xE0058000   | HF        | NS  | NA  | No           | ATBREPLICATOR |



# **Register overview**

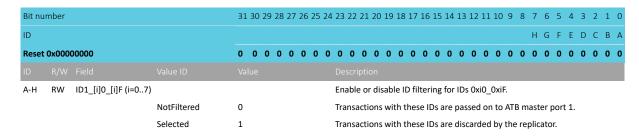
| Register   | Offset | TZ | Description                                                                                   |
|------------|--------|----|-----------------------------------------------------------------------------------------------|
| IDFILTERO  | 0x000  |    | The IDFILTER0 register enables the programming of ID filtering for master port 0.             |
| IDFILTER1  | 0x004  |    | The IDFILTER1 register enables the programming of ID filtering for master port 1.             |
| ITATBCTR1  | 0xEF8  |    | The ITATBCTR1 register returns the value of the atreadym0, atreadym1, and atvalids inputs in  |
|            |        |    | integration mode.                                                                             |
| ITATBCTR0  | 0xEFC  |    | The ITATBCTRO register controls the value of the atvalidm0, atvalidm1, and atreadys outputs   |
|            |        |    | in integration mode.                                                                          |
| ITCTRL     | 0xF00  |    | The ITCTRL register enables the component to switch from a functional mode, which is the      |
|            |        |    | default behavior, to integration mode where the inputs and outputs of the component can be    |
|            |        |    | directly controlled for the purposes of integration testing and topology detection.           |
| CLAIMSET   | 0xFA0  |    | Software can use the claim tag to coordinate application and debugger access to trace         |
|            |        |    | unit functionality. The claim tags have no effect on the operation of the component. The      |
|            |        |    | CLAIMSET register sets bits in the claim tag, and determines the number of claim bits         |
|            |        |    | implemented.                                                                                  |
| CLAIMCLR   | 0xFA4  |    | Software can use the claim tag to coordinate application and debugger access to trace         |
|            |        |    | unit functionality. The claim tags have no effect on the operation of the component. The      |
|            |        |    | CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the |
|            |        |    | claim tag.                                                                                    |
| LAR        | 0xFB0  |    | This is used to enable write access to device registers.                                      |
| LSR        | 0xFB4  |    | This indicates the status of the lock control mechanism. This lock prevents accidental writes |
|            |        |    | by code under debug. Accesses to the extended stimulus port registers are not affected by     |
|            |        |    | the lock mechanism. This register must always be present although there might not be any      |
|            |        |    | lock access control mechanism. The lock mechanism, where present and locked, must block       |
|            |        |    | write accesses to any control register, except the Lock Access Register. For most components  |
|            |        |    | this covers all registers except for the Lock Access Register.                                |
| AUTHSTATUS | 0xFB8  |    | Indicates the current level of tracing permitted by the system                                |
| DEVID      | 0xFC8  |    | Indicates the capabilities of the component.                                                  |
| DEVTYPE    | 0xFCC  |    | The DEVTYPE register provides a debugger with information about the component when the        |
|            |        |    | Part Number field is not recognized. The debugger can then report this information.           |
| PIDR4      | 0xFD0  |    | Coresight peripheral identification registers.                                                |
| PIDR[0]    | 0xFE0  |    | Coresight peripheral identification registers.                                                |
| PIDR[1]    | 0xFE4  |    | Coresight peripheral identification registers.                                                |
| PIDR[2]    | 0xFE8  |    | Coresight peripheral identification registers.                                                |
| PIDR[3]    | 0xFEC  |    | Coresight peripheral identification registers.                                                |
| CIDR[0]    | 0xFF0  |    | Coresight component identification registers.                                                 |
| CIDR[1]    | 0xFF4  |    | Coresight component identification registers.                                                 |
| CIDR[2]    | 0xFF8  |    | Coresight component identification registers.                                                 |
| CIDR[3]    | 0xFFC  |    | Coresight component identification registers.                                                 |

# 10.7.2.1.1 IDFILTER0

Address offset: 0x000

The IDFILTERO register enables the programming of ID filtering for master port 0.

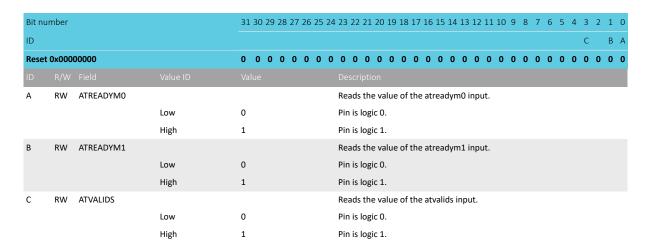
| Bit nu | ımber |                      |             | 31 30 29 28 27 26 25 | 5 24 | 1 23 | 22 2 | 21 2  | 0 19  | 18 1  | .7 16 | 5 15  | 14  | 13 1  | .2 11 | . 10  | 9     | 8 7   | ' 6  | 5   | 4    | 3 | 2 1 | . 0 |
|--------|-------|----------------------|-------------|----------------------|------|------|------|-------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|------|-----|------|---|-----|-----|
| ID     |       |                      |             |                      |      |      |      |       |       |       |       |       |     |       |       |       |       | F     | l G  | F   | Ε    | D | C E | 3 A |
| Reset  | 0x000 | 00000                |             | 0 0 0 0 0 0 0        | 0    | 0    | 0    | 0 0   | 0     | 0     | 0 0   | 0     | 0   | 0     | 0 0   | 0     | 0     | 0 (   | 0    | 0   | 0    | 0 | 0 ( | 0   |
| ID     |       |                      |             |                      |      |      |      |       |       |       |       |       |     |       |       |       |       |       |      |     |      |   |     |     |
| A-H    | RW    | ID0_[i]0_[i]F (i=07) |             |                      |      | Ena  | ble  | or d  | lisab | le ID | filte | ring  | for | IDs   | OxiO_ | _OxiF |       |       |      |     |      |   |     |     |
|        |       |                      | NotFiltered | 0                    |      | Trai | nsac | ction | ıs wi | th th | ese   | IDs a | are | pass  | ed o  | n to  | ATB   | mas   | ter  | por | t 0. |   |     |     |
|        |       |                      | Selected    | 1                    |      | Trai | nsac | ction | ıs wi | th th | ese   | IDs a | are | disca | rde   | by    | the i | repli | cato | or. |      |   |     |     |






#### 10.7.2.1.2 IDFILTER1

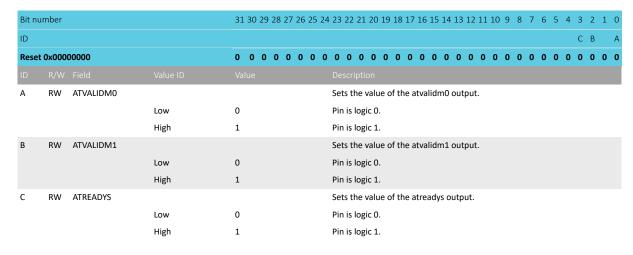
Address offset: 0x004


The IDFILTER1 register enables the programming of ID filtering for master port 1.



#### 10.7.2.1.3 ITATBCTR1

Address offset: 0xEF8

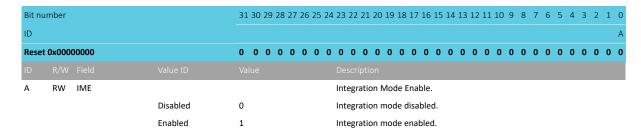

The ITATBCTR1 register returns the value of the atreadym0, atreadym1, and atvalids inputs in integration mode.



#### 10.7.2.1.4 ITATBCTR0

Address offset: 0xEFC

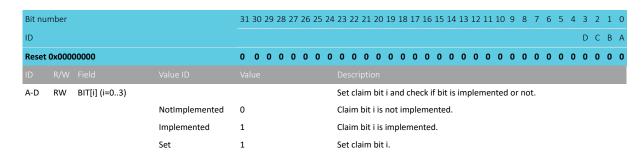
The ITATBCTR0 register controls the value of the atvalidm0, atvalidm1, and atreadys outputs in integration mode.






#### 10.7.2.1.5 ITCTRL

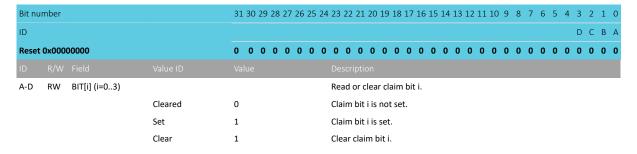
Address offset: 0xF00


The ITCTRL register enables the component to switch from a functional mode, which is the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.



#### 10.7.2.1.6 CLAIMSET

Address offset: 0xFA0


Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.



#### 10.7.2.1.7 CLAIMCLR

Address offset: 0xFA4

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.



#### 10.7.2.1.8 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.

NORDIC

| Bit nu | mber  |        |        | 31                | . 30 | 29 | 28 | 27                         | 26 | 25 | 24 | 23  | 22    | 21   | 20 : | 19 1 | 18  | 17  | 16   | 15   | 14  | 13  | 12  | 11   | 10   | 9  | 8   | 7    | 6   | 5   | 4    | 3    | 2  | 1 0 |
|--------|-------|--------|--------|-------------------|------|----|----|----------------------------|----|----|----|-----|-------|------|------|------|-----|-----|------|------|-----|-----|-----|------|------|----|-----|------|-----|-----|------|------|----|-----|
| ID     |       |        |        | Α                 | Α    | Α  | Α  | Α                          | Α  | Α  | Α  | Α   | Α     | Α    | Α    | Α    | Α   | Α   | Α    | Α    | Α   | Α   | Α   | Α    | Α    | Α  | Α   | Α    | Α   | Α   | Α    | Α    | Α  | А А |
| Reset  | 0x000 | 00000  |        | 0                 | 0    | 0  | 0  | 0                          | 0  | 0  | 0  | 0   | 0     | 0    | 0    | 0    | 0   | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0    | 0  | 0   | 0    | 0   | 0   | 0    | 0    | 0  | 0 0 |
| ID     |       |        |        |                   |      |    |    |                            |    |    |    |     |       |      |      |      |     |     |      |      |     |     |     |      |      |    |     |      |     |     |      |      |    |     |
| Α      | RW    | ACCESS |        |                   |      |    |    |                            |    |    |    | Αw  | /rite | e of | 0x0  | C5A  | CC  | E55 | er   | nab  | les | fur | the | er w | rite | ac | ces | s to | thi | s d | evio | e. A | ny |     |
|        |       |        |        |                   |      |    |    |                            |    |    |    | oth | er١   | writ | e re | emo  | ove | s w | rite | e ac | ces | SS. |     |      |      |    |     |      |     |     |      |      |    |     |
|        |       |        | UnLock | UnLock 0xC5ACCE55 |      |    |    | Unlock register interface. |    |    |    |     |       |      |      |      |     |     |      |      |     |     |     |      |      |    |     |      |     |     |      |      |    |     |

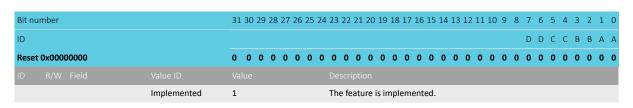
#### 10.7.2.1.9 LSR

#### Address offset: 0xFB4

This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.

| Bit nu | umber   |         |                | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0               |
|--------|---------|---------|----------------|-------------------------|-------------------------------------------------------------------------------|
| ID     |         |         |                |                         | СВА                                                                           |
| Rese   | t 0x000 | 00000   |                | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
| ID     |         |         |                |                         |                                                                               |
| Α      | RW      | PRESENT |                |                         | Indicates that a lock control mechanism exists for this device.               |
|        |         |         | NotImplemented | 0                       | No lock control mechanism exists, writes to the Lock Access Register are      |
|        |         |         |                |                         | ignored.                                                                      |
|        |         |         | Implemented    | 1                       | Lock control mechanism is present.                                            |
| В      | RW      | LOCKED  |                |                         | Returns the current status of the Lock.                                       |
|        |         |         | UnLocked       | 0                       | Write access is allowed to this device.                                       |
|        |         |         | Locked         | 1                       | Write access to the component is blocked. All writes to control registers are |
|        |         |         |                |                         | ignored. Reads are permitted.                                                 |
| С      | RW      | TYPE    |                |                         | Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.      |
|        |         |         | Bits32         | 0                       | This component implements a 32-bit Lock Access Register.                      |
|        |         |         | Bits8          | 1                       | This component implements an 8-bit Lock Access Register.                      |

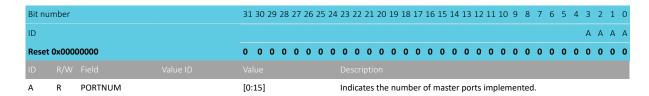
#### 10.7.2.1.10 AUTHSTATUS


#### Address offset: 0xFB8

Indicates the current level of tracing permitted by the system

| Bit no | umber   |       |                | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|--------|---------|-------|----------------|-------------------------|-----------------------------------------------------------------|
| ID     |         |       |                |                         | D D C C B B A A                                                 |
| Rese   | t 0x000 | 00000 |                | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| ID     |         |       |                |                         |                                                                 |
| Α      | RW      | NSID  |                |                         | Non-secure Invasive Debug                                       |
|        |         |       | NotImplemented | 0                       | The feature is not implemented.                                 |
|        |         |       | Implemented    | 1                       | The feature is implemented.                                     |
| В      | RW      | NSNID |                |                         | Non-secure Non-Invasive Debug                                   |
|        |         |       | NotImplemented | 0                       | The feature is not implemented.                                 |
|        |         |       | Implemented    | 1                       | The feature is implemented.                                     |
| С      | RW      | SID   |                |                         | Secure Invasive Debug                                           |
|        |         |       | NotImplemented | 0                       | The feature is not implemented.                                 |
|        |         |       | Implemented    | 1                       | The feature is implemented.                                     |
| D      | RW      | SNID  |                |                         | Secure Non-Invasive Debug                                       |
|        |         |       | NotImplemented | 0                       | The feature is not implemented.                                 |
|        |         |       |                |                         |                                                                 |

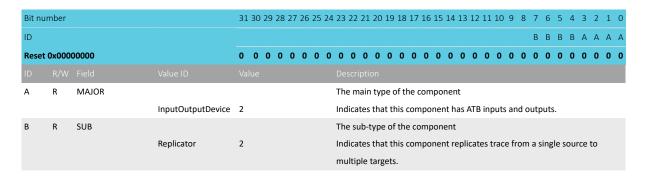







#### 10.7.2.1.11 DEVID

Address offset: 0xFC8


Indicates the capabilities of the component.



#### 10.7.2.1.12 DEVTYPE

Address offset: 0xFCC

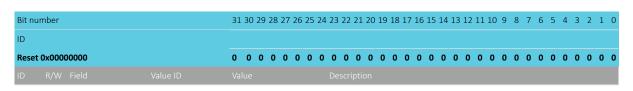
The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.



#### 10.7.2.1.13 PIDR4

Address offset: 0xFD0

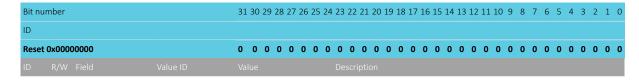
Coresight peripheral identification registers.


| Bit number       | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|------------------|------------------------|------------------------------------------------------------------|
| ID               |                        |                                                                  |
| Reset 0x00000000 | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID R/W Field     |                        | Description                                                      |

#### 10.7.2.1.14 PIDR[0]

Address offset: 0xFE0

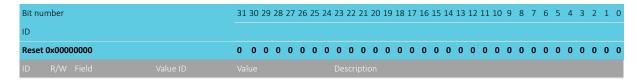
Coresight peripheral identification registers.






# 10.7.2.1.15 PIDR[1]

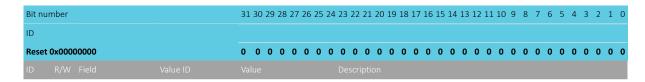
Address offset: 0xFE4


Coresight peripheral identification registers.



# 10.7.2.1.16 PIDR[2]

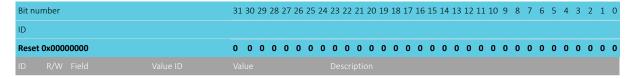
Address offset: 0xFE8


Coresight peripheral identification registers.



# 10.7.2.1.17 PIDR[3]

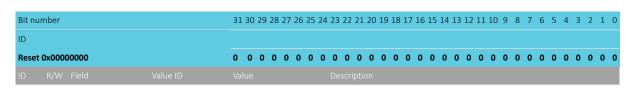
Address offset: 0xFEC


Coresight peripheral identification registers.



# 10.7.2.1.18 CIDR[0]

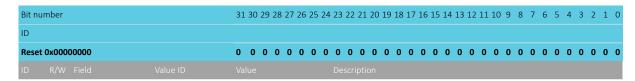
Address offset: 0xFF0


Coresight component identification registers.



# 10.7.2.1.19 CIDR[1]

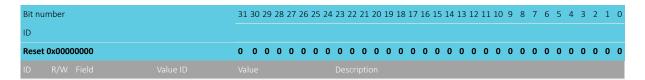
Address offset: 0xFF4


Coresight component identification registers.



# 10.7.2.1.20 CIDR[2]

Address offset: 0xFF8


Coresight component identification registers.



# 10.7.2.1.21 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.



# 10.7.3 ETB — Embedded trace buffer

The ARM embedded trace buffer captures trace and stores it in an on-chip RAM for later inspection.

This document only provides a register-level description of this ARM component. See the Arm<sup>®</sup> CoreSight SoC-400 Technical Reference Manual for more details.

# 10.7.3.1 Registers

#### **Instances**

| Instance | Base address | TrustZone | •   |     | Split access | Description |
|----------|--------------|-----------|-----|-----|--------------|-------------|
|          |              | Мар       | Att | DMA |              |             |
| ETB      | 0xE0051000   | HF        | NS  | NA  | No           | ETB         |

# **Register overview**

| Register | Offset | TZ | Description                             |
|----------|--------|----|-----------------------------------------|
| RDP      | 0x4    |    | ETB RAM Depth Register                  |
| STS      | 0xC    |    | ETB Status Register                     |
| RRD      | 0x10   |    | ETB RAM Read Data Register              |
| RRP      | 0x14   |    | ETB RAM Read Pointer Register           |
| RWP      | 0x18   |    | ETB RAM Write Pointer Register          |
| TRG      | 0x1C   |    | ETB Trigger Counter Register            |
| CTL      | 0x20   |    | ETB Control Register                    |
| RWD      | 0x24   |    | ETB RAM Write Data Register             |
| FFSR     | 0x300  |    | ETB Formatter and Flush Status Register |





| Register    | Offset | TZ | Description                                                   |
|-------------|--------|----|---------------------------------------------------------------|
| FFCR        | 0x304  |    | ETB Formatter and Flush Control Register                      |
| ITMISCOP0   | 0xEE0  |    | Integration Test Miscellaneous Output Register 0              |
| ITTRFLINACK | 0xEE4  |    | Integration Test Trigger In and Flush In Acknowledge Register |
| ITTRFLIN    | 0xEE8  |    | Integration Test Trigger In and Flush In Register             |
| ITATBDATA0  | 0xEEC  |    | Integration Test ATB Data Register 0                          |
| ITATBCTR2   | 0xEF0  |    | Integration Test ATB Control Register 2                       |
| ITATBCTR1   | 0xEF4  |    | Integration Test ATB Control Register 1                       |
| ITATBCTR0   | 0xEF8  |    | Integration Test ATB Control Register 0                       |
| ITCTRL      | 0xF00  |    | Integration Mode Control Register                             |
| CLAIMSET    | 0xFA0  |    | Claim Tag Set Register                                        |
| CLAIMCLR    | 0xFA4  |    | Claim Tag Clear Register                                      |
| LAR         | 0xFB0  |    | Lock Access Register                                          |
| LSR         | 0xFB4  |    | Lock Status Register                                          |
| AUTHSTATUS  | 0xFB8  |    | Authentication Status Register                                |
| DEVID       | 0xFC8  |    | Device Configuration Register                                 |
| DEVTYPE     | 0xFCC  |    | Device Type Identifier Register                               |
| PERIPHID4   | 0xFD0  |    | Peripheral ID4 Register                                       |
| PERIPHIDO   | 0xFE0  |    | Peripheral IDO Register                                       |
| PERIPHID1   | 0xFE4  |    | Peripheral ID1 Register                                       |
| PERIPHID2   | 0xFE8  |    | Peripheral ID2 Register                                       |
| PERIPHID3   | 0xFEC  |    | Peripheral ID3 Register                                       |
| COMPID0     | 0xFF0  |    | Component IDO Register                                        |
| COMPID1     | 0xFF4  |    | Component ID1 Register                                        |
| COMPID2     | 0xFF8  |    | Component ID2 Register                                        |
| COMPID3     | 0xFFC  |    | Component ID3 Register                                        |

#### 10.7.3.1.1 RDP

Address offset: 0x4

ETB RAM Depth Register

Defines the depth, in words, of the trace RAM. This value is configurable in the RTL, but fixed at synthesis. Supported depth in powers of 2 only.



# 10.7.3.1.2 STS

Address offset: 0xC

**ETB Status Register** 

This register indicates the status of the ETB.

NORDIC\*

| Bit nu | mber  |           | 31 30 29 2 | 8 27 26 25 | 24 23 22 | 2 21 20   | 19 18   | 3 17   | 16 15   | 5 14 1  | L3 1  | 2 11   | 10    | 9    | 8 7   | 6    | 5    | 4 3   | 2     | 1 0     |
|--------|-------|-----------|------------|------------|----------|-----------|---------|--------|---------|---------|-------|--------|-------|------|-------|------|------|-------|-------|---------|
| ID     |       |           |            |            |          |           |         |        |         |         |       |        |       |      |       |      |      | 0     | С     | В А     |
| Reset  | 0x000 | 00008     | 0 0 0 0    | 0 0 0      | 0 0 0    | 0 0       | 0 0     | 0      | 0 0     | 0       | 0 (   | 0 0    | 0     | 0    | 0 0   | 0    | 0    | 0 1   | 0     | 0 0     |
| ID     |       |           |            |            |          |           |         |        |         |         |       |        |       |      |       |      |      |       |       |         |
| Α      | R     | FULL      |            |            | RAM      | Full. Th  | e flag  | indi   | icates  | whe     | n th  | e RAI  | M w   | rite | poin  | ter  | has  | wrap  | ped   |         |
|        |       |           |            |            | arour    | nd.       |         |        |         |         |       |        |       |      |       |      |      |       |       |         |
| В      | R     | TRIGGERED |            |            | The T    | riggered  | d bit i | is set | whe     | n a tr  | igge  | r has  | bee   | n o  | bser  | ved  | Thi  | s do  | es    |         |
|        |       |           |            |            | not ir   | ndicate 1 | that a  | trig   | ger h   | as be   | en e  | mbe    | dde   | d in | the   | trac | e da | ta by | the   |         |
|        |       |           |            |            | forma    | atter, bu | ıt is d | eter   | mine    | d by t  | he p  | rogr   | amn   | ning | of t  | he F | orm  | atte  | rand  | t       |
|        |       |           |            |            | Flush    | Contro    | l Regi  | ster.  |         |         |       |        |       |      |       |      |      |       |       |         |
| С      | R     | ACQCOMP   |            |            | The a    | cquisiti  | on co   | mple   | ete fla | ag inc  | licat | es th  | at ca | ptu  | ıre h | as b | een  | com   | plet  | ed      |
|        |       |           |            |            | when     | the for   | matte   | er st  | ops b   | ecaus   | e of  | fany   | of th | ne n | neth  | ods  | defi | ned   | in th | e       |
|        |       |           |            |            | Form     | atter an  | ıd Flu  | sh C   | ontro   | l Reg   | ster  | , or T | race  | Cap  | tEn   | = 0. | This | alsc  | res   | ults in |
|        |       |           |            |            | FtSto    | pped in   | the F   | orm    | atter   | and I   | lusl  | n Stat | tus F | Regi | ster  | goin | g HI | GH.   |       |         |
| D      | R     | FTEMPTY   |            |            | Form     | atter pi  | peline  | e em   | pty. A  | All dat | a st  | ored   | to R  | AM   |       |      |      |       |       |         |
|        |       |           |            |            |          |           |         |        |         |         |       |        |       |      |       |      |      |       |       |         |

#### 10.7.3.1.3 RRD

Address offset: 0x10

#### ETB RAM Read Data Register

When trace capture is disabled, the contents of the ETB Trace RAM at the location addressed by the RAM Read Pointer Registers are placed in this register. Reading this register increments the RAM Read Pointer Register and triggers a RAM access cycle. If trace capture is enabled (FtStopped=0, TraceCaptEn=1), and ETB RAM reading is attempted, a read from this register outputs 0xFFFFFFFF and the RAM Read Pointer Register does not auto-increment. A constant stream of 1s being output corresponds to a synchronization output in the formatter protocol, which is not applicable to the ETB, and so can be used to signify a read error, when formatting is enabled.

| Bit nu | mber  |               | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21  | 20  | 19  | 18 | 17 1 | 16 1 | .5 1  | 4 1        | 3 12 | 11 | . 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3  | 2 | 1 0 |
|--------|-------|---------------|----|----|----|----|----|----|----|----|----|------|-----|-----|-----|----|------|------|-------|------------|------|----|------|---|---|---|---|---|---|----|---|-----|
| ID     |       |               | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α    | Α   | Α   | Α   | Α  | A .  | Α,   | Δ ,   | \ <i>A</i> | ι A  | Α  | Α    | Α | Α | Α | Α | Α | Α | Α. | A | А А |
| Reset  | 0x000 | 00000         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0   | 0   | 0  | 0    | 0 (  | 0 (   | ) (        | 0    | 0  | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 0 |
| ID     |       |               |    |    |    |    |    |    |    |    |    |      |     |     |     |    |      |      |       |            |      |    |      |   |   |   |   |   |   |    |   |     |
| Α      | R     | RAM_READ_DATA |    |    |    |    |    |    |    |    | Da | ta r | ead | fro | m t | he | ЕТВ  | Tra  | ice I | RAN        | 1.   |    |      |   |   |   |   |   |   |    |   |     |

# 10.7.3.1.4 RRP

Address offset: 0x14

#### ETB RAM Read Pointer Register

The RAM Read Pointer Register sets the read pointer used to read entries from the Trace RAM over the APB interface. When this register is written to, a RAM access is initiated. The RAM Read Data Register is then updated. The register can also be read to determine the current memory location being referenced. This register must not be written to when trace capture is enabled (FtStopped=0, TraceCaptEn=1). If access is attempted, the register is not updated.

| Bit n | umber   |       |            |    | 31 | 30 | 29 2 | 28 27 | 7 26 | 25 | 24 | 23 : | 22 2  | 1 20 | 19   | 18    | L7 1 | 5 15 | 14   | 13   | 12   | 11 1  | 0 9 | 8   | 7   | 6   | 5   | 4    | 3     | 2 : | 1 0 |
|-------|---------|-------|------------|----|----|----|------|-------|------|----|----|------|-------|------|------|-------|------|------|------|------|------|-------|-----|-----|-----|-----|-----|------|-------|-----|-----|
| ID    |         |       |            |    |    |    |      |       |      |    |    |      |       |      |      |       |      |      |      |      |      |       | Α   | . A | Α   | Α   | Α   | Α    | Α /   | 4 / | A A |
| Rese  | t 0x000 | 00000 |            |    | 0  | 0  | 0    | 0 0   | 0    | 0  | 0  | 0    | 0 0   | 0    | 0    | 0     | 0 (  | 0    | 0    | 0    | 0    | 0 (   | 0   | 0   | 0   | 0   | 0   | 0    | 0 (   | ) ( | 0 0 |
| ID    |         |       |            |    |    |    |      |       |      |    |    |      |       |      |      |       |      |      |      |      |      |       |     |     |     |     |     |      |       |     |     |
| Α     | RW      | RAM_R | READ_POINT | ER |    |    |      |       |      |    | :  | Set  | s the | rea  | d pc | ointe | r us | ed t | o re | ad e | entr | ies f | rom | the | Tra | ice | RAN | Λ ον | ver t | he  | APB |
|       |         |       |            |    |    |    |      |       |      |    | i  | nte  | rfac  | e.   |      |       |      |      |      |      |      |       |     |     |     |     |     |      |       |     |     |

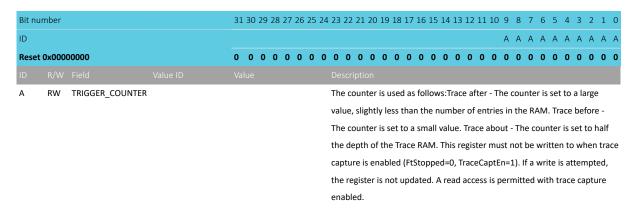


#### 10.7.3.1.5 RWP

Address offset: 0x18

ETB RAM Write Pointer Register

The RAM Write Pointer Register sets the write pointer used to write entries from the CoreSight bus into Trace RAM. During trace capture the pointer increments when the DataValid flag is asserted by the Formatter. When this register increments from its maximum value back to zero, the Full flag is set. This register can also be written to over APB to set the pointer for write accesses carried out through the APB interface. This register must not be written to when trace capture is enabled (FtStopped=0, TraceCaptEn=1). If access is attempted, the register is not updated. The register can also be read to determine the current memory location being referenced. It is recommended that addresses are 128-bit aligned when the formatter is used in normal or continuous modes.

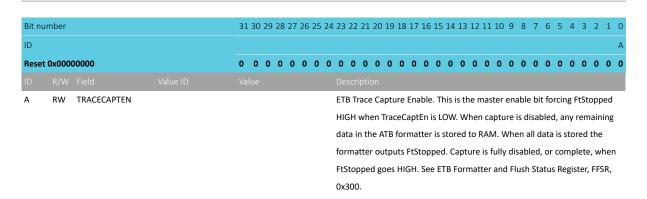

| Bit n | umber   |          |           | 31 | 30 2 | 9 28 | 8 27 | 7 26 | 25 | 24 | 23  | 22    | 21 2 | 20 1 | 9 1 | 8 17 | 16  | 15   | 14  | 13   | 12 | 11 1  | .0 9 | 8    | 7    | 6   | 5   | 4    | 3    | 2   | 1 0 |
|-------|---------|----------|-----------|----|------|------|------|------|----|----|-----|-------|------|------|-----|------|-----|------|-----|------|----|-------|------|------|------|-----|-----|------|------|-----|-----|
| ID    |         |          |           |    |      |      |      |      |    |    |     |       |      |      |     |      |     |      |     |      |    |       | А    | A    | Α    | Α   | Α   | Α    | Α    | Α   | А А |
| Rese  | t 0x000 | 00000    |           | 0  | 0 0  | 0    | 0    | 0    | 0  | 0  | 0   | 0     | 0    | 0 (  | 0 0 | 0    | 0   | 0    | 0   | 0    | 0  | 0 (   | 0 0  | 0    | 0    | 0   | 0   | 0    | 0    | 0   | 0 0 |
| ID    |         |          |           |    |      |      |      |      |    |    |     |       |      |      |     |      |     |      |     |      |    |       |      |      |      |     |     |      |      |     |     |
| Α     | RW      | RAM_WRIT | E_POINTER |    |      |      |      |      |    |    | Set | ts th | ne w | rite | poi | nter | use | ed t | o w | rite | en | tries | fro  | m th | ne C | ore | Sig | ht b | us i | nto | the |
|       |         |          |           |    |      |      |      |      |    |    | Tra | ice f | RAN  | 1.   |     |      |     |      |     |      |    |       |      |      |      |     |     |      |      |     |     |

#### 10.7.3.1.6 TRG

Address offset: 0x1C

**ETB Trigger Counter Register** 

The Trigger Counter Register disables write access to the Trace RAM by stopping the Formatter after a defined number of words have been stored following the trigger event. The number of 32-bit words written into the Trace RAM following the trigger event is equal to the value stored in this register+1.

