

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade

NPO/X7R/X7S

6.3 V TO 2000 V

0.2 pF to 680nF

RoHS compliant & Halogen Free

YAGEO

NPO/X7R/X7S 6.3 V to 2000 V

SCOPE

This specification describes Automotive grade chip capacitors with lead-free terminations and used for automotive equipments.

<u>APPLICATIONS</u>

All general purpose applications under normal operation and usage conditions for automotive equipments.

FEATURES

- · AEC-Q200 qualified
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- · High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AC XXXX X X XXX X B X XXX

(I) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225) / 1812 (4532) / 2220 (5750)

(2) TOLERANCE

NPO(< 10 pF)	NPO(≥ 10 pF)	X7R/X7S
$B = \pm 0.1 pF$	F = ±1%	J = ±5%
$C = \pm 0.25 pF$	G = ±2%	K = ±10%
D = ±0.5 pF	J = ±5%	M= ±20%

Note: Capacitance tolerance ±5% doesn't available for full X7R range, please contact local sale before order.

(3) PACKING STYLE (SEE TABLE. 12 FOR DETAIL)

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

NPO

X7R

X7S

(5) RATED VOLTAGE

B = 500 V 5 = 6.3 V6 = 10 V Z = 630 VC = 1000 V 7 = 16 VD = 2000 V 8 = 25 V9 = 50 V

0 = 100 V

A = 200 V

Y = 250 V

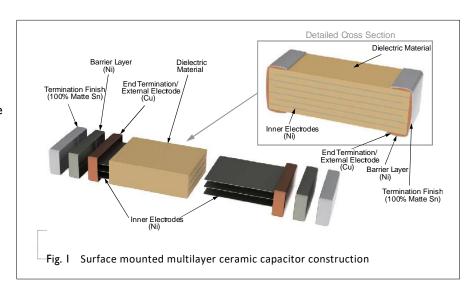
6) PROCESS

N = NPO

B = X7R/X7S

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

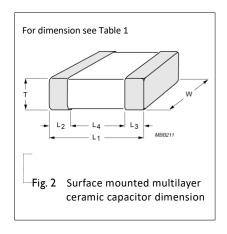

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^1 = 120 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are lead-free. A cross section of the structure is shown in Fig.1.



DIMENSION

Table I For outlines see fig. 2

TYPE	L _I (mm)	W (mm)	T (MM)	L ₂ / L ₃	(mm)	L ₄ (mm)
1117	L1 (111111)	** (111111)	1 (11111)	min.	max.	min.
0201	0.6±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0±0.05	0.5 ±0.05	0.5±0.05	0.15	0.35	0.30
0603	1.6±0.10	0.8±0.10	0.8±0.10	0.20	0.50	0.60
	2.0±0.10	1.25±0.10	0.6±0.10			
0805	2.0±0.20	1.25±0.20	0.85±0.10 1.25±0.20	0.25	0.75	0.70
	3.2±0.15	1.6±0.15	0.6±0.10 0.85±0.10			
1206	3.2±0.30	1.6±0.20	1.00±0.10 1.15±0.10 1.25±0.20 1.6±0.20	0.25	0.75	1.50
	3.2±0.30	1.6±0.30	1.6±0.30			
	3.2±0.20	2.5±0.20	0.85±0.10			
1210	3.2±0.30	2.5±0.20	1.25±0.20 1.6±0.20 2.0±0.20	0.25	0.85	1.50
1210	3.2±0.40	2.5±0.30	1.6±0.20 ⁽¹⁾ 2.0±0.30 ⁽²⁾ 2.5±0.20 2.5±0.30	0.23	0.83	1.50
1808	4.5±0.40	2.0±0.30	1.25±0.20	0.25	0.75	2.20
1812	4.5±0.40	3.2±0.30	0.85±0.10 1.25±0.20 1.60±0.20	0.25	0.75	2.20
2220	5.7±0.40	5.0±0.30	2.0±0.20 1.25 ±0.20 1.6 ±0.20	0.25	0.75	3.40

OUTLINES

NOTE

(1)(2) NPO, 1210, 630V ~1000V, 4.7nF ~22nF

NPO/X7R/X7S 6.3 V to 2000 V

CAPACITANCE RANGE & THICKNESS FOR NPO

	2 Sizes fron		305	1012111	<u> </u>					
CAP.	0201	0402	0603			0805				
	25 V / 50 V	25 V / 50 V	25 V / 50 V	100 V	200 V / 250 V	50 V	100 V	200 V / 250 V	500 V	630 V
0.2 pF	0.3±0.03									
0.47 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
0.56 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
0.68 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
0.82 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
I.0 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
I.2 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
1.5 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
1.8 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
2.2 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
2.7 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
3.3 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
3.9 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
4.7 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
5.6 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
6.8 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
8.2 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1		
10 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
12 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
15 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
18 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
22 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
27 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
33 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
39 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
47 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
56 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
68 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
82 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
100 pF		0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

NPO/X7R/X7S 6.3 V to 2000 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes from 0402 to 0805 (continued)

