

# **SCY eMMC WITH HS400 INTERFACE**

## **SPECIFICATION V1.39**

**E256CDK52ABE00**

Copyright © 2018 Shenzhen Shichuangyi Electronics Co., LTD  
This is a Preliminary document release. All specifications are subject to change without notice.  
The material contained in this document supersedes all previous material issued for the products  
herein referenced. Please contact SCY for the latest document(s).

# Contents

|                                          |               |
|------------------------------------------|---------------|
| <b>1. Product List.....</b>              | <b>- 5 -</b>  |
| <b>2. Key Features.....</b>              | <b>- 5 -</b>  |
| <b>3. Package Configurations .....</b>   | <b>- 6 -</b>  |
| 3.1 BGA 153 Ball Pin Configurations..... | - 6 -         |
| 3.2 Pins and Signal Description.....     | - 7 -         |
| 3.3 BGA Package Dimension.....           | - 8 -         |
| 3.4 Product Block Diagram.....           | - 8 -         |
| <b>4. S/W Algorithm.....</b>             | <b>- 9 -</b>  |
| 4.1 Partition Management.....            | - 9 -         |
| 4.2 Enhanced Partition (Area).....       | - 9 -         |
| 4.3 User Density.....                    | - 9 -         |
| 4.4 Typical Performance .....            | - 10 -        |
| 4.5 Power Consumption.....               | - 10 -        |
| <b>5. eMMC Features Overview.....</b>    | <b>- 11 -</b> |
| 5.1 HS400 Interface .....                | - 11 -        |
| 5.2 Field Firmware Upgrade (FFU).....    | - 12 -        |
| 5.3 Cache.....                           | - 12 -        |
| 5.4 Discard .....                        | - 12 -        |
| 5.5 Power off Notification.....          | - 12 -        |
| 5.6 Packed Commands.....                 | - 12 -        |
| 5.7 Sleep (CMD5).....                    | - 12 -        |
| 5.8 Enhanced Reliable Write.....         | - 13 -        |
| 5.9 Sanitize .....                       | - 13 -        |
| 5.10 Secure Erase.....                   | - 13 -        |
| 5.11 Secure Trim.....                    | - 13 -        |
| 5.12 High Priority Interrupt (HPI).....  | - 13 -        |
| 5.13 H/W Reset.....                      | - 14 -        |
| 5.14 Command Queue.....                  | - 14 -        |
| <b>6. Register Value .....</b>           | <b>- 15 -</b> |
| 6.1 OCR Register.....                    | - 15 -        |
| 6.2 CID Register .....                   | - 15 -        |
| 6.3 DSR Register .....                   | - 15 -        |

|                           |        |
|---------------------------|--------|
| 6.4 CSD Register.....     | - 16 - |
| 6.5 EXT_CSD Register..... | - 17 - |

## **7. Electrical Characteristics ..... - 22 -**

|                                              |        |
|----------------------------------------------|--------|
| 7.1 Supply Voltage .....                     | - 22 - |
| 7.2 Bus Signal Levels .....                  | - 22 - |
| 7.3 Bus Timing in Single Data Rate Mode..... | - 23 - |
| 7.4 Bus Timing in HS200 Mode .....           | - 25 - |
| 7.5 Bus Timing in HS200 Mode .....           | - 26 - |
| 7.6 Bus Timing in HS400 Mode .....           | - 30 - |

## **8. Connection Guide ..... - 33 -**

|                            |        |
|----------------------------|--------|
| 8.1 Schematic Diagram..... | - 33 - |
|----------------------------|--------|

# Introduction

SCY eMMC is an embedded MMC solution designed in a BGA package form. eMMC operation is identical to a MMC device and therefore is a simple read and write to memory using MMC protocol v5.1 which is an industry standard.

SCY eMMC enables manufacturers to bring the benefits of flash rapid boot-up, high reliability, robustness, consistent performance as well as many proprietary features to these new applications. It is easy to use as the MMC interface allows easy integration with any microprocessor with MMC host. Any revision or amendment of NAND is invisible to the host as the embedded MMC controller insulates NAND technology from the host. This leads to faster product development as well as faster times to market.