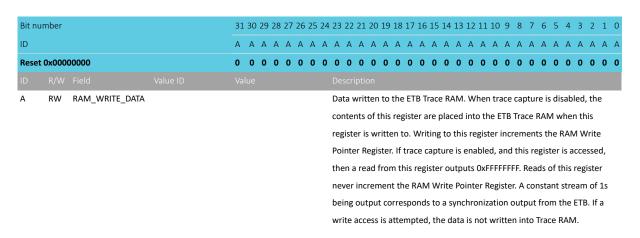



#### 10.7.3.1.7 CTL

Address offset: 0x20 ETB Control Register

This register controls trace capture by the ETB.



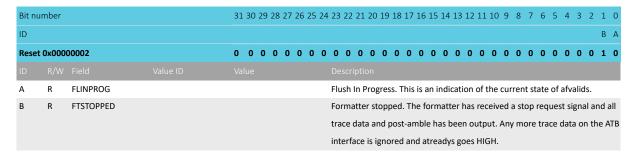



#### 10.7.3.1.8 RWD

Address offset: 0x24

ETB RAM Write Data Register

Data written to the ETB Trace RAM.




#### 10.7.3.1.9 FFSR

Address offset: 0x300

ETB Formatter and Flush Status Register

This register indicates the implemented Trigger Counter multipliers and other supported features of the trigger system.



#### 10.7.3.1.10 FFCR

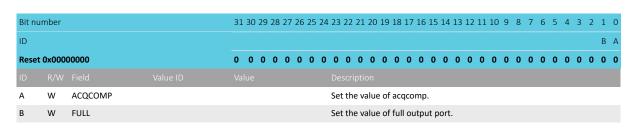
Address offset: 0x304

ETB Formatter and Flush Control Register



This register controls the generation of stop, trigger, and flush events. To disable formatting and put the formatter into bypass mode, bits 1 and 0 must be clear. If both bits are set, then the formatter inserts triggers into the formatted stream. All three flush generating conditions can be enabled together. However, if a second or third flush event is generated then the current flush completes before the next flush is serviced. Flush from flushin takes priority over flush from Trigger, which in turn completes before a manually activated flush. All Trigger indication conditions can be enabled simultaneously although this can cause the appearance of multiple triggers if flush using trigger is also enabled. Both 'Stop On' settings can be enabled, although if flush on trigger, FOnTrig, is set up then none of the flushed data is stored. When the system stops, it returns ATREADY and does not store the accepted data packets. This is to avoid stalling of any other connected devices using a Trace Replicator. If an event in the Formatter and Flush Control Register is required, it must be enabled before the originating event starts. Because requests from flushes and triggers can originate in an asynchronous clock domain, the exact time the component acts on the request cannot be determined with respect to configuring the control. Note - To perform a stop on flush completion through a manually-generated flush request, two write operations to the register are required: one to enable the stop event, if it is not already enabled; one to generate the manual flush.

| Bit nu | mber  |          | 31 | 30 2 | 9 28 | 27 2 | 26 25 | 24 | 23 22  | 2 21  | . 20   | 19   | 18    | 17   | 16    | 15    | 14   | 13   | 12   | 11    | . 10 | 9     | 8    | 7     | 6     | 5     | 4    | 3 2   | 2 1   | . 0  |
|--------|-------|----------|----|------|------|------|-------|----|--------|-------|--------|------|-------|------|-------|-------|------|------|------|-------|------|-------|------|-------|-------|-------|------|-------|-------|------|
| ID     |       |          |    |      |      |      |       |    |        |       |        |      |       |      |       |       |      | J    | 1    |       | Н    | G     | F    |       | Ε     | D     | С    |       | В     | ВА   |
| Reset  | 0x000 | 00000    | 0  | 0 (  | 0    | 0    | 0 0   | 0  | 0 0    | 0     | 0      | 0    | 0     | 0    | 0     | 0     | 0    | 0    | 0    | 0     | 0    | 0     | 0    | 0     | 0     | 0     | 0    | 0 (   | 0     | 0    |
| ID     |       |          |    |      |      |      |       |    |        |       |        |      |       |      |       |       |      |      |      |       |      |       |      |       |       |       |      |       |       |      |
| Α      | RW    | ENFTC    |    |      |      |      |       |    | Do no  | ot e  | mbe    | ed ' | Trig  | ger  | s in  | to t  | he   | for  | ma   | tte   | d st | rea   | m. · | Trac  | e d   | isat  | ole  | cycle | s ar  | nd   |
|        |       |          |    |      |      |      |       |    | trigge | ers a | are i  | ind  | icat  | ed   | by 1  | RA    | CEC  | CTL  | , w  | her   | e fi | ttec  | l. C | an (  | only  | be be | cha  | ange  | d w   | hen  |
|        |       |          |    |      |      |      |       |    | FtSto  | рре   | d is   | Н    | GH.   | Th   | is b  | it is | cle  | ar   | on   | res   | et.  |       |      |       |       |       |      |       |       |      |
| В      | RW    | ENFCONT  |    |      |      |      |       |    | Conti  | inuc  | us i   | mo   | de i  | n t  | he E  | ТВ    | COI  | rres | ро   | nds   | to   | nor   | ma   | ıl m  | ode   | wi    | th t | he    |       |      |
|        |       |          |    |      |      |      |       |    | embe   | eddi  | ng d   | of t | rigg  | ers  | . Ca  | n c   | nly  | be   | ch   | ang   | ged  | wh    | en   | FtSt  | op    | oed   | is ŀ | HIGH  | . Th  | iis  |
|        |       |          |    |      |      |      |       |    | bit is | clea  | ar o   | n re | eset  |      |       |       |      |      |      |       |      |       |      |       |       |       |      |       |       |      |
| С      | RW    | FONFLIN  |    |      |      |      |       |    | Set th | nis k | oit to | о е  | nab   | le ı | ıse   | of t  | he   | flus | shir | ı cc  | nn   | ecti  | on.  | Thi   | s is  | cle   | ar c | n re  | set.  |      |
| D      | RW    | FONTRIG  |    |      |      |      |       |    | Gene   | rate  | e flu  | ısh  | usir  | ng 1 | rigg  | ger   | eve  | nt.  | Se   | t th  | is b | it t  | o ca | ause  | e a t | flus  | h of | f dat | a in  | the  |
|        |       |          |    |      |      |      |       |    | syste  | m v   | her    | n a  | Trig  | gei  | r Ev  | ent   | OC   | cur  | s. T | his   | bit  | is c  | lea  | ror   | res   | set.  | ΑТ   | rigge | er Ev | vent |
|        |       |          |    |      |      |      |       |    | is def | fine  | d as   | wl   | hen   | the  | e Tri | gge   | er c | our  | nter | r re  | ach  | es z  | erc  | ) (w  | her   | e fi  | tte  | d) or | in t  | the  |
|        |       |          |    |      |      |      |       |    | case   | of t  | he t   | rig  | ger   | cou  | ınte  | r b   | ein  | g ze | ero  | (or   | no   | t fit | ted  | ), w  | her   | n tri | igin | is H  | GH.   |      |
| E      | RW    | FONMAN   |    |      |      |      |       |    | Settir | ng tl | his b  | oit  | caus  | ses  | a fl  | ush   | to   | be   | gei  | ner   | ate  | d. T  | his  | is c  | leai  | red   | wh   | en tl | nis f | lush |
|        |       |          |    |      |      |      |       |    | has b  | een   | ser    | rvic | ed.   | Th   | is bi | t is  | cle  | ar   | on   | res   | et.  |       |      |       |       |       |      |       |       |      |
| F      | RW    | TRIGIN   |    |      |      |      |       |    | Indica | ate   | a tri  | igg  | er o  | n t  | rigir | be    | eing | as   | ser  | ted   | l.   |       |      |       |       |       |      |       |       |      |
| G      | RW    | TRIGEVT  |    |      |      |      |       |    | Indica | ate   | a tri  | igg  | er o  | n a  | Trig  | gge   | r Ev | /en  | t.   |       |      |       |      |       |       |       |      |       |       |      |
| Н      | RW    | TRIGFL   |    |      |      |      |       |    | Indica | ates  | a tı   | rigg | ger ( | on   | Flus  | h c   | om   | ple  | tio  | n (a  | fre  | ady   | s b  | eing  | re    | turr  | ned  | ).    |       |      |
| I      | RW    | STOPFL   |    |      |      |      |       |    | This f | forc  | es tl  | he   | FIFC  | ) to | dra   | ain   | off  | any  | y pa | art-  | con  | nple  | etec | d pa  | icke  | ts.   | Set  | ting  | this  | bit  |
|        |       |          |    |      |      |      |       |    | enab   | les 1 | this   | fur  | nctio | on l | but   | thi   | sis  | cle  | ar c | on r  | ese  | t (d  | lisa | ble   | d).   |       |      |       |       |      |
| J      | RW    | STOPTRIG |    |      |      |      |       |    | Stop   | the   | fori   | ma   | tter  | aft  | er a  | Tr    | igge | er E | ver  | nt is | s ob | ser   | vec  | l. Re | eset  | to    | disa | able  | b     |      |
|        |       |          |    |      |      |      |       |    | (zero  | ).    |        |      |       |      |       |       |      |      |      |       |      |       |      |       |       |       |      |       |       |      |
|        |       |          |    |      |      |      |       |    |        |       |        |      |       |      |       |       |      |      |      |       |      |       |      |       |       |       |      |       |       |      |

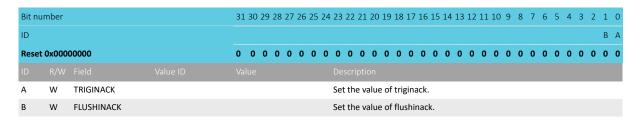

#### 10.7.3.1.11 ITMISCOP0

Address offset: 0xEE0

Integration Test Miscellaneous Output Register 0

The Integration Test Miscellaneous Output Register 0 controls the values of some outputs from the ETB.



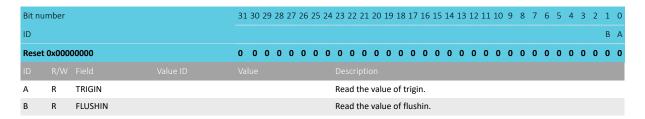



#### 10.7.3.1.12 ITTRFLINACK

Address offset: 0xEE4

Integration Test Trigger In and Flush In Acknowledge Register

The Integration Test Trigger In and Flush In Acknowledge Register enables control of the triginack and flushinack outputs from the ETB.



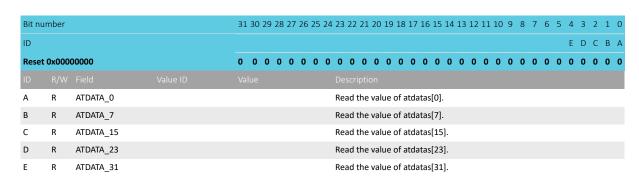

#### 10.7.3.1.13 ITTRFLIN

Address offset: 0xEE8

Integration Test Trigger In and Flush In Register

The Integration Test Trigger In and Flush In Register contains the values of the flushin and trigin inputs to the ETB.



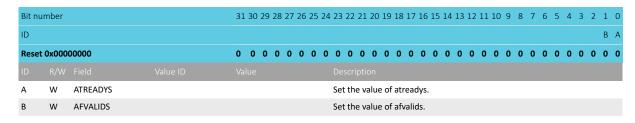

### 10.7.3.1.14 ITATBDATA0

Address offset: 0xEEC

Integration Test ATB Data Register 0

The Integration Test ATB Data Register 0 contains the value of the atdatas inputs to the ETB. The values are only valid when atvalids is HIGH.



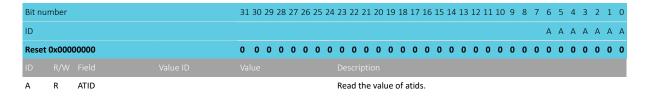



#### 10.7.3.1.15 ITATBCTR2

Address offset: 0xEF0

Integration Test ATB Control Register 2

The Integration Test ATB Control Register 2 enables control of the atreadys and afvalids outputs of the ETB.



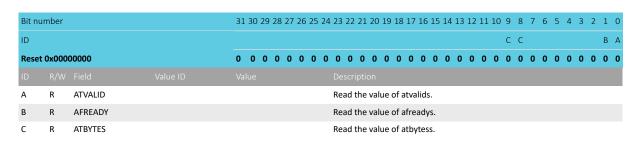

#### 10.7.3.1.16 ITATBCTR1

Address offset: 0xEF4

Integration Test ATB Control Register 1

The Integration Test ATB Control Register 1 contains the value of the atids input to the ETB. This is only valid when atvalids is HIGH.



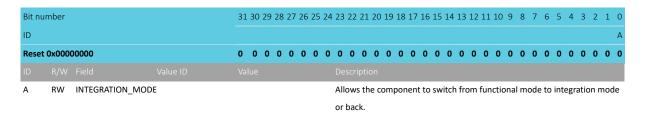

#### 10.7.3.1.17 ITATBCTR0

Address offset: 0xEF8

Integration Test ATB Control Register 0

The Integration Test ATB Control Register 0 captures the values of the atvalids, afreadys, and atbytess inputs to the ETB. To ensure the integration registers work correctly in a system, the value of atbytess is only valid when atvalids, bit [0], is HIGH.



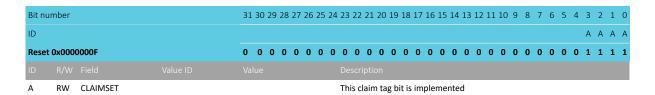



#### 10.7.3.1.18 ITCTRL

Address offset: 0xF00

Integration Mode Control Register

This register is used to enable topology detection. For more information see the CoreSight Architecture Specification. This register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purpose of integration testing and topology solving. Note: When a device has been in integration mode, it might not function with the original behavior. After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that are affected by the integration or topology detection.

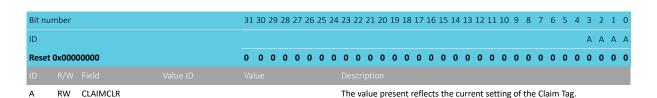



#### 10.7.3.1.19 CLAIMSET

Address offset: 0xFA0

Claim Tag Set Register

This is used in conjunction with Claim Tag Clear Register, CLAIMCLR. This register forms one half of the Claim Tag value. This location allows individual bits to be set, write, and returns the number of bits that can be set, read.




### 10.7.3.1.20 CLAIMCLR

Address offset: 0xFA4

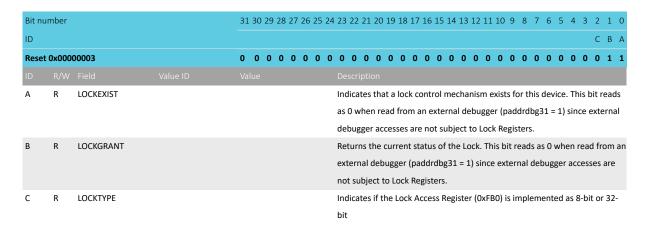
Claim Tag Clear Register

This register is used in conjunction with Claim Tag Set Register, CLAIMSET. This register forms one half of the Claim Tag value. This location enables individual bits to be cleared, write, and returns the current Claim Tag value, read.



10.7.3.1.21 LAR

Address offset: 0xFB0 Lock Access Register


This is used to enable write access to device registers. External accesses from a debugger (paddrdbg31 = 1) are not subject to the Lock Registers. A debugger does not have to unlock the component in order to write and modify the registers in the component.

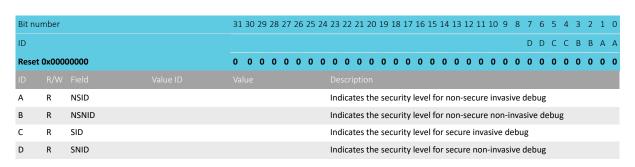
| Bit nu | umber   |          | 31 | 30 | 29 2 | 8 2 | 27 20 | 5 25 | 5 24 | - 23 | 22   | 21   | 20 : | 19 1 | 8 1  | .7 16 | 5 15 | 5 14 | 13  | 12   | 11    | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2   | 1    |
|--------|---------|----------|----|----|------|-----|-------|------|------|------|------|------|------|------|------|-------|------|------|-----|------|-------|------|------|------|------|------|------|------|------|-----|------|
| ID     |         |          | А  | Α  | A    | Δ , | Д Д   | A    | Α    | Α    | Α    | Α    | Α    | A A  | Δ /  | 4 Α   | . Α  | Α    | Α   | Α    | Α     | Α    | Α    | Α    | Α    | Α    | Α    | Α    | Α    | Α   | Α    |
| Rese   | t 0x000 | 000000   | 0  | 0  | 0 (  | 0 ( | 0 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0 (  | ) (  | 0 0   | 0    | 0    | 0   | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| ID     |         |          |    |    |      |     |       |      |      |      |      |      |      |      |      |       |      |      |     |      |       |      |      |      |      |      |      |      |      |     |      |
| Α      | W       | ACCESS_W |    |    |      |     |       |      |      | Αv   | writ | e of | 0x0  | C5A( | CCE  | 55 €  | ena  | bles | fur | the  | wı    | rite | aco  | ces  | to   | thi  | s de | evic | e. A | \ w | rite |
|        |         |          |    |    |      |     |       |      |      | of   | any  | val  | ue d | othe | r th | nan ( | ЭхС  | 5AC  | CES | 55 w | ill ł | nave | e th | ne a | ffec | ct o | f re | emo  | vin  | g w | rite |
|        |         |          |    |    |      |     |       |      |      | aco  | cess | i.   |      |      |      |       |      |      |     |      |       |      |      |      |      |      |      |      |      |     |      |

#### 10.7.3.1.22 LSR

Address offset: 0xFB4 Lock Status Register

This indicates the status of the Lock control mechanism. This lock prevents accidental writes by code under debug. When locked, write access is blocked to all registers, except the Lock Access Register. External accesses from a debugger (paddrdbg31 = 1) are not subject to the Lock Registers. This register reads as 0 when read from an external debugger (paddrdbg31 = 1).



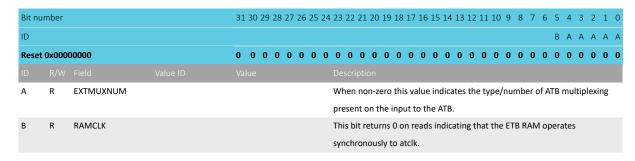

#### 10.7.3.1.23 AUTHSTATUS

Address offset: 0xFB8

**Authentication Status Register** 

Reports what functionality is currently permitted by the authentication interface.



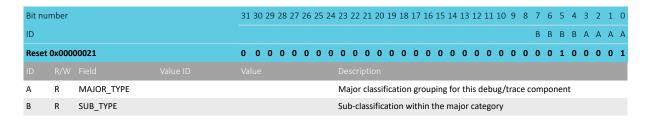



#### 10.7.3.1.24 DEVID

Address offset: 0xFC8

**Device Configuration Register** 

This register indicates the capabilities of the ETB.




#### 10.7.3.1.25 DEVTYPE

Address offset: 0xFCC

Device Type Identifier Register

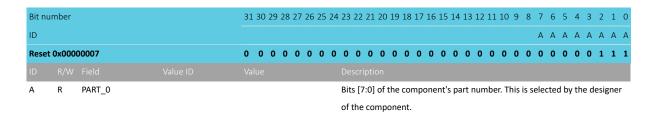
It provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.



#### 10.7.3.1.26 PERIPHID4

Address offset: 0xFD0
Peripheral ID4 Register

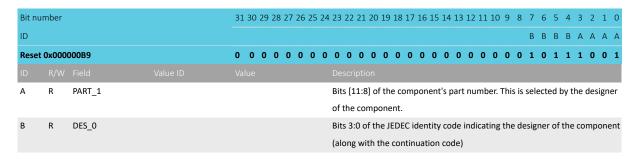
Part of the set of Peripheral Identification registers. Contains part of the designer identity and the memory footprint indicator.




| Bit nui          | mber |       |  | 31 3                                                                         | 30 29 2 | 28 27 | 7 26 2 | 25 24 | 1 23                                                                     | 22 2                                                                   | 21 20 | 0 19 | 9 18 | 17 | 16 | 15 | 14 1 | l3 1 | .2 13 | l 10 | 9 | 8 | 7 6 | 5 5 | 5 4 | - 3 | 2 | 1 | 0 |
|------------------|------|-------|--|------------------------------------------------------------------------------|---------|-------|--------|-------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-------|------|------|----|----|----|------|------|-------|------|---|---|-----|-----|-----|-----|---|---|---|
| ID               |      |       |  |                                                                              |         |       |        |       |                                                                          |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   | ВЕ  | 3 E | 3 B | Α   | Α | Α | Α |
| Reset 0x00000004 |      |       |  | 0 (                                                                          | 0 0     | 0 0   | 0      | 0 0   | 0                                                                        | 0 (                                                                    | 0 0   | 0    | 0    | 0  | 0  | 0  | 0    | 0 (  | 0 0   | 0    | 0 | 0 | 0 ( | ) ( | 0   | 0   | 1 | 0 | 0 |
| ID               |      |       |  |                                                                              |         |       |        |       |                                                                          | Description                                                            |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
| Α                | R    | DES_2 |  |                                                                              |         |       |        |       | JEDEC continuation code indicating the designer of the component (along  |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
|                  |      |       |  | with the identity code)                                                      |         |       |        |       |                                                                          |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
| В                | R    | SIZE  |  | This is a 4-bit value that indicates the total contiguous size of the memory |         |       |        |       |                                                                          |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
| wind             |      |       |  |                                                                              |         |       |        |       |                                                                          | window used by this component in powers of 2 from the standard 4KB. If |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
|                  |      |       |  |                                                                              |         |       |        |       | a component only requires the standard 4KB then this should read as 0x0, |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |
|                  |      |       |  |                                                                              |         |       |        |       | 4KB only, for 8KB set to 0x1, 16KB == 0x2, 32KB == 0x3, and so on.       |                                                                        |       |      |      |    |    |    |      |      |       |      |   |   |     |     |     |     |   |   |   |

#### 10.7.3.1.27 PERIPHIDO

Address offset: 0xFE0
Peripheral ID0 Register

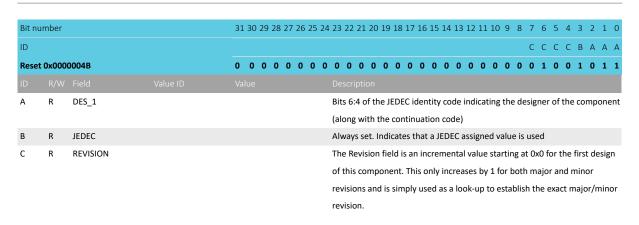

Part of the set of Peripheral Identification registers. Contains part of the designer specific part number.



#### 10.7.3.1.28 PERIPHID1

Address offset: 0xFE4
Peripheral ID1 Register

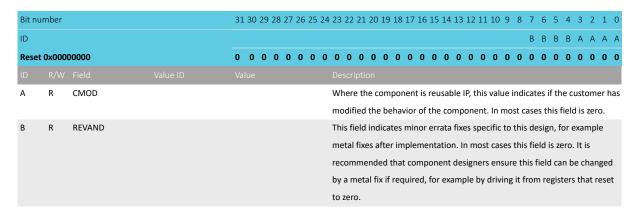
Part of the set of Peripheral Identification registers. Contains part of the designer specific part number and part of the designer identity.




#### 10.7.3.1.29 PERIPHID2

Address offset: 0xFE8
Peripheral ID2 Register

Part of the set of Peripheral Identification registers. Contains part of the designer identity and the product revision.






### 10.7.3.1.30 PERIPHID3

Address offset: 0xFEC
Peripheral ID3 Register

Part of the set of Peripheral Identification registers. Contains the RevAnd and Customer Modified fields.



### 10.7.3.1.31 COMPIDO

Address offset: 0xFF0
Component ID0 Register

A component identification register, that indicates that the identification registers are present.

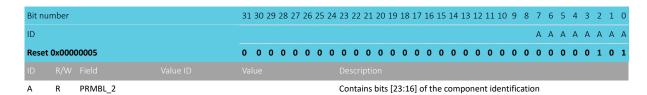


## 10.7.3.1.32 COMPID1

Address offset: 0xFF4
Component ID1 Register

A component identification register, that indicates that the identification registers are present. This register also indicates the component class.



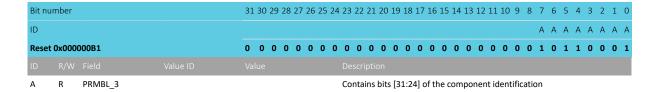

| Bit nui | mber  |         | 31 3 | 30 29 | 28 2 | 7 26 | 25 | 24 2 | 23 2 | 2 2   | 1 2   | 0 19  | 18    | 17  | 16 1 | 15 1 | .4 1 | 3 12  | 2 11  | 10    | 9    | 8     | 7 6  | 5 5 | 5 4 | 3    | 2 | 1 0 |
|---------|-------|---------|------|-------|------|------|----|------|------|-------|-------|-------|-------|-----|------|------|------|-------|-------|-------|------|-------|------|-----|-----|------|---|-----|
| ID      |       |         |      |       |      |      |    |      |      |       |       |       |       |     |      |      |      |       |       |       |      |       | ВЕ   | 3 E | 3 B | Α    | Α | А А |
| Reset   | 0x000 | 00090   | 0    | 0 0   | 0 0  | 0    | 0  | 0    | 0 (  | 0 (   | 0 0   | 0     | 0     | 0   | 0    | 0    | 0 (  | 0 0   | 0     | 0     | 0    | 0     | 1 (  | ) ( | ) 1 | 0    | 0 | 0 0 |
| ID      |       |         |      |       |      |      |    |      |      |       |       |       |       |     |      |      |      |       |       |       |      |       |      |     |     |      |   |     |
| Α       | R     | PRMBL_1 |      |       |      |      |    | C    | Con  | tain  | ıs bi | ts [: | 11:8] | of  | the  | con  | npo  | nen   | t ide | entif | icat | ion   |      |     |     |      |   |     |
| В       | R     | CLASS   |      |       |      |      |    | C    | Clas | s of  | the   | co    | mpo   | nen | t.E. | . g. | RON  | ∕l ta | ble,  | Cor   | eSię | ght o | om   | por | ent | etc. |   |     |
|         |       |         |      |       |      |      |    | C    | Con  | stitı | utes  | bit   | s [15 | :12 | ] of | the  | COI  | npo   | nen   | t ide | enti | ficat | ion. |     |     |      |   |     |

#### 10.7.3.1.33 COMPID2

Address offset: 0xFF8

Component ID2 Register

A component identification register, that indicates that the identification registers are present.




## 10.7.3.1.34 COMPID3

Address offset: 0xFFC

Component ID3 Register

A component identification register, that indicates that the identification registers are present.



# 10.7.4 ETM — Embedded trace macrocell

The ARM embedded trace macorcell implements instruction, data and event tracing.