CAP.	0402	0603			0805				
	25 V / 50 V	25 V / 50 V	100 V	200 V / 250 V	50 V	100 V	200 V / 250 V	500 V	630 V
120 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
150 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
180 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
220 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	
270 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	
330 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	
390 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	
470 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	
560 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	0.85±0.1		
680 pF	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	0.85±0.1		
820 pF	0.5±0.05	0.8±0.1	0.8±0.1		0.6±0.1	0.85±0.1	0.85±0.1		
I.0 nF	0.5±0.05	0.8±0.1	0.8±0.1		0.6±0.1	0.85±0.1	0.85±0.1		
I.2 nF		0.8±0.1	0.8±0.1		0.85±0.1	0.85±0.1			
1.5 nF		0.8±0.1	0.8±0.1		0.85±0.1	0.85±0.1			
I.8 nF		0.8±0.1	0.8±0.1		0.85±0.1	0.85±0.1			
2.2 nF		0.8±0.1	0.8±0.1		1.25±0.2	1.25±0.2			
2.7 nF		0.8±0.1			1.25±0.2	1.25±0.2			
3.3 nF		0.8±0.1			1.25±0.2	1.25±0.2			
3.9 nF		0.8±0.1			1.25±0.2	1.25±0.2			
4.7 nF		0.8±0.1			1.25±0.2	1.25±0.2			
5.6 nF		0.8±0.1			1.25±0.2	1.25±0.2			
6.8 nF		0.8±0.1			1.25±0.2	1.25±0.2			
8.2 nF		0.8±0.1			1.25±0.2	1.25±0.2			
I0 nF		0.8±0.1			1.25±0.2	1.25±0.2			

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

GEO Product specification

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

NPO/X7R/X7S 6.3 V to 2000 V

6 24

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 4 Sizes from 1206 to 1210

CAP.	1206							1210					
	50 V	100 V	200 V / 250 V	500 V	630 V	1000 V	2000 V	50 V	100 V	200 V / 250 V	500 V	630 V*	1000 V*
10 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
I2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
15 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
18 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
22 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
27 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
33 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
39 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2						
47 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
56 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
68 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
82 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
100 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
120 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
150 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
180 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
220 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
270 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
330 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
390 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
470 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
560 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
680 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
820 pF	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
I.0 nF	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
I.2 nF	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
1.5 nF	0.6±0.1	0.6±0.1	0.85±0.1	0.85±0.1	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
I.8 nF	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		
2.2 nF	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2			
2.7 nF	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2	1.25±0.2	1.25±0.2			
3.3 nF			1.25±0.2	1.25±0.2	1.25±0.2								
3.9 nF			1.25±0.2	1.25±0.2	1.25±0.2								
4.7 nF			1.25±0.2	1.25±0.2	1.25±0.2							1.60±0.2	2.0±0.3
5.6 nF			1.25±0.2	1.25±0.2	1.25±0.2							1.60±0.2	2.0±0.3
6.8 nF			1.25±0.2	1.25±0.2	1.25±0.2							1.60±0.2	2.0±0.3
8.2 nF			1.60±0.2	1.60±0.2	1.60±0.2							1.60±0.2	2.0±0.3
10 nF			1.60±0.2	1.60±0.2	1.60±0.2							1.60±0.2	2.5±0.3
15 nF												1.60±0.2	2.5±0.3
22 nF												2.0±0.2	2.5±0.3
33 nF												2.5±0.3	
47 nF													

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-I2 series is on request
- 3. *: L: 3.2± 0.40 W: 2.5± 0.30

NPO/X7R/X7S 6.3 V to 2000 V

CAPACITANCE RANGE & THICKNESS FOR X7R/X7S

YAGEO

Table 5	Sizes from	0201 to 0603	
CAB	0201	0402	

CAP.	0201		0402					0603				
	25V	50 V	I0V	16 V	25 V	50 V	100 V	IOV	16 V	25 V	50 V	100 V
100 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
150 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
220 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
330 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
470 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
680 _P F	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
1.0 nF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
1.5 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
2.2 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
3.3 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
4.7 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
6.8 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
I0 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
I5 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
22 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
33 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
47 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
68 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
100 nF			0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05		0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1
150 nF			0.5±0.05 (X7S)	0.5±0.05 (X7S)	0.5±0.05 (X7S)			0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	
220 nF			0.5±0.05 (X7S)	0.5±0.05 (X7S)	0.5±0.05 (X7S)			0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	
330 nF								0.8±0.1	0.8±0.1	0.8±0.1		
470 nF								0.8±0.1	0.8±0.1	0.8±0.1		
680 nF								0.8±0.1	0.8±0.1	0.8±0.1		

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request

tive grade NPO/X7R/X7S 6.3 V to 2000 V

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 6 Size 0805

CAP. 0805

	10 V	16 V	25 V	50 V	100 V	200 V / 250 V	500 V
I.0 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
1.5 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
2.2 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
3.3 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
4.7 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
6.8 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	
I0 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	
15 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	
22 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	
33 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2		
47 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2		
68 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1 1.25±0.2	1.25±0.2		
100 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1 1.25±0.2	1.25±0.2		
150 nF	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2			
220 nF	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2			
330 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2			
470 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2			
680 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2			

