# TDSEMIC 拓電半導體

## 自主封測 品質把控 售後保障

WEB | WWW.TDSEMIC.COM











電源管理 顯示驅動 二三極管 LDO穩壓器 觸摸芯片











MOS管 運算放大器 存儲芯片

MCU

串口诵信

3863/3845

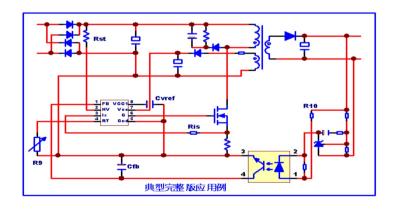
產品規格說明書



## 3863/3845高性能电流模式控制器

#### ● 主要特点

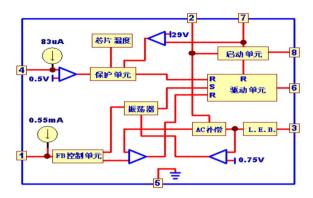
- 兼容 3842/43/44/45PCB 升级方案,至少省 4~6 个元件,但不同于 3842/43/
- 44/45: 软启动,有效控制峰值电流,同时消除启动可停声
- VCC 过压保护【保护值 29V ± 2V】,能简易实现光耦故障保护
- VCC 假负载,在 VCC>21V 时启用内部假负载
- AC 过压保护【440 KΩ启动电阻, 280Vac±2%保护】
- 55KHz±3KHz 固定振荡器,无需外部RC 振荡元件
- 前沿消隐电路,无需电流采样【3 脚】RC 滤波元件
- 0.5V 电流采样 【3 脚】, 不同于 3842 / 4 3 / 4 4 / 4 5 的 1V
- 外置热敏电阻【50KΩ-3950 热敏电阻 80℃设计】保护功率管
- 完善的输出短路保护,能安全应对输出短路
- 特殊 MOS 管驱动设计应对安规,无需电阻二极管驱动网络
- VCC 维持电压功能,防光耦长时间饱和至使 VCC 电压跌落再启动,可以采用很小的假负载电阻
- 内部反馈补偿电阻,无需外部反馈补偿电阻
- 温控:在1 脚采用负温度系数热敏电阻接地,温度上升至对应热敏阻值 9K 时输出功率开始下降;温度继续上升,温度上升至对应热敏阻值 4K 时输出功率降至最大输出功率的约 1/4。


#### ● 应用领域

■ 考虑 55KHz 振荡器因数,适合 3842 / 4 3 / 4 4 / 4 5 应用领域

#### ● 概述

- SOP8、DIP8 封装,高性能电流模式控制器,用于离线反激电源变换器的控制。
- 为熟悉 3842/43/44/45 的工程师提供简单的 PCB 板级升级、高性能电源、并能获得成本效益高的解决方案,区别 3842/43/44/45 方案,有内置 VCC 过压保护【同时也是简易的输出过压保护,能保证 VCC 在安全电压范围内工作,和简易光耦故障保护功能】、IC 内部温度保护、特殊无音频噪声设计、特殊 MOS 功率管驱动设计【含内置前沿消隐、驱动电压钳位、和有利于降低 EMI 噪声的驱动上升沿控制】,非常完善的输出短路保护。
- 对比3842/43/44/45 简单的PCB板级升级方案,采用完整方案能获得更高性能电源解决方案,还增加软启动、VCC内置假负载、外置热敏电阻温度保护、输入AC电压对最大峰值电流补偿【保证全AC电压下输出功率一致】、AC高压保护。


## ● 典型应用图



#### ● 功能框图



## 3863 / 3845高性能电流模式控制器



## ● 管脚定义

| 管脚号 | 符号 | 定义                 | 管脚号 | 符号   | 定义             |  |  |
|-----|----|--------------------|-----|------|----------------|--|--|
| 1   | FB | 反馈脚                | 8   | VCC1 | 内部电源滤波端,外接滤波电容 |  |  |
| 2   | HV | 电网电压检测、补偿、启动电流输入脚, | 7   | VCC  | 电源脚            |  |  |
|     |    | 可以悬空               |     |      |                |  |  |
| 3   | IS | 功率管电流检测脚           | 6   | G    | 功率管栅极驱动脚       |  |  |
| 4   | RT | 热敏电阻温度检测脚,可以悬空     | 5   | GND  | 接地脚            |  |  |

## ● 极限参数

| 项目            | 参数        | 单位 |  |
|---------------|-----------|----|--|
| 电源电压 VCC      | 28        | V  |  |
| FB、RT、IS 输入电压 | -0.5~7    | V  |  |
| HV 输入电压       | -0.5~22   | V  |  |
| G 负载电容        | 16        | nF |  |
| 工作环境温度        | -20~85    | င  |  |
| 存储温度范围        | -55~150   | C  |  |
| 推荐焊接温度        | 260℃, 10S |    |  |