This document only provides a register-level description of this ARM component. See the Arm<sup>®</sup> Embedded Trace Macrocell Architecture Specification for more details

## 10.7.4.1 Registers

## **Instances**

| Instance | Base address | TrustZone | •   |     | Split acces | s Description |
|----------|--------------|-----------|-----|-----|-------------|---------------|
|          |              | Мар       | Att | DMA |             |               |
| FTM      | 0vE00/11000  | HE        | NS  | NΔ  | No          | FTM           |

## **Register overview**

| Register   | Offset | TZ | Description             |
|------------|--------|----|-------------------------|
| TRCPRGCTLR | 0x004  |    | Enables the trace unit. |





| Register      | Offset | TZ | Description                                                                                          |
|---------------|--------|----|------------------------------------------------------------------------------------------------------|
| TRCPROCSELR   | 0x008  |    | Controls which PE to trace.                                                                          |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Before writing to this register, ensure that TRCSTATR.IDLE == 1 so that the trace unit can           |
|               |        |    | synchronize with the chosen PE.                                                                      |
|               |        |    | Implemented if TRCIDR3.NUMPROC is greater than zero.                                                 |
| TRCSTATR      | 0x00C  |    | Idle status bit                                                                                      |
| TRCCONFIGR    | 0x010  |    | Controls the tracing options                                                                         |
|               |        |    | This register must always be programmed as part of trace unit initialization.                        |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
| TRCEVENTCTLOR | 0x20   |    | Controls the tracing of arbitrary events.                                                            |
|               |        |    | If the selected event occurs a trace element is generated in the trace stream according to the       |
|               |        |    | settings in TRCEVENTCTL1R.DATAEN and TRCEVENTCTL1R.INSTEN.                                           |
| TRCEVENTCTL1R | 0x24   |    | Controls the behavior of the events that TRCEVENTCTLOR selects.                                      |
|               |        |    | This register must always be programmed as part of trace unit initialization.                        |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
| TRCSTALLCTLR  | 0x2C   |    | Enables trace unit functionality that prevents trace unit buffer overflows.                          |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Must be programmed if TRCIDR3.STALLCTL == 1.                                                         |
| TRCTSCTLR     | 0x30   |    | Controls the insertion of global timestamps in the trace streams.                                    |
|               |        |    | When the selected event is triggered, the trace unit inserts a global timestamp into the trace       |
|               |        |    | streams.                                                                                             |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Must be programmed if TRCCONFIGR.TS == 1.                                                            |
| TRCSYNCPR     | 0x34   |    | Controls how often trace synchronization requests occur.                                             |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | If writes are permitted then the register must be programmed.                                        |
| TRCCCCTLR     | 0x38   |    | Sets the threshold value for cycle counting.                                                         |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Must be programmed if TRCCONFIGR.CCI==1.                                                             |
| TRCBBCTLR     | 0x3C   |    | Controls which regions in the memory map are enabled to use branch broadcasting.                     |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Must be programmed if TRCCONFIGR.BB == 1.                                                            |
| TRCTRACEIDR   | 0x40   |    | Sets the trace ID for instruction trace. If data trace is enabled then it also sets the trace ID for |
|               |        |    | data trace, to (trace ID for instruction trace) + 1.                                                 |
|               |        |    | This register must always be programmed as part of trace unit initialization.                        |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
| TRCQCTLR      | 0x44   |    | Controls when Q elements are enabled.                                                                |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | This register must be programmed if it is implemented and TRCCONFIGR.QE is set to any                |
|               |        |    | value other than 0b00.                                                                               |
| TRCVICTLR     | 0x080  |    | Controls instruction trace filtering.                                                                |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                      |
|               |        |    | Only returns stable data when TRCSTATR.PMSTABLE == 1.                                                |
|               |        |    | Must be programmed, particularly to set the value of the SSSTATUS bit, which sets the state          |
|               |        |    | of the start/stop logic.                                                                             |
|               |        |    |                                                                                                      |



| Register       | Offset TZ | Description                                                                                      |
|----------------|-----------|--------------------------------------------------------------------------------------------------|
| TRCVIIECTLR    | 0x084     | ViewInst exclude control.                                                                        |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | This register must be programmed when one or more address comparators are implemented.           |
| TRCVISSCTLR    | 0x088     | Use this to set, or read, the single address comparators that control the ViewInst start/stop    |
|                |           | logic. The start/stop logic is active for an instruction which causes a start and remains active |
|                |           | up to and including an instruction which causes a stop, and then the start/stop logic becomes    |
|                |           | inactive.                                                                                        |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | If implemented then this register must be programmed.                                            |
| TRCVIPCSSCTLR  | 0x08C     | Use this to set, or read, which PE comparator inputs can control the ViewInst start/stop logic.  |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | If implemented then this register must be programmed.                                            |
| TRCVDCTLR      | 0x0A0     | Controls data trace filtering.                                                                   |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | This register must be programmed when data tracing is enabled, that is, when either              |
|                |           | TRCCONFIGR.DA == 1 or TRCCONFIGR.DV == 1.                                                        |
| TRCVDSACCTLR   | 0x0A4     | ViewData include / exclude control.                                                              |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | This register must be programmed when one or more address comparators are implemented.           |
| TRCVDARCCTLR   | 0x0A8     | ViewData include / exclude control.                                                              |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | This register must be programmed when one or more address comparators are implemented.           |
| TRCSEQEVR[n]   | 0x100     | Moves the sequencer state according to programmed events.                                        |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | When the sequencer is used, all sequencer state transitions must be programmed with a valid      |
|                |           | event.                                                                                           |
| TRCSEQRSTEVR   | 0x118     | Moves the sequencer to state 0 when a programmed event occurs.                                   |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | When the sequencer is used, all sequencer state transitions must be programmed with a valid      |
|                |           | event.                                                                                           |
| TRCSEQSTR      | 0x11C     | Use this to set, or read, the sequencer state.                                                   |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | Only returns stable data when TRCSTATR.PMSTABLE == 1.                                            |
|                |           | When the sequencer is used, all sequencer state transitions must be programmed with a valid      |
|                |           | event.                                                                                           |
| TRCEXTINSELR   | 0x120     | Use this to set, or read, which external inputs are resources to the trace unit.                 |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           | Only returns stable data when TRCSTATR.PMSTABLE == 1.                                            |
|                |           | When the sequencer is used, all sequencer state transitions must be programmed with a valid      |
|                |           | event.                                                                                           |
| TRCCNTRLDVR[n] | 0x140     | This sets or returns the reload count value for counter n.                                       |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
| TRCCNTCTLR[n]  | 0x150     | Controls the operation of counter n.                                                             |
|                |           | Might ignore writes when the trace unit is enabled or not idle.                                  |
|                |           |                                                                                                  |



| Register      | Offset | TZ | Description                                                                                      |
|---------------|--------|----|--------------------------------------------------------------------------------------------------|
| TRCCNTVR[n]   | 0x160  |    | This sets or returns the value of counter n.                                                     |
|               |        |    | The count value is only stable when TRCSTATR.PMSTABLE == 1.                                      |
|               |        |    | If software uses counter n then it must write to this register to set the initial counter value. |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                  |
| TRCRSCTLR[n]  | 0x200  |    | Controls the selection of the resources in the trace unit.                                       |
|               |        |    | Might ignore writes when the trace unit is enabled or not idle.                                  |
|               |        |    | If software selects a non-implemented resource then CONSTRAINED UNPREDICTABLE                    |
|               |        |    | behavior of the resource selector occurs, so the resource selector might fire unexpectedly or    |
|               |        |    | might not fire. Reads of the TRCRSCTLRn might return UNKNOWN.                                    |
| TRCSSCCR0     | 0x280  |    | Controls the single-shot comparator.                                                             |
| TRCSSCSR0     | 0x2A0  |    | Indicates the status of the single-shot comparators. TRCSSCSR0 is sensitive toinstruction        |
|               |        |    | addresses.                                                                                       |
| TRCSSPCICR0   | 0x2C0  |    | Selects the processor comparator inputs for Single-shot control.                                 |
| TRCPDCR       | 0x310  |    | Controls the single-shot comparator.                                                             |
| TRCPDSR       | 0x314  |    | Indicates the power down status of the ETM.                                                      |
| TRCITATBIDR   | 0xEE4  |    | Sets the state of output pins.                                                                   |
| TRCITIATBINR  | 0xEF4  |    | Reads the state of the input pins.                                                               |
| TRCITIATBOUTR | 0xEFC  |    | Sets the state of the output pins.                                                               |
| TRCITCTRL     | 0xF00  |    | Enables topology detection or integration testing, by putting ETM-M33 into integration mode.     |
| TRCCLAIMSET   | 0xFA0  |    | Sets bits in the claim tag and determines the number of claim tag bits implemented.              |
| TRCCLAIMCLR   | 0xFA4  |    | Clears bits in the claim tag and determines the current value of the claim tag.                  |
| TRCAUTHSTATUS | 0xFB8  |    | Indicates the current level of tracing permitted by the system                                   |
| TRCDEVARCH    | 0xFBC  |    | The TRCDEVARCH identifies ETM-M33 as an ETMv4.2 component                                        |
| TRCDEVTYPE    | 0xFCC  |    | Controls the single-shot comparator.                                                             |
| TRCPIDR[n]    | 0xFD0  |    | Coresight peripheral identification registers.                                                   |
| TRCCIDR[n]    | 0xFF0  |    | Coresight component identification registers.                                                    |
|               |        |    |                                                                                                  |

## 10.7.4.1.1 TRCPRGCTLR

Address offset: 0x004 Enables the trace unit.

| Bit n | umber   |       |          | 31 30 | 29 2 | 28 27 | 26 | 25 2 | 24 2 | 3 22 | 2 21 | L 20  | 19     | 18   | L7 1 | 6 1  | 5 14   | 13  | 12   | 11 1 | 0 9   | 8    | 7    | 6    | 5   | 4    | 3 2  | 1    | 0 |
|-------|---------|-------|----------|-------|------|-------|----|------|------|------|------|-------|--------|------|------|------|--------|-----|------|------|-------|------|------|------|-----|------|------|------|---|
| ID    |         |       |          |       |      |       |    |      |      |      |      |       |        |      |      |      |        |     |      |      |       |      |      |      |     |      |      |      | Α |
| Rese  | t 0x000 | 00000 |          | 0 0   | 0    | 0 0   | 0  | 0    | 0 (  | 0    | 0    | 0     | 0      | 0    | 0 (  | 0    | 0      | 0   | 0    | 0 (  | 0 0   | 0    | 0    | 0    | 0   | 0 (  | 0    | 0    | 0 |
| ID    |         |       |          |       |      |       |    |      |      |      |      |       |        |      |      |      |        |     |      |      |       |      |      |      |     |      |      |      |   |
| Α     | RW      | EN    |          |       |      |       |    |      | Т    | race | un   | it er | nabl   | e bi | t    |      |        |     |      |      |       |      |      |      |     |      |      |      |   |
|       |         |       | Disabled | 0     |      |       |    |      | Т    | he t | race | e ur  | nit is | dis  | ble  | d. A | ll tra | ace | resc | urce | es ar | e in | acti | ve a | and | no t | race | e is |   |
|       |         |       |          |       |      |       |    |      | g    | ene  | rate | d.    |        |      |      |      |        |     |      |      |       |      |      |      |     |      |      |      |   |
|       |         |       | Enabled  | 1     |      |       |    |      | Т    | he t | race | e ur  | nit is | ena  | ble  | d.   |        |     |      |      |       |      |      |      |     |      |      |      |   |

## 10.7.4.1.2 TRCPROCSELR

Address offset: 0x008

Controls which PE to trace.

Might ignore writes when the trace unit is enabled or not idle.

Before writing to this register, ensure that TRCSTATR.IDLE == 1 so that the trace unit can synchronize with the chosen PE.

Implemented if TRCIDR3.NUMPROC is greater than zero.

473 NORDIC

| ID     | R/W Field  | Value ID | Value                | Description                                                      |
|--------|------------|----------|----------------------|------------------------------------------------------------------|
| Reset  | 0x00000000 |          | 0 0 0 0 0 0 0        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID     |            |          |                      | АААА                                                             |
| Bit nu | ımber      |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |

## 10.7.4.1.3 TRCSTATR

Address offset: 0x00C

Idle status bit

| Bit nu | mber  |          |           | 31 | 30 29 | 28   | 27 2 | 26 2 | 25 24 | 23    | 22    | 21    | 20 :  | 19 : | 18 1  | 17 1 | 16 1  | .5 1 | 4 :  | 13 : | 12 1 | 111 | .0 9 | ) | 8 . | 7 | 6 5 | 5 4 | 4 3 | 2 | 1 | 0   |
|--------|-------|----------|-----------|----|-------|------|------|------|-------|-------|-------|-------|-------|------|-------|------|-------|------|------|------|------|-----|------|---|-----|---|-----|-----|-----|---|---|-----|
| ID     |       |          |           |    |       |      |      |      |       |       |       |       |       |      |       |      |       |      |      |      |      |     |      |   |     |   |     |     |     |   | В | 3 A |
| Reset  | 0x000 | 00000    |           | 0  | 0 0   | 0    | 0    | 0 (  | 0 0   | 0     | 0     | 0     | 0     | 0    | 0     | 0    | 0     | 0    | 0    | 0    | 0    | 0   | 0 (  | ) | 0 ( | ס | 0 ( | ) ( | 0 0 | 0 | 0 | 0   |
| ID     |       |          |           |    |       |      |      |      |       |       |       |       |       |      |       |      |       |      |      |      |      |     |      |   |     |   |     |     |     |   |   |     |
| Α      | RW    | IDLE     |           |    |       |      |      |      |       | Tra   | ace ı | unit  | t ena | able | e bi  | t    |       |      |      |      |      |     |      |   |     |   |     |     |     |   |   |     |
|        |       |          | NotIdle   | 0  |       |      |      |      |       | Th    | e tra | ace   | unit  | t is | not   | idl  | e.    |      |      |      |      |     |      |   |     |   |     |     |     |   |   |     |
|        |       |          | Idle      | 1  |       |      |      |      |       | Th    | e tra | ace   | unit  | t is | idle  |      |       |      |      |      |      |     |      |   |     |   |     |     |     |   |   |     |
| В      | RW    | PMSTABLE |           |    |       |      |      |      |       |       | ogra  | mn    | ners  | ' m  | ode   | l st | abl   | e b  | it   |      |      |     |      |   |     |   |     |     |     |   |   |     |
|        |       |          | NotStable | 0  |       |      |      |      |       | Th    | e pr  | ogr   | amr   | nei  | rs' n | nod  | lel i | s no | ot s | tab  | le.  |     |      |   |     |   |     |     |     |   |   |     |
|        |       |          | Stable    | 1  | Th    | e pr | ogr  | amr  | nei   | rs' n | nod   | lel i | s st  | abl  | e.    |      |       |      |      |      |      |     |      |   |     |   |     |     |     |   |   |     |

# 10.7.4.1.4 TRCCONFIGR

Address offset: 0x010

Controls the tracing options

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.

| Bit nu | umber   |               |          | 31 30 29 28 27 26 25 24 2 |     |      |      |       |     |        |      | 21 2   | 0 1   | 19 1   | 8 1  | 7 1   | 6 1   | 5 14  | 13    | 12    | 11   | 10    | 9     | 8    | 7 (  | 5 5  | 4    | 3     | 2    | 1    | ) |
|--------|---------|---------------|----------|---------------------------|-----|------|------|-------|-----|--------|------|--------|-------|--------|------|-------|-------|-------|-------|-------|------|-------|-------|------|------|------|------|-------|------|------|---|
| ID     |         |               |          |                           |     |      |      |       |     |        |      |        |       |        | N    | Λ L   | . K   | J     | J     | -1    | Н    | G     | G     | G    | FI   |      | D    | С     | В    | Α    |   |
| Rese   | t 0x000 | 00000         |          | 0                         | 0 0 | 0    | 0    | 0 (   | 0   | 0      | 0    | 0 (    | )     | 0 0    | ) (  | ) (   | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0    | 0 (  | 0    | 0    | 0     | 0    | 0    | ) |
| ID     |         |               |          |                           |     |      |      |       |     |        |      |        |       |        |      |       |       |       |       |       |      |       |       |      |      |      |      |       |      |      |   |
| Α      | RW      | LOADASPOINST  |          |                           |     |      |      |       |     | Inst   | truc | ction  | PC    | ) loa  | d f  | eld   | . Th  | is fi | eld   | con   | trol | ls w  | hetl  | her  | load | lins | truc | ction | ns a | re   |   |
|        |         |               |          |                           |     |      |      |       |     | trac   | ced  | as P   | 0 i   | nstr   | uct  | ions  | 5.    |       |       |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | No       | 0                         |     |      |      |       |     | Do     | not  | t trac | e I   | oad    | ins  | tru   | ctio  | ns a  | s P   | 0 in: | stru | ıctic | ns.   |      |      |      |      |       |      |      |   |
|        |         |               | Yes      | 1                         |     |      |      |       |     | Tra    | ce I | load   | ins   | truc   | tio  | ns a  | s P   | ) in  | stru  | ctio  | ns.  |       |       |      |      |      |      |       |      |      |   |
| В      | RW      | STOREASPOINST |          | In                        |     |      |      |       |     |        | truc | ction  | PC    | ) fiel | d.   | Γhis  | fie   | ld c  | onti  | rols  | wh   | ethe  | er st | tore | ins  | truc | tion | ıs ar | e tr | aced | i |
|        |         |               |          |                           |     |      |      |       |     |        | P0 i | nstru  | ıct   | ions   |      |       |       |       |       |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | No       | 0                         |     |      |      |       |     | Do     | not  | t trac | e s   | store  | e in | stru  | ıctio | ons   | as F  | 0 ir  | str  | ucti  | ons   |      |      |      |      |       |      |      |   |
|        |         |               | Yes      | 0 De                      |     |      |      |       |     |        | ce s | store  | in    | stru   | ctio | ns    | as F  | 0 ir  | nstr  | ucti  | ons  |       |       |      |      |      |      |       |      |      |   |
| С      | RW      | ВВ            |          |                           |     |      |      |       |     | Bra    | nch  | n bro  | ad    | cast   | mo   | ode   | bit.  |       |       |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Disabled | 0                         |     |      |      |       |     | Bra    | nch  | n bro  | ad    | cast   | m    | ode   | is d  | isal  | oled  | ١.    |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Enabled  | 1                         |     |      |      |       |     | Bra    | nch  | n bro  | ad    | cast   | m    | ode   | is e  | nat   | led   |       |      |       |       |      |      |      |      |       |      |      |   |
| D      | RW      | CCI           |          |                           |     |      |      |       |     | Cyc    | le d | coun   | tin   | g ins  | stru | ctic  | on t  | race  | e bit |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Disabled | 0                         |     |      |      |       |     | Cyc    | le d | coun   | tin   | g in   | the  | ins   | tru   | ctio  | n tr  | ace   | is c | lisak | oled  | i.   |      |      |      |       |      |      |   |
|        |         |               | Enabled  | 1                         |     |      |      |       |     | Cyc    | le d | coun   | tin   | g in   | the  | ins   | tru   | ctio  | n tr  | ace   | is e | enab  | led   | ١.   |      |      |      |       |      |      |   |
| E      | RW      | CID           |          |                           |     |      |      |       |     | Cor    | nte  | xt ID  | tra   | cing   | g bi | t.    |       |       |       |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Disabled |                           |     |      |      |       |     |        | nte  | xt ID  | tra   | cing   | g is | disa  | able  | d.    |       |       |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Enabled  | 1                         |     |      |      |       |     | Cor    | nte  | xt ID  | tra   | cing   | g is | ena   | ble   | d.    |       |       |      |       |       |      |      |      |      |       |      |      |   |
| F      | RW      | VMID          |          | \                         |     |      |      |       |     |        | tual | l con  | tex   | ct ide | ent  | ifiei | r tra | cin   | g bi  | t.    |      |       |       |      |      |      |      |       |      |      |   |
|        |         |               | Disabled |                           |     |      |      |       |     |        |      | l con  | tex   | ct ide | ent  | ifie  | r tra | cin   | g is  | disa  | ble  | d.    |       |      |      |      |      |       |      |      |   |
|        |         |               | Disabled | 0                         |     | Virt | tual | l con | tex | ct ide | ent  | ifiei  | r tra | cin    | g is | disa  | ble   | d.    |       |       |      |       |       |      |      |      |      |       |      |      |   |



| Bit nu | ımber |         |                    | 31 3 | 30 29 | 9 28 | 3 27 2 | 6 25 | 24 | 23 22  | 2 21   | 20 1   | .9 18  | 3 17  | 16    | 15    | 14    | 13    | 12 1  | 11 1  | 10 ! | 9   | 8     | 7    | 5 5   | 4     | 3     | 2     | 1    | 0 |
|--------|-------|---------|--------------------|------|-------|------|--------|------|----|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|-----|-------|------|-------|-------|-------|-------|------|---|
| ID     |       |         |                    |      |       |      |        |      |    |        |        |        |        | М     | L     | K     | J     | J     | ı     | Н     | G (  | G   | G     | FI   | E     | D     | С     | В     | Α    |   |
| Reset  | 0x000 | 00000   |                    | 0    | 0 0   | 0 (  | 0 (    | 0 0  | 0  | 0 0    | 0      | 0 (    | 0 0    |       |       |       |       |       |       |       |      |     |       |      |       | 0     | 0     | 0     | 0    | 0 |
| ID     |       |         |                    |      |       |      |        |      |    |        |        |        |        |       |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 1    |       |      |        |      |    | Virtua | al co  | ntex   | t ide  | ntif  | ier 1 | trac  | ing   | is e  | nab   | led   |      | Т   |       | Т    |       | Т     |       | Т     | Т    |   |
| G      | RW    | COND    |                    |      |       |      |        |      |    | Condi  | ition  | nal in | stru   | ctio  | n tr  | acir  | ng b  | it.   |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Condi  | ition  | nal in | stru   | ctio  | n tr  | acir  | ng is | dis   | able  | ed.   |      |     |       |      |       |       |       |       |      |   |
|        |       |         | LoadOnly           | 1    |       |      |        |      |    | Condi  | ition  | nal lo | ad ir  | nstr  | ucti  | ons   | are   | tra   | ced   |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | StoreOnly          | 2    |       |      |        |      |    | Condi  | ition  | nal st | ore i  | nstı  | uct   | ion   | s ar  | e tr  | ace   | d.    |      |     |       |      |       |       |       |       |      |   |
|        |       |         | LoadAndStore       | 3    |       |      |        |      |    | Condi  | ition  | nal lo | ad a   | nd s  | tor   | e in  | strı  | ıctio | ons   | are   | tra  | ce  | d.    |      |       |       |       |       |      |   |
|        |       |         | All                | 7    |       |      |        |      |    | All co | ndit   | iona   | l inst | truc  | tion  | ıs a  | re t  | race  | d.    |       |      |     |       |      |       |       |       |       |      |   |
| Н      | RW    | TS      |                    |      |       |      |        |      |    | Globa  | al tin | nesta  | amp    | trac  | ing   | bit   |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Globa  | al tin | nesta  | amp    | trac  | ing   | is c  | lisa  | bled  | i.    |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 1    |       |      |        |      |    | Globa  | al tin | nesta  | amp    | trac  | ing   | is e  | nal   | oled  |       |       |      |     |       |      |       |       |       |       |      |   |
| 1      | RW    | RS      |                    |      |       |      |        |      |    | Retur  | n sta  | ack e  | nab    | le b  | it.   |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Retur  | n sta  | ack is | s dis  | able  | d.    |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 1    |       |      |        |      |    | Retur  | n sta  | ack is | s ena  | able  | d.    |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
| J      | RW    | QE      |                    |      |       |      |        |      |    | Q ele  | men    | nt en  | able   | fiel  | d.    |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Q ele  | men    | nts ar | e dis  | sabl  | ed.   |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | OnlyWithoutInstCou | 1    |       |      |        |      |    | Q ele  | men    | nts w  | ith ir | nstr  | ucti  | on    | cou   | nts   | are   | ena   | able | ed. | Q e   | lem  | ents  | s wi  | tho   | ut    |      |   |
|        |       |         |                    |      |       |      |        |      |    | instru | ıctio  | n co   | unts   | are   | dis   | able  | ed.   |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 3    |       |      |        |      |    | Q ele  | men    | nts w  | ith a  | nd    | with  | ou'   | t in  | tru   | ctio  | n c   | oun  | its | are   | ena  | bled  | ı.    |       |       |      |   |
| K      | RW    | VMIDOPT |                    |      |       |      |        |      |    | Contr  | ol b   | it to  | sele   | ct th | ie V  | 'irtu | ıal d | ont   | ext   | ide   | ntif | ier | val   | ue ı | ısed  | by    | the   |       |      |   |
|        |       |         |                    |      |       |      |        |      |    | trace  | unit   | t, bot | h fo   | r tra | ice   | gen   | era   | tion  | an    | d in  | the  | e V | 'irtu | al c | onte  | xt i  | den   | tifie | r    |   |
|        |       |         |                    |      |       |      |        |      |    | comp   | arat   | tors.  |        |       |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | VTTBR_EL2          | 0    |       |      |        |      |    | VTTB   | R_EI   | L2.VN  | MID i  | is us | ed.   | If t  | he    | rac   | e ui  | nit s | supp | poi | rts a | Vir  | tual  | cor   | ntex  | t     |      |   |
|        |       |         |                    |      |       |      |        |      |    | identi | ifier  | large  | er th  | an t  | he '  | VTT   | BR.   | _EL2  | 2.VN  | /IID  | , th | e u | ıppe  | r u  | nuse  | d b   | its a | ire   |      |   |
|        |       |         |                    |      |       |      |        |      |    | alway  | /s ze  | ro. If | the    | tra   | e u   | nit   | sup   | por   | ts a  | Vir   | tua  | l c | onte  | xt i | den   | tifie | r la  | rger  |      |   |
|        |       |         |                    |      |       |      |        |      |    | than a | 8 bit  | ts an  | d if t | he \  | /TC   | R_E   | L2.   | /S b  | it fo | orce  | es u | se  | of a  | n 8  | -bit  | Virt  | ual   | con   | text |   |
|        |       |         |                    |      |       |      |        |      |    | identi | ifier, | , bits | [15:   | 8] c  | f th  | e tı  | ace   | un    | it Vi | rtu   | al c | on  | text  | ide  | ntifi | er a  | are a | lwa   | iys  |   |
|        |       |         |                    |      |       |      |        |      |    | zero.  |        |        |        |       |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | CONTEXTIDR_EL2     | 1    |       |      |        |      |    | CONT   | EXT    | IDR_   | EL2    | is u  | sed.  |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
| L      | RW    | DA      |                    |      |       |      |        |      |    | Data   |        |        |        | -     |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Data   |        |        |        | _     |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 1    |       |      |        |      |    | Data   |        |        |        | -     |       | abl   | ed.   |       |       |       |      |     |       |      |       |       |       |       |      |   |
| М      | RW    | DV      |                    |      |       |      |        |      |    | Data   |        |        |        |       |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Disabled           | 0    |       |      |        |      |    | Data   |        |        | _      |       |       |       |       |       |       |       |      |     |       |      |       |       |       |       |      |   |
|        |       |         | Enabled            | 1    |       |      |        |      |    | Data   | valu   | e tra  | cing   | is e  | nab   | led   | •     |       |       |       |      |     |       |      |       |       |       |       |      |   |

## 10.7.4.1.5 TRCEVENTCTLOR

Address offset: 0x20

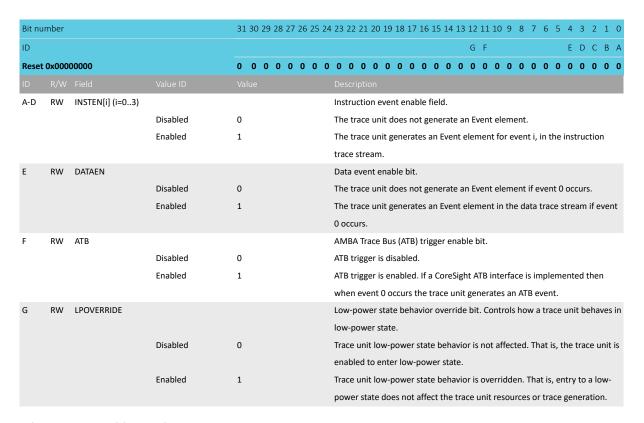
Controls the tracing of arbitrary events.

If the selected event occurs a trace element is generated in the trace stream according to the settings in TRCEVENTCTL1R.DATAEN and TRCEVENTCTL1R.INSTEN.

| Α     | RW                 | EVENT |  | [0:255]  |         |         | Selec | t whi  | ch ev | ent sh | ould   | gen  | erate | trac | e ele | eme | nts. |   |     |     |     |   |     |   |
|-------|--------------------|-------|--|----------|---------|---------|-------|--------|-------|--------|--------|------|-------|------|-------|-----|------|---|-----|-----|-----|---|-----|---|
| ID    | R/W Field Value ID |       |  |          |         |         |       |        |       |        |        |      |       |      |       |     |      |   |     |     |     |   |     |   |
| Rese  | t 0x000            | 00000 |  | 0 0 0    | 0 0 0   | 0 0     | 0 0   | 0      | 0 0   | 0 0    | 0      | 0 0  | 0     | 0    | 0     | 0   | 0    | 0 | 0   | 0 ( | 0   | 0 | 0 ( | ) |
| ID    |                    |       |  |          |         |         |       |        |       |        |        |      |       |      |       |     |      | Α | Α . | Δ , | A A | Α | Α / | ١ |
| Bit n | umber              |       |  | 31 30 29 | 28 27 2 | 6 25 24 | 23 2  | 2 21 2 | 20 19 | 18 17  | 7 16 : | 15 1 | 4 13  | 12 1 | 1 10  | 9   | 8    | 7 | 6   | 5 4 | 1 3 | 2 | 1 ( | ) |






### 10.7.4.1.6 TRCEVENTCTL1R

Address offset: 0x24

Controls the behavior of the events that TRCEVENTCTLOR selects.

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.



## 10.7.4.1.7 TRCSTALLCTLR

Address offset: 0x2C

Enables trace unit functionality that prevents trace unit buffer overflows.

Might ignore writes when the trace unit is enabled or not idle.

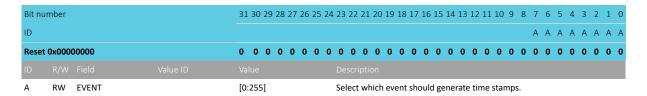
Must be programmed if TRCIDR3.STALLCTL == 1.

| Bit nu | ımber |       |     | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0        |
|--------|-------|-------|-----|----------------------|-------------------------------------------------------------------------|
| ID     |       |       |     |                      | G F E D C B A A A A                                                     |
| Reset  | 0x000 | 00000 |     | 0 0 0 0 0 0 0        | $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                               |
| ID     |       |       |     |                      |                                                                         |
| Α      | RW    | LEVEL |     | [15:0]               | Threshold level field.                                                  |
|        |       |       |     |                      | If LEVEL is nonzero then a trace unit might suppress the generation of: |
|        |       |       |     |                      | Global timestamps in the instruction trace stream and the data trace    |
|        |       |       |     |                      | stream.                                                                 |
|        |       |       |     |                      | Cycle counting in the instruction trace stream, although the cumulative |
|        |       |       |     |                      | cycle count remains correct.                                            |
|        |       |       | Min | 0                    | Zero invasion. This setting has a greater risk of a FIFO overflow       |
|        |       |       | Max | 15                   | Maximum invasion occurs but there is less risk of a FIFO overflow.      |



| Bit nu | mber  |                  |          | 31 | 30 2 | 29 2 | 28 2 | 27 2 | 6 25 | 24 | 23 2 | 22 : | 21    | 20   | 19   | 18   | 17   | 16     | 15   | 14    | 4 13 | 3 12 | 2 11  | 10    | 9     | 8    | 7     | 6    | 5    | 4    | 3    | 2    | 1    | 0 |
|--------|-------|------------------|----------|----|------|------|------|------|------|----|------|------|-------|------|------|------|------|--------|------|-------|------|------|-------|-------|-------|------|-------|------|------|------|------|------|------|---|
| ID     |       |                  |          |    |      |      |      |      |      |    |      |      |       |      |      |      |      |        |      |       | G    | F    | Е     | D     | С     | В    |       |      |      |      | Α    | Α    | Α    | Α |
| Reset  | 0x000 | 00000            |          | 0  | 0    | 0 (  | 0    | 0 0  | 0    | 0  | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0      | 0    | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0 |
|        |       |                  |          |    |      |      |      |      |      |    |      |      |       |      |      |      |      |        |      |       |      |      |       |       |       |      |       |      |      |      |      |      |      |   |
| В      | RW    | ISTALL           |          |    |      |      |      |      |      |    | Inst | ruc  | ctio  | n st | tall | bit  | . C  | onti   | ols  | if    | a tr | ace  | un    | it c  | an s  | stal | l th  | e P  | Εw   | her  | the  | 2    | Т    |   |
|        |       |                  |          |    |      |      |      |      |      |    | inst | ruc  | ction | n tr | ac   | e bı | uffe | er si  | ac   | e i   | s le | ss t | han   | LE    | VEL   |      |       |      |      |      |      |      |      |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it n | nus  | t n  | ot s   | tall | th    | e P  | Ε.   |       |       |       |      |       |      |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it c | an:  | sta  | ll th  | e P  | E.    |      |      |       |       |       |      |       |      |      |      |      |      |      |   |
| С      | RW    | DSTALL           |          |    |      |      |      |      |      |    | Data | a st | tall  | bit. | . Co | onti | rols | s if a | tr   | ace   | e ur | it c | an    | stal  | l th  | e P  | Εw    | he   | n th | ie d | ata  | trac | e    |   |
|        |       |                  |          |    |      |      |      |      |      |    | buff | fer  | spa   | ce   | is l | ess  | th   | an L   | ΕV   | EL.   |      |      |       |       |       |      |       |      |      |      |      |      |      |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it n | nus  | t n  | ot s   | tall | th    | e P  | Ε.   |       |       |       |      |       |      |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it c | an:  | sta  | ll th  | e P  | E.    |      |      |       |       |       |      |       |      |      |      |      |      |      |   |
| D      | RW    | INSTPRIORITY     |          |    |      |      |      |      |      |    | Prio | riti | ize i | nst  | tru  | ctic | n t  | rac    | e b  | it. ( | Cor  | tro  | ls if | a t   | race  | e ui | nit d | can  | pri  | orit | ize  |      |      |   |
|        |       |                  |          |    |      |      |      |      |      |    | inst | ruc  | ction | n tr | ac   | e w  | he   | n th   | e ii | nst   | ruc  | tior | n tra | ace   | buf   | fer  | spa   | ice  | is l | ess  | tha  | ı LE | VE   |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it n | nus  | t n  | ot p   | rio  | riti  | ze i | nst  | ruc   | tior  | ı tra | ice  |       |      |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it c | an   | pri  | oriti  | ze   | ins   | tru  | ctic | n t   | race  | e. A  | tra  | ice   | uni  | t m  | ight | pri  | orit | ize  |   |
|        |       |                  |          |    |      |      |      |      |      |    | inst | ruc  | ction | n tr | ac   | e by | ур   | reve   | nti  | ng    | ou   | tpu  | t of  | da    | ta t  | rac  | e, o  | r o  | the  | r m  | ean  | s w  | hicl | ١ |
|        |       |                  |          |    |      |      |      |      |      |    | ens  | ure  | e tha | at t | he   | ins  | tru  | ctic   | n t  | rac   | e h  | as   | a hi  | ghe   | er pi | rio  | ity   | tha  | ın t | he ( | data | tra  | ce.  |   |
| E      | RW    | DATADISCARDLOAD  |          |    |      |      |      |      |      |    | Data | a d  | lisca | rd   | fie  | ld.  | Coı  | ntro   | ls i | f a   | tra  | ce ı | unit  | caı   | n di  | sca  | rd o  | data | a tr | ace  | ele  | ner  | nts  | n |
|        |       |                  |          |    |      |      |      |      |      |    | a lo | ad   | wh    | en 1 | the  | e da | ita  | trac   | e b  | uf    | fer  | spa  | ce i  | is le | ss t  | ha   | n LE  | VE   | L.   |      |      |      |      |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it n | nus  | t n  | ot d   | isc  | arc   | d an | y d  | ata   | tra   | ce e  | eler | ner   | its. |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it c | an   | dis  | card   | I P: | L a   | nd   | P2 6 | eler  | ner   | its a | sso  | ocia  | tec  | l wi | th o | data | loa  | ds.  |   |
| F      | RW    | DATADISCARDSTORE |          |    |      |      |      |      |      |    | Data | a d  | lisca | rd   | fie  | ld.  | Coı  | ntro   | ls i | f a   | tra  | ce ı | unit  | caı   | n di  | sca  | rd o  | data | a tr | ace  | ele  | ner  | nts  | n |
|        |       |                  |          |    |      |      |      |      |      |    | a st | ore  | e wh  | nen  | th   | e d  | ata  | tra    | ce   | bu    | ffer | sp   | ace   | is l  | ess   | tha  | ın L  | EVI  | EL.  |      |      |      |      |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it n | nus  | t n  | ot d   | isc  | arc   | l an | y d  | ata   | tra   | ce e  | eler | ner   | its. |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | The  | tra  | ace   | uni  | it c | an   | dis  | card   | l P: | L a   | nd I | P2 6 | eler  | ner   | its a | esso | ocia  | tec  | l wi | th o | data | sto  | res  |   |
| G      | RW    | NOOVERFLOW       |          |    |      |      |      |      |      |    | Trac | e c  | over  | rflo | w    | pre  | ver  | ntio   | ı b  | it.   |      |      |       |       |       |      |       |      |      |      |      |      |      |   |
|        |       |                  | Disabled | 0  |      |      |      |      |      |    | Trac | e c  | over  | rflo | w    | pre  | ver  | ntio   | ı is | di    | sab  | led  |       |       |       |      |       |      |      |      |      |      |      |   |
|        |       |                  | Enabled  | 1  |      |      |      |      |      |    | Trac | e c  | over  | rflo | w    | pre  | ver  | ntio   | ı is | er    | nab  | led. | Th    | is n  | nigh  | nt c | aus   | e a  | sig  | nifi | cant |      |      |   |
|        |       |                  |          |    |      |      |      |      |      |    | perf | fori | mar   | nce  | im   | пра  | ct.  |        |      |       |      |      |       |       |       |      |       |      |      |      |      |      |      |   |

## 10.7.4.1.8 TRCTSCTLR


Address offset: 0x30

Controls the insertion of global timestamps in the trace streams.

