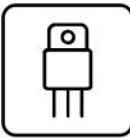
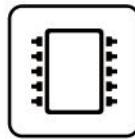
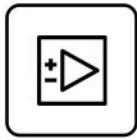


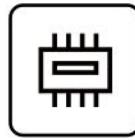
自主封測 品質把控 售後保障

WEB | WWW.TDSEMIC.COM

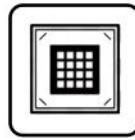
電源管理



顯示驅動


二三極管 LDO穩壓器


觸摸芯片


MOS管


運算放大器

存儲芯片

MCU

串口通信

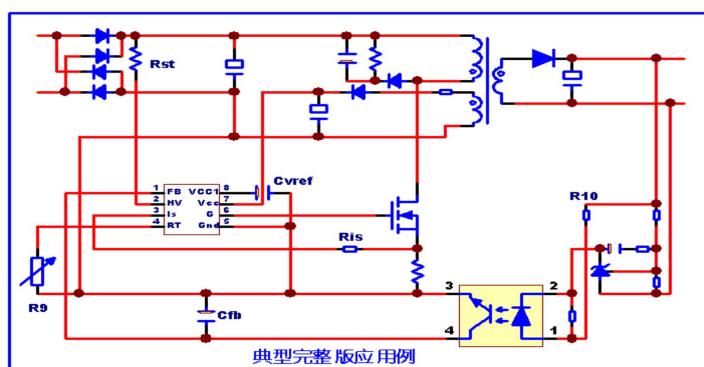
3863/3844

產品規格說明書

3863/3844高性能电流模式控制器

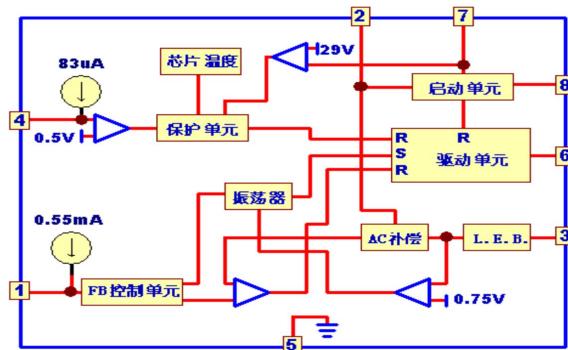
● 主要特点

- 兼容 3842/43/44/45PCB 升级方案, 至少省 4~6 个元件, 但不同于 3842/43/44/45
- 44/45: 软启动, 有效控制峰值电流, 同时消除启动可停声
- VCC 过压保护【保护值 $29V \pm 2V$ 】, 能简易实现光耦故障保护
- VCC 假负载, 在 $VCC > 21V$ 时启用内部假负载
- AC 过压保护【 $440K\Omega$ 启动电阻, $280V_{ac} \pm 2\%$ 保护】
- 55KHz ± 3 KHz 固定振荡器, 无需外部 RC 振荡元件
- 前沿消隐电路, 无需电流采样【3 脚】RC 滤波元件
- 0.5V 电流采样【3 脚】, 不同于 3842/43/44/45 的 1V
- 外置热敏电阻【 $50K\Omega$ -3950 热敏电阻 $80^\circ C$ 设计】保护功率管
- 完善的输出短路保护, 能安全应对输出短路
- 特殊 MOS 管驱动设计应对安规, 无需电阻二极管驱动网络
- VCC 维持电压功能, 防光耦长时间饱和至使 VCC 电压跌落再启动, 可以采用很小的假负载电阻
- 内部反馈补偿电阻, 无需外部反馈补偿电阻
- 温控: 在 1 脚采用负温度系数热敏电阻接地, 温度上升至对应热敏阻值 $9K$ 时输出功率开始下降; 温度继续上升, 温度上升至对应热敏阻值 $4K$ 时输出功率降至最大输出功率的约 $1/4$ 。