## 电气特性(与应用精度相关的参数适合-20~85℃,如Fs、VCC、V<sub>ST</sub>、V<sub>OV</sub>、V<sub>KP</sub>、V<sub>OFF</sub>等)

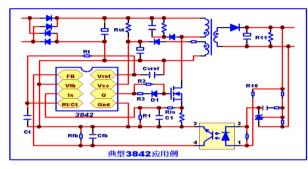
| 项目       | 符号                | 测试条件                  | 最小值  | 典型值  | 最大值  | 单位          |
|----------|-------------------|-----------------------|------|------|------|-------------|
| VCC 电源部分 |                   |                       |      |      |      |             |
| 工作电压     | VCC               |                       | 11   |      | 28   | V           |
| 启动电压     | V <sub>ST</sub>   |                       | 15.5 | 17   | 18.5 | <b>&gt;</b> |
| VCC 保护电压 | V <sub>OV</sub>   | 升 VCC,找 FB 下降点 VCC    | 27   | 29   | 31   | V           |
| 维持电压     | $V_{KP}$          | FB 输入 0V, 有 G 脉冲      | 8.2  | 9.2  | 10.2 | V           |
| 禁止工作电压   | V <sub>OFF1</sub> | FB 开路,无 G 脉冲          | 7.5  | 8.5  | 9.5  | <b>V</b>    |
| 欠压再启动电压  | $V_{OFF}$         |                       | 7    | 8    | 9    | V           |
| 工作电流     | Icc               | FB=0V, VCC=16V        |      | 2    | 3    | mA          |
| 启动电流     | I <sub>ST</sub>   | 从 VCC 启动              |      | 10   | 20   | uA          |
| 启动漏电流    | I <sub>ST1</sub>  | 从 VCC 启动,VCC=12V      |      | 2    | 5    | uA          |
| G 驱动部分   |                   |                       |      |      |      |             |
| 上拉电流     | l <sub>up</sub>   | 输出高,上升保持 5V           | 550  | 600  |      | mA          |
| 下拉电流     | I <sub>DOWN</sub> | 输出低,下降保持 5V           | 900  | 1200 |      | mA          |
| 上升沿      | T <sub>UP</sub>   | 负载 1~10nF,1V 升到 8V 时长 | 220  | 260  | 300  | nS          |

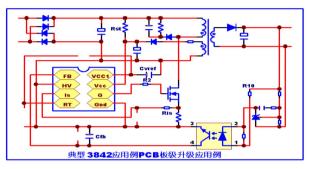


## 3863 / 3 8 4 5 高性能电流模式控制器

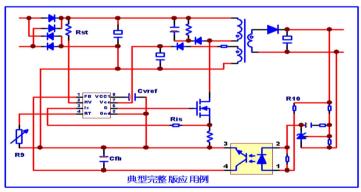
| 下降升沿     | T <sub>DOWN</sub>   | 负载 1nF,8V 升到 1V 时长                                    |      | 50   |      | nS  |
|----------|---------------------|-------------------------------------------------------|------|------|------|-----|
| 驱动上限电压   | V <sub>LIMIT</sub>  | 10K 负载                                                | 8.5  | 13   | 13.5 | V   |
| 对地电阻     |                     |                                                       | 8    | 10   | 12   | ΚΩ  |
| HV 部分    |                     |                                                       |      |      |      |     |
| 启动电流     | I <sub>ST-HV</sub>  | 从 HV 启动                                               |      | 10   | 20   | uA  |
| 启动漏电流    | I <sub>ST1-HV</sub> | 从 HV 启动,VCC=12V                                       |      | 2    | 5    | uA  |
| HV 启动电压  | $V_{ST-HV}$         | 从 HV 启动,与 Vst 对应的 HV 电压                               | 16.2 | 17.7 | 19.2 | V   |
| HV 保护电流  | I <sub>HV-LM</sub>  | 升 HV 电流,G 转无脉冲时 HV<br>电流,等效 AC 高压保护                   | 868  | 886  | 904  | uA  |
| HV 电压    | $V_{HV1}$           | 设置 HV 电流为 I <sub>HV</sub> =1mA                        |      | 2.1  | 2.6  | V   |
| AC 补偿电流  | I <sub>IS-HV</sub>  | 设置 I <sub>HV</sub> =0.6mA,测 IS 到地电流,等价 AC 电压对最大峰值电流补偿 | 145  | 150  | 155  | uA  |
| FB 部分    |                     |                                                       |      |      |      |     |
| FB 开环电压  | $V_{FB1}$           | VCC=16V, I <sub>HV</sub> =0mA                         | 2.9  | 3.2  | 3.5  | V   |
| FB 上拉电流  | I <sub>FB1</sub>    | V <sub>FB</sub> =1V                                   | 480  | 550  | 620  | uA  |
| FB 到地电阻  |                     | IC 关闭、V <sub>FB</sub> =3.5V 时,测电流算电阻                  | 12   | 15   | 18   | ΚΩ  |
| IS 部分    |                     |                                                       |      |      |      |     |
| 输入电流     | I <sub>IS-IB</sub>  |                                                       |      | 0.1  | 0.5  | uA  |
| 额定峰值电流门限 | $V_{\text{IS-TH}}$  | FB 开环,IS 上升速率 0.1V/uS                                 | 0.48 | 0.5  | 0.52 | V   |
| RT 部分    |                     |                                                       |      |      |      |     |
| 输出电流     | I <sub>RT</sub>     |                                                       | 79   | 83   | 87   | uA  |
| 热保护热敏电阻  | R <sub>RT</sub>     | 等效 50K Ω-3950 热敏电阻 80 ℃设计                             | 5.7  | 6    | 6.3  | ΚΩ  |
| 开路电压     | $V_{RT1}$           |                                                       | 2.9  | 3.2  | 3.5  | V   |
|          |                     | 振荡器                                                   |      |      |      |     |
| 振荡频率     | Fs                  | V <sub>FB</sub> =2.6V                                 | 52   | 55   | 58   | KHz |
| 占空比      |                     | V <sub>FB</sub> =2.6V                                 |      | 0.6  |      |     |
| 输出短路频率   |                     | IS=0.75V, 对应 IS 电流峰 150%                              |      | 10   |      | KHz |
| 热保护      |                     |                                                       |      |      |      |     |
| 内部热保护温度  |                     |                                                       | 112  | 118  | 123  | င   |