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 7	Size 1206 1206									
	6.3 V	IOV	16V	25V	50 V	100 V	200 V / 250 V	500 V	630 V	1000 V
220 pF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
330 pF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
470 pF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
680 pF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
I nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
2.2 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
4.7 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
10 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
22 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2			
33 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.60±0.2			
47 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.60±0.2			
68 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.60±0.2			
100 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.60±0.2			
150 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2				
220 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2				
330 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.60±0.2	1.60±0.2				
470 nF	1.00±0.1	1.00±0.1	1.00±0.1	1.00±0.1	1.60±0.2	1.60±0.2				
680 nF	1.15±0.1	1.15±0.1	1.15±0.1	1.60±0.2	1.60±0.2	1.60±0.2				

Та	able 8	Size 1210								
CAP).	1210							1812	
		6.3V	10 V	16 V	25 V	50V	100 V	200 V / 250 V	50V	100V
	100 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2		
	150 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2			
	220 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2			
	330 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	2.0±0.2			
	470 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	2.0±0.2		1.60±0.2	1.60±0.2
	680 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	2.0±0.2		1.60±0.2	1.60±0.2

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: I5 ° C to 35 ° C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table	9							
DESCRIP	TION							VALUE
Capacitan	ice range						0.2 pF t	o 680 nF
Dissipatio	n factor (D.F.)							
NPO	C < 30	pF					≤ 1 / (40	0 + 20C)
	C ≥ 30	pF						≤ 0.1 %
X7R/X7S	0201	0402	0603	0805	1206	1210	1812	
≤10V		100pF to 100nF	100pF to 680nF	1nF to 680nF	220pF to 680nF	100nF to 680nF		≤ 5%
		150nF to 220nF						≤ 10%
16V		100pF to 22nF	100pF to 220nF	1nF to 470nF	220pF to 680nF	100nF to 680nF		≤ 3.5%
		27nF to 100nF	330nF to 680nF	680nF				≤ 5%
		150nF to 220nF						≤ 10%
25V	100pF to 470pF	100pF to 10nF	100pF to 39nF	1nF to 180nF	220pF to 680nF	100nF to 680nF		≤ 2.5%
		12nF to 27nF	47nF to 220nF	220nF				≤ 3.5%
	560pF to 10nF	33nF to 100nF	330nF to 680nF	330nF to 680nF				≤5%
		150nF to 220nF						≤ 10%
50V	100pF to 470pF	100pF to 10nF	100pF to 39nF	1nF to 180nF	220pF to 470nF	100nF to 680nF	470nF to 680nF	≤ 2.5%
	560pF to 1nF		47nF to 220nF	220nF to 470nF				≤ 3.5%
		12nF to 100nF		560nF to 680nF	680nF			≤ 5%
100V		220pF to 1.5nF	100pF to 10nF	1nF to 100nF	220pF to 470nF	100nF to 270nF	470nF to 680nF	≤ 2.5%
			12nF to 100nF		560nF to 680nF	330nF to 680nF		≤ 5%
200V/250V	,			1nF to 22nF	220pF to 100nF	100nF		≤ 2.5%
500V				1nF to 4.7nF	220pF to 10nF			≤ 2.5%
630V					220pF to 10nF			≤ 2.5%
1KV					220pF to 1nF			≤ 2.5%
Insulation	resistance after	I minute at U _r	(DC)					
NPC	O (general)				I.R. ≥ 100 GΩ	$2 \text{ or I.R.} \times C \ge 1000$	Ω .F. whichever is le	ess
					1206/250V to	o 630V >1nF, 1210,	630V & 1KV >1nF	
					I.R. ≥ 10 GΩ	$P \text{ or I.R.} \times C \geqslant 500$	Ω .F. whichever is le	ess
X7R	k (general)				I.R. \geq 10 G Ω	or I.R. \times C \geq 500 Ω .	F. whichever is less	i
0	0603/25V/330nF	to 470nF			I.R. X C ≥ 100			
	0603/10V to 25V/		F		I.R. X C ≥ 100			
	0402/10V/>100nl				I.R. X C ≥ 50 ⊆			
	0402/16V/>100nl	<u> </u>			I.R. X C ≥ 50 ⊆	r I.R. × C ≥ 100 Ω.F.	which over is less	
	(general) 0402/10V to 25V,	/>100nF			I.R. X C ≥ 50 Ω		willchevel is less	
	temperature ra							
NP0/X7R		U - ·			−55 °C to +1	.25 °C		

NPO/X7R/X7S 6.3 V to 2000 V

SOLDERING RECOMMENDATION

Table 10

SOLDERING SIZE

METHOD	0201	0402	0603	0805	1206	≥ 1210
Reflow	0	0	0	0	0	0
Wave			0	0	0	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