To fulfill the requirements of mobile application, SCY eMMC integrated LDPC ECC engine to enable the cost-effective leading-edge 3D NAND. SCY eMMC integrates optimized firmware and hardware that elevates its capabilities to include new algorithms that boost random sustained read/write performance. SCY eMMC provides powerful data protection architecture to deliver high endurance over the product lifecycle.

SCY eMMC employs an industry standard eMMC 5.1 interface featuring Command Queue, HS400 interface, FFU, as well as legacy eMMC 4.51 features such as power off notifications, packed commands, Cache, boot/RPMB partitions, HPI, and HW reset, making it an optimal device for both reliable code and data storage.

# 1. Product List

| Capacity     | Part Number    | User Density (%) | Flash Type | Package Size   | Pin Configuration |
|--------------|----------------|------------------|------------|----------------|-------------------|
| <b>256GB</b> | E256CDK52ABE00 | 91%              | TLC 1Tbx2  | 11.5x13x0.95mm | 153ball           |

Table 1-Product List

# 2. Key Features

- JEDEC/eMMC Standard version 5.1 Compatible (backward compatible to eMMC 4.5)
  - Supports a wide range of power supply voltage: 1.8 and 3.3V
  - Supports HS400 Mode
  - eMMC production state awareness
  - eMMC device health report
  - Supports Command Queue
  - Programmable bus width: 1/4/8 bits
  - Supports Boot operation in High Speed and DDR mode
  - Supports Boot mode and Alternative Boot mode
  - Replay Protection Memory Block (RPMB)
  - Enhanced Partition Attributes
  - High Priority Interrupt (HPI)
  - Background operations
  - Enhanced Reliable Write
  - Secure removal types
  - Enhance techniques: Sleep Notification in power off notification, data tagging, packed commands, discard, sanitize, RTC (real time clock)
- LDPC ECC Engine
  - Support multiple parity size with 1KB based codeword
  - Support low-power decoding mode and high-correction capability decoding with soft information.
- eMMC Clock
  - eMMC I/F Clock Frequency : 0 ~ 200MHz
  - eMMC I/F Boot Frequency : 0 ~ 52MHz
- Operation voltage range
  - VCCQ (Power supply for eMMC I/F) : 1.7V~1.95V or 2.7V~3.6V
  - VDD (Power supply for internal flash) : 2.7V~3.6V
- Temperature
  - Operation : -25°C ~ +85°C
  - Storage : -40°C ~ +85°C
- RoHS compliant