#### ● 功能描述


- **启动**方案一,采用启动电阻到VCC脚,与3842/43/44/45方案一致,方案二、采用启动电阻到HV,HV通 过内置二极管到VCC,从启动看启动电阻的选择与方案一相同,但HV脚还有其它功能,会影响AC高压保护【440 KΩ启动电阻,280Vac】和AC电流补偿
- VCC 过压保护,当 VCC 电压升到 Vov 【典型值 29V】时,停止 G 输出直至 VCC 欠压再启动,基于这个,可以实现简易输出过压保护、和简易光耦故障保护功能。
- 维持电压,有三种情况 VCC 会小于等于维持电压 V<sub>KP</sub>: AC 无输入或低电压、过载或输出短路、和无负载或轻载。特别是启动时无负载,在输出电压升到额定值时,光耦会很长时间开启,通常其它电源芯片会因 VCC 欠压而再启动、造成输出电压不满足要求【牺牲待机功耗、采用较大假负载,可以满足要求】;而采用维持电压功能,即无论 FB=0V,只要 VCC 试图低于 V<sub>KP</sub>,就有 G 脉冲输出,这样可以采用非常小的假负载电阻。
- 功率管驱动,采用边沿控制,在功率管栅极等效输入电容小于 10nF 时,驱动上升沿保持一致,有利于 EMI,直接驱动就可,无需典型 3842/43/44/45 方案采用二只电阻和一个二极管网络驱动;同时不同于其它电源芯片,可以适合从较小功率到较大功率电源方案。另,驱动上限电压非常有利于
- 电源的一致性。**输出短路保护**,短路时,即使是最小的开周期,峰值电流依然很大,造成典型 384 2 / 4 3 / 4 4 / 4 5 应用例不能长时间输出短路;采用检测电流是否超过额定电流峰值的 150%,如果超过,则降频到




## 3863/3845高性能电流模式控制器


10KHz, 因此可以长时间输出短路。

- 电流采样, 0.5V 电流采样, 可以采用分压电阻来适合采样电阻。
- VCC1 内部电源滤波端,外接滤波电容 Cvref 推荐采用 104。
- 应用信息【结合典型应用例图描述】





- ◆ 典型 3842 / 4 3 / 4 4 / 4 5 应用例 PCB 板级升级应用例:取消振荡元件【Ct, Rt】、取消反馈补偿电阻【Rfb】、取消3 脚滤波电容【C1】、取消 G 驱动元件【R3、D1】、甚至取消假负载【R11】;极限情况下,典型 3 842/43/44/45应用例,可以取消【R2、R3、D1】、PCB 版级升级例,还是可以取消【Ct, Rt, Rfb, R1、C1、0.5√电流采样,无 AC 电流补偿】,少 5 个元件【2 个电容、3 个电阻】;
- igsplus 由于是 0.5V 电流采样输入,可以采用【R1、Ris】分压网络来适应电流采样电阻,同时仍可以完成 AC 电流补偿;
- ◆ 基于可听噪声的原因,也许需要假负载,但可以选择高阻值更小功率的电阻。



- ◆ 典型完整版应用例:可选热敏电阻;
- ◆ PCB 设计需重视 VCC 供电回路的设计,回路面积尽量小,VCC 电容选择低 ESR 电容。
- ◆ 应用拓展:在取消【AC 过压保护,AC 电流补偿】情况下,完成精确 VCC 过压保护,在 VCC【7 脚】-HV【2 脚】用一个电阻,数值:【VCC 保护电压 18V:18.4KΩ; VCC 保护电压 20V:20.7KΩ; VCC 保护电压 22V:23KΩ; VCC 保护电压 24V:25.3KΩ; VCC 保护电压 26V:27.6KΩ】。