Temperature: above 220 °CEndurance: 95 to 120 seconds

Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

Table II Test procedures and requirements

NO	AEC-Q200 TEST	TEST METHOD	REQUIREMENTS
		Preconditioning, Class II only:	No visual damage
4	Temperature Cycling	150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature 1000 cycles with following detail: 15 minutes at lower category temperature	ΔC/C NPO: Within ±2.5% or 0.25 pF, whichever is greater X7R/X7S: ±10%
		15 minutes at upper category temperature	D.F. meet initial specified value
		Measurement at least 24 hours after test conclusion.	IR meet initial specified value
5	Destructive Physical Analysis	Electrical test not required.	
		1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage after recovery
7	Biased Humidity	$24 \pm 1 \text{ hour at room temp}$ 2. Test condition: $85 \text{ °C, } 85\% \text{ R.H. connected with } 100 \text{ K}\Omega \text{ resistor, applied}$ $1.5 \text{V/U}_r \text{ (no more than } 630 \text{V) for } 1,000 \text{ hours.}$	ΔC/C NPO: Within ±2% or 1 pF, whichever is greater X7R/X7S: ±15%
		 3. Recovery: NPO: 6 to 24 hours X7R/X7S: 24 ± 4 hours 4. Final measure: C. D. I.R. 5. Measurement at least 24 hours after test conclusion 	D.F. NPO: ≤ 2 x specified value. X7R/X7S: (1) ≤ 16V: ≤ 7% or specified value whichever is greater (2) ≥ 25V: ≤ 5% or specified value whichever is greater I.R. The insulation resistance shall greater than 10% of initial
8	High Temperature		spec. No visual damage

NO	AEC-Q200 TEST	TEST METHOD	REQUIREMENTS
	Operational Life	1. Preconditioning, class 2 only:	ΔC/C
		150 +0/-10 °C /1 hour, then keep for	NPO: Within ±2% or 1 pF,
		24 ±1 hour at room temp	whichever is greater
		Temperature: 125 °C	X7R/X7S: ±15%
		Specified stress voltage applied for 1,000 hours:	D.F.
		Applied 2.0 x Ur for 6.3V to 100V *	NPO: ≤ 2 x specified value.
		High voltage series follows with below	X7R/X7S:
		stress condition:	(1) ≤ 16V: ≤ 7% or specified
		Applied 1.5 x Ur for 200V, 250V series	value whichever is greater
		Applied 1.3 x Ur for 500V, 630V series	(2) ≥ 25V: ≤ 5% or specified
		Applied 1.2 x Ur for 1KV, 2KV, 3KV series Measurement at least 24 hours after test conclusion.	value whichever is greater
		iviedsurement at least 24 hours after test conclusion.	IR
		Note: If the capacitance value is less than the minimum	NPO: \geq 4,000 M Ω or IR x C _r \geq
		value permitted, then after the other measurements have	40 Ω .F. whichever is less
		been made the capacitor shall be preconditioned according	X7R/X7S: ≥ 1,000 MΩ or
		to "IEC 60384 and then the requirement shall be met.	IRx $C_r \ge 50\Omega$.F.
		* Note : Applied 1.5 x Ur for 6.3V to 100V	whichever is less *
		0402/X7S/10V~25V/>100nF	* IRx Cr ≥ 5Ω.F.
		0402/X7R/50V/>10nF	0402/10V-16V/>100nF
		0603/X7R/25V/>220nF; 0603/X7R/50V/220nF	* IRx Cr ≥ 10Ω.F.
		0603/X7R/100V/≥100nF	0603/25V/>220nF
		0805/X7R/100V/≥ 470nF	
0	Futamal Visual		In accordance with
9	External Visual	Any applicable method using × 10 magnification	specification
10	Physical Dimension	Verify physical dimensions to the applicable device	In accordance with
	Thysical Billichsion	specification.	specification
		Three shocks in each direction shall be applied along the three	ΔC/C
		mutually perpendicular axes of the test specimen	NPO: Within ±0.5% or 0.5 pF,
		(18 shocks)	whichever is greater
		Peak value: 100 g's	X7R/X7S: ±10%
13	Mechanical Shock	Duration: 6 ms Velocity change: 12.3 ft/s	D.F.
		Waveform: Half-sin	Within initial specified value
		Waveloriii Hali Siii	
			IR
			Within initial specified value
		5 g's for 20 minutes, 12 cycles each of 3 orientations.	ΔC/C
		Test from 10-2000 Hz.	NP0: Within ±0.5% or 0.5 pF,
			whichever is greater
14	Vibration		X7R/X7S: ±10%
			D.F: meet initial specified
			value
			IR meet initial specified value

YAGEO

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

NO	AEC-Q200 TEST	TEST METHOD	REQUIREMENTS			
		Preconditioning, class II only : $150 + 0/-10$ °C for 1 hour, then keep for 24 ±1 hours at room temperature Follow MIL-STD-202 method 210 condition k, time above 217 deg-C , 60s to 150s.	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned			
15	Resistance to Soldering Heat		ΔC/C NPO: Within ±1% or 0.5 pF, whichever is greater. X7R/X7S: ±10%			
			D.F. within initial specified value			
			IR within initial specified value			
		Per AEC-Q200-002	A component passes a voltage level if all components stressed at that voltage level pass.			
17	ESD	FAIL PASS FAIL PASS				
18	Solderability	 J-STD-002 Method B1, coating durability category 2. Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at 245±5°C. J-STD-002 Method D, Coating Durability Category 2. Should be placed into steam aging. After preheating, immerse the capacitor in a solution of Ethanol and rosin. Immerse in eutectic solder solution for 30 seconds at 260±5°C. 	The solder should cover over 95% of the critical area of each termination.			