● 应用领域

- 考虑 55KHz 振荡器因数, 适合 3842/43/44/45 应用领域

● 概述


- SOP8、DIP8 封装, 高性能电流模式控制器, 用于离线反激电源变换器的控制。
- 为熟悉 3842/43/44/45 的工程师提供简单的 PCB 板级升级、高性能电源、并能获得成本效益高的解决方案, 区别 3842/43/44/45 方案, 有内置 VCC 过压保护【同时也是简易的输出过压保护, 能保证 VCC 在安全电压范围内工作, 和简易光耦故障保护功能】、IC 内部温度保护、特殊无音频噪声设计、特殊 MOS 功率管驱动设计【含内置前沿消隐、驱动电压钳位、和有利于降低 EMI 噪声的驱动上升沿控制】, 非常完善的输出短路保护。
- 对比 3842/43/44/45 简单的 PCB 板级升级方案, 采用完整方案能获得更高性能电源解决方案, 还增加软启动、VCC 内置假负载、外置热敏电阻温度保护、输入 AC 电压对最大峰值电流补偿【保证全 AC 电压下输出功率一致】、AC 高压保护。

● 典型应用图

● 功能框图

3863 / 3844高性能电流模式控制器

● 管脚定义

管脚号	符号	定义	管脚号	符号	定义
1	FB	反馈脚	8	VCC1	内部电源滤波端, 外接滤波电容
2	HV	电网电压检测、补偿、启动电流输入脚, 可以悬空	7	VCC	电源脚
3	IS	功率管电流检测脚	6	G	功率管栅极驱动脚
4	RT	热敏电阻温度检测脚, 可以悬空	5	GND	接地脚

● 极限参数

项目	参数	单位
电源电压 VCC	28	V
FB、RT、IS 输入电压	-0.5~7	V
HV 输入电压	-0.5~22	V
G 负载电容	16	nF
工作环境温度	-20~85	℃
存储温度范围	-55~150	℃
推荐焊接温度	260℃, 10S	

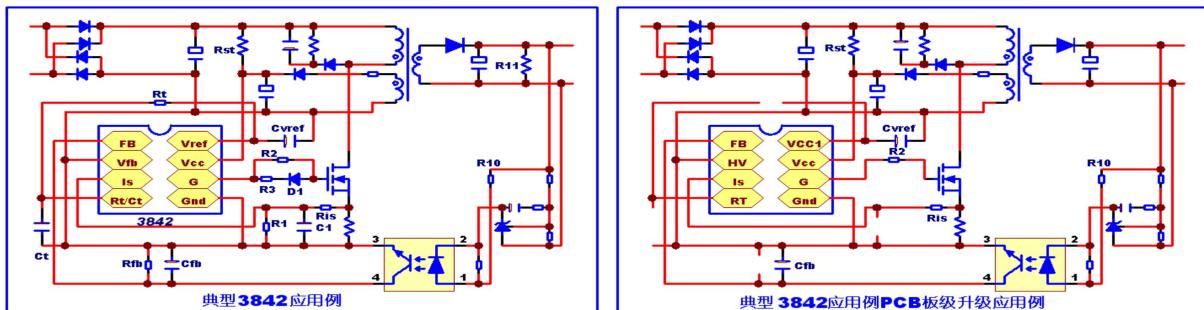
● **电气特性** (与应用精度相关的参数适合-20~85°C, 如 F_s 、 V_{CC} 、 V_{ST} 、 V_{OV} 、 V_{KP} 、 V_{OFF} 等)