When the selected event is triggered, the trace unit inserts a global timestamp into the trace streams.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.TS == 1.



## 10.7.4.1.9 TRCSYNCPR


Address offset: 0x34

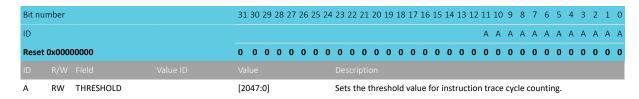
Controls how often trace synchronization requests occur.

Might ignore writes when the trace unit is enabled or not idle.

If writes are permitted then the register must be programmed.






#### 10.7.4.1.10 TRCCCCTLR

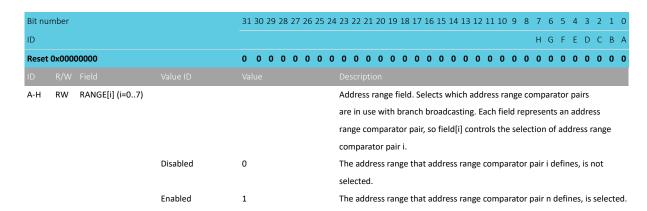
Address offset: 0x38

Sets the threshold value for cycle counting.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.CCI==1.




### 10.7.4.1.11 TRCBBCTLR

Address offset: 0x3C

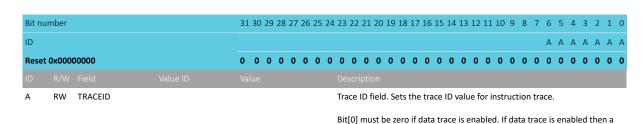
Controls which regions in the memory map are enabled to use branch broadcasting.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.BB == 1.



### 10.7.4.1.12 TRCTRACEIDR


Address offset: 0x40

Sets the trace ID for instruction trace. If data trace is enabled then it also sets the trace ID for data trace, to (trace ID for instruction trace) + 1.

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.





trace unit sets the trace ID for data trace, to TRACEID+1.

## 10.7.4.1.13 TRCQCTLR

Address offset: 0x44

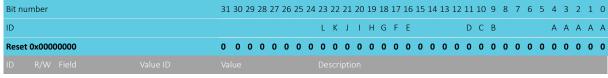
Controls when Q elements are enabled.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed if it is implemented and TRCCONFIGR.QE is set to any value other than 0b00.

| Bit nu | mber  |                 |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                             |
|--------|-------|-----------------|----------|-------------------------|---------------------------------------------------------------------------------------------|
| ID     |       |                 |          |                         | IHGFEDCBA                                                                                   |
| Reset  | 0x000 | 00000           |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |
| ID     |       |                 |          |                         | Description                                                                                 |
| А-Н    | RW    | RANGE[i] (i=07) |          |                         | Specifies the address range comparators to be used for controlling Q                        |
|        |       |                 |          |                         | elements.                                                                                   |
|        |       |                 | Disabled | 0                       | Address range comparator i is disabled.                                                     |
|        |       |                 | Enabled  | 1                       | Address range comparator i is selected for use.                                             |
| 1      | RW    | MODE            |          |                         | Selects whether the address range comparators selected by the RANGE                         |
|        |       |                 |          |                         | field indicate address ranges where the trace unit is permitted to generate                 |
|        |       |                 |          |                         | Q elements or address ranges where the trace unit is not permitted to                       |
|        |       |                 |          |                         | generate Q elements:                                                                        |
|        |       |                 | Exclude  | 0                       | Exclude mode. The address range comparators selected by the RANGE field                     |
|        |       |                 |          |                         | indicate address ranges where the trace unit cannot generate $\boldsymbol{Q}$ elements. If  |
|        |       |                 |          |                         | no ranges are selected, Q elements are permitted across the entire memory                   |
|        |       |                 |          |                         | map.                                                                                        |
|        |       |                 | Include  | 1                       | Include mode. The address range comparators selected by the RANGE field                     |
|        |       |                 |          |                         | indicate address ranges where the trace unit can generate $\boldsymbol{Q}$ elements. If all |
|        |       |                 |          |                         | the implemented bits in RANGE are set to 0 then Q elements are disabled.                    |

### 10.7.4.1.14 TRCVICTLR


Address offset: 0x080

Controls instruction trace filtering.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

Must be programmed, particularly to set the value of the SSSTATUS bit, which sets the state of the start/ stop logic.



RW EVENT\_SEL Select which resource number should be filtered.



| Bit nu | mber  |                     |          | 31 | 30 | 29 2 | 28 2 | 7 26 | 6 25 | 5 24 | 23   | 22    | 21 2  | 20 2 | 19 1  | L8 1  | 7 1   | 6 1  | 5 14  | 13   | 3 12 | 2 11 | . 10  | 9    | 8    | 7     | 6      | 5    | 4     | 3 2   | 2 1   | . 0  |
|--------|-------|---------------------|----------|----|----|------|------|------|------|------|------|-------|-------|------|-------|-------|-------|------|-------|------|------|------|-------|------|------|-------|--------|------|-------|-------|-------|------|
| ID     |       |                     |          |    |    |      |      |      |      |      | L    | K     | J     | ı    | н     | G     | F E   |      |       |      |      | D    | С     | В    |      |       |        |      | Α     | Α Α   | λ A   | Α    |
| Reset  | 0x000 | 00000               |          | 0  | 0  | 0    | 0 0  | 0 0  | 0    | 0    | 0    | 0     | 0     | 0    | 0     | 0     | 0 (   | ) (  | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0     | 0      | 0    | 0     | 0 (   | 0 0   | 0    |
|        |       |                     |          |    |    |      |      |      |      |      |      |       |       |      |       |       |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Disabled | 0  |    |      |      |      |      |      | This | s ev  | /ent  | is r | not   | filte | erec  | l.   |       |      |      |      |       |      |      |       |        |      |       |       |       | _    |
|        |       |                     | Enabled  | 1  |    |      |      |      |      |      | This | s ev  | /ent  | is f | filte | red   |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
| В      | RW    | SSSTATUS            |          |    |    |      |      |      |      |      | Wh   | en    | TRC   | IDF  | R4.N  | IUN   | 1AC   | PAI  | RS >  | 0 0  | or T | RCI  | DR4   | 1.NI | JM   | PC >  | > 0, 1 | this | bit   | reti  | urns  |      |
|        |       |                     |          |    |    |      |      |      |      |      | the  | sta   | itus  | of t | the   | sta   | t/s   | top  | logi  | c.   |      |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Stopped  | 0  |    |      |      |      |      |      | The  | sta   | art/s | top  | p lo  | gic i | s in  | the  | sto   | рр   | ed s | stat | e.    |      |      |       |        |      |       |       |       |      |
|        |       |                     | Started  | 1  |    |      |      |      |      |      | The  | sta   | art/s | top  | p lo  | gic i | s in  | the  | sta   | rte  | d st | ate  |       |      |      |       |        |      |       |       |       |      |
| С      | RW    | TRCRESET            |          |    |    |      |      |      |      |      | Con  | ntro  | ols w | he   | the   | r a t | rac   | e ur | nit n | nus  | t tr | ace  | a R   | ese  | t ex | сер   | tior   | ١.   |       |       |       |      |
|        |       |                     | Disabled | 0  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t do  | es i  | not   | trac | e a   | Res  | et   | exc  | epti  | ion  | unl  | ess   | it tr  | ace  | s th  | e     |       |      |
|        |       |                     |          |    |    |      |      |      |      |      | exc  | ept   | ion   | or i | inst  | ruc   | ion   | im   | med   | liat | ely  | prio | or to | o th | e R  | ese   | t exc  | ep   | tion  |       |       |      |
|        |       |                     | Enabled  | 1  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t alv | way   | s tra | aces | s a F | ese  | et e | xce  | ptic  | on.  |      |       |        |      |       |       |       |      |
| D      | RW    | TRCERR              |          |    |    |      |      |      |      |      | Wh   | en    | TRC   | IDF  | R3.T  | RCE   | RR:   | ==1  | , thi | s bi | t co | ontr | ols   | wh   | eth  | er a  | tra    | e u  | nit   | mus   | st tr | ace  |
|        |       |                     |          |    |    |      |      |      |      |      | a Sy | /ste  | em e  | rro  | r ex  | cep   | otio  | n.   |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Disabled | 0  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t do  | es i  | not   | trac | e a   | Sys  | ten  | n er | ror   | exc  | ept  | ion   | unl    | ess  | it tr | ace   | s th  | e    |
|        |       |                     |          |    |    |      |      |      |      |      | exc  | ept   | ion   | or i | inst  | ruc   | ion   | im   | med   | liat | ely  | prio | or to | o th | e S  | yste  | m e    | rro  | rex   | cept  | tion  |      |
|        |       |                     | Enabled  | 1  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t alv | way   | s tra | aces | a S   | yst  | em   | err  | or e  | exce | pti  | on,   | rega   | rdl  | ess   | of tl | he    |      |
|        |       |                     |          |    |    |      |      |      |      |      | valu | ue d  | of Vi | ew   | Inst  | t.    |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
| E-H    | RW    | EXLEVEL[i]_S (i=03) |          |    |    |      |      |      |      |      | In S | ecu   | ure s | tat  | e, e  | ach   | bit   | COI  | ntro  | ls v | vhe  | the  | r in  | stru | ctio | on t  | racii  | ng i | s er  | abl   | ed f  | or   |
|        |       |                     |          |    |    |      |      |      |      |      | the  | со    | rres  | por  | ndin  | ıg E  | xce   | otio | n le  | vel  | i.   |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Disabled | 1  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t do  | es i  | not   | gen  | era   | e ii | nstr | uct  | ion   | tra  | ce,  | in S  | ecu    | re s | tate  | , fo  | r     |      |
|        |       |                     |          |    |    |      |      |      |      |      | Exc  | ept   | ion   | lev  | el i. |       |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Enabled  | 0  |    |      |      |      |      |      | The  | tra   | ace ı | unit | t ge  | ner   | ates  | ins  | stru  | ctio | n t  | race | e, in | Se   | cure | e sta | ate,   | for  | Exc   | epti  | on    |      |
|        |       |                     |          |    |    |      |      |      |      |      | leve | el i. |       |      |       |       |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
| I-L    | RW    | EXLEVEL[i]_NS (i=0  | 3)       |    |    |      |      |      |      |      | In N | lon   | -sec  | ure  | e sta | ate,  | eac   | h b  | it co | ntr  | ols  | wh   | eth   | er i | nsti | ruct  | ion    | trac | ing   | is e  | nab   | led  |
|        |       |                     |          |    |    |      |      |      |      |      | for  | the   | cor   | res  | por   | ndir  | g E   | xce  | otio  | n le | vel  | i.   |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Disabled | 1  |    |      |      |      |      |      |      |       | ace ı |      |       |       | not   | gen  | era   | e ii | nstr | uct  | ion   | tra  | ce,  | in N  | lon-   | sec  | ure   | stat  | e, f  | or   |
|        |       |                     |          |    |    |      |      |      |      |      | Exc  | ept   | ion   | lev  | el i. |       |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |
|        |       |                     | Enabled  | 0  |    |      |      |      |      |      |      |       |       | unit | t ge  | ner   | ates  | ins  | stru  | ctio | n t  | race | e, in | No.  | n-s  | ecu   | re s   | ate  | , fo  | r Ex  | cep   | tion |
|        |       |                     |          |    |    |      |      |      |      |      | leve | el i. |       |      |       |       |       |      |       |      |      |      |       |      |      |       |        |      |       |       |       |      |

## 10.7.4.1.15 TRCVIIECTLR

Address offset: 0x084

ViewInst exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.



| Bit nu | mber  |                   |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0              |
|--------|-------|-------------------|----------|-------------------------|------------------------------------------------------------------------------|
| ID     |       |                   |          |                         | PONMLKJI HGFEDCBA                                                            |
| Reset  | 0x000 | 00000             |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |
| ID     |       |                   |          |                         | Description                                                                  |
| A-H    | RW    | INCLUDE[i] (i=07) |          |                         | Include range field. Selects which address range comparator pairs are in use |
|        |       |                   |          |                         | with ViewInst include control.                                               |
|        |       |                   | Disabled | 0                       | The address range that address range comparator pair i defines, is not       |
|        |       |                   |          |                         | selected for ViewInst include control.                                       |
|        |       |                   | Enabled  | 1                       | The address range that address range comparator pair i defines, is selected  |
|        |       |                   |          |                         | for ViewInst include control.                                                |
| I-P    | RW    | EXCLUDE[i] (i=07) |          |                         | Exclude range field. Selects which address range comparator pairs are in use |
|        |       |                   |          |                         | with ViewInst exclude control.                                               |
|        |       |                   | Disabled | 0                       | The address range that address range comparator pair i defines, is not       |
|        |       |                   |          |                         | selected for ViewInst exclude control.                                       |
|        |       |                   | Enabled  | 1                       | The address range that address range comparator pair i defines, is selected  |
|        |       |                   |          |                         | for ViewInst exclude control.                                                |

## 10.7.4.1.16 TRCVISSCTLR

Address offset: 0x088

Use this to set, or read, the single address comparators that control the ViewInst start/stop logic. The start/stop logic is active for an instruction which causes a start and remains active up to and including an instruction which causes a stop, and then the start/stop logic becomes inactive.

Might ignore writes when the trace unit is enabled or not idle.

If implemented then this register must be programmed.

| Bit nu | mber  |                 |          | 31 | 30 2 | 9 28 | 8 27 | 26 | 25 | 24 : | 23 2 | 22 2 | 21 2   | 20 1 | l9 1 | 8 1        | 7 16 | 15   | 14    | 13   | 12 1  | .1 10 | 9    | 8   | 7     | 6     | 5    | 4    | 3 2   | 2    | 1 0   |
|--------|-------|-----------------|----------|----|------|------|------|----|----|------|------|------|--------|------|------|------------|------|------|-------|------|-------|-------|------|-----|-------|-------|------|------|-------|------|-------|
| ID     |       |                 |          |    |      |      |      |    |    |      | Р    | 0 1  | N N    | M    | L k  | <b>(</b> J | - 1  |      |       |      |       |       |      |     | Н     | G     | F    | E    | D (   | 2    | ВА    |
| Reset  | 0x000 | 00000           |          | 0  | 0 (  | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0 (    | 0    | 0 (  | 0          | 0    | 0    | 0     | 0    | 0     | 0 0   | 0    | 0   | 0     | 0     | 0    | 0    | 0 (   | ) (  | 0 0   |
| ID     |       |                 |          |    |      |      |      |    |    |      | Des  |      |        |      |      |            |      |      |       |      |       |       |      |     |       |       |      |      |       |      |       |
| A-H    | RW    | START[i] (i=07) |          |    |      |      |      |    |    | ,    | Sele | ects | wh     | ich  | sing | gle a      | addı | ess  | cor   | npa  | rato  | rs aı | e ir | use | e wi  | th ۱  | /iew | /Ins | t sta | art/ | stop  |
|        |       |                 |          |    |      |      |      |    |    | (    | con  | trol | l, foi | r th | e pı | ırpo       | ose  | of s | tart  | ing  | trac  | е.    |      |     |       |       |      |      |       |      |       |
|        |       |                 | Disabled | 0  |      |      |      |    |    | -    | The  | sin  | gle    | ado  | dres | s cc       | mp   | arat | tor i | , is | not : | seled | ted  | as  | a sta | art i | reso | urc  | e.    |      |       |
|        |       |                 | Enabled  | 1  |      |      |      |    |    | •    | The  | sin  | gle    | ado  | dres | s cc       | mp   | arat | or i  | , is | sele  | cted  | as a | sta | rt r  | eso   | urce | Э.   |       |      |       |
| I-P    | RW    | STOP[i] (i=07)  |          |    |      |      |      |    |    | :    | Sele | ects | wh     | ich  | sing | gle a      | addı | ess  | cor   | npa  | rato  | rs aı | e ir | use | e wi  | th ۱  | /iew | /Ins | t sta | rt/  | stop/ |
|        |       |                 |          |    |      |      |      |    |    | (    | con  | trol | l, foi | r th | e pı | ırpo       | ose  | of s | top   | oing | tra   | ce    |      |     |       |       |      |      |       |      |       |
|        |       |                 | Disabled | 0  |      |      |      |    |    |      | The  | sin  | gle    | ado  | dres | s cc       | mp   | arat | or i  | , is | not : | seled | ted  | as  | a st  | op r  | eso  | urc  | e.    |      |       |
|        |       |                 | Enabled  | 1  |      |      |      |    |    | -    | The  | sin  | gle    | ado  | dres | s cc       | mp   | arat | tor i | , is | sele  | ted   | as a | sto | p r   | eso   | urce | 2.   |       |      |       |

## 10.7.4.1.17 TRCVIPCSSCTLR

Address offset: 0x08C

Use this to set, or read, which PE comparator inputs can control the ViewInst start/stop logic.

Might ignore writes when the trace unit is enabled or not idle.

If implemented then this register must be programmed.



| D.:    |       |                 |          |     |       |    |       |    | 05.  |    |      |      |       |       |      |      |      |       |       |        |       |      |      |      |      |       | _    |      | _     | _  |     |
|--------|-------|-----------------|----------|-----|-------|----|-------|----|------|----|------|------|-------|-------|------|------|------|-------|-------|--------|-------|------|------|------|------|-------|------|------|-------|----|-----|
| Bit nu | mber  |                 |          | 31. | 30 29 | 28 | 3 2 / | 26 | 25 . | 24 | 23 2 | !2 2 | 21 2  | 0 1   | 9 1  | .8 1 | / 1  | 61    | 5 14  | 113    | 3 12  | 11   | 10   | 9    | 8 7  | 6     | 5    | 4    | 3     | 2  | 1 0 |
| ID     |       |                 |          |     |       |    |       |    |      |    | Р (  | l C  | N N   | VI L  | L H  | K J  | J    |       |       |        |       |      |      |      | Н    | G     | F    | Ε    | D     | С  | ВА  |
| Reset  | 0x000 | 00000           |          | 0   | 0 0   | 0  | 0     | 0  | 0    | 0  | 0 (  | 0 (  | 0 (   | 0 (   | ) (  | 0 (  | ) (  | ) (   | 0     | 0      | 0     | 0    | 0    | 0    | 0 0  | 0     | 0    | 0    | 0     | 0  | 0 0 |
| ID     |       |                 |          |     |       |    |       |    |      |    |      |      |       |       |      |      |      |       |       |        |       |      |      |      |      |       |      |      |       |    |     |
| A-H    | RW    | START[i] (i=07) |          |     |       |    |       |    |      |    | Sele | cts  | wh    | ich   | PE   | con  | npa  | rato  | or ir | ıpu    | ts ar | e in | use  | wi   | th V | ewl   | nst  | sta  | rt/st | ор |     |
|        |       |                 |          |     |       |    |       |    |      |    | cont | rol  | , for | r the | e pi | urp  | ose  | of    | star  | ting   | g tra | ce   |      |      |      |       |      |      |       |    |     |
|        |       |                 | Disabled | 0   |       |    |       |    |      |    | The  | sin  | gle   | PE d  | con  | npa  | rato | or ir | nput  | : i, i | s no  | t se | lect | ed a | as a | stari | t re | sou  | rce.  |    |     |
|        |       |                 | Enabled  | 1   |       |    |       |    |      |    | The  | sin  | gle   | PE o  | con  | npa  | rato | or ir | put   | i, i   | s se  | lect | ed a | s a  | star | res   | our  | rce. |       |    |     |
| I-P    | RW    | STOP[i] (i=07)  |          |     |       |    |       |    |      |    | Sele | cts  | wh    | ich   | PE   | con  | npa  | rato  | or ir | ıpu'   | ts ar | e in | use  | wi   | th V | ewl   | nst  | sta  | rt/st | ор |     |
|        |       |                 |          |     |       |    |       |    |      |    | cont | rol  | , for | r the | е рі | urp  | ose  | of    | stop  | pir    | g tr  | ace  |      |      |      |       |      |      |       |    |     |
|        |       |                 | Disabled | 0   |       |    |       |    |      |    | The  | sin  | gle   | PE d  | con  | npa  | rato | or ir | put   | i, i   | s no  | t se | lect | ed a | as a | stop  | res  | soui | rce.  |    |     |
|        |       |                 | Enabled  | 1   |       |    |       |    |      |    | The  | sin  | gle   | PE d  | con  | npa  | rato | or ir | put   | i, i   | s se  | lect | ed a | s a  | stop | res   | our  | ce.  |       |    |     |
|        |       |                 |          | 1   |       |    |       |    |      |    |      |      | _     |       |      |      |      |       |       |        |       |      |      |      |      | ·     |      |      | ce.   |    |     |

# 10.7.4.1.18 TRCVDCTLR

Address offset: 0x0A0

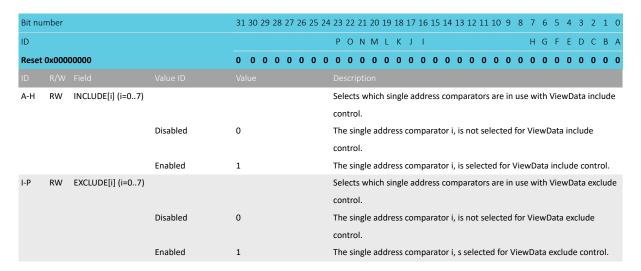
Controls data trace filtering.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when data tracing is enabled, that is, when either TRCCONFIGR.DA == 1 or TRCCONFIGR.DV == 1.

| Bit nu | mber  |                 |            | 31 | 30 | 29 2 | 28 27 | 7 26 | 6 25 | 24 | 23 2     | 2 22  | 1 20   | 19    | 18    | 17    | 16 1  | 15   | L4 1 | 13 : | 12 1  | 11   | 10 9  | 8    | 3 7  | 6     | 5    | 4     | 3     | 2     | 1 (   | ) |
|--------|-------|-----------------|------------|----|----|------|-------|------|------|----|----------|-------|--------|-------|-------|-------|-------|------|------|------|-------|------|-------|------|------|-------|------|-------|-------|-------|-------|---|
| ID     |       |                 |            |    |    |      |       |      |      |    |          |       |        |       |       |       |       |      |      |      | L     | K    | JΙ    | - 1  | Н    | G     | F    | Ε     | D     | С     | ВА    | , |
| Reset  | 0x000 | 00000           |            | 0  | 0  | 0    | 0 0   | 0    | 0    | 0  | 0 (      | 0 0   | 0      | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0     | 0    | 0 0   | 0    | 0    | 0     | 0    | 0     | 0     | 0 (   | 0 (   |   |
| ID     |       |                 |            |    |    |      |       |      |      |    |          |       |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       | I |
| A-H    | RW    | EVENT[i] (i=07) |            |    |    |      |       |      |      |    | Even     | nt ur | nit ei | nab   | le b  | it.   |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       | _ |
|        |       |                 | Disabled   | 0  |    |      |       |      |      |    | The      | trac  | e ev   | ent   | is n  | ot s  | ele   | cte  | d fo | r tı | ace   | filt | erin  | g.   |      |       |      |       |       |       |       |   |
|        |       |                 | Enabled    | 1  |    |      |       |      |      |    | The      | trac  | e ev   | ent   | is s  | elec  | ted   | l fo | tra  | ice  | filte | erir | g.    |      |      |       |      |       |       |       |       |   |
| 1      | RW    | SPREL           |            |    |    |      |       |      |      |    | Cont     | trols | wh     | eth   | er a  | tra   | ce u  | ınit | tra  | ces  | dat   | a f  | or tr | ans  | fers | tha   | t ar | e re  | lati  | ve t  | 0     |   |
|        |       |                 |            |    |    |      |       |      |      |    | the S    | Stac  | k Po   | inte  | r (S  | P).   |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Enabled    | 0  |    |      |       |      |      |    | The      | trac  | e un   | nit d | oes   | not   | aff   | ect  | the  | e tr | acin  | g c  | f SP  | -rel | ativ | e tra | nsf  | ers.  |       |       |       |   |
|        |       |                 | DataOnly   | 2  |    |      |       |      |      |    | The      | trac  | e un   | nit d | oes   | not   | tra   | ice  | the  | ad   | dre   | ss p | orti  | on   | of S | P-re  | lati | ve t  | ran   | sfers | s. If |   |
|        |       |                 |            |    |    |      |       |      |      |    | data     | valı  | ue tr  | racii | ng is | en    | able  | ed 1 | he   | n th | ie ti | ac   | e un  | it g | ene  | rate  | s a  | P1 c  | lata  | ado   | ires  | S |
|        |       |                 |            |    |    |      |       |      |      |    | elem     | nent  |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Disabled   | 3  |    |      |       |      |      |    | The      | trac  | e un   | nit d | oes   | not   | tra   | ice  | the  | ad   | dre   | ss c | r va  | lue  | ioq  | tion  | S O  | f SP  | -rel  | ative | 9     |   |
|        |       |                 |            |    |    |      |       |      |      |    | trans    | sfers | 5.     |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
| J      | RW    | PCREL           |            |    |    |      |       |      |      |    | Cont     | trols | wh     | eth   | er a  | tra   | ce u  | ınit | tra  | ces  | dat   | a f  | or tr | ans  | fers | tha   | t ar | e re  | lati  | ve t  | 0     |   |
|        |       |                 |            |    |    |      |       |      |      |    | the f    | Prog  | ram    | Co    | unte  | er (I | PC).  |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Enabled    | 0  |    |      |       |      |      |    | The      |       |        |       |       |       |       |      |      |      |       | -    |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Disabled   | 1  |    |      |       |      |      |    | The      |       |        | nit d | oes   | not   | tra   | ice  | the  | ad   | dre   | SS C | r va  | lue  | noq  | tion  | S O  | f PC  | -rel  | ativ  | е     |   |
|        |       |                 |            |    |    |      |       |      |      |    | trans    |       |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
| K      | RW    | TBI             |            |    |    |      |       |      |      |    | Cont     |       |        | ich   | nfo   | rma   | itioi | n a  | tra  | ce ı | ınit  | ро   | pula  | tes  | in k | its[6 | 53:5 | 56] ( | of th | ne d  | ata   |   |
|        |       |                 |            |    |    |      |       |      |      |    | addr     |       |        |       |       |       | _     |      | _    |      |       |      |       |      |      |       |      | _     |       |       |       |   |
|        |       |                 | SignExtend | 0  |    |      |       |      |      |    | The      |       |        |       | _     |       |       |      |      |      |       |      |       | am   | e va | lue a | as b | oit[5 | 5] c  | of th | e     |   |
|        |       |                 |            |    |    |      |       |      |      |    | data<br> |       |        |       |       |       | _     |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Сору       | 1  |    |      |       |      |      |    | The      |       |        |       | _     | ns t  | oits[ | 63   | 56]  | to   | hav   | e t  | he s  | am   | e va | lue a | as b | oits[ | 63:5  | 56] ( | of    |   |
|        | DIA   | TROFVRATA       |            |    |    |      |       |      |      |    | the      |       |        |       |       | ,     |       |      |      | ,    | ,     |      |       |      |      |       |      |       |       |       |       |   |
| L      | RW    | TRCEXDATA       |            |    |    |      |       |      |      |    | Cont     |       |        |       | _     |       |       |      |      |      |       |      |       | tior | ns a | nd e  | xce  | ptio  | n re  | etur  | ns    |   |
|        |       |                 | Disabled   | 0  |    |      |       |      |      |    | on A     |       |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       |   |
|        |       |                 | Disabled   | 0  |    |      |       |      |      |    | Exce     |       |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      |       |       |       |       | _ |
|        |       |                 | Enabled    | 1  |    |      |       |      |      |    | Exce     |       |        |       |       |       |       |      |      |      |       |      |       |      |      |       |      | e ot  | ner   | asp   | ect   | Š |
|        |       |                 |            |    |    |      |       |      |      |    | of Vi    | iew[  | Jata   | ind   | ıcat  | e th  | at t  | the  | dat  | a t  | rans  | ter  | s mi  | ıst  | be t | race  | d.   |       |       |       |       |   |




### 10.7.4.1.19 TRCVDSACCTLR

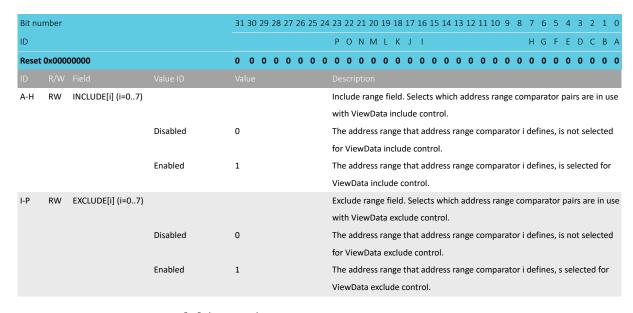
Address offset: 0x0A4

ViewData include / exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.




### 10.7.4.1.20 TRCVDARCCTLR

Address offset: 0x0A8

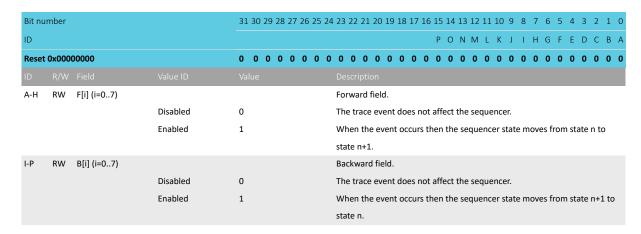
ViewData include / exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.