		Capacitance Dissipation Factor (D.F.)	NPO: $f = 1 \text{ MHz for C} \le 1 \text{nF, measuring at voltage 1 V}_{rms} \text{ at 25 °C}$ $f = 1 \pm 0.1 \text{ KHz for C} > 1 \text{nF,}$ measuring at voltage $1 \pm 0.2 \text{ V}_{rms}$ at 25 °C $ \times 7 \text{R/X7S:}$ At 25 °C, 24 hours after annealing $f = 1 \pm 0.1 \text{ KHz, measuring at voltage } 1 \pm 0.2 \text{ V}_{rms} \text{ at 25 °C}$ $ \text{NPO:}$ $f = 1 \text{ MHz for C} \le 1 \text{nF, measuring at voltage 1 V}_{rms} \text{ at 25 °C}$ $f = 1 \pm 0.1 \text{ KHz for C} > 1 \text{nF,}$ measuring at voltage $1 \pm 0.2 \text{ V}_{rms} \text{ at 25 °C}$ $ \times 7 \text{R/X7S:}$	Within specified tolerance In accordance with specification on Table 9
		Insulation	At 25 °C, 24 hours after annealing f = 1±0.1 KHz, measuring at voltage 1±0.2 V _{rms} at 25 °C	In accordance with
		Resistance (I.R.)	At U _r (DC) for 1 minute	specification on Table 9
19	Electrical Characterization	Temperatur e coefficient	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage.	ΔC/C NPO: ±30ppm /°C X7R: ±15% X7S: ± 22%
		Voltage Proof	 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied (1.5 Ur + 100) 200 V < Ur ≤ 500 V series applied (1.3 Ur + 100) Ur > 500 V: 1.3 Ur Ur ≥ 1000 V: 1.2 Ur Charge/Discharge current is less than 50 mA 	No breakdown or flashover

YAGEO

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

		Part mounted on a 100mm × 40mm FR4 PCB board, which is	No visual damage				
		1.6±0.2 mm thick and has a layer-thickness 35μm±10 μm. Part should be mounted using the following soldering reflow profile. Conditions: NPO: Bending 3 mm at a rate of 1 mm/s, radius jig 340 mm X7R/X7S: Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm	ΔC/C NPO: Within ±1% or 0.5 pF, whichever is greater X7R/X7S: ±10% Dimension(mm)				
21	Board Flex	Test Substrate:	Туре	a	b	С	
21	Bourd Fick	b	0201	0.3	0.9	0.3	
			0402	0.4	1.5	0.5	
			0603	1.0	3.0	1.2	
			0805	1.2	4.0	1.65	
			1206	2.2	5.0	1.65	
		100	1210	2.2	5.0	2.0	
		unit: mm	1808	3.5	7.0	3.7	
		Wish she agreement required on a DCD shaping divisit the	N4===:f:		-f 20V		
22	Terminal Strength	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size. * Apply 1N force for 0201 size.	er may be employed for ction of the mechanical rity of the device body, nals and body/terminal ion. ee, during and after the the device shall comply all electrical rements stated in this fication.				

THICKNESS CLASSES AND PACKING QUANTITY

Table 12

	THICKNESS	DA CVII	NG CODE			QUANTIT	Y PER REEL	
SIZE CODE	CLASSIFICATION	PACKII	NG CODE	TAPE WIDTH	Ø180 M	M / 7 INCH	Ø330 MN	1 / 13 INCH
	CLASSIFICATION	7 INCH	13 INCH		Paper	Blister	Paper	Blister
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000	
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
0805	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
1206	1.0/1.15 ±0.1 mm	K	F	8 mm		3,000		10,000
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	1.60 ±0.2 mm	K	F	8 mm		2,000		8,000
	0.85 ±0.1 mm	K	F	8 mm		4,000		10,000
	1.15 ±0.1 mm	K	F	8 mm		3,000		10,000
1210	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	2.0 ±0.2 mm	K		8 mm		2,000		
	2.5 ±0.2 mm	К		8 mm		1,000		
	0.6 / 0.85±0.1 mm	K		12 mm		2,000		
1012	1.15±0.1 mm	К		12 mm		1,000		
1812	1.25±0.2 mm	К		12 mm		1,000		
	1.6 ±0.2 mm	К		12 mm		2,000		