项目	符号	测试条件	最小值	典型值	最大值	单位
VCC 电源部分						
工作电压	VCC		11		28	V
启动电压	V _{ST}		15.5	17	18.5	V
VCC 保护电压	V _{OV}	升 VCC, 找 FB 下降点 VCC	27	29	31	V
维持电压	V _{KP}	FB 输入 0V, 有 G 脉冲	8.2	9.2	10.2	V
禁止工作电压	V _{OFF1}	FB 开路, 无 G 脉冲	7.5	8.5	9.5	V
欠压再启动电压	V _{OFF}		7	8	9	V
工作电流	I _{CC}	FB=0V, VCC=16V		2	3	mA
启动电流	I _{ST}	从 VCC 启动		10	20	uA
启动漏电流	I _{ST1}	从 VCC 启动, VCC=12V		2	5	uA
G 驱动部分						
上拉电流	I _{up}	输出高, 上升保持 5V	550	600		mA
下拉电流	I _{DOWN}	输出低, 下降保持 5V	900	1200		mA
上升沿	T _{UP}	负载 1~10nF, 1V 升到 8V 时长	220	260	300	nS

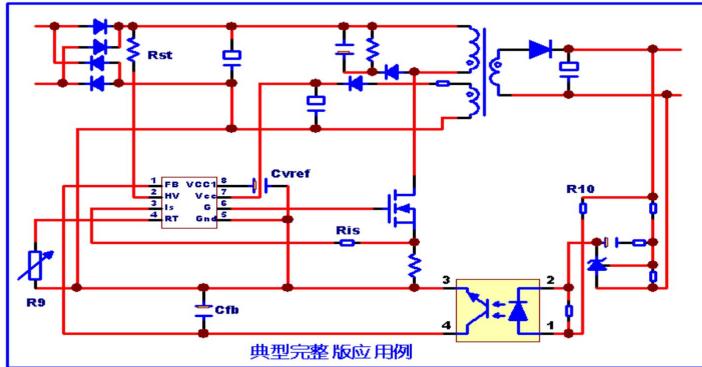
3863 / 3844 高性能电流模式控制器

下降升沿	T_{DOWN}	负载 $1nF$, 8V 升到 1V 时长		50		nS
驱动上限电压	V_{LIMIT}	10K 负载	8.5	13	13.5	V
对地电阻			8	10	12	$K\Omega$
HV 部分						
启动电流	I_{ST-HV}	从 HV 启动		10	20	uA
启动漏电流	I_{ST1-HV}	从 HV 启动, $VCC=12V$		2	5	uA
HV 启动电压	V_{ST-HV}	从 HV 启动, 与 V_{ST} 对应的 HV 电压	16.2	17.7	19.2	V
HV 保护电流	I_{HV-LM}	升 HV 电流, G 转无脉冲时 HV 电流, 等效 AC 高压保护	868	886	904	uA
HV 电压	V_{HV1}	设置 HV 电流为 $I_{HV}=1mA$		2.1	2.6	V
AC 补偿电流	I_{IS-HV}	设置 $I_{HV}=0.6mA$, 测 IS 到地电流, 等价 AC 电压对最大峰值电流补偿	145	150	155	uA
FB 部分						
FB 开环电压	V_{FB1}	$VCC=16V$, $I_{HV}=0mA$	2.9	3.2	3.5	V
FB 上拉电流	I_{FB1}	$V_{FB}=1V$	480	550	620	uA
FB 到地电阻		IC 关闭、 $V_{FB}=3.5V$ 时, 测电流算电阻	12	15	18	$K\Omega$
IS 部分						
输入电流	I_{IS-IB}			0.1	0.5	uA
额定峰值电流门限	V_{IS-TH}	FB 开环, IS 上升速率 $0.1V/uS$	0.48	0.5	0.52	V
RT 部分						
输出电流	I_{RT}		79	83	87	uA
热保护热敏电阻	R_{RT}	等效 $50K\Omega-3950$ 热敏电阻 $80^\circ C$ 设计	5.7	6	6.3	$K\Omega$
开路电压	V_{RT1}		2.9	3.2	3.5	V
振荡器						
振荡频率	F_s	$V_{FB}=2.6V$	52	55	58	KHz
占空比		$V_{FB}=2.6V$		0.6		
输出短路频率		IS=0.75V, 对应 IS 电流峰 150%		10		KHz
热保护						
内部热保护温度			112	118	123	$^\circ C$