# 10.7.4.1.21 TRCSEQEVR[n] (n=0..2)


Address offset:  $0x100 + (n \times 0x4)$ 

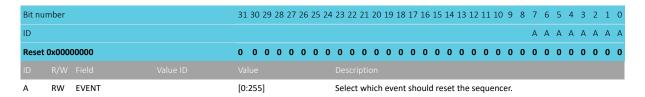
Moves the sequencer state according to programmed events.



Might ignore writes when the trace unit is enabled or not idle.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.




### 10.7.4.1.22 TRCSEQRSTEVR

Address offset: 0x118

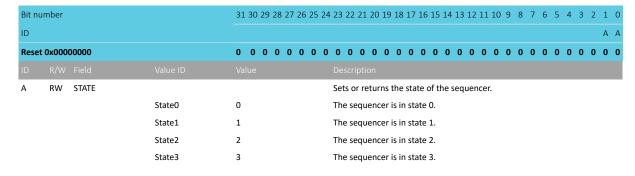
Moves the sequencer to state 0 when a programmed event occurs.

Might ignore writes when the trace unit is enabled or not idle.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.



#### 10.7.4.1.23 TRCSEQSTR


Address offset: 0x11C

Use this to set, or read, the sequencer state.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.



### 10.7.4.1.24 TRCEXTINSELR

Address offset: 0x120

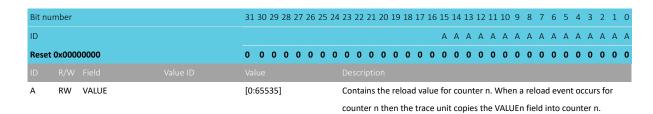


Use this to set, or read, which external inputs are resources to the trace unit.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.


| Bit nu | ımber |               | 31  | 30  | 29 2 | 28 2 | 7 20 | 5 25 | 24 | 23  | 22   | 21   | 20 1 | 9 1   | 8 17 | 16   | 15   | 14   | 13   | 12 : | 11 : | 10  | 9   | 8   | 7  | 6    | 5   | 4    | 3 2 | 1   | 0 |
|--------|-------|---------------|-----|-----|------|------|------|------|----|-----|------|------|------|-------|------|------|------|------|------|------|------|-----|-----|-----|----|------|-----|------|-----|-----|---|
| ID     |       |               | D   | D   | D    | D [  | D D  | D    | D  | С   | С    | С    | С    | c c   | С    | С    | В    | В    | В    | В    | В    | В   | В   | В   | Α  | Α    | Α   | Α.   | А А | ι A | Α |
| Reset  | 0x000 | 00000         | 0   | 0   | 0    | 0 (  | 0 0  | 0    | 0  | 0   | 0    | 0    | 0    | 0 (   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0  | 0    | 0   | 0    | 0 0 | 0   | 0 |
| ID     |       |               |     |     |      |      |      |      |    |     |      |      |      |       |      |      |      |      |      |      |      |     |     |     |    |      |     |      |     |     |   |
| A-D    | RW    | SEL[i] (i=03) | [0: | 255 | ]    |      |      |      |    | Ead | ch f | ield | in t | his o | olle | ctio | n se | elec | ts a | n e  | kter | nal | inp | out | as | a re | sou | ırce | for | the |   |
|        |       |               |     |     |      |      |      |      |    | tra | ce ı | unit |      |       |      |      |      |      |      |      |      |     |     |     |    |      |     |      |     |     |   |

## 10.7.4.1.25 TRCCNTRLDVR[n] (n=0..3)

Address offset:  $0x140 + (n \times 0x4)$ 

This sets or returns the reload count value for counter n.

Might ignore writes when the trace unit is enabled or not idle.



# 10.7.4.1.26 TRCCNTCTLR[n] (n=0..3)

Address offset:  $0x150 + (n \times 0x4)$ 

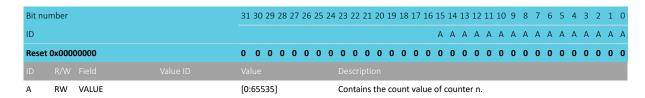
Controls the operation of counter n.

Might ignore writes when the trace unit is enabled or not idle.

| Bit nu | ımber |          |          | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0            |
|--------|-------|----------|----------|-------------------------|----------------------------------------------------------------------------|
| ID     |       |          |          |                         | D C B B B B B B B A A A A A A A A                                          |
| Reset  | 0x000 | 00000    |          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                    |
| ID     |       |          |          |                         | Description                                                                |
| Α      | RW    | CNTEVENT |          | [0:255]                 | Selects an event, that when it occurs causes counter n to decrement.       |
| В      | RW    | RLDEVENT |          | [0:255]                 | Selects an event, that when it occurs causes a reload event for counter n. |
| С      | RW    | RLDSELF  |          |                         | Controls whether a reload event occurs for counter n, when counter n       |
|        |       |          |          |                         | reaches zero.                                                              |
|        |       |          | Disabled | 0                       | The counter is in Normal mode.                                             |
|        |       |          | Enabled  | 1                       | The counter is in Self-reload mode.                                        |
| D      | RW    | CNTCHAIN |          |                         | For TRCCNTCTLR3 and TRCCNTCTLR1, this bit controls whether counter n       |
|        |       |          |          |                         | decrements when a reload event occurs for counter n-1.                     |
|        |       |          | Disabled | 0                       | Counter n does not decrement when a reload event for counter n-1 occurs.   |
|        |       |          | Enabled  | 1                       | Counter n decrements when a reload event for counter n-1 occurs. This      |
|        |       |          |          |                         | concatenates counter n and counter n-1, to provide a larger count value.   |

## 10.7.4.1.27 TRCCNTVR[n] (n=0..3)

Address offset:  $0x160 + (n \times 0x4)$ 



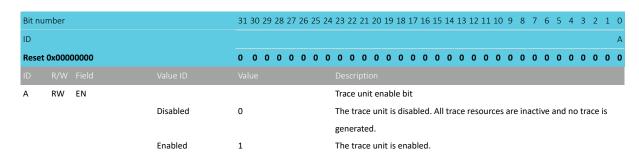

This sets or returns the value of counter n.

The count value is only stable when TRCSTATR.PMSTABLE == 1.

If software uses counter n then it must write to this register to set the initial counter value.

Might ignore writes when the trace unit is enabled or not idle.

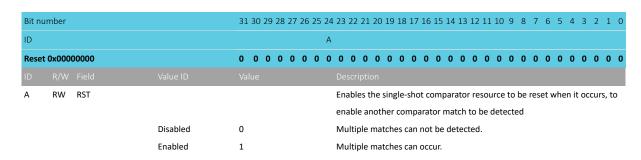



# 10.7.4.1.28 TRCRSCTLR[n] (n=2..31)

Address offset:  $0x200 + (n \times 0x4)$ 

Controls the selection of the resources in the trace unit.

Might ignore writes when the trace unit is enabled or not idle.


If software selects a non-implemented resource then CONSTRAINED UNPREDICTABLE behavior of the resource selector occurs, so the resource selector might fire unexpectedly or might not fire. Reads of the TRCRSCTLRn might return UNKNOWN.



## 10.7.4.1.29 TRCSSCCR0

Address offset: 0x280

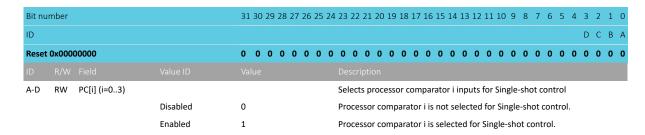
Controls the single-shot comparator.



### 10.7.4.1.30 TRCSSCSR0

Address offset: 0x2A0

Indicates the status of the single-shot comparators. TRCSSCSR0 is sensitive toinstruction addresses.




| Bit nu | mber  |        |         | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0            |
|--------|-------|--------|---------|-------------------------|----------------------------------------------------------------------------|
| ID     |       |        |         | E                       | D C B A                                                                    |
| Reset  | 0x000 | 00000  |         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                    |
| ID     |       |        |         |                         | Description                                                                |
| Α      | RW    | INST   |         |                         | Instruction address comparator support                                     |
|        |       |        | False   | 0                       | Single-shot instruction address comparisons not supported.                 |
|        |       |        | True    | 1                       | Single-shot instruction address comparisons supported.                     |
| В      | RW    | DA     |         |                         | Data address comparator support                                            |
|        |       |        | False   | 0                       | Data address comparisons not supported.                                    |
|        |       |        | True    | 1                       | Data address comparisons supported.                                        |
| С      | RW    | DV     |         |                         | Data value comparator support                                              |
|        |       |        | False   | 0                       | Data value comparisons not supported.                                      |
|        |       |        | True    | 1                       | Data value comparisons supported.                                          |
| D      | RW    | PC     |         |                         | Process counter value comparator support                                   |
|        |       |        | False   | 0                       | Process counter value comparisons not supported.                           |
|        |       |        | True    | 1                       | Process counter value comparisons supported.                               |
| E      | RW    | STATUS |         |                         | Single-shot status. This indicates whether any of the selected comparators |
|        |       |        |         |                         | have matched.                                                              |
|        |       |        | NoMatch | 0                       | Match has not occurred.                                                    |
|        |       |        | Match   | 1                       | Match has occurred at least once.                                          |

## 10.7.4.1.31 TRCSSPCICRO

Address offset: 0x2C0

Selects the processor comparator inputs for Single-shot control.



## 10.7.4.1.32 TRCPDCR

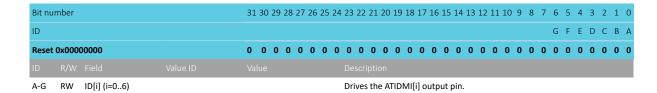
Address offset: 0x310

Controls the single-shot comparator.

| Bit nu | ımber  |       |          | 31 30 29 28 27 26 25 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0       |
|--------|--------|-------|----------|----------------------|------------------------------------------------------------------------|
| ID     |        |       |          |                      | A                                                                      |
| Reset  | 0x0000 | 00000 |          | 0 0 0 0 0 0 0        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                   |
| ID     |        |       |          |                      |                                                                        |
| Α      | RW     | PU    |          |                      | Power up request, to request that power to ETM and access to the trace |
|        |        |       |          |                      | registers is maintained.                                               |
|        |        |       | Disabled | 0                    | Power not requested.                                                   |
|        |        |       | Enabled  | 1                    | Power requested.                                                       |

### 10.7.4.1.33 TRCPDSR

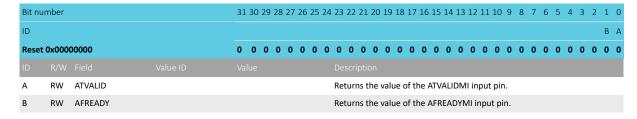
Address offset: 0x314


Indicates the power down status of the ETM.

| Bit n | umber   |          |                | 31 3 | 80 29 | 28 2 | 7 26 | 25 2 | 24 23 | 3 22  | 2 21   | . 20 1 | 19 1   | 8 17  | ' 16  | 15    | 14   | 13   | 12 :  | 11 1 | .0 9  | 8   | 3 7   | 6    | 5    | 4    | 3     | 2    | 1   | 0 |
|-------|---------|----------|----------------|------|-------|------|------|------|-------|-------|--------|--------|--------|-------|-------|-------|------|------|-------|------|-------|-----|-------|------|------|------|-------|------|-----|---|
| ID    |         |          |                |      |       |      |      |      |       |       |        |        |        |       |       |       |      |      |       |      |       |     |       |      |      |      |       |      | В.  | Α |
| Rese  | t 0x000 | 00000    |                | 0    | 0 0   | 0 (  | 0 0  | 0    | 0 0   | 0     | 0      | 0      | 0 0    | 0     | 0     | 0     | 0    | 0    | 0     | 0 (  | 0 0   | ) ( | 0     | 0    | 0    | 0    | 0     | 0    | 0   | 0 |
| ID    |         |          |                |      |       |      |      |      |       |       |        |        |        |       |       |       |      |      |       |      |       |     |       |      |      |      |       |      |     |   |
| Α     | RW      | POWER    |                |      |       |      |      |      | In    | ndica | ates   | ETIV   | 1 is p | owe   | ered  | up    |      |      |       |      |       |     |       |      |      |      |       |      |     |   |
|       |         |          | NotPoweredUp   | 0    |       |      |      |      | E.    | TM    | is n   | ot po  | wer    | ed ι  | ıp. A | dl re | egis | ters | s are | e no | t ac  | ces | sibl  | е.   |      |      |       |      |     |   |
|       |         |          | PoweredUp      | 1    |       |      |      |      | E.    | TM    | is p   | ower   | ed u   | ıp. A | II re | gist  | ters | are  | aco   | ess  | ible  |     |       |      |      |      |       |      |     |   |
| В     | RW      | STICKYPD |                |      |       |      |      |      | St    | ticky | y po   | wer    | dow    | n st  | ate.  |       |      |      |       |      |       |     |       |      |      |      |       |      |     |   |
|       |         |          |                |      |       |      |      |      | TI    | his b | oit is | s set  | to 1   | whe   | en p  | owe   | er t | o th | ie E  | ΓM   | regi  | ste | rs is | ren  | nov  | ed,  | to ii | ndic | ate |   |
|       |         |          |                |      |       |      |      |      | th    | nat p | orog   | gram   | ming   | g sta | te h  | as l  | bee  | n lo | st. I | t is | clea  | rec | d aft | er a | rea  | ad o | f th  | e    |     |   |
|       |         |          |                |      |       |      |      |      | TI    | RCP   | DSR    | 2      |        |       |       |       |      |      |       |      |       |     |       |      |      |      |       |      |     |   |
|       |         |          | NotPoweredDown | 0    |       |      |      |      | Tr    | race  | reg    | gister | pov    | ver l | has i | not   | bee  | en r | emo   | ove  | d sir | ice | the   | TRO  | CPD: | SR۱  | was   | last | ;   |   |
|       |         |          |                |      |       |      |      |      | re    | ead.  |        |        |        |       |       |       |      |      |       |      |       |     |       |      |      |      |       |      |     |   |
|       |         |          | PoweredDown    | 1    |       |      |      |      | Tr    | race  | reg    | gister | pov    | ver l | has I | oee   | n re | emo  | vec   | sin  | ce t  | he  | TRC   | PDS  | SR w | vas  | last  | rea  | d.  |   |
|       |         |          |                |      |       |      |      |      |       |       |        |        |        |       |       |       |      |      |       |      |       |     |       |      |      |      |       |      |     |   |

### 10.7.4.1.34 TRCITATBIDR

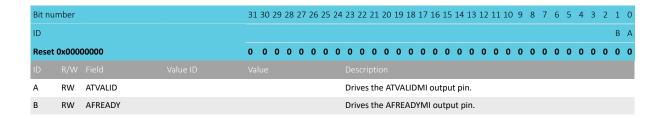
Address offset: 0xEE4


Sets the state of output pins.



## 10.7.4.1.35 TRCITIATBINR

Address offset: 0xEF4


Reads the state of the input pins.

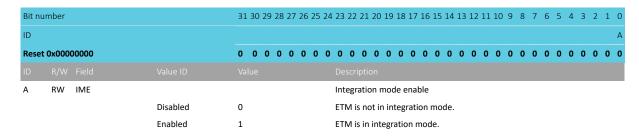


## 10.7.4.1.36 TRCITIATBOUTR

Address offset: 0xEFC

Sets the state of the output pins.

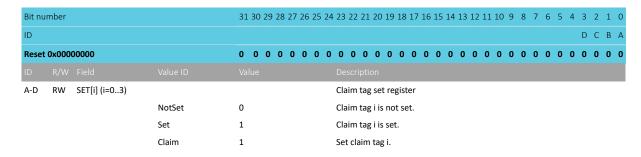







### 10.7.4.1.37 TRCITCTRL

Address offset: 0xF00


Enables topology detection or integration testing, by putting ETM-M33 into integration mode.



## 10.7.4.1.38 TRCCLAIMSET

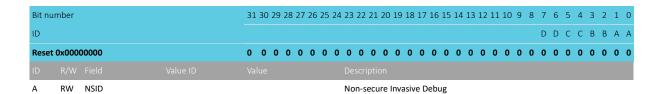
Address offset: 0xFA0

Sets bits in the claim tag and determines the number of claim tag bits implemented.



### 10.7.4.1.39 TRCCLAIMCLR

Address offset: 0xFA4


Clears bits in the claim tag and determines the current value of the claim tag.



## 10.7.4.1.40 TRCAUTHSTATUS

Address offset: 0xFB8

Indicates the current level of tracing permitted by the system





| Bit nu | ımber   |       |                | 31 | 30 | 29 2 | 28 : | 27 2 | 6 2 | 5 2 | 4 23 | 3 22 | 2 2: | 1 20 | 19    | 18   | 17   | 16   | 15  | 14 : | 13 1 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | . 1 | . 0 |
|--------|---------|-------|----------------|----|----|------|------|------|-----|-----|------|------|------|------|-------|------|------|------|-----|------|------|----|----|----|---|---|---|---|---|---|-----|-----|-----|
| ID     |         |       |                |    |    |      |      |      |     |     |      |      |      |      |       |      |      |      |     |      |      |    |    |    |   |   | D | D | С | С | ВВ  | Δ   | A   |
| Reset  | t 0x000 | 00000 |                | 0  | 0  | 0 (  | 0    | 0 (  | 0   | 0 0 | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0   | 0    | 0    | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0   | 0   |
|        |         |       |                |    |    |      |      |      |     |     |      |      |      |      |       |      |      |      |     |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | NotImplemented | 0  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is n  | ot i | mpl  | eme  | ent | ed.  |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | Implemented    | 1  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is ir | nple | eme  | nte  | d.  |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
| В      | RW      | NSNID |                |    |    |      |      |      |     |     | N    | on-  | sec  | ure  | Nor   | ı-In | vasi | ve [ | Deb | ug   |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | NotImplemented | 0  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is n  | ot i | mpl  | em   | ent | ed.  |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | Implemented    | 1  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is ir | nple | eme  | nte  | d.  |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
| С      | RW      | SID   |                |    |    |      |      |      |     |     | Se   | ecu  | re I | nvas | ive   | Del  | oug  |      |     |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | NotImplemented | 0  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is n  | ot i | mpl  | eme  | ent | ed.  |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | Implemented    | 1  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is ir | nple | eme  | nte  | d.  |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
| D      | RW      | SNID  |                |    |    |      |      |      |     |     | Se   | ecu  | re N | lon- | Inv   | asiv | e D  | ebu  | g   |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | NotImplemented | 0  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is n  | ot i | mpl  | eme  | ent | ed.  |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       | Implemented    | 1  |    |      |      |      |     |     | Tł   | he f | eat  | ure  | is ir | nple | eme  | nte  | d.  |      |      |    |    |    |   |   |   |   |   |   |     |     |     |
|        |         |       |                |    |    |      |      |      |     |     |      |      |      |      |       |      |      |      |     |      |      |    |    |    |   |   |   |   |   |   |     |     |     |

## 10.7.4.1.41 TRCDEVARCH

Address offset: 0xFBC

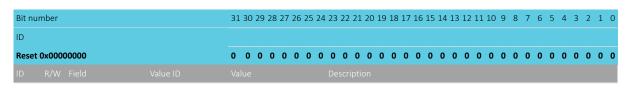
The TRCDEVARCH identifies ETM-M33 as an ETMv4.2 component

| Bit nu | ımber   |           |         | 31  | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21    | 20  | 19    | 18    | 17   | 16    | 15   | 14  | 13    | 12  | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 3 | 2   | 1   | 0 |
|--------|---------|-----------|---------|-----|-----|----|----|----|----|----|----|-----|------|-------|-----|-------|-------|------|-------|------|-----|-------|-----|----|----|---|---|---|---|---|-----|-----|-----|---|
| ID     |         |           |         | D   | D   | D  | D  | D  | D  | D  | D  | D   | D    | D     | С   | В     | В     | В    | В     | Α    | Α   | Α     | Α   | Α  | Α  | Α | Α | Α | Α | Α | A A | ι A | . A | Α |
| Reset  | t 0x000 | 00000     |         | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0     | 0   | 0     | 0     | 0    | 0     | 0    | 0   | 0     | 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0   | 0   | 0 |
| ID     |         |           |         |     |     |    |    |    |    |    |    |     |      |       |     |       |       |      |       |      |     |       |     |    |    |   |   |   |   |   |     |     |     |   |
| Α      | R       | ARCHID    |         |     |     |    |    |    |    |    |    | Arc | hit  | ect   | ure | ID    |       |      |       |      |     |       |     |    |    |   |   |   |   |   |     |     |     |   |
|        |         |           | ETMv42  | 0x4 | 1A1 | 3  |    |    |    |    |    | Со  | mp   | one   | ent | is a  | n E   | TM   | v4 (  | con  | npo | nei   | nt  |    |    |   |   |   |   |   |     |     |     |   |
| В      | R       | REVISION  |         |     |     |    |    |    |    |    |    | Arc | hit  | ect   | ure | rev   | /isio | on   |       |      |     |       |     |    |    |   |   |   |   |   |     |     |     |   |
|        |         |           | v2      | 2   |     |    |    |    |    |    |    | Co  | mp   | one   | ent | is p  | art   | of a | arcl  | nite | ctu | ıre - | 4.2 |    |    |   |   |   |   |   |     |     |     |   |
| С      | R       | PRESENT   |         |     |     |    |    |    |    |    |    | Thi | s re | egis  | ter | is i  | mp    | lem  | ent   | ted  |     |       |     |    |    |   |   |   |   |   |     |     |     |   |
|        |         |           | Absent  | 0   |     |    |    |    |    |    |    | The | e re | gist  | ter | is n  | ot    | imp  | len   | nen  | tec | i.    |     |    |    |   |   |   |   |   |     |     |     |   |
|        |         |           | Present | 1   |     |    |    |    |    |    |    | The | e re | gist  | ter | is ii | npl   | em   | ent   | ed.  |     |       |     |    |    |   |   |   |   |   |     |     |     |   |
| D      | R       | ARCHITECT |         |     |     |    |    |    |    |    |    | De  | fine | es tl | he  | arcl  | nite  | ct c | of th | ne d | con | про   | ner | it |    |   |   |   |   |   |     |     |     |   |
|        |         |           | Arm     | 0x2 | 23B |    |    |    |    |    |    | Thi | s p  | erip  | ohe | ral   | was   | s ar | chit  | ect  | ed  | by    | Arn | ۱. |    |   |   |   |   |   |     |     |     |   |

## 10.7.4.1.42 TRCDEVTYPE

Address offset: 0xFCC

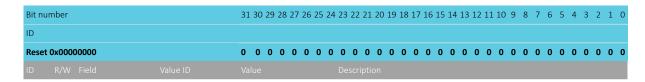
Controls the single-shot comparator.


| Bit nu | umber   |       |                |   | 31 | 30 2 | 29 2 | 28 2 | 7 2 | 26 2 | 25 2 | 24 2 | 23 2 | 22 : | 21  | 20  | 19   | 18   | 17   | 16  | 15  | 14 | 1   | 3 1  | 2 1 | 1 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---------|-------|----------------|---|----|------|------|------|-----|------|------|------|------|------|-----|-----|------|------|------|-----|-----|----|-----|------|-----|------|---|---|---|---|---|---|---|---|---|---|
| ID     |         |       |                |   |    |      |      |      |     |      |      |      |      |      |     |     |      |      |      |     |     |    |     |      |     |      |   |   | В | В | В | В | Α | Α | Α | Α |
| Reset  | t 0x000 | 00000 |                | ( | 0  | 0    | 0    | 0 (  | 0 ( | 0 (  | 0 (  | 0    | 0    | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0   | 0  | C   | ) (  | ) ( | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |         |       |                |   |    |      |      |      |     |      |      |      |      |      |     |     |      |      |      |     |     |    |     |      |     |      |   |   |   |   |   |   |   |   |   |   |
| Α      | R       | MAJOR |                |   |    |      |      |      |     |      |      | 1    | The  | ma   | ain | typ | e c  | f th | ne ( | con | npc | ne | nt  |      |     |      |   |   |   |   |   |   |   |   |   |   |
|        |         |       | TraceSource    |   | 3  |      |      |      |     |      |      | F    | Peri | ph   | era | lis | a tı | race | e so | our | ce. |    |     |      |     |      |   |   |   |   |   |   |   |   |   |   |
| В      | R       | SUB   |                |   |    |      |      |      |     |      |      | 1    | The  | su   | b-t | /pe | of   | the  | e co | mı  | or  | en | t   |      |     |      |   |   |   |   |   |   |   |   |   |   |
|        |         |       | ProcessorTrace |   | 1  |      |      |      |     |      |      | F    | Peri | ph   | era | lis | ар   | roc  | ess  | or  | tra | ce | sou | ırce | ·.  |      |   |   |   |   |   |   |   |   |   |   |

# 10.7.4.1.43 TRCPIDR[n] (n=0..7)

Address offset:  $0xFD0 + (n \times 0x4)$ 

Coresight peripheral identification registers.






# 10.7.4.1.44 TRCCIDR[n] (n=0..3)

Address offset:  $0xFF0 + (n \times 0x4)$ 

Coresight component identification registers.



# 10.7.5 TPIU — Trace port interface unit

The  $\mathsf{ARM}^{\circledR}$   $\mathsf{CoreSight}^{\intercal}$   $\mathsf{TPIU}$  connects an ATB to an external trace port.

This document only provides a register-level description of this ARM component. See the ARM<sup>®</sup> CoreSight<sup>™</sup> SoC-400 Technical Reference Manual for more details

# 10.7.5.1 Registers

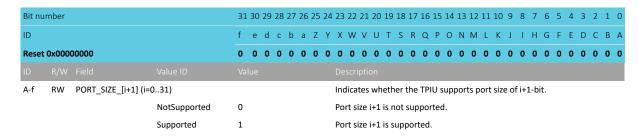
#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description |
|----------|--------------|-----------|-----|-----|--------------|-------------|
|          |              | Мар       | Att | DMA |              |             |
| TPIU     | 0xE0054000   | HF        | NS  | NA  | No           | TPIU        |

## **Register overview**

| Register                   | Offset | TZ | Description                                                                                       |
|----------------------------|--------|----|---------------------------------------------------------------------------------------------------|
| SUPPORTEDPORTSIZES         | 0x000  |    | Each bit location is a single port size that is supported on the device.                          |
| CURRENTPORTSIZE            | 0x004  |    | Each bit location is a single port size. One bit can be set, and indicates the current port size. |
| SUPPORTEDTRIGGERMODES      | 0x100  |    | The Supported_trigger_modes register indicates the implemented trigger counter multipliers        |
|                            |        |    | and other supported features of the trigger system.                                               |
| TRIGGERCOUNTERVALUE        | 0x104  |    | The Trigger_counter_value register enables delaying the indication of triggers to any external    |
|                            |        |    | connected trace capture or storage devices.                                                       |
| TRIGGERMULTIPLIER          | 0x108  |    | The Trigger_multiplier register contains the selectors for the trigger counter multiplier.        |
| SUPPPORTEDTESTPATTERNMODES | 0x200  |    | The Supported_test_pattern_modes register provides a set of known bit sequences or                |
|                            |        |    | patterns that can be output over the trace port and can be detected by the TPA or other           |
|                            |        |    | associated trace capture device.                                                                  |
| CURRENTTESTPATTERNMODES    | 0x204  |    | Current_test_pattern_mode indicates the current test pattern or mode selected.                    |
| TPRCR                      | 0x208  |    | The TPRCR register is an 8-bit counter start value that is decremented. A write sets the initial  |
|                            |        |    | counter value and a read returns the programmed value.                                            |
| FFSR                       | 0x300  |    | The FFSR register indicates the current status of the formatter and flush features available in   |
|                            |        |    | the TPIU.                                                                                         |
| FFCR                       | 0x304  |    | The FFCR register controls the generation of stop, trigger, and flush events.                     |
| FSCR                       | 0x308  |    | The FSCR register enables the frequency of synchronization information to be optimized to         |
|                            |        |    | suit the Trace Port Analyzer (TPA) capture buffer size.                                           |

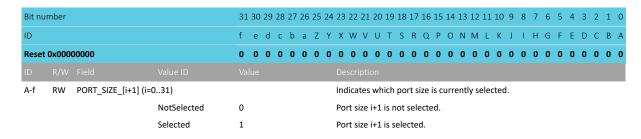



| Register      | Offset TZ | Description                                                                                                            |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| EXTCTLINPORT  | 0x400     | Two ports can be used as a control and feedback mechanism for any serializers, pin sharing                             |
|               |           | multiplexers, or other solutions that might be added to the trace output pins either for pin                           |
|               |           | control or a high-speed trace port solution.                                                                           |
| EXTCTLOUTPORT | 0x404     | Two ports can be used as a control and feedback mechanism for any serializers, pin sharing                             |
|               |           | multiplexers, or other solutions that might be added to the trace output pins either for pin                           |
|               |           | control or a high speed trace port solution. These ports are raw register banks that sample or                         |
|               |           | export the corresponding external pins.                                                                                |
| ITTRFLINACK   | 0xEE4     | The ITTRFLINACK register enables control of the triginack and flushinack outputs from the                              |
|               |           | TPIU.                                                                                                                  |
| ITTRFLIN      | 0xEE8     | The ITTRFLIN register contains the values of the flushin and trigin inputs to the TPIU.                                |
| ITATBDATA0    | OxEEC     | The ITATBDATAO register contains the value of the atdatas inputs to the TPIU. The values are                           |
|               |           | valid only when atvalids is HIGH.                                                                                      |
| ITATBCTR2     | 0xEF0     | Enables control of the atreadys and afvalids outputs of the TPIU.                                                      |
| ITATBCTR1     | 0xEF4     | The ITATBCTR1 register contains the value of the atids input to the TPIU. This is only valid                           |
|               |           | when atvalids is HIGH.                                                                                                 |
| ITATBCTRO     | 0xEF8     | The ITATBCTRO register captures the values of the atvalids, afreadys, and atbytess inputs to                           |
|               |           | the TPIU. To ensure the integration registers work correctly in a system, the value of atbytess                        |
|               |           | is only valid when atvalids, bit[0], is HIGH.                                                                          |
| ITCTRL        | 0xF00     | Used to enable topology detection. This register enables the component to switch from a                                |
|               |           | functional mode, the default behavior, to integration mode where the inputs and outputs of                             |
|               |           | the component can be directly controlled for integration testing and topology solving.                                 |
| CLAIMSET      | 0xFA0     | Software can use the claim tag to coordinate application and debugger access to trace                                  |
|               |           | unit functionality. The claim tags have no effect on the operation of the component. The                               |
|               |           | CLAIMSET register sets bits in the claim tag, and determines the number of claim bits                                  |
|               |           | implemented.                                                                                                           |
| CLAIMCLR      | 0xFA4     | Software can use the claim tag to coordinate application and debugger access to trace                                  |
|               |           | unit functionality. The claim tags have no effect on the operation of the component. The                               |
|               |           | ${\it CLAIMCLR}\ register\ sets\ the\ bits\ in\ the\ claim\ tag\ to\ 0\ and\ determines\ the\ current\ value\ of\ the$ |
|               |           | claim tag.                                                                                                             |
| LAR           | 0xFB0     | This is used to enable write access to device registers.                                                               |
| LSR           | 0xFB4     | This indicates the status of the lock control mechanism. This lock prevents accidental writes                          |
|               |           | by code under debug. Accesses to the extended stimulus port registers are not affected by                              |
|               |           | the lock mechanism. This register must always be present although there might not be any                               |
|               |           | lock access control mechanism. The lock mechanism, where present and locked, must block                                |
|               |           | write accesses to any control register, except the Lock Access Register. For most components                           |
|               |           | this covers all registers except for the Lock Access Register.                                                         |
| AUTHSTATUS    | 0xFB8     | Indicates the current level of tracing permitted by the system                                                         |
| DEVID         | 0xFC8     | Indicates the capabilities of the component.                                                                           |
| DEVTYPE       | 0xFCC     | The DEVTYPE register provides a debugger with information about the component when the                                 |
|               |           | Part Number field is not recognized. The debugger can then report this information.                                    |
| PIDR4         | 0xFD0     | Coresight peripheral identification registers.                                                                         |
| PIDR[0]       | 0xFE0     | Coresight peripheral identification registers.                                                                         |
| PIDR[1]       | 0xFE4     | Coresight peripheral identification registers.                                                                         |
| PIDR[2]       | 0xFE8     | Coresight peripheral identification registers.                                                                         |
| PIDR[3]       | 0xFEC     | Coresight peripheral identification registers.                                                                         |
| CIDR[0]       | 0xFF0     | Coresight component identification registers.                                                                          |
| CIDR[1]       | 0xFF4     | Coresight component identification registers.                                                                          |
| CIDR[2]       | 0xFF8     | Coresight component identification registers.                                                                          |
| CIDR[3]       | 0xFFC     | Coresight component identification registers.                                                                          |
|               |           |                                                                                                                        |

# 10.7.5.1.1 SUPPORTEDPORTSIZES

Address offset: 0x000

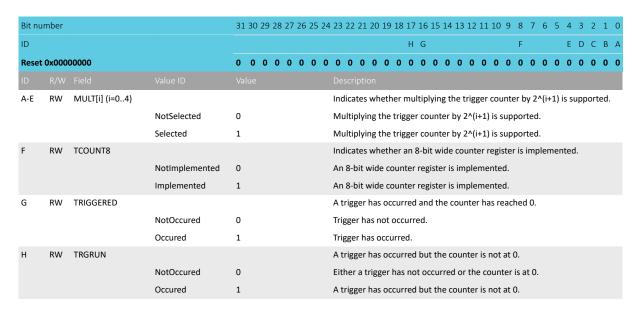



Each bit location is a single port size that is supported on the device.