NPO/X7R/X7S 6.3 V to 2000 V

PAPER/PE TAPE SPECIFICATION

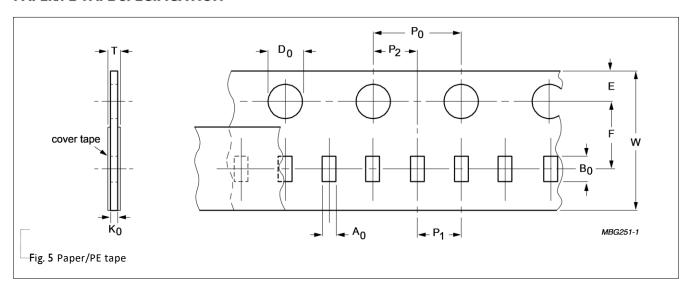


Table 13 Dimensions of paper/PE tape for relevant chip size; see Fig.5

SIZE CODE	SYMBOL Unit: mm											
	A0	В0	W	Е	F	P0 (I)	PI	P2	ØD0	K0	Т	
0201	0.39 ±0.06	0.70 ±0.06	8.0 ±0.20	1.75 ±0.1	3.50 ±0.05	4.0 ±0.05	2.0 ±0.05	2.0 ±0.05	1.55 ±0.03	0.38 ±0.05	(0.47/ 0.55)±0.10	
0402	0.70 ±0.15	1.21 ±0.12	8.0 ±0.20	1.75 ±0.1	3.50 ±0.05	4.0 ±0.05	2.0 ±0.05	2.0 ±0.05	1.50 +0.1 /-0	(0.75/ 0.60)±0.10	(0.85/0.70)±0.10	
0603	1.05 ±0.14	1.86 ±0.13	8.0 ±0.20	1.75 ±0.1	3.50 ±0.05	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.50 +0.1 /-0	(1.05/0.95/ 0.75)±0.10	0 (1.15/ 1.05/ 0.85)±0.10	
0805	1.50 ±0.15	2.26 ±0.20	8.0 ±0.20	1.75 ±0.1	3.50 ±0.05	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.50 +0.1 /-0	(1.05/0.95/ 0.75)±0.10	0 (1.15/ 1.05/ 0.85)±0.10	
1206	1.90 ±0.15	3.50 ±0.20	8.0 ±0.20	1.75 ±0.1	3.50 ±0.05	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.50 +0.1 /-0	(0.95/ 0.75)±0.10	(1.05/ 0.85)± 0.10	

NOTE

 $1.P_0$ pitch tolerance over any 10 pitches is $\pm 0.2 \ mm$

NPO/X7R/X7S 6.3 V to 2000 V

BLISTER TAPE SPECIFICATION

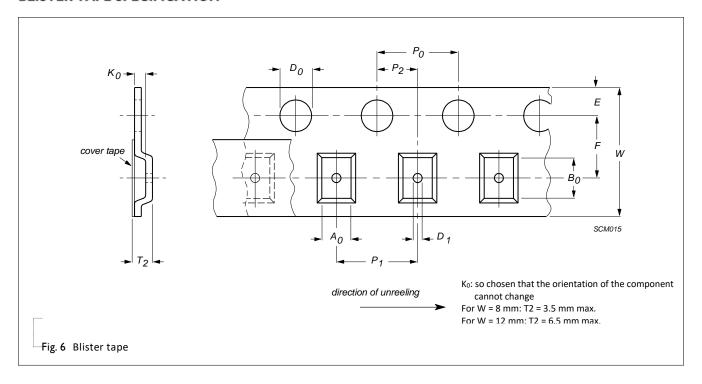


Table 14 Dimensions of blister tape for relevant chip size; see Fig.6

	SYMBOL					Ui						Un	it: mm			
SIZE CODE	A_0		B ₀		K_0		W	E	F	$ØD_0$	ØD _I	P ₀ (2)	P _I	P ₂	٦	Γ2
	Min.	Max.	Min.	Max.	Min.	Max.					Min.				Min.	Max.
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	01 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67
1206	1.65	2.12	3.30	3.75	1.22	2.15	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	01 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	01 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97
1808	2.05	2.55	4.80	5.45	1.30	2.45	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	01.5 +0.1/-0.0	04.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.35	2.50
1812	3.35	3.75	4.70	5.33	0.70	2.40	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	01.5 +0.1/-0.0	04.0 ±0.10	8.0 ±0.10	2.0 ±0.05	0.75	2.45

- 1. Typical capacitor displacement in pocket
- 2. P_0 pitch tolerance over any 10 pitches is ± 0.2 mm

REEL SPECIFICATION

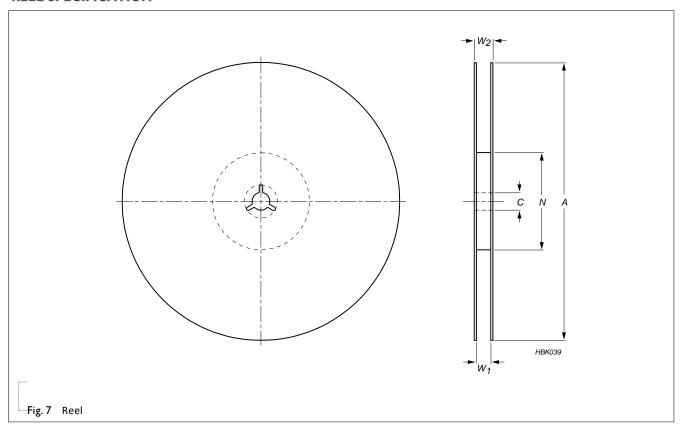


Table 15 Reel dimensions; see Fig. 7

T + DE \	SYMBOL								
TAPE WIDTH	A	N	С	Wı	W _{2max} .				
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	9.4 ±1.5	14.4				
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	14.4				
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	13.4 ±1.5	18.4				

PROPERTIES OF REEL

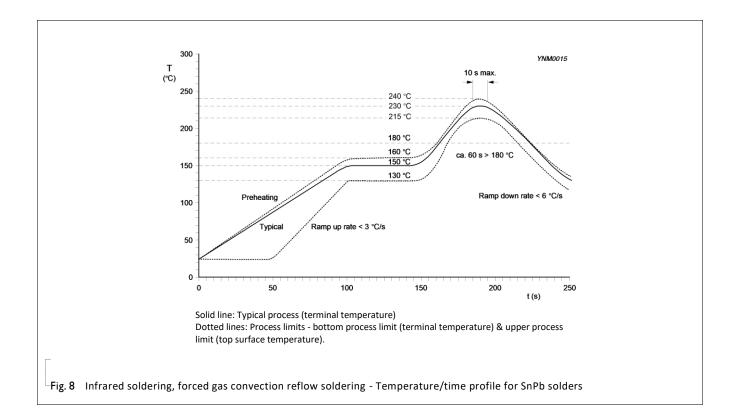
Material: polystyrene Surface resistance: $<10^{10}$ X/sq.