● 功能描述


- 启动方案一, 采用启动电阻到VCC脚, 与3842/43/44/45方案一致; 方案二、采用启动电阻到HV, HV通过内置二极管到VCC, 从启动看启动电阻的选择与方案一相同, 但HV脚还有其它功能, 会影响AC高压保护【440 KΩ启动电阻, 280Vac】和AC电流补偿
- VCC 过压保护**, 当 VCC 电压升到 V_{ov} 【典型值 29V】时, 停止 G 输出直至 VCC 欠压再启动, 基于这个, 可以实现简易输出过压保护、和简易光耦故障保护功能。
- 维持电压**, 有三种情况 VCC 会小于等于维持电压 V_{kp} : AC 无输入或低电压、过载或输出短路、和无负载或轻载。特别是启动时无负载, 在输出电压升到额定值时, 光耦会很长时间开启, 通常其它电源芯片会因 VCC 欠压而再启动、造成输出电压不满足要求【牺牲待机功耗、采用较大假负载, 可以满足要求】; 而采用维持电压功能, 即无论 FB=0V, 只要 VCC 试图低于 V_{kp} , 就有 G 脉冲输出, 这样可以采用非常小的假负载电阻。
- 功率管驱动**, 采用边沿控制, 在功率管栅极等效输入电容小于 $10nF$ 时, 驱动上升沿保持一致, 有利于 EMI, 直接驱动就可, 无需典型 3842 / 43 / 44 / 45 方案采用二只电阻和一个二极管网络驱动; 同时不同于其它电源芯片, 可以适合从较小功率到较大功率电源方案。另, 驱动上限电压非常有利于电源的一致性。
- 输出短路保护**, 短路时, 即使是最小的开周期, 峰值电流依然很大, 造成典型 3842 / 43 / 44 / 45 应用例不能长时间输出短路; 采用检测电流是否超过额定电流峰值的 150%, 如果超过, 则降频到

3863 / 3844 高性能电流模式控制器


10KHz, 因此可以长时间输出短路。

- 电流采样, 0.5V 电流采样, 可以采用分压电阻来适合采样电阻。
- VCC1 内部电源滤波端, 外接滤波电容 Cvref 推荐采用 104。

● 应用信息【结合典型应用例图描述】

- ◆ 典型 3842/43/44/45 应用例 PCB 板级升级应用例：取消振荡元件【Ct, Rt】，取消反馈补偿电阻【Rfb】，取消3脚滤波电容【C1】，取消 G 驱动元件【R3, D1】，甚至取消假负载【R11】；极限情况下，典型 3842/43/44/45 应用例，可以取消【R2, R3, D1】，PCB 版级升级例，还是可以取消【Ct, Rt, Rfb, R1, C1, 0.5V 电流采样，无 AC 电流补偿】，少 5 个元件【2 个电容，3 个电阻】；
- ◆ 由于是 0.5V 电流采样输入，可以采用【R1、Ris】分压网络来适应电流采样电阻，同时仍可以完成 AC 电流补偿；
- ◆ 基于可听噪声的原因，也许需要假负载，但可以选择高阻值更小功率的电阻。

- ◆ 典型完整版应用例：可选热敏电阻；
- ◆ PCB 设计需重视 VCC 供电回路的设计，回路面积尽量小，VCC 电容选择低 ESR 电容。
- ◆ 应用拓展：在取消【AC 过压保护，AC 电流补偿】情况下，完成精确 VCC 过压保护，在 VCC【7 脚】-HV【2 脚】用一个电阻，数值：【VCC 保护电压 18V：18.4KΩ；VCC 保护电压 20V：20.7KΩ；VCC 保护电压 22V：23KΩ；VCC 保护电压 24V：25.3KΩ；VCC 保护电压 26V：27.6KΩ】。