### 10.7.5.1.2 CURRENTPORTSIZE

Address offset: 0x004


Each bit location is a single port size. One bit can be set, and indicates the current port size.

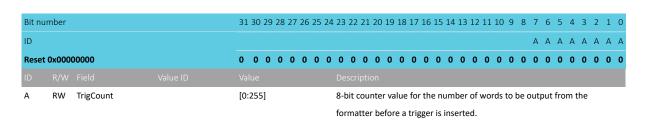


#### 10.7.5.1.3 SUPPORTEDTRIGGERMODES

Address offset: 0x100

The Supported\_trigger\_modes register indicates the implemented trigger counter multipliers and other supported features of the trigger system.

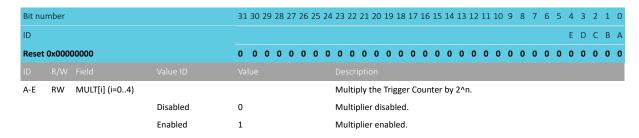



## 10.7.5.1.4 TRIGGERCOUNTERVALUE

Address offset: 0x104

The Trigger\_counter\_value register enables delaying the indication of triggers to any external connected trace capture or storage devices.








## 10.7.5.1.5 TRIGGERMULTIPLIER

Address offset: 0x108

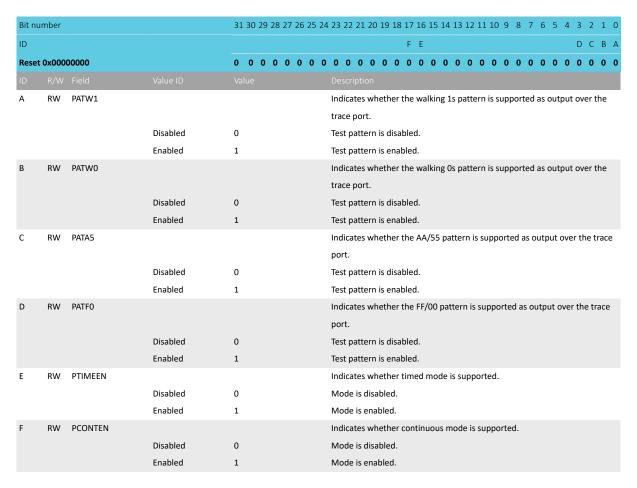
The Trigger\_multiplier register contains the selectors for the trigger counter multiplier.



### 10.7.5.1.6 SUPPPORTEDTESTPATTERNMODES

Address offset: 0x200

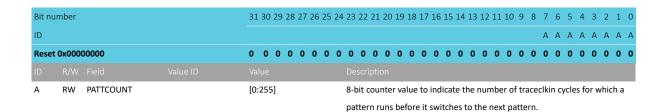
The Supported\_test\_pattern\_modes register provides a set of known bit sequences or patterns that can be output over the trace port and can be detected by the TPA or other associated trace capture device.


| Bit nu | mber  |         |              | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0           |
|--------|-------|---------|--------------|-------------------------|---------------------------------------------------------------------------|
| ID     |       |         |              |                         | F E D C B A                                                               |
| Reset  | 0x000 | 00000   |              | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |
|        |       |         |              |                         | Description                                                               |
| Α      | RW    | PATW1   |              |                         | Indicates whether the walking 1s pattern is supported as output over the  |
|        |       |         |              |                         | trace port.                                                               |
|        |       |         | NotSupported | 0                       | Test pattern is not supported.                                            |
|        |       |         | Supported    | 1                       | Test pattern is supported.                                                |
| В      | RW    | PATW0   |              |                         | Indicates whether the walking 0s pattern is supported as output over the  |
|        |       |         |              |                         | trace port.                                                               |
|        |       |         | NotSupported | 0                       | Test pattern is not supported.                                            |
|        |       |         | Supported    | 1                       | Test pattern is supported.                                                |
| С      | RW    | PATA5   |              |                         | Indicates whether the AA/55 pattern is supported as output over the trace |
|        |       |         |              |                         | port.                                                                     |
|        |       |         | NotSupported | 0                       | Test pattern is not supported.                                            |
|        |       |         | Supported    | 1                       | Test pattern is supported.                                                |
| D      | RW    | PATF0   |              |                         | Indicates whether the FF/00 pattern is supported as output over the trace |
|        |       |         |              |                         | port.                                                                     |
|        |       |         | NotSupported | 0                       | Test pattern is not supported.                                            |
|        |       |         | Supported    | 1                       | Test pattern is supported.                                                |
| E      | RW    | PTIMEEN |              |                         | Indicates whether timed mode is supported.                                |
|        |       |         | NotSupported | 0                       | Mode is not supported.                                                    |
|        |       |         | Supported    | 1                       | Mode is supported.                                                        |
| F      | RW    | PCONTEN |              |                         | Indicates whether continuous mode is supported.                           |
|        |       |         | NotSupported | 0                       | Mode is not supported.                                                    |
|        |       |         | Supported    | 1                       | Mode is supported.                                                        |
|        |       |         |              |                         |                                                                           |



### 10.7.5.1.7 CURRENTTESTPATTERNMODES

Address offset: 0x204


Current test pattern mode indicates the current test pattern or mode selected.



## 10.7.5.1.8 TPRCR

Address offset: 0x208

The TPRCR register is an 8-bit counter start value that is decremented. A write sets the initial counter value and a read returns the programmed value.



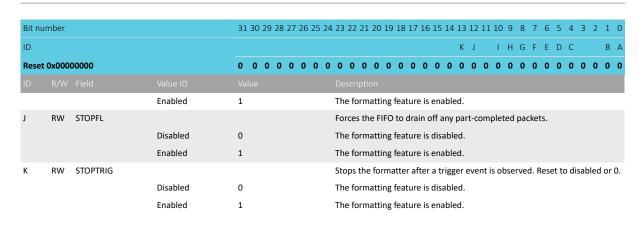
### 10.7.5.1.9 FFSR

Address offset: 0x300

The FFSR register indicates the current status of the formatter and flush features available in the TPIU.



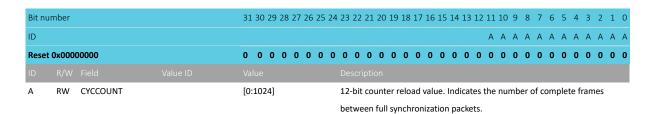
| Bit nu | umber   |           |               | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0              |
|--------|---------|-----------|---------------|------------------------|-------------------------------------------------------------------------------|
| ID     |         |           |               |                        | СВА                                                                           |
| Rese   | t 0x000 | 00000     |               | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
| ID     |         |           |               |                        | Description                                                                   |
| Α      | RW      | FLINPROG  |               |                        | Flush in progress.                                                            |
|        |         |           | NotInProgress | 0                      | A flush is not in progress.                                                   |
|        |         |           | InProgress    | 1                      | A flush is in progress.                                                       |
| В      | RW      | FTSTOPPED |               |                        | The formatter has received a stop request signal and all trace data and post- |
|        |         |           |               |                        | amble is sent. Any additional trace data on the ATB interface is ignored and  |
|        |         |           |               |                        | atreadys goes HIGH.                                                           |
|        |         |           | Running       | 0                      | Formatter has not stopped.                                                    |
|        |         |           | Stopped       | 1                      | Formatter has stopped.                                                        |
| С      | RW      | TCPRESENT |               |                        | Indicates whether the TRACECTL pin is available for use.                      |
|        |         |           | NotPresent    | 0                      | TRACECTL pin is not present.                                                  |
|        |         |           | Present       | 1                      | TRACECTL pin is present.                                                      |


# 10.7.5.1.10 FFCR

Address offset: 0x304

The FFCR register controls the generation of stop, trigger, and flush events.

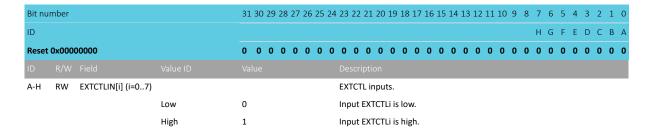
| Bit nu | ımber |         |          | 31 | 30 | 29 2 | 28 27 | 7 26 | 5 25 | 24 | 23 2   | 2 21 2  | 20    | 19 1  | 18 1 | 7 1   | 5 15  | 5 14  | 13    | 12   | 11   | 10    | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1 0 |
|--------|-------|---------|----------|----|----|------|-------|------|------|----|--------|---------|-------|-------|------|-------|-------|-------|-------|------|------|-------|------|------|------|------|------|------|------|------|-----|
| ID     |       |         |          |    |    |      |       |      |      |    |        |         |       |       |      |       |       |       | K     | J    |      | -1    | Н    | G    | F    | Ε    | D    | С    |      |      | ВА  |
| Reset  | 0x000 | 00000   |          | 0  | 0  | 0 (  | 0 0   | 0    | 0    | 0  | 0 0    | 0 0     | 0     | 0 (   | 0    | 0 0   | 0     | 0     | 0     | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0 0 |
| ID     |       |         |          |    |    |      |       |      |      |    |        |         |       |       |      |       |       |       |       |      |      |       |      |      |      |      |      |      |      |      |     |
| Α      | RW    | ENFTC   |          |    |    |      |       |      |      |    | Do n   | ot em   | nbe   | d tri | igge | ers i | nto   | the   | for   | ma   | ttec | d str | ear  | n. T | rac  | e di | sab  | le c | ycle | es a | nd  |
|        |       |         |          |    |    |      |       |      |      |    | trigg  | ers ar  | e ir  | ndica | ate  | d by  | tra   | cec   | tl, v | vhe  | re p | res   | ent  |      |      |      |      |      |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| В      | RW    | ENFCONT |          |    |    |      |       |      |      |    | Is en  | nbedd   | led   | in tı | rigg | ger p | ack   | ets   | and   | d in | dica | ates  | tha  | at n | о су | cle  | is ι | ısin | g sy | /nc  |     |
|        |       |         |          |    |    |      |       |      |      |    | pack   | ets.    |       |       |      |       |       |       |       |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| С      | RW    | FONFLIN |          |    |    |      |       |      |      |    | Enab   | oles th | ne u  | ise c | of t | he fl | ush   | in c  | onr   | nect | tion | ١.    |      |      |      |      |      |      |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| D      | RW    | FONTRIG |          |    |    |      |       |      |      |    | Initia | ates a  | ma    | nua   | l fl | ush   | of d  | ata   | in t  | he   | syst | tem   | wh   | nen  | a tr | igg  | er e | ever | ıt o | ccui | rs. |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| E      | RW    | FONMANR |          |    |    |      |       |      |      |    | Gene   | erates  | a f   | lush  | 1. T | his b | it is | set   | to    | 0 v  | vhe  | n th  | is f | lush | is   | ser  | vice | d.   |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatu | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| F      | RW    | FONMANW |          |    |    |      |       |      |      |    | Gene   | erates  | a f   | lush  | 1. T | his b | it is | set   | to    | 1 v  | vhe  | n th  | is f | lush | is   | ser  | vice | d.   |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| G      | RW    | TRIGIN  |          |    |    |      |       |      |      |    | Indic  | cates a | a tri | igge  | rw   | hen   | trig  | gin i | s as  | ser  | ted  |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | atı  | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| Н      | RW    | TRIGEVT |          |    |    |      |       |      |      |    | Indic  | cates a | a tri | igge  | r o  | n a t | rigg  | ger e | eve   | nt.  |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
|        |       |         | Enabled  | 1  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s er  | abl   | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |
| 1      | RW    | TRIGFL  |          |    |    |      |       |      |      |    | Indic  | cates a | a tr  | igge  | rw   | hen   | flu   | sh c  | om    | ple  | tion | on    | afr  | ead  | ys i | s re | tur  | nec  | ١.   |      |     |
|        |       |         | Disabled | 0  |    |      |       |      |      |    | The    | forma   | ttir  | ng fe | eatı | ıre i | s di  | sabl  | ed.   |      |      |       |      |      |      |      |      |      |      |      |     |






### 10.7.5.1.11 FSCR

Address offset: 0x308

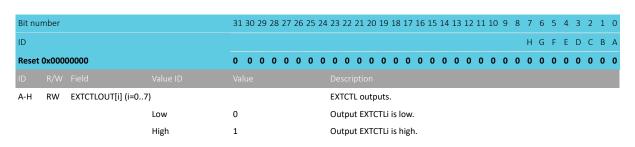

The FSCR register enables the frequency of synchronization information to be optimized to suit the Trace Port Analyzer (TPA) capture buffer size.



## 10.7.5.1.12 EXTCTLINPORT

Address offset: 0x400

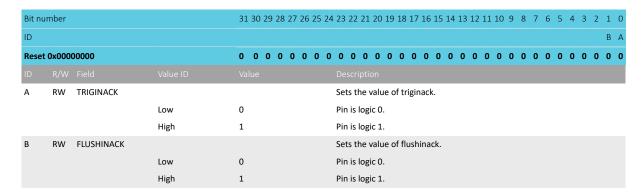
Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high-speed trace port solution.




## 10.7.5.1.13 EXTCTLOUTPORT

Address offset: 0x404

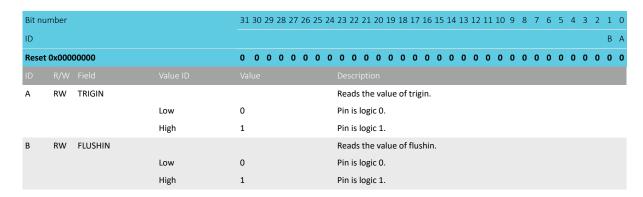
Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high speed trace port solution. These ports are raw register banks that sample or export the corresponding external pins.






#### 10.7.5.1.14 ITTRFLINACK

Address offset: 0xEE4

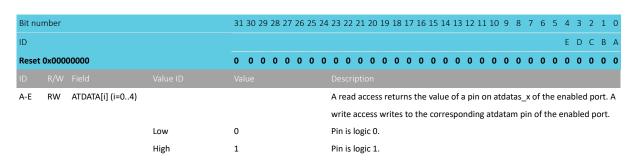

The ITTRFLINACK register enables control of the triginack and flushinack outputs from the TPIU.



### 10.7.5.1.15 ITTRFLIN

Address offset: 0xEE8

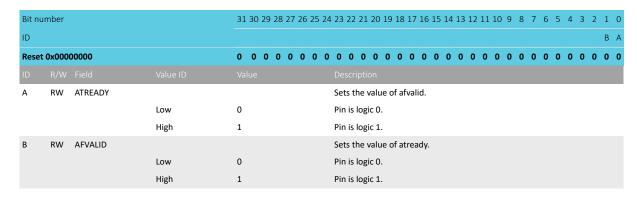
The ITTRFLIN register contains the values of the flushin and trigin inputs to the TPIU.




## 10.7.5.1.16 ITATBDATA0

Address offset: 0xEEC

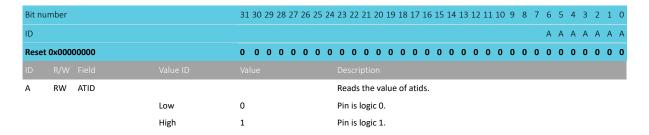
The ITATBDATAO register contains the value of the atdatas inputs to the TPIU. The values are valid only when atvalids is HIGH.






### 10.7.5.1.17 ITATBCTR2

Address offset: 0xEF0


Enables control of the atreadys and afvalids outputs of the TPIU.



#### 10.7.5.1.18 ITATBCTR1

Address offset: 0xEF4

The ITATBCTR1 register contains the value of the atids input to the TPIU. This is only valid when atvalids is HIGH.

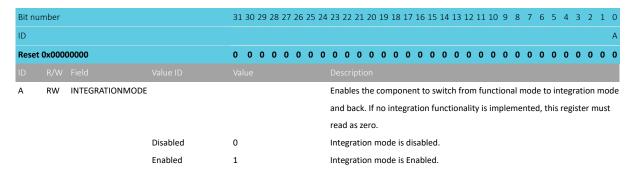


## 10.7.5.1.19 ITATBCTR0

Address offset: 0xEF8

The ITATBCTRO register captures the values of the atvalids, afreadys, and atbytess inputs to the TPIU. To ensure the integration registers work correctly in a system, the value of atbytess is only valid when atvalids, bit[0], is HIGH.

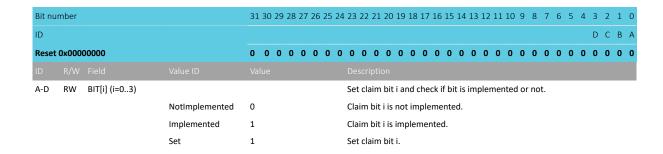



| Bit no | umber   |         |      | 31 | 30 29 | 9 28 | 27 | 26 2 | 25 24 | 4 23 | 3 22 | 2 21  | 20 1  | 19 1 | L8 1  | 7 1 | 5 15 | 5 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 3 | 2 | 1 | 0 |
|--------|---------|---------|------|----|-------|------|----|------|-------|------|------|-------|-------|------|-------|-----|------|------|----|----|----|----|---|---|---|---|---|-----|---|---|---|
| ID     |         |         |      |    |       |      |    |      |       |      |      |       |       |      |       |     |      |      |    |    |    |    | С | С |   |   |   |     | В |   | Α |
| Rese   | t 0x000 | 00000   |      | 0  | 0 0   | 0    | 0  | 0    | 0 0   | 0    | 0    | 0     | 0     | 0    | 0 (   | ) ( | 0    | 0    | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 ( | 0 | 0 | 0 |
| ID     |         |         |      |    |       |      |    |      |       |      |      |       |       |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
| Α      | RW      | ATVALID |      |    |       |      |    |      |       | Re   | ead  | s the | e val | ue ( | of at | val | ds.  |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | Low  | 0  |       |      |    |      |       | Pi   | n is | logi  | c 0.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | High | 1  |       |      |    |      |       | Pi   | n is | logi  | c 1.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
| В      | RW      | AFREADY |      |    |       |      |    |      |       | Re   | ead  | s the | e val | ue ( | of at | rea | dys  |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | Low  | 0  |       |      |    |      |       | Pi   | n is | logi  | c 0.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | High | 1  |       |      |    |      |       | Pi   | n is | logi  | c 1.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
| С      | RW      | ATBYTES |      |    |       |      |    |      |       | Re   | ead  | s the | e val | ue ( | of at | byt | ess  |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | Low  | 0  |       |      |    |      |       | Pi   | n is | logi  | c 0.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |
|        |         |         | High | 1  |       |      |    |      |       | Pi   | n is | logi  | c 1.  |      |       |     |      |      |    |    |    |    |   |   |   |   |   |     |   |   |   |

## 10.7.5.1.20 ITCTRL

Address offset: 0xF00

Used to enable topology detection. This register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for integration testing and topology solving.


**Note:** When a device has been in integration mode, it might not function with the original behavior. After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that are affected by the integration or topology detection.

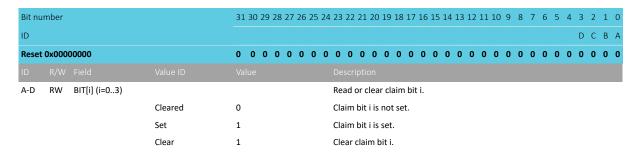


## 10.7.5.1.21 CLAIMSET

Address offset: 0xFA0

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

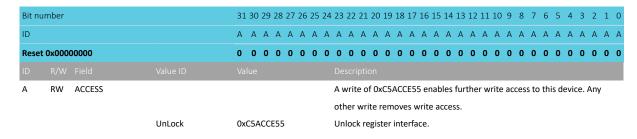







### 10.7.5.1.22 CLAIMCLR

Address offset: 0xFA4


Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.



#### 10.7.5.1.23 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.



#### 10.7.5.1.24 LSR

Address offset: 0xFB4

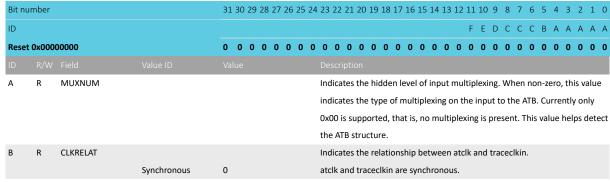
This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.



| Bit nu | umber   |         |                | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0              |
|--------|---------|---------|----------------|------------------------|-------------------------------------------------------------------------------|
| ID     |         |         |                |                        | СВА                                                                           |
| Reset  | t 0x000 | 00000   |                | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
| ID     |         |         |                |                        | Description                                                                   |
| Α      | RW      | PRESENT |                |                        | Indicates that a lock control mechanism exists for this device.               |
|        |         |         | NotImplemented | 0                      | No lock control mechanism exists, writes to the Lock Access Register are      |
|        |         |         |                |                        | ignored.                                                                      |
|        |         |         | Implemented    | 1                      | Lock control mechanism is present.                                            |
| В      | RW      | LOCKED  |                |                        | Returns the current status of the Lock.                                       |
|        |         |         | UnLocked       | 0                      | Write access is allowed to this device.                                       |
|        |         |         | Locked         | 1                      | Write access to the component is blocked. All writes to control registers are |
|        |         |         |                |                        | ignored. Reads are permitted.                                                 |
| С      | RW      | TYPE    |                |                        | Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.      |
|        |         |         | Bits32         | 0                      | This component implements a 32-bit Lock Access Register.                      |
|        |         |         | Bits8          | 1                      | This component implements an 8-bit Lock Access Register.                      |

### 10.7.5.1.25 AUTHSTATUS

Address offset: 0xFB8


Indicates the current level of tracing permitted by the system



## 10.7.5.1.26 DEVID

Address offset: 0xFC8

Indicates the capabilities of the component.





| Bit n            | umber |              |              | 31 30 29 28 27 26 25 24 | 4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0     |
|------------------|-------|--------------|--------------|-------------------------|---------------------------------------------------------------------|
| ID               |       |              |              |                         | F E D C C C B A A A A                                               |
| Reset 0x00000000 |       |              |              | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
|                  |       |              |              |                         | Description                                                         |
|                  |       |              | ASynchronous | 1                       | atclk and traceclkin are asynchronous.                              |
| С                | R     | FIFOSIZE     |              |                         | FIFO size in powers of 2.                                           |
|                  |       |              | Entries4     | 2                       | FIFO size of 4 entries, that is, 16 bytes.                          |
| D                | R     | TCLKDATA     |              |                         | Indicates whether trace clock plus data is supported.               |
|                  |       |              | Supported    | 0                       | Trace clock and data is supported.                                  |
|                  |       |              | NotSupported | 1                       | Trace clock and data is not supported.                              |
| E                | R     | SWOMAN       |              |                         | Indicates whether Serial Wire Output, Manchester encoded format, is |
|                  |       |              |              |                         | supported.                                                          |
|                  |       | NotSupported | NotSupported | 0                       | Serial Wire Output, Manchester encoded format, is not supported.    |
|                  |       |              | Supported    | 1                       | Serial Wire Output, Manchester encoded format, is supported.        |
| F                | R     | SWOUARTNRZ   |              |                         | Indicates whether Serial Wire Output, UART or NRZ, is supported.    |
|                  |       |              | NotSupported | 0                       | Serial Wire Output, UART or NRZ, is not supported.                  |
|                  |       |              | Supported    | 1                       | Serial Wire Output, UART or NRZ, is supported.                      |
|                  |       |              |              |                         |                                                                     |

# 10.7.5.1.27 DEVTYPE

Address offset: 0xFCC

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

| Bit nu           | ımber |       |             | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|------------------|-------|-------|-------------|-------------------------|---------------------------------------------------------------|
| ID               |       |       |             |                         | B B B B A A A A                                               |
| Reset 0x00000000 |       |       |             | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID               |       |       |             |                         |                                                               |
| Α                | R     | MAJOR |             |                         | The main type of the component                                |
|                  |       |       | TraceSource | 1                       | Peripheral is a trace sink.                                   |
| В                | R     | SUB   |             |                         | The sub-type of the component                                 |
|                  |       |       | TracePort   | 1                       | Indicates that this component is a trace port component.      |

## 10.7.5.1.28 PIDR4

Address offset: 0xFD0

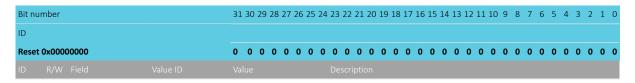
Coresight peripheral identification registers.

| Bit num | Bit number |          | 31 30 29 28 27 26 | 5 25 24 | 23 22  | 21 20 : | 19 18 1 | 7 16 1 | 5 14 1 | 3 12 1 | 1 10 9 | 8 | 7 | 6 5 | 4 | 3 2 | 1 0 |
|---------|------------|----------|-------------------|---------|--------|---------|---------|--------|--------|--------|--------|---|---|-----|---|-----|-----|
| ID      |            |          |                   |         |        |         |         |        |        |        |        |   |   |     |   |     |     |
| Reset 0 | x00000000  |          | 0 0 0 0 0 0       | 0 0     | 0 0    | 0 0     | 0 0 0   | 0 0    | 0 (    | 0 0    | 0 (    | 0 | 0 | 0 0 | 0 | 0 0 | 0 0 |
| ID      | R/W Field  | Value ID | Value             |         | Descri | ption   |         |        |        |        |        |   |   |     |   |     |     |

# 10.7.5.1.29 PIDR[0]

Address offset: 0xFE0

Coresight peripheral identification registers.


| Bit number       | 31 30 29 28 27 26 | 25 24 23 22 21 20 19 18 1 | 7 16 15 14 13 12 11 | 10 9 8 7 | 6 5 | 4 3 2 | 2 1 0 |
|------------------|-------------------|---------------------------|---------------------|----------|-----|-------|-------|
| ID               |                   |                           |                     |          |     |       |       |
|                  |                   |                           |                     |          |     |       |       |
| Reset 0x00000000 | 0 0 0 0 0 0       | 0 0 0 0 0 0 0 0 0         | 000000              | 0 0 0 0  | 0 0 | 0 0 0 | 0 0   |



# 10.7.5.1.30 PIDR[1]

Address offset: 0xFE4

Coresight peripheral identification registers.



# 10.7.5.1.31 PIDR[2]

Address offset: 0xFE8

Coresight peripheral identification registers.

| Bit number            | 31 30 29 28 27 26 25 2 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-----------------------|------------------------|------------------------------------------------------------------|
| ID                    |                        |                                                                  |
| Reset 0x00000000      | 0 0 0 0 0 0 0          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| ID R/W Field Value ID | Value                  | Description                                                      |

# 10.7.5.1.32 PIDR[3]

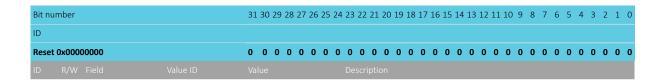
Address offset: 0xFEC

Coresight peripheral identification registers.

| Bit number       | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 | 2 1 0 |
|------------------|---------------------------------------------------------------------------------|-------|
| ID               |                                                                                 |       |
|                  |                                                                                 |       |
| Reset 0x00000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                         | 0 0 0 |

## 10.7.5.1.33 CIDR[0]

Address offset: 0xFF0


Coresight component identification registers.

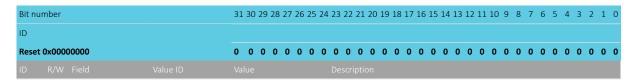
| Bit number            | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|-----------------------|-------------------------|---------------------------------------------------------------|
| ID                    |                         |                                                               |
| Reset 0x00000000      | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |
| ID R/W Field Value ID |                         | Description                                                   |

## 10.7.5.1.34 CIDR[1]

Address offset: 0xFF4

Coresight component identification registers.

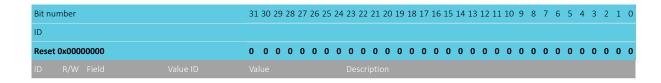







## 10.7.5.1.35 CIDR[2]

Address offset: 0xFF8


Coresight component identification registers.



## 10.7.5.1.36 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.



## 10.8 CTRL-AP - Control access port

The control access port (CTRL-AP) is a custom access port that enables control of the device when other debug access ports (DAP) have been disabled by the access port protection.

For an overview of the other debug access ports, see DAP - Debug access port on page 436.

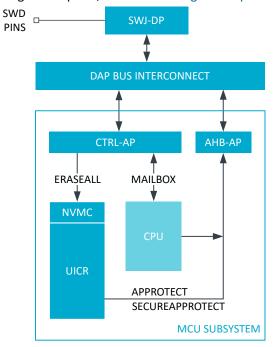



Figure 121: Control access port details

Access port protection (APPROTECT) blocks the debugger access to the AHB-AP, and prevents read and write access to all CPU registers and memory-mapped addresses. To enable port protection access for both secure and non-secure modes, use the registers SECUREAPPROTECT on page 44 and APPROTECT on



page 42 respectively. The debugger can use the register APPROTECT.STATUS on page 509 to read the status of secure and non-secure access port protection.

CTRL-AP has the following features:

- Soft reset
- Erase all
- · Mailbox interface
- Debug of protected devices

## 10.8.1 Reset request

The debugger can request the device to perform a soft reset.

Use the register RESET on page 508 to request a soft reset. Once the soft reset is performed, the reset reason is accessible on the on-chip firmware through the RESETREAS register. For more information about the soft reset, see Reset on page 58.

## 10.8.2 Frase all

The erase all function lets the debugger trigger an erase of flash, user information configuration registers (UICR), RAM, all peripheral settings, and also removes the access port protection.