MOUNTING

SOLDER REPAIRS

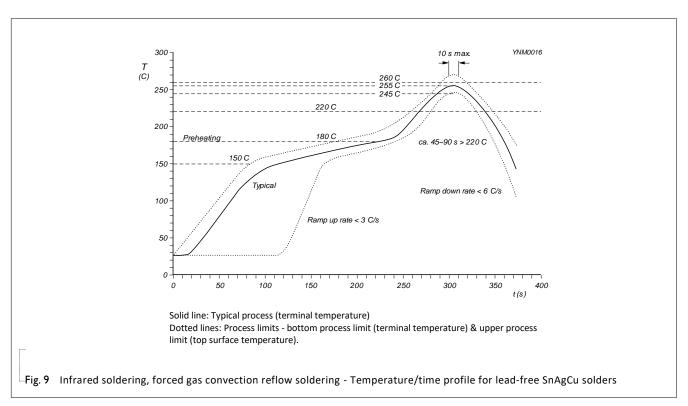
Conventional solder repairs are carried out with a soldering iron as shown as Tab.9. The tip of the soldering iron should not directly touch the chip component to avoid thermal shock on the interface between termination and body during mounting, repairing or de-mounting processes. Ensure the termination solder has melted before removing the chip component.

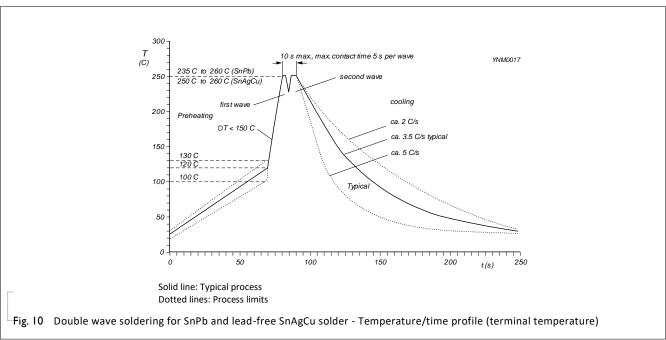
Table 16 Recommended soldering iron condition


SIZE	Temp(°C)	DURATION (SEC.)	PREHEATING TEMP(°C)	ATMOSPHERE
0201/0402/0603/0805/1206	350 max.	3 max.	150 min.	air
1210/1808/1812/2220	280 max.	3 max.	150 min.	air

SOLDERING CONDITIONS

For normal use the capacitors may be mounted on printed-circuit boards or ceramic substrates by applying wave soldering, reflow soldering or conductive adhesive in accordance with IEC 61760-1 (Standard method for the specification of surface mounting components). For advised soldering profiles see Figs 8, 9, 10.


An improper combination of soldering, substrate and chip size can lead to a damaging of the component. The risk increases with the chip size and with temperature fluctuations (>100 °C).


Therefore, it is advised to use the smallest possible size and follow the dimensional recommendations given in Tables 8, 9 and 10 for reflow and wave soldering. More detailed information is available on request.