### 3. Package Configurations

#### 3.1 BGA 153 Ball Pin Configurations

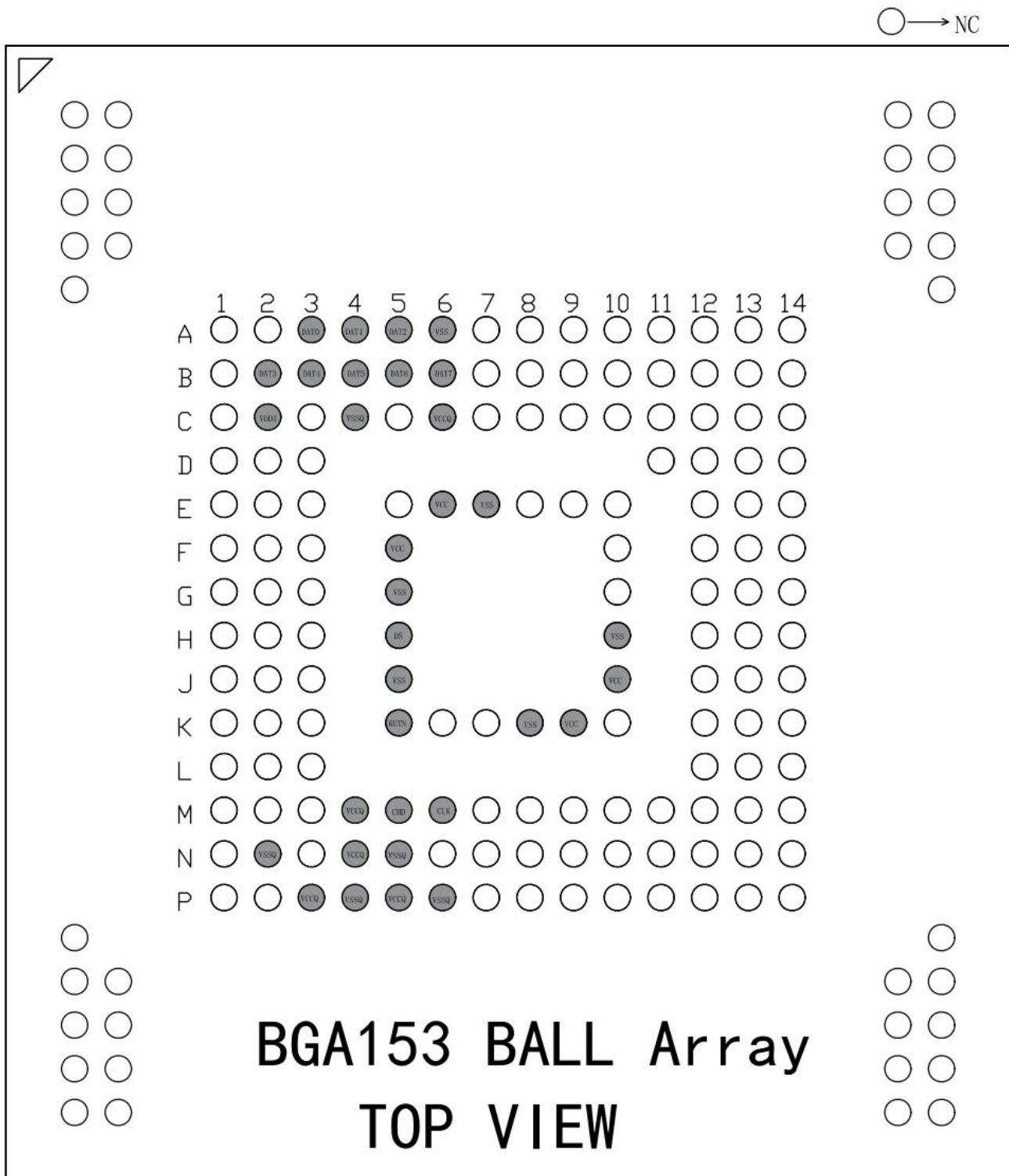



Figure 1-153 balls – Ball Array (Top View)

## 3.2 Pins and Signal Description

Table 2 contains the eMMC functional pins assignment.

| Pin Number | Name |
|------------|------|------------|------|------------|------|------------|------|
| A3         | DAT0 | C2         | VDDi | J5         | VSS  | N4         | VCCQ |
| A4         | DAT1 | C4         | VSSQ | J10        | VCC  | N5         | VSSQ |
| A5         | DAT2 | C6         | VCCQ | K5         | RSTN | P3         | VCCQ |
| A6         | VSS  | E6         | VCC  | K8         | VSS  | P4         | VSSQ |
| B2         | DAT3 | E7         | VSS  | K9         | VCC  | P5         | VCCQ |
| B3         | DAT4 | F5         | VCC  | M4         | VCCQ | P6         | VSSQ |
| B4         | DAT5 | G5         | VSS  | M5         | CMD  |            |      |
| B5         | DAT6 | H5         | DS   | M6         | CLK  |            |      |
| B6         | DAT7 | H10        | VSS  | N2         | VSSQ |            |      |

Table 2-eMMC Function Pins Assignment

- CLK : Clock input
- DS : Data Strobe is generated from eMMC to host.
- In HS400 mode, read data and CRC response are synchronized with Data Strobe.
- CMD : A bidirectional signal used for device initialization and command transfers.
- Command operates in two modes, open-drain for initialization and push-pull for fast command transfer.
- DAT0-7 : Bidirectional data channels. It operates in push-pull mode.
- RSTN : H/W reset signal pin
- VCC : Supply voltage for flash memory
- VCCQ : Supply voltage for memory controller
- VDDi : Internal power node to stabilize regulator output to controller core logics
- VSS/VSSQ : Ground connections
- NC : No Connection and left floating.

### 3.3 BGA Package Dimension