To trigger an erase all function, the debugger writes to the register ERASEALL on page 508. The register ERASEALLSTATUS on page 508 will read as busy for the duration of the operation. After the next reset, the access port protection is removed.

If the debugger performs an erase all function on a slave MCU, the erase sequence will always erase the application MCU first, independently of how the application is protected, before erasing the slave MCU.

## **Erase all protection**

It is possible to prevent the debugger from performing an erase all operation by writing to the UICR.ERASEPROTECT register. Once the register is configured and the device is reset, the CTRL-AP ERASEALL operation is disabled, and all flash write and erase operations are restricted to the firmware. In addition, it is still possible to write/erase from the debugger as long as the UICR.APPROTECT register is not set.

**Note:** Setting the UICR.ERASEPROTECT register only affects the erase all operation and not the debugger access.

The register ERASEPROTECT.STATUS on page 509 holds the status for erase protection.

## 10.8.3 Mailbox interface

CTRL-AP implements a mailbox interface which enables the CPU to communicate with a debugger over the SWD interface.

The mailbox interface consists of a transmit register MAILBOX.TXDATA on page 510 with its corresponding status register MAILBOX.TXSTATUS on page 510, and a receive register MAILBOX.RXDATA on page 510 with its corresponding status register MAILBOX.RXSTATUS on page 510. Status bits in the TXSTATUS/RXSTATUS registers are set and cleared automatically when the TXDATA/RXDATA registers are written to and read from, independently of the direction.



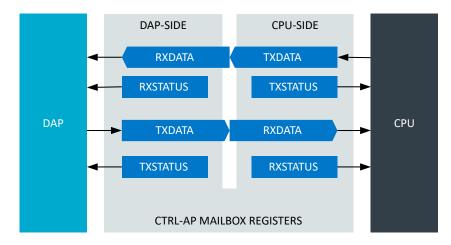



Figure 122: Mailbox register interface

## Mailbox transfer sequence

- 1. Sender writes TXDATA.
- 2. Hardware sets sender's TXSTATUS to DataPending.
- 3. Hardware sets receiver's RXSTATUS to DataPending.
- 4. Receiver reads RXDATA.
- 5. Hardware sets receiver's RXSTATUS to NoDataPending.
- 6. Hardware sets sender's TXSTATUS to NoDataPending.

## 10.8.4 Disabling erase protection

The erase protection mechanism can be disabled to return a device to factory default settings on next reset.

The debugger can read the erase protection status in the register ERASEPROTECT.STATUS on page 509.

If ERASEPROTECT has been enabled, both the debugger and on-chip firmware must write the same non-zero 32-bit KEY value into their respective ERASEPROTECT.DISABLE registers to disable the erase protection. When both registers have been written with the same non-zero 32-bit KEY value, the device is automatically erased as described in Erase all on page 506. The access ports will be re-enabled on the next reset once the secure erase sequence has completed.

The write-once register ERASEPROTECT.LOCK on page 512 should be set to *Locked* as early as possible in the start-up sequence, preferably as soon as the on-chip firmware has determined it does not need to communicate with a debugger over the CTRL-AP mailbox interface. Once written, it will not be possible to remove the erase protection until the next reset.

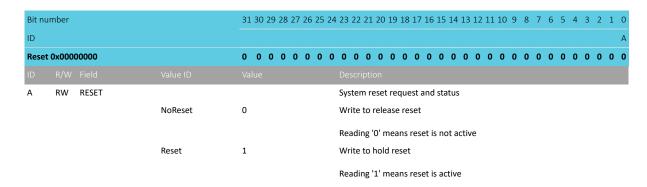
## 10.8.5 Debugger registers

CTRL-AP has a set of registers that can only be accessed from the debugger over the SWD interface. These are not accessible from the CPU.

## 10.8.5.1 Debugger registers

## **Register overview**

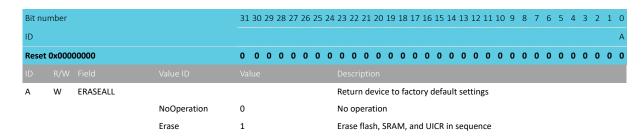
| Register O  | Offset | Description                                                                                      |
|-------------|--------|--------------------------------------------------------------------------------------------------|
| RESET 0:    | 000x   | System reset request                                                                             |
| ERASEALL 0: | )x004  | Perform a secure erase of the device, where flash, SRAM and UICR will be erased in sequence. The |
|             |        | device will be returned to factory default settings upon next reset.                             |




| Register             | Offset | Description                                                                                          |
|----------------------|--------|------------------------------------------------------------------------------------------------------|
| ERASEALLSTATUS       | 0x008  | This is the status register for the ERASEALL operation.                                              |
| APPROTECT.STATUS     | 0x00C  | This is the status register for the UICR access port protection.                                     |
| ERASEPROTECT.STATUS  | 0x018  | This is the status register for the UICR ERASEPROTECT configuration.                                 |
| ERASEPROTECT.DISABLE | 0x01C  | This register disables ERASEPROTECT and performs ERASEALL.                                           |
| MAILBOX.TXDATA       | 0x020  | Data sent from the debugger to the CPU.                                                              |
| MAILBOX.TXSTATUS     | 0x024  | This register shows a status that indicates if data sent from the debugger to the CPU has been read. |
| MAILBOX.RXDATA       | 0x028  | Data sent from the CPU to the debugger.                                                              |
| MAILBOX.RXSTATUS     | 0x02C  | This register shows a status that indicates if data sent from the CPU to the debugger has been read. |
| IDR                  | 0x0FC  | CTRL-AP Identification Register, IDR                                                                 |

## 10.8.5.1.1 RESET

Address offset: 0x000 System reset request

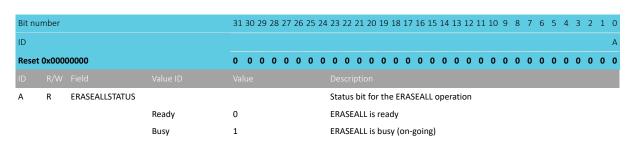

This register is automatically deactivated during an ERASEALL operation.



## 10.8.5.1.2 ERASEALL

Address offset: 0x004

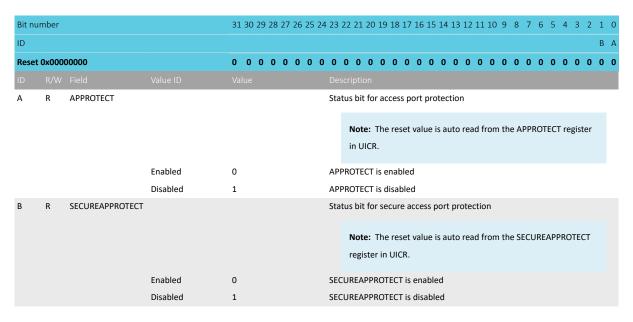
Perform a secure erase of the device, where flash, SRAM and UICR will be erased in sequence. The device will be returned to factory default settings upon next reset.




#### 10.8.5.1.3 ERASEALLSTATUS

Address offset: 0x008

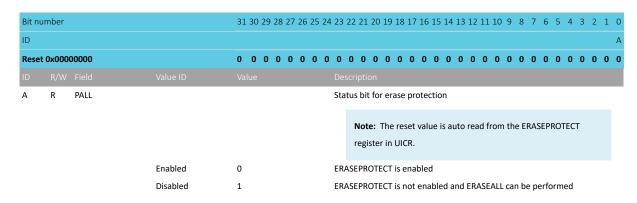
This is the status register for the ERASEALL operation.






#### 10.8.5.1.4 APPROTECT.STATUS

Address offset: 0x00C


This is the status register for the UICR access port protection.

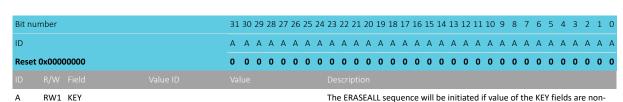


#### 10.8.5.1.5 ERASEPROTECT.STATUS

Address offset: 0x018

This is the status register for the UICR ERASEPROTECT configuration.




509

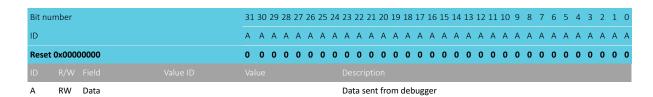
## 10.8.5.1.6 ERASEPROTECT.DISABLE

Address offset: 0x01C

This register disables ERASEPROTECT and performs ERASEALL.






zero and the KEY fields match on both the CPU and debugger sides.

## 10.8.5.1.7 MAILBOX.TXDATA

Address offset: 0x020

Data sent from the debugger to the CPU.

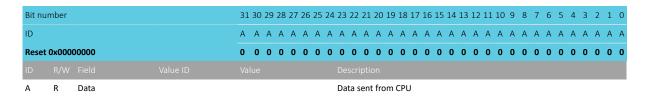

Writing to this register will automatically set a DataPending value in the TXSTATUS register.



#### 10.8.5.1.8 MAILBOX.TXSTATUS

Address offset: 0x024

This register shows a status that indicates if data sent from the debugger to the CPU has been read.




#### 10.8.5.1.9 MAILBOX.RXDATA

Address offset: 0x028

Data sent from the CPU to the debugger.

Reading from this register will automatically set a NoDataPending value in the RXSTATUS register.




#### 10.8.5.1.10 MAILBOX.RXSTATUS

Address offset: 0x02C

This register shows a status that indicates if data sent from the CPU to the debugger has been read.





## 10.8.5.1.11 IDR

Address offset: 0x0FC

CTRL-AP Identification Register, IDR

| Bit nu | ımber |            |            | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21    | 20    | 19   | 18    | 17  | 16   | 15  | 14  | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|-------|------------|------------|----|----|----|----|----|----|----|----|-----|------|-------|-------|------|-------|-----|------|-----|-----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| ID     |       |            |            | Е  | Ε  | Ε  | Ε  | D  | D  | D  | D  | С   | С    | С     | С     | С    | С     | С   | В    | В   | В   | В  |    |    |    |   |   | Α | Α | Α | Α | Α | Α | Α | Α |
| Reset  | 0x128 | 80000      |            | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1   | 0    | 0     | 0     | 1    | 0     | 0   | 0    | 0   | 0   | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ID     |       |            |            |    |    |    |    |    |    |    |    |     |      |       |       |      |       |     |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Α      | R     | APID       |            |    |    |    |    |    |    |    |    | ΑP  | Ide  | nti   | fica  | itio | n     |     |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| В      | R     | CLASS      |            |    |    |    |    |    |    |    |    | Acc | ces  | s Pc  | ort ( | (AP  | ) cla | ISS |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|        |       |            | NotDefined | 0x | 0  |    |    |    |    |    |    | No  | de   | fine  | ed c  | clas | S     |     |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|        |       |            | MEMAP      | 0x | 8  |    |    |    |    |    |    | Me  | emo  | ory . | Acc   | ess  | Ро    | rt  |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| С      | R     | JEP106ID   |            |    |    |    |    |    |    |    |    | JEC | DEC  | JEF   | 210   | 6 id | lent  | ity | coc  | le  |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| D      | R     | JEP106CONT |            |    |    |    |    |    |    |    |    | JEC | DEC  | JEF   | 210   | 6 cc | onti  | nua | itio | n c | ode | è  |    |    |    |   |   |   |   |   |   |   |   |   |   |
| E      | R     | REVISION   |            |    |    |    |    |    |    |    |    | Rev | visi | on    |       |      |       |     |      |     |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

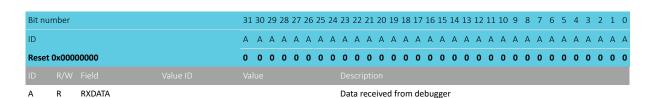
## 10.8.6 Registers

## **Instances**

| Instance     | Base address | TrustZone | :   |     | Split access | Description  |  |  |  |  |
|--------------|--------------|-----------|-----|-----|--------------|--------------|--|--|--|--|
|              |              | Мар       | Att | DMA |              |              |  |  |  |  |
| CTRL_AP_PERI | 0x50006000   | HF        | S   | NA  | No           | CTRL-AP-PERI |  |  |  |  |

## **Register overview**

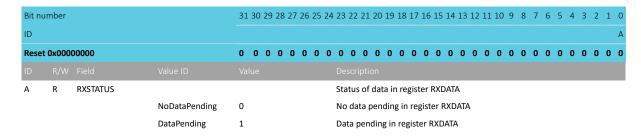
| Register             | Offset | TZ | Description                                                                                       |
|----------------------|--------|----|---------------------------------------------------------------------------------------------------|
| MAILBOX.RXDATA       | 0x400  |    | Data sent from the debugger to the CPU.                                                           |
| MAILBOX.RXSTATUS     | 0x404  |    | This register shows a status that indicates if data sent from the debugger to the CPU has been $$ |
|                      |        |    | read.                                                                                             |
| MAILBOX.TXDATA       | 0x480  |    | Data sent from the CPU to the debugger.                                                           |
| MAILBOX.TXSTATUS     | 0x484  |    | This register shows a status that indicates if the data sent from the CPU to the debugger has     |
|                      |        |    | been read.                                                                                        |
| ERASEPROTECT.LOCK    | 0x500  |    | This register locks the ERASEPROTECT.DISABLE register from being written until next reset.        |
| ERASEPROTECT.DISABLE | 0x504  |    | This register disables the ERASEPROTECT register and performs an ERASEALL operation.              |


## 10.8.6.1 MAILBOX.RXDATA

Address offset: 0x400

Data sent from the debugger to the CPU.

Reading from this register will automatically set a NoDataPending value in the RXSTATUS register.

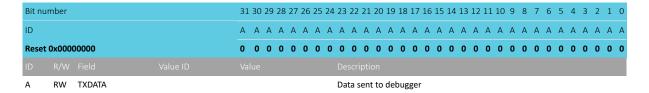





#### 10.8.6.2 MAILBOX.RXSTATUS

Address offset: 0x404

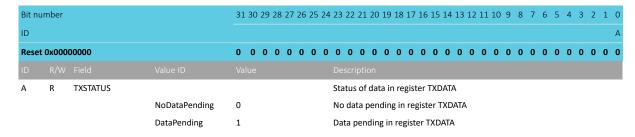
This register shows a status that indicates if data sent from the debugger to the CPU has been read.




#### 10.8.6.3 MAILBOX.TXDATA

Address offset: 0x480

Data sent from the CPU to the debugger.

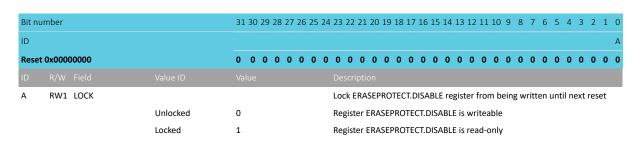

Writing to this register will automatically set a DataPending value in the TXSTATUS register.



## 10.8.6.4 MAILBOX.TXSTATUS

Address offset: 0x484

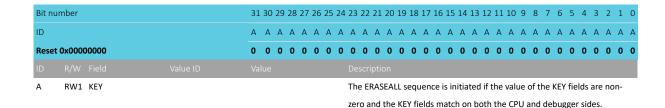
This register shows a status that indicates if the data sent from the CPU to the debugger has been read.




## 10.8.6.5 ERASEPROTECT.LOCK

Address offset: 0x500

This register locks the ERASEPROTECT.DISABLE register from being written until next reset.






#### 10.8.6.6 ERASEPROTECT. DISABLE

Address offset: 0x504

This register disables the ERASEPROTECT register and performs an ERASEALL operation.



## 10.9 TAD - Trace and debug control

Configuration interface for trace and debug

Please refer to the Trace section for more information about how to configure the trace and debug interface.

**Note:** Although there are PSEL registers for the trace port, each function can only be mapped to a single pin due to pin speed requirements. Setting the PIN field to anything else will not have any effect. See Pin assignment chapter for more information

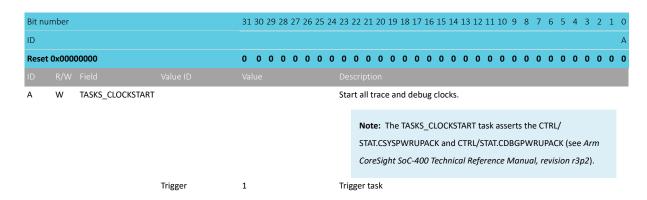
## 10.9.1 Registers

#### **Instances**

| Instance | Base address | TrustZone |     |     | Split access | Description             |
|----------|--------------|-----------|-----|-----|--------------|-------------------------|
|          |              | Мар       | Att | DMA |              |                         |
| TAD      | 0xE0080000   | HF        | S   | NA  | No           | Trace and debug control |



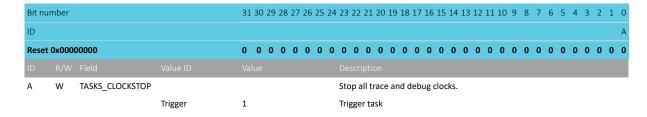
## **Register overview**


| Register         | Offset | TZ | Description                                         |
|------------------|--------|----|-----------------------------------------------------|
| TASKS_CLOCKSTART | 0x000  |    | Start all trace and debug clocks.                   |
| TASKS_CLOCKSTOP  | 0x004  |    | Stop all trace and debug clocks.                    |
| ENABLE           | 0x500  |    | Enable debug domain and aquire selected GPIOs       |
| PSEL.TRACECLK    | 0x504  |    | Pin configuration for TRACECLK                      |
| PSEL.TRACEDATA0  | 0x508  |    | Pin configuration for TRACEDATA[0]                  |
| PSEL.TRACEDATA1  | 0x50C  |    | Pin configuration for TRACEDATA[1]                  |
| PSEL.TRACEDATA2  | 0x510  |    | Pin configuration for TRACEDATA[2]                  |
| PSEL.TRACEDATA3  | 0x514  |    | Pin configuration for TRACEDATA[3]                  |
| TRACEPORTSPEED   | 0x518  |    | Clocking options for the Trace Port debug interface |
|                  |        |    | Reset behavior is the same as debug components      |
|                  |        |    | This register is retained.                          |

## 10.9.1.1 TASKS CLOCKSTART

Address offset: 0x000

Start all trace and debug clocks.

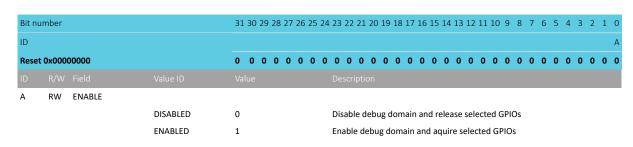

**Note:** The TASKS\_CLOCKSTART task asserts the CTRL/STAT.CSYSPWRUPACK and CTRL/STAT.CDBGPWRUPACK (see *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*).



## 10.9.1.2 TASKS CLOCKSTOP

Address offset: 0x004

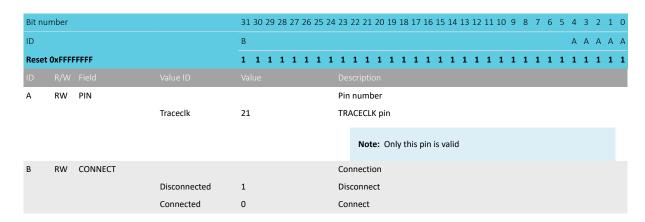
Stop all trace and debug clocks.




## 10.9.1.3 ENABLE

Address offset: 0x500

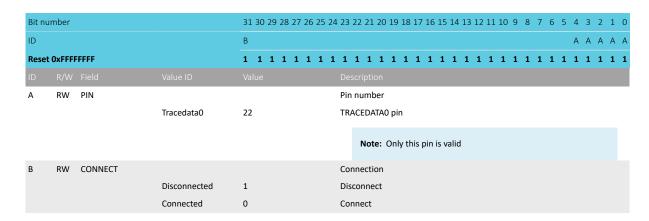
Enable debug domain and aquire selected GPIOs






## 10.9.1.4 PSEL.TRACECLK

Address offset: 0x504

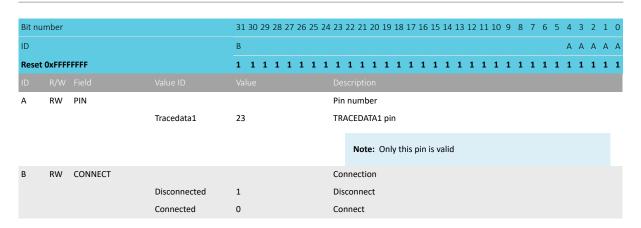

Pin configuration for TRACECLK



## 10.9.1.5 PSEL.TRACEDATAO

Address offset: 0x508

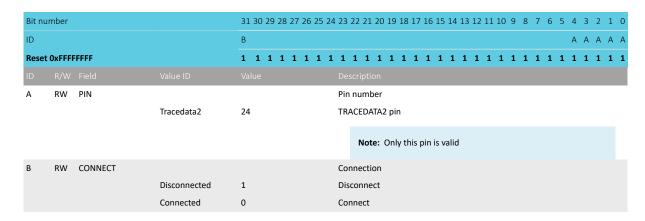
Pin configuration for TRACEDATA[0]




## 10.9.1.6 PSEL.TRACEDATA1

Address offset: 0x50C

Pin configuration for TRACEDATA[1]






## 10.9.1.7 PSEL.TRACEDATA2

Address offset: 0x510

Pin configuration for TRACEDATA[2]



## 10.9.1.8 PSEL.TRACEDATA3

Address offset: 0x514

Pin configuration for TRACEDATA[3]

| Bit num | ber   |         |              | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 |
|---------|-------|---------|--------------|-------------------------|-----------------------------------------------------------|
| ID      |       |         |              | В                       | A A A /                                                   |
| Reset 0 | xFFFF | FFFF    |              | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   |
|         |       |         |              |                         |                                                           |
| Α       | RW    | PIN     |              |                         | Pin number                                                |
|         |       |         | Tracedata3   | 25                      | TRACEDATA3 pin                                            |
|         |       |         |              |                         | Note: Only this pin is valid                              |
| В       | RW    | CONNECT |              |                         | Connection                                                |
|         |       |         | Disconnected | 1                       | Disconnect                                                |
|         |       |         | Connected    | 0                       | Connect                                                   |

## 10.9.1.9 TRACEPORTSPEED (Retained)

Address offset: 0x518

Clocking options for the Trace Port debug interface Reset behavior is the same as debug components





## This register is retained.

| Bit nu | umber   |                |       | 31 30 29 | 28 2 | 27 26 | 25 24 | 23 2 | 22 21 | L 20 1  | 9 18   | 3 17 : | 16 15 | 14    | 13  | 12 13 | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3 2  | 1    | 0   |
|--------|---------|----------------|-------|----------|------|-------|-------|------|-------|---------|--------|--------|-------|-------|-----|-------|-----|-----|-----|-----|-----|-----|-----|------|------|-----|
| ID     |         |                |       |          |      |       |       |      |       |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      | Α    | Α   |
| Rese   | t 0x000 | 00000          |       | 0 0 0    | 0 (  | 0 0   | 0 0   | 0 (  | 0 0   | 0 (     | 0      | 0      | 0 0   | 0     | 0   | 0 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0 0  | 0    | 0   |
| ID     |         |                |       |          |      |       |       |      |       |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
| Α      | RW      | TRACEPORTSPEED |       |          |      |       |       | Spe  | ed of | f Trace | Por    | t clo  | ck. N | ote t | hat | the   | TRA | CEC | CLK | pin | out | put | wil | l be | divi | ded |
|        |         |                |       |          |      |       |       | agai | n by  | two f   | rom    | the    | Trace | Port  | clo | ck.   |     |     |     |     |     |     |     |      |      |     |
|        |         |                | 32MHz | 0        |      |       |       | Trac | e Po  | rt cloc | ck is: |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                |       |          |      |       |       | 32N  | 1Hz   |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                | 16MHz | 1        |      |       |       | Trac | e Po  | rt clo  | k is:  |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                |       |          |      |       |       | 16N  | 1Hz   |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                | 8MHz  | 2        |      |       |       | Trac | e Po  | rt cloc | ck is: |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                |       |          |      |       |       | 8MF  | Ηz    |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                | 4MHz  | 3        |      |       |       | Trac | e Po  | rt cloc | ck is: |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |
|        |         |                |       |          |      |       |       | 4MF  | Ηz    |         |        |        |       |       |     |       |     |     |     |     |     |     |     |      |      |     |



# 11 Hardware and layout

The following sections describe nRF9151 hardware and layout specifications.

# 11.1 Pin assignments

This section describes the pin assignment and the pin functions of the nRF9151.

The device provides flexibility when it comes to routing and configuration of the GPIO pins. However, for some pins there are recommendations on pin usage and configuration. See following table for more information about this.

## 11.1.1 LGA pin assignments

The pin assignment table and figure describe the assignments.

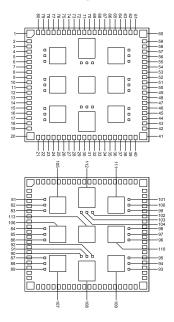



Figure 123: LGA pin assignments, top view

| Pin no | Pin name     | Function          | Description                                             |
|--------|--------------|-------------------|---------------------------------------------------------|
| 1      | GND          | Power             | Ground                                                  |
| 2      | P0.20        | Digital I/O (SoC) | General purpose I/O.                                    |
|        | AIN7         | Analog input      | Analog input.                                           |
| 3      | SWDCLK       | Digital input     | Serial wire debug clock input for debug and programming |
| 4      | SWDIO        | Digital I/O       | Serial wire debug I/O for debug and programming         |
| 5      | P0.21        | Digital I/O (SoC) | General purpose I/O.                                    |
|        | TRACECLK     | Trace clock       | Trace buffer clock (optional).                          |
| 6      | P0.22        | Digital I/O (SoC) | General purpose I/O.                                    |
|        | TRACEDATA[0] | Trace data        | Trace buffer TRACEDATA[0] (optional).                   |
| 7      | GND          | Power             | Ground                                                  |
| 8      | P0.23        | Digital I/O (SoC) | General purpose I/O.                                    |
|        | TRACEDATA[1] | Trace data        | Trace buffer TRACEDATA[1] (optional).                   |





| Pin no | Pin name     | Function          | Description                                                                                     |
|--------|--------------|-------------------|-------------------------------------------------------------------------------------------------|
| 9      | nRESET       | Digital I/O (SoC) | SoC reset pin <sup>29,30</sup>                                                                  |
| 10     | ENABLE       |                   | Enable for the SIP internal regulator for the nRF91 SoC.                                        |
|        |              |                   | <b>Note:</b> The nRF9151 will not start until this pin is enabled.                              |
| 11     | P0.24        | Digital I/O (SoC) | General purpose I/O.                                                                            |
|        | TRACEDATA[2] | Trace data        | Trace buffer TRACEDATA[2] (optional).                                                           |
| 12     | P0.25        | Digital I/O (SoC) | General purpose I/O.                                                                            |
|        | TRACEDATA[3] | Trace data        | Trace buffer TRACEDATA[3] (optional).                                                           |
| 13     | GND          | Power             | Ground                                                                                          |
| 14     | VDD          | Power             | Supply voltage                                                                                  |
| 15     | GND          | Power             | Ground                                                                                          |
| 16     | SIM_RST      | Digital I/O (SoC) | SIM reset                                                                                       |
| 17     | SIM_IO       | Digital I/O (SoC) | SIM data                                                                                        |
| 18     | SIM_CLK      | Digital I/O (SoC) | SIM clock                                                                                       |
| 19     | SIM_1V8      | Power             | SIM 1.8 V power supply output                                                                   |
| 20     | GND          | Power             | Ground                                                                                          |
| 21     | MAGPIO0      | Digital I/O (SoC) | 1.8 V general purpose I/O                                                                       |
| 22     | MAGPIO1      | Digital I/O (SoC) | 1.8 V general purpose I/O                                                                       |
| 23     | MAGPIO2      | Digital I/O (SoC) | 1.8 V general purpose I/O                                                                       |
| 24     | DEC0         | Power             | Power supply decoupling. Reserved for Nordic use.                                               |
| 25     | GND          | Power             | Ground                                                                                          |
| 26     | SIM_DET      | Digital I/O (SoC) | SIM detect                                                                                      |
|        |              | 0 / - (/          | Not used. Must be left floating.                                                                |
| 27     | SDATA        | Digital I/O (SoC) | MIPI RFFE control interface                                                                     |
| 28     | SCLK         | Digital I/O (SoC) | MIPI RFFE control interface                                                                     |
| 29     | VIO          | Power             | MIPI RFFE control interface                                                                     |
| 30     | GND          | Power             | Ground                                                                                          |
|        |              | rowei             |                                                                                                 |
| 31     | RESERVED     |                   | Connect thermally and mechanically to the application board but leave electrically unconnected. |
| 32     | RESERVED     |                   | Connect thermally and mechanically to the application board                                     |
|        |              |                   | but leave electrically unconnected.                                                             |
| 33     | RESERVED     |                   | Connect thermally and mechanically to the application board                                     |
|        |              |                   | but leave electrically unconnected.                                                             |
| 34     | GND          | Power             | Ground                                                                                          |
| 35     | ANT          | RF                | Single-ended 50 $\Omega$ LTE antenna pin                                                        |
| 36     | GND          | Power             | Ground                                                                                          |
| 37     | AUX          | RF                | Single-ended 50 $\Omega$ ANT loop-back pin                                                      |
| 38     | GND          | Power             | Ground                                                                                          |
| 39     | GND          | Power             | Ground                                                                                          |
| 40     | GND          | Power             | Ground                                                                                          |
| 41     | GND          | Power             | Ground                                                                                          |
| 42     | GPS          | RF                | Single-ended 50 $\Omega$ GPS input pin                                                          |
| 43     | GND          | Power             | Ground                                                                                          |
| 44     | P0.26        | Digital I/O (SoC) | General purpose I/O                                                                             |
| 45     | P0.27        | Digital I/O (SoC) | General purpose I/O                                                                             |
| 46     | GND          | Power             | Ground                                                                                          |
| 47     | P0.28        | Digital I/O (SoC) | General purpose I/O                                                                             |

External pull-up not allowed.