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive grade

FOOTPRINT DIMENSIONS

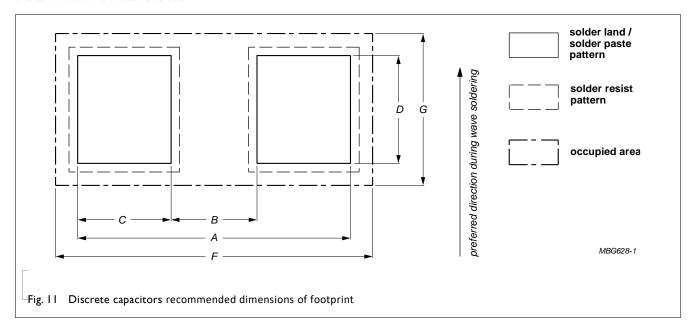


Table 17 Reflow soldering; for footprint dimensions see Fig.11

SIZE	FOOTPRIN	NT DIMENSIO	NS		Unit: mm				
CODE	Α	В	С	D	F	G	Processing remarks		
0201	0.8 ±0.20	0.25 ±0.05	0.28 ±0.07	0.3 ±0.10			_		
0402	1.5 ±0.15	0.5 ±0.15	0.5 ±0.15	0.5 ±0.15	1.75 ±0.15	0.95 ±0.15	_		
0603	2.3 ±0.15	0.7 ±0.15	0.8 ±0.15	0.9 ±0.15	2.7 ±0.15	1.5 ±0.15	IR or hot plate soldering		
0805	2.8 ±0.25	0.9 ±0.25	0.95 ±0.25	1.4 ±0.25	3.2 ±0.25	2.1 ±0.25	ik of not plate soldering		
1206	4.0 ±0.25	2.0 ±0.25	1.0 ±0.25	1.8 ±0.25	4.4 ±0.25	2.5 ±0.25	_		
1210	4.0 ±0.25	2.0 ±0.25	1.0 ±0.25	2.7 ±0.25	4.4 ±0.25	3.4 ±0.25			
1808	5.4 ±0.25	3.3 ±0.25	1.05 ±0.25	2.3 ±0.25	5.8 ±0.25	2.9 ±0.25	_		
1812	5.4 ±0.25	3.3 ±0.25	1.05 ±0.25	3.5 ±0.25	5.8 ±0.25	4.1 ±0.25	Ceramic substrate only		
2220	6.6 ±0.25	4.5 ±0.25	1.05 ±0.25	5.3 ±0.25	7.0 ±0.25	5.9 ±0.25			

NPO/X7R/X7S 6.3 V to 2000 V

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 24	Oct. 14, 2025	-	- Add NPO, 1206, 1.2nF to 10nF, 250V to 500V
Version 23	Jun. 4, 2025	-	- Add NPO, 1210, 630V to 1000V, 15nF
Version 22	Jan. 14, 2025	-	- Revise AEC-Q200 test condition to version E.
Version 21	May 21, 2024	-	- Add 1206/NPO/630V/1.2nF to 10nF;
			- Add 1210/NPO/630V/4.7nF to 33nF;
			- Add 1210/NPO/1000V/4.7nF to 22nF;
Version 20	Jan. 20, 2024	-	- Add 0402/X7R/100pF to 150pF/10V to 50V;
			- Add 0603/X7R/100pF to 680pF/10V to 100V;
			- Add 1206/X7R/220pF to 10nF/6.3V to 250V;
Version 19	Jul. 08, 2022	-	- Add 0805/NPO/500V 10pF to 470pF
			- Add 0805/NPO/630V 10pF to 180pF
			- Add 1210/NPO/50V~500V/47pF to 820pF
Version 18	Apr. 16, 2022	-	- Add 0402/X7S/10V~16V/150nF~220nF
Version 17	Jan. 14, 2022	-	- Add 1206/NPO/2000V/10pF to 47pF
Version 16	Nov. 17, 2021	-	- Add 1206/X7R/500V to 1000V/220pF to 1nF
Version 15	Oct. 12, 2021	-	- Add 0603/NPO/25V/50V/2.7nF to 10nF
			- I.R. for NPO change to " I.R. \geq 100 G Ω or I.R. \times C \geq 1000 Ω .F. whichever
			is less"
Version 14	Aug. 09, 2021	-	- Add 1206/NPO/1kV/10pF to 220pF
			1206/X7R/1kV/1nF
Version 13	Jun. 08, 2021	-	- Move out "Array" and "High Cap" to individual specification
			Add 0603 NPO 50V/100V 1.2nF to 2.2nF
			0402 X7R 50V 15nF to 100nF
			0603 X7R 25V 330nF to 680nF
			0603 X7R 50V 150nF to 220nF 0603 X7R 100V 68nF to 100nF
Version 12	Feb. 26, 2021		- Add 0201/ X7R/ 50V / 100 pF to 1nF
VEISION 12	1 00. 20, 2021		0603/ X7R/ 16V / 680nF to 1μF
			0603/ X7R/ 25V / 150nF / 220nF/ 1μF
			1210/ X7R/ 50V / 4.7μF
Version 11	Jun. 29, 2018	-	- Add 0201 NPO 25V/ 50V, 0.2pF to 33pF, Add 0402 NPO 50V 270pF to
			1nF, Add 0805 X7R 25V 2.2uF
Version 10	May. 2, 2018	-	- Add 0603 NPO 100V 820pF to 1nF,
			- Add 0805 NPO 50V to 100V, 1.2nF to 10nF,
			- Add 0805 X7R 16V 2.2uF, 50V 680nF to 1uF,
			- Add 1206 X7R 100V 330nF to 2.2uF, 250V 33nF to 100nF
Version 9	Mar. 22, 2018	-	- Add 0402 X7R 100nF 25~50V
Version 8	Nov. 22, 2017	-	- Add X7R/0201/25V/100pF~10nF
Version 7	Jul. 7, 2017	-	- Add X7R/0805/330nF to 470nF/50V, X7R/1206/10uF/6.3V
Version 6	Mar. 31, 2017		- Add NPO/0603/1nF/50V, X7R/0603/1uF/10V, X7R/0603/470nF/16V,
		-	X7R/0603/220nF/25V
Version 5	Nov. 15, 2016	-	- Add Soldering Condition
Version 4	Jun. 14, 2016	-	- Add X7R/0805/2.2uF/10V and NPO/1206/1.2nF to 1.5nF/250V
Version 3	Jul. 21, 2015	-	- Tests and Requirements update
Version 2	Jul. 17, 2014	-	- Tests and Requirements update
Version 1	Apr. 19, 2013	-	- Capacitance range update
Version 0	Dec. 25, 2012	-	- New
-			

NPO/X7R/X7S 6.3 V to 2000 V

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.