For implementations that require the ERASEALL functionality, enable access to the nRESET pin. See Erase all on page 506 for more information.

| Pin no | Pin name | Function          | Description                             |
|--------|----------|-------------------|-----------------------------------------|
| 48     | P0.29    | Digital I/O (SoC) | General purpose I/O                     |
| 49     | P0.30    | Digital I/O (SoC) | General purpose I/O                     |
| 50     | P0.31    | Digital I/O (SoC) | General purpose I/O                     |
| 51     | GND      | Power             | Ground                                  |
| 52     | COEX0    | Digital I/O (SoC) | Coexistence interface                   |
| 53     | COEX1    | Digital I/O (SoC) | Coexistence interface                   |
| 54     | COEX2    | Digital I/O (SoC) | Coexistence interface                   |
| 55     | GND      | Power             | Ground                                  |
| 56     | P0.00    | Digital I/O (SoC) | General purpose I/O                     |
| 57     | P0.01    | Digital I/O (SoC) | General purpose I/O                     |
| 58     | P0.02    | Digital I/O (SoC) | General purpose I/O                     |
| 59     | P0.03    | Digital I/O (SoC) | General purpose I/O                     |
| 60     | GND      | Power             | Ground                                  |
| 61     | P0.04    | Digital I/O (SoC) | General purpose I/O                     |
| 62     | P0.05    | Digital I/O (SoC) | General purpose I/O                     |
| 63     | P0.06    | Digital I/O (SoC) | General purpose I/O                     |
| 64     | P0.07    | Digital I/O (SoC) | General purpose I/O                     |
| 65     | VDD_GPIO | Power             | GPIO power supply input and logic level |
| 66     | GND      | Power             | Ground                                  |
| 67     | P0.08    | Digital I/O (SoC) | General purpose I/O                     |
| 68     | P0.09    | Digital I/O (SoC) | General purpose I/O                     |
| 69     | P0.10    | Digital I/O (SoC) | General purpose I/O                     |
| 70     | P0.11    | Digital I/O (SoC) | General purpose I/O                     |
| 71     | GND      | Power             | Ground                                  |
| 72     | P0.12    | Digital I/O (SoC) | General purpose I/O                     |
| 73     | P0.13    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AIN0     | Analog input      | Analog input.                           |
| 74     | P0.14    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AINIA    |                   |                                         |
| 75     | AIN1     | Analog input      | Analog input.                           |
| 75     | P0.15    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AIN2     | Analog input      | Analog input.                           |
| 76     | GND      | Power             | Ground                                  |
| 77     | P0.16    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AIN3     | Analog input      | Analog input.                           |
| 78     | P0.17    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AIN4     | Analog input      | Analog input.                           |
| 79     | P0.18    | Digital I/O (SoC) | General purpose I/O.                    |
| ,3     |          |                   |                                         |
|        | AIN5     | Analog input      | Analog input.                           |
| 80     | P0.19    | Digital I/O (SoC) | General purpose I/O.                    |
|        | AIN6     | Analog input      | Analog input.                           |
| 81     | RESERVED |                   | Do not connect/reserved for future use  |
| 82     | RESERVED |                   | Do not connect/reserved for future use  |
| 83     | RESERVED |                   | Do not connect/reserved for future use  |
| 84     | RESERVED |                   | Do not connect/reserved for future use  |
| 85     | RESERVED |                   | Do not connect/reserved for future use  |
| 86     | RESERVED |                   | Do not connect/reserved for future use  |
| 87     | RESERVED |                   | Do not connect/reserved for future use  |
| 88     | RESERVED |                   | Do not connect/reserved for future use  |
| 89     | RESERVED |                   | Do not connect/reserved for future use  |
| 90     | RESERVED |                   | Do not connect/reserved for future use  |
| 91     | RESERVED |                   | Do not connect/reserved for future use  |





| Pin no | Pin name | Function | Description                            |
|--------|----------|----------|----------------------------------------|
| 92     | RESERVED |          | Do not connect/reserved for future use |
| 93     | RESERVED |          | Do not connect/reserved for future use |
| 94     | RESERVED |          | Do not connect/reserved for future use |
| 95     | RESERVED |          | Do not connect/reserved for future use |
| 96     | RESERVED |          | Do not connect/reserved for future use |
| 97     | RESERVED |          | Do not connect/reserved for future use |
| 98     | RESERVED |          | Do not connect/reserved for future use |
| 99     | RESERVED |          | Do not connect/reserved for future use |
| 100    | RESERVED |          | Do not connect/reserved for future use |
| 101    | RESERVED |          | Do not connect/reserved for future use |
| 102    | RESERVED |          | Do not connect/reserved for future use |
| 103    | RESERVED |          | Do not connect/reserved for future use |
| 104    | RESERVED |          | Do not connect/reserved for future use |
| 105    | GND      | Power    | Ground                                 |
| 106    | GND      | Power    | Ground                                 |
| 107    | GND      | Power    | Ground                                 |
| 108    | GND      | Power    | Ground                                 |
| 109    | GND      | Power    | Ground                                 |
| 110    | GND      | Power    | Ground                                 |
| 111    | GND      | Power    | Ground                                 |
| 112    | GND      | Power    | Ground                                 |
| 113    | GND      | Power    | Ground                                 |

Table 59: LGA pin assignments

# 11.2 Mechanical specifications

The mechanical specifications show the package dimensions in millimeters.

# 11.2.1 12.1 x 11.1 mm package

Dimensions in millimeters for the nRF9151 LGA 12.1 x 11.1 x 1.2 mm package.



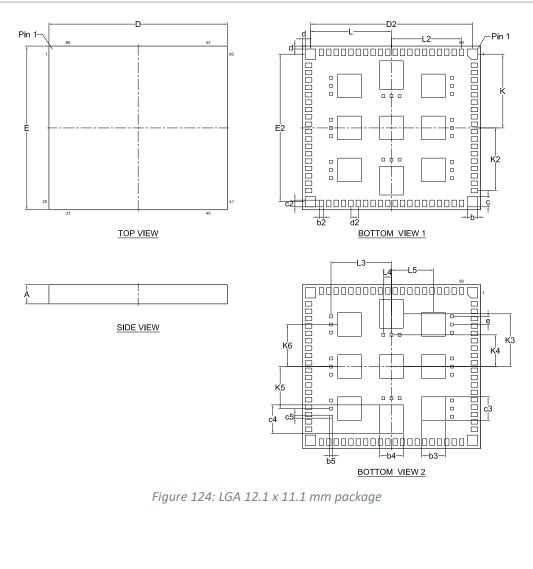



Figure 124: LGA 12.1 x 11.1 mm package



|    | Min.  | Nom.  | Max. |
|----|-------|-------|------|
| A  | 1.099 | 1.156 | 1.3  |
| b  | 0.65  | 0.7   | 0.75 |
| b2 | 0.25  | 0.3   | 0.35 |
| b3 | 1.55  | 1.6   | 1.65 |
| b4 | 1.55  | 1.6   | 1.65 |
| b5 | 0.15  | 0.2   | 0.25 |
| с  | 0.65  | 0.7   | 0.75 |
| c2 | 0.4   | 0.45  | 0.5  |
| c3 | 1.55  | 1.6   | 1.65 |
| c4 | 1.9   | 1.95  | 2.0  |
| c5 | 0.15  | 0.2   | 0.25 |
| D  | 12    | 12.1  | 12.2 |
| D2 |       | 11.0  |      |
| d  |       | 0.2   |      |
| d2 |       | 0.5   |      |
| E  | 11    | 11.1  | 11.2 |
| E2 |       | 10.0  |      |
| e  |       | 0.55  |      |
| K  |       | 5.0   |      |
| K2 |       | 4.25  |      |
| K3 |       | 3.575 |      |
| K4 |       | 2.15  |      |
| K5 |       | 2.85  |      |
| K6 |       | 2.85  |      |
| L  |       | 5.50  |      |
| L2 |       | 4.75  |      |
| L3 |       | 4.1   |      |
| L4 |       | 0.55  |      |
| L5 |       | 2.85  |      |

Table 60: LGA dimensions in millimeters

## 11.3 Reference circuitry

To ensure good RF performance when designing PCBs, using the PCB layouts and component values provided by Nordic Semiconductor is highly recommended .

Documentation for the different package reference circuits, including Altium Designer files, PCB layout files, and PCB production files can be downloaded from the product page at www.nordicsemi.com/nRF9151.

This section contains reference circuitry showing the components to support the design of on-chip features.

**Note:** This is not a complete list of configurations, but all required circuitry is shown for further configurations.

## 11.3.1 nRF9151 reference design

Circuit configuration schematic for the nRF9151 SiP.



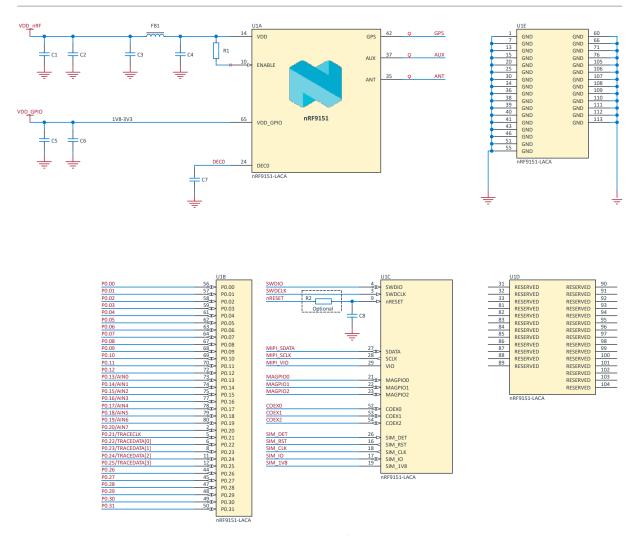



Figure 125: nRF9151 reference design

For Bill of Materials (BOM), PCB layout and thermal design, see the nRF9151 Hardware Design Guidelines.

## 11.4 Reflow conditions

The recommended reflow profile is JEDEC J-STD-020D.

## 11.5 Shelf and floor life

If floor life is exceeded, see Shelf Life of Dry Packed Integrated Circuits for shelf and floor life and recommended baking (drying of parts) requirements.

# 11.6 Assembly-related instructions

For more detailed instructions related to assembly, see the nRF9151 Hardware Design Guidelines.



# 12 Operating conditions

The operating conditions are the physical parameters that the chip can operate within.

| Symbol              | Parameter                 | Notes                                      | Min. | Nom. | Max.     | Units |
|---------------------|---------------------------|--------------------------------------------|------|------|----------|-------|
| VDD                 | Battery input voltage     | Including voltage drop, ripple and spikes. | 3.0  | 3.7  | 5.5      | V     |
| VDD_GPIO            | GPIO input voltage        |                                            | 1.7  |      | 3.6      | V     |
| $GPIO_H$            | GPIO high level voltage   |                                            |      |      | VDD_GPIO | V     |
| MAGPIO <sub>H</sub> | MAGPIO high level voltage | Supply from internal LDO                   | 1.7  | 1.8  | 1.9      | V     |
| VIO                 | VIO high level voltage    | Supply from internal LDO                   | 1.7  | 1.8  | 1.9      | V     |
| TA                  | Operating temperature     |                                            | -40  | 25   | 85       | °C    |
| COEX                | COEX high level voltage   |                                            |      |      | VDD_GPIO | V     |
| SIMIF               | SIMIF output high level   | Supply from internal LDO                   | 1.7  | 1.8  | 1.9      | V     |
|                     | voltage                   |                                            |      |      |          |       |

Table 61: Operating conditions

**Note:** There can be excessive leakage at VDD and/or VDD\_GPIO if any of these supply voltages is outside its range given in the table above.

**Note:** It is not recommended to use high voltage, high drive GPIO outputs ( $V_{OH,HDH}$  and  $V_{OH,HDL}$ ) with high frequency, high capacitance loads unless needed, as this may increase noise level and affect radio receiver performance. High drive/high load should especially be avoided on GPIO pins close to the radio front end.

## 12.1 VDD\_GPIO considerations

VDD\_GPIO is the supply to the general purpose I/O.

The following restrictions should be taken into considerations:

- VDD\_GPIO should be applied after VDD has been supplied
- VDD GPIO should be removed before removing VDD
- If VDD is supplied and VDD\_GPIO is grounded, an extra current consumption can be generated on VDD
- If ENABLE is low, VDD\_GPIO should also be low



# 13 Absolute maximum ratings

Maximum ratings are the extreme limits to which the chip can be exposed for a limited amount of time without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the device.

|          | Note | Min. | Max. | Unit |
|----------|------|------|------|------|
| VDD      |      | -0.3 | 5.5  | V    |
| VDD_GPIO |      | -0.3 | 3.9  | V    |
| SIM_1V8  |      | 1.65 | 1.95 | ٧    |
| VSS      |      |      | 0    | V    |

Table 62: Supply voltage

|                                     | Note | Min. | Max.              | Unit |
|-------------------------------------|------|------|-------------------|------|
| V <sub>I/O</sub> , VDD_GPIO ≤ 3.6 V |      | -0.3 | /DD_GPIC<br>+ 0.3 | ) V  |
| V <sub>I/O</sub> , VDD_GPIO > 3.6 V |      | -0.3 | 3.9               | V    |

Table 63: I/O pin voltage

|                         | Note                                                           | Min. | Max. | Unit |
|-------------------------|----------------------------------------------------------------|------|------|------|
| ANT antenna input level |                                                                |      | 10   | dBm  |
| GPS antenna input level | LNA turned on, max gain                                        |      | -15  | dBm  |
| RF port ruggedness      | Maximum deviation from 50 $\Omega$ without damaging the module |      | 10:1 | VSWR |

Table 64: Radio



|                     | Note                                                                             | Min. | Max. | Unit |
|---------------------|----------------------------------------------------------------------------------|------|------|------|
| Storage temperature |                                                                                  | -40  | 95   | °C   |
| Reflow conditions   | The recommended reflow profile is JEDEC J-STD-020D with 3 maximum reflow cycles. |      |      |      |
| MSL                 | Moisture Sensitivity Level                                                       |      | 3    |      |
| ESD HBM AUX         | AUX pin Human Body Model <sup>1</sup>                                            |      | 500  | V    |
| ESD HBM AUX Class   | AUX pin Human Body Model Class <sup>1</sup>                                      |      | 1B   |      |
| ESD HBM             | Human Body Model <sup>2</sup>                                                    |      | 1.5  | kV   |
| ESD HBM Class       | Human Body Model Class <sup>2</sup>                                              |      | 1C   |      |
| ESD CDM             | Charged Device Model                                                             |      | 250  | V    |
| ESD CDM Class       | Charged Device Model Class                                                       |      | C1   |      |

Table 65: Environmental (LGA package)

<sup>&</sup>lt;sup>2</sup>AUX pin excluded.

|                                      | Note | Min.                   | Max. | Unit                      |
|--------------------------------------|------|------------------------|------|---------------------------|
| Endurance                            |      | 10,000                 |      | Write/<br>erase<br>cycles |
| Retention                            |      | 10<br>years<br>at 85°C |      | У                         |
| No internal voltage boost converters |      |                        |      |                           |

Table 66: Flash memory



 $<sup>^{1}\</sup>mbox{The AUX}$  pin is intended for production test.

# 14 Ordering information

This chapter contains information on IC marking, ordering codes, and container sizes.

# 14.1 SiP marking

The nRF9151 package is marked as shown in the following figure.

Characters on the second line vary depending on the product's certification updates.

| n                                                                                                                                                                                                                                                        | R  | F                                                                                                                                                                                                                  | 9  | 1                                                                                                                                                                            | 5        | 1               |   | L                                                                                                 | Α | С | Α |    | <b>+</b>                      | P> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---|---------------------------------------------------------------------------------------------------|---|---|---|----|-------------------------------|----|
| <y< th=""><th>Y&gt;</th><th><w< th=""><th>W&gt;</th><th><l< th=""><th><u>^</u></th><th><b>&lt;&gt;</b></th><th>Ó</th><th><x< th=""><th>Х</th><th>Х</th><th>Х</th><th>X&gt;</th><th><z< th=""><th>Z&gt;</th></z<></th></x<></th></l<></th></w<></th></y<> | Y> | <w< th=""><th>W&gt;</th><th><l< th=""><th><u>^</u></th><th><b>&lt;&gt;</b></th><th>Ó</th><th><x< th=""><th>Х</th><th>Х</th><th>Х</th><th>X&gt;</th><th><z< th=""><th>Z&gt;</th></z<></th></x<></th></l<></th></w<> | W> | <l< th=""><th><u>^</u></th><th><b>&lt;&gt;</b></th><th>Ó</th><th><x< th=""><th>Х</th><th>Х</th><th>Х</th><th>X&gt;</th><th><z< th=""><th>Z&gt;</th></z<></th></x<></th></l<> | <u>^</u> | <b>&lt;&gt;</b> | Ó | <x< th=""><th>Х</th><th>Х</th><th>Х</th><th>X&gt;</th><th><z< th=""><th>Z&gt;</th></z<></th></x<> | Х | Х | Х | X> | <z< th=""><th>Z&gt;</th></z<> | Z> |

Figure 126: SiP Package marking

## 14.2 Box labels

The following figures show the box labels used for the nRF9151.



Figure 127: Inner box label



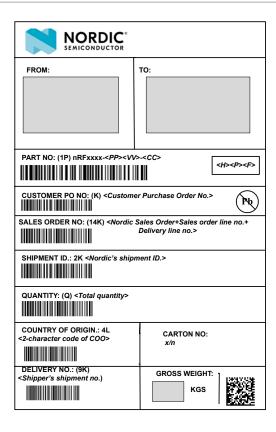



Figure 128: Outer box label

## 14.3 Order code

The following are the order codes and definitions for the nRF9151.

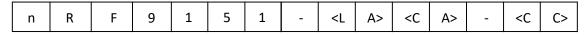



Figure 129: Order code



| Abbreviation                      | Definition and implemented codes                                     |
|-----------------------------------|----------------------------------------------------------------------|
| N91/nRF91                         | nRF91 Series product                                                 |
| 51                                | Part code                                                            |
| <la></la>                         | Package variant code                                                 |
| <ca></ca>                         | Function variant code                                                |
| <h><p><f></f></p></h>             | Build code                                                           |
|                                   | H - Hardware version code                                            |
|                                   | P - Production configuration code (production site, etc.)            |
|                                   | F - Firmware version code (only visible on shipping container label) |
| <yy><ww><ll></ll></ww></yy>       | Serial number                                                        |
| <vc><xxxxx><zz></zz></xxxxx></vc> | YY - Year code                                                       |
|                                   | WW - Assembly week number                                            |
|                                   | LL - Lot code                                                        |
|                                   | VC - Vendor code                                                     |
|                                   | XXXXX - Alpha-numeric serial number                                  |
|                                   | ZZ - Alpha-numeric serial number checksum                            |
| <cc></cc>                         | Container code                                                       |

Table 67: Abbreviations

# 14.4 Code ranges and values

The nRF9151 code ranges and values are defined here.

| <h></h> | Description                                        |
|---------|----------------------------------------------------|
| [A Z]   | Hardware version/revision identifier (incremental) |

Table 68: Hardware version codes

| <p></p> | Description                                 |
|---------|---------------------------------------------|
| [09]    | Production device identifier (incremental)  |
| [A Z]   | Engineering device identifier (incremental) |

Table 69: Production configuration codes



| <f></f>    | Description                              |
|------------|------------------------------------------|
| [A N, P Z] | Version of preprogrammed firmware        |
| [0]        | Delivered without preprogrammed firmware |

Table 70: Production version codes

| <yy></yy> | Description                   |
|-----------|-------------------------------|
| [23 99]   | Production year: 2023 to 2099 |

Table 71: Year codes

| <ww></ww> | Description        |
|-----------|--------------------|
| [0153]    | Week of production |

Table 72: Week codes

| <ll></ll> | Description                     |
|-----------|---------------------------------|
| [AA ZZ]   | Wafer production lot identifier |

Table 73: Lot codes

| <vc></vc> | Description |
|-----------|-------------|
| [AC]      | Vendor Code |

Table 74: Vendor code

| <xxxxx></xxxxx>  | Description                 |
|------------------|-----------------------------|
| [00000<br>ZZZZZ] | Alpha-numeric serial number |

Table 75: Serial Number

| <zz></zz> | Description                          |
|-----------|--------------------------------------|
| [00 ZZ]   | Alpha-numeric serial number checksum |

Table 76: Serial Number

| <cc></cc> | Description |
|-----------|-------------|
| R7        | 7" Reel     |
| R         | 13" Reel    |

*Table 77: Container codes* 



# 14.5 Ordering options

The nRF9151 SiP ordering codes and minimum ordering quantity are described in the following table.

| Order code      | Minimum ordering quantity (MOQ) | Comment |
|-----------------|---------------------------------|---------|
| nRF9151-LACA-R  | 2000                            |         |
| nRF9151-LACA-R7 | 100                             |         |

Table 78: nRF9151 order codes

# 15 Regulatory information

The nRF9151 undergoes regulatory certifications, ensuring both regional compliances and compatibility with the LTE 3GPP specification.

## 15.1 Certified bands

The following table shows the FCC and ISED certified Cat-M1 bands for nRF9151.

| Band     | FCC certification | ISED certification |
|----------|-------------------|--------------------|
| Band 2   | Yes               | Yes                |
| Band 4   | Yes               | Yes                |
| Band 5   | Yes               | Yes                |
| Band 8   | Yes               | Yes <sup>31</sup>  |
| Band 12  | Yes               | Yes                |
| Band 13  | Yes               | Yes                |
| Band 25  | Yes               | Yes                |
| Band 26  | Yes               | No                 |
| Band 66  | Yes               | Yes                |
| Band 85  | Yes               | Yes                |
| Band 106 | Yes               | Yes                |

Table 79: FCC and ISED certified Cat-M1 bands

533

The following table shows the FCC and ISED certified Cat-NB1 and Cat-NB2 bands for nRF9151.

NORDIC

<sup>&</sup>lt;sup>31</sup> The Band 8 is not supported in Canada.

| Band     | FCC certification | ISED certification |
|----------|-------------------|--------------------|
| Band 2   | Yes               | Yes                |
| Band 4   | Yes               | Yes                |
| Band 5   | Yes               | Yes                |
| Band 8   | Yes               | Yes <sup>31</sup>  |
| Band 12  | Yes               | Yes                |
| Band 13  | Yes               | Yes                |
| Band 17  | Yes               | Yes                |
| Band 23  | Yes               | Yes                |
| Band 25  | Yes               | Yes                |
| Band 26  | Yes               | No                 |
| Band 66  | Yes               | Yes                |
| Band 85  | Yes               | Yes                |
| Band 106 | Yes               | Yes                |
| Band 255 | Yes               | Yes                |

Table 80: FCC and ISED certified Cat-NB1/NB2 bands

## 15.2 Supported FCC/ISED rules

The nRF9151 module has been certified to comply with FCC and ISED rules.

The nRF9151 SiP has been certified to comply with the following FCC rules.

- 47 CFR Part 22
- 47 CFR Part 24
- 47 CFR Part 25
- 47 CFR Part 27
- 47 CFR Part 90
- 47 CFR Part 2.1091

The nRF9151 SiP has been certified to comply with the following ISED rules.

- RSS-102 Issue 5
- RSS-130 Issue 2
- RSS-132 Issue 4
- RSS-133 Issue 6
- RSS-139 Issue 4
- RSS-170 Issue 1

A host manufacturer who integrates the nRF9151 SiP to a host device, can apply the certifications to the host device, except for FCC Part 15 Subpart B which must be retested.

The host manufacturer can use nRF9151's FCC ID if the device meets the conditions of the FCC certificate. Normally, the conditions are the following:

- A minimum of 20 cm distance from the human body.
- No colocation with other transmitters. Typically, this condition needs to be reviewed by the FCC lab.



• Antenna gain below the requirements.

## 15.3 FCC/ISED regulatory notices

FCC/ISED regulatory notices cover modification and interference statements, wireless and FCC Class B digital device notices, permitted antennas and labeling requirements.

#### **Modification statement**

Nordic Semiconductor has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user's authority to operate the equipment.

Nordic Semiconductor n'approuve aucune modification apportée à l'appareil par l'utilisateur, quelle qu'en soit la nature. Tout changement ou modification peuvent annuler le droit d'utilisation de l'appareil par l'utilisateur.

#### Interference statement

This device complies with Part 15 of the FCC Rules and Industry Canada's licence-exempt RSS standards. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

#### Wireless notice

This equipment complies with FCC and ISED radiation exposure limits set forth for an uncontrolled environment. The antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Cet appareil est conforme aux limites d'exposition aux rayonnements de l'ISDE pour un environnement non contrôlé. L'antenne doit être installée de façon à garder une distance minimale de 20 centimètres entre la source de rayonnements et votre corps. L'émetteur ne doit pas être colocalisé ni fonctionner conjointement avec à autre antenne ou autre émetteur.

#### Permitted antenna

This radio transmitter has been approved by FCC and ISED to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.



| Band                   | Max gain  |
|------------------------|-----------|
| Band 2                 | 9.0 dBi   |
| Band 4                 | 6.0 dBi   |
| Band 5                 | 7.1 dBi   |
| Band 8                 | 10.78 dBi |
| Band 12                | 6.6 dBi   |
| Band 13                | 6.9 dBi   |
| Band 17 (Cat-NB1/NB2)  | 6.6 dBi   |
| Band 23 (Cat-NB1/NB2)  | 9.0 dBi   |
| Band 25                | 9.0 dBi   |
| Band 26                | 7.0 dBi   |
| Band 66                | 6.0 dBi   |
| Band 85                | 6.6 dBi   |
| Band 106               | 10.78 dBi |
| Band 255 (Cat-NB1/NB2) | 6.0 dBi   |

Le présent émetteur radio a été approuvé par ISDE pour fonctionner avec les types d'antenne énumérés ci dessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

| Bande                   | Gain maximal |
|-------------------------|--------------|
| Bande 2                 | 9.0 dBi      |
| Bande 4                 | 6.0 dBi      |
| Bande 5                 | 7.1 dBi      |
| Band 8                  | 10.78 dBi    |
| Bande 12                | 6.6 dBi      |
| Bande 13                | 6.9 dBi      |
| Bande 17 (Cat-NB1/NB2)  | 6.6 dBi      |
| Bande 23 (Cat-NB1/NB2)  | 9.0 dBi      |
| Bande 25                | 9.0 dBi      |
| Bande 26                | 7.0 dBi      |
| Bande 66                | 6.0 dBi      |
| Bande 85                | 6.6 dBi      |
| Bande 106               | 10.78 dBi    |
| Bande 255 (Cat-NB1/NB2) | 6.0 dBi      |



## **FCC Class B digital device notice**

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

## CAN ICES-3 (B)/NMB-3 (B)

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de classe B est conforme à la norme canadienne ICES-003.

## Labeling requirements for the host device

The host device shall be properly labelled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID and IC of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as shown in the following examples:

Contains FCC ID: 2ANPO00NRF9151 Contains IC: 24529-NRF9151

L'équipement hôte doit être correctement étiqueté pour identifier les modules dans l'équipement. L'étiquette de certification du module doit être clairement visible en tout temps lorsqu'il est installé dans l'hôte, l'équipement hôte doit être étiqueté pour afficher le FCC ID et IC du module, précédé des mots "Contient le module émetteur", ou le mot "Contient", ou un libellé similaire exprimant la même signification, comme suit:

Contient FCC ID: 2ANPO00NRF9151 Contient IC: 24529-NRF9151

## 15.4 Anatel regulatory information

Anatel (Brazil) certified device

Model: nRF9151

· Manufacturer: Nordic Semiconductor

Country of origin: NorwayANATEL ID: 09163-24-16661

## 15.5 RF exposure considerations



The nRF9151 has been tested and certified as a mobile device for use of a minimum of 20 cm distance from the human body with no colocation with other transmitters. If the device is to be used closer than 20 cm from the human body and/or with other transmiters simultaneously, the host product manufacturer is required to perform additional evaluation, testing, or testing and Class 2 permissive change. It is required to take responsibility of the module through a change in the FCC ID (new application). The host product manufacturer must also inform the end user about RF Exposure conditions.

## 15.6 Host device manufacturer responsibility

The nRF9151 device is only authorized for the rules listed in Supported FCC/ISED rules on page 534. The host device manufacturer is responsible for compliance to any other FCC rules that apply to the host device not covered by the nRF9151 grant of certification. It is mandatory for the host device manufacturer to assure the final device's compliance with FCC Part 15 Subpart B even if certification has been granted to nRF9151.

## 15.7 Antenna interface

The nRF9151 module has a single-ended 50  $\Omega$  antenna port where the antenna solution shall be connected. nRF9151 is evaluated with a 50  $\Omega$  antenna load. To ensure good overall RF performance, antenna impedance and the characteristic impedance of the transmission line (i.e. cable) connecting the antenna and antenna port must be 50  $\Omega$ . Impedance mismatch may lead to performance degradation. Maximum antenna VSWR 2:1 is recommended but VSWR 3:1 can still be accepted in the final device. Respective minimum return loss values are 9.5 dB and 6.0 dB.

The length of the transmission line from the antenna to the nRF9151 antenna port should be kept as short as possible to minimize losses, as this loss is directly deteriorating the module's transmitted and received power. Additionally, low-loss matching circuit between the antenna and the nRF9151 antenna port is recommended to minimize loss caused by antenna and PCB routing mismatch. Reserving space from device manufacturer's application board for matching components (e.g.  $\pi$ -circuit) is recommended. This is because, for example, catalog antennas are typically tuned on reference board and differences to device mechanics may impact antenna impedance. It is also possible that device mechanics change during the development phase of the final device, and these modifications may impact antenna performance. Matching components can be used to compensate the impact of mechanics change to antenna impedance, and thus it may not be mandatory to modify the antenna itself.

The nRF9151 module has an internal ESD circuit in the antenna port, but additional ESD components at device manufacturer's application board may be used. The design of the ESD circuit shall be such that the impact on RF frequencies is negligible

**Note:** ESD filtering may be necessary for some active components that can be used at antenna path. Such components can be, for example, RF switches and antenna tuners. For further ESD requirements, see the RF switch and antenna tuner datasheets.

## 15.8 Antenna port test connector

To run conductive RF tests, a test connector nearby the nRF9151 antenna port in the RF transmission line is needed. The 50  $\Omega$  impedance requirement applies also to the test connector, and VSWR and insertion loss should be minimal. Regardless of whether the nRF9151 antenna port is connected to an actual antenna or test equipment, the load at the nRF9151 antenna should remain as close to 50  $\Omega$  as possible.

For a test connector, microwave coaxial switch connectors (for example, Murata MM8130-2600) are a good choice for this purpose. For conductive tests, a test cable is plugged in which connects the nRF9151

NORDIC

antenna port to the test equipment instead of the antenna. When the test cable is plugged off, the nRF9151 antenna port is connected to the antenna for real use case or radiated testing. The layout for the connector must be carefully designed to fulfil the  $50~\Omega$  requirement. For detailed guidance on this, see the coaxial switch connectors datasheets.

## 15.9 Reference design

To ensure good RF performance when designing PCBs, it is highly recommended to use the PCB layouts and component values provided by Nordic Seminconductor. See Hardware Design Guidelines for details.

The information on layout of trace design is confidential; host manufacturer shall need to contact module's grantee to obtain this information.

This module can only be used when installed in a host device that follows the required instructions for use of the layout of trace design. Any deviation(s) from the defined parameters of the layout of trace design, as described by the instructions, require that the host product manufacturer must notify the module grantee that they wish to change the layout of trace design. In this case, a Class II permissive change application is required to be filed by the grantee, or the host manufacturer can take responsibility through the change in FCC ID (new application).



# 16 Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may change these terms and conditions at any time without notice.

## **Liability disclaimer**

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor's documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to this document without notice.

Customer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, and lessen the likelihood of failures that might cause harm, and to take appropriate remedial actions.

Nordic Semiconductor ASA assumes no liability for applications assistance or the design of customers' products. Customers are solely responsible for the design, validation, and testing of its applications as well as for compliance with all legal, regulatory, and safety-related requirements concerning its applications.

Nordic Semiconductor ASA's products are not designed for use in life-critical medical equipment, support appliances, devices, or systems where malfunction of Nordic Semiconductor ASA's products can reasonably be expected to result in personal injury. Customer may not use any Nordic Semiconductor ASA's products in life-critical medical equipment unless adequate design and operating safeguards by customer's authorized officers have been made. Customer agrees that prior to using or distributing any life-critical medical equipment that include Nordic Semiconductor ASA's products, customer will thoroughly test such systems and the functionality of such products as used in such systems.

Customer will fully indemnify Nordic Semiconductor ASA and its representatives against any damages, costs, losses, and/or liabilities arising out of customer's non-compliance with this section.

#### **RoHS and REACH statement**

Refer to www.nordicsemi.com for complete hazardous substance reports, material composition reports, and latest version of Nordic's RoHS and REACH statements.

#### **Trademarks**

All trademarks, service marks, trade names, product names, and logos appearing in this documentation are the property of their respective owners.

## **Copyright notice**

© 2025 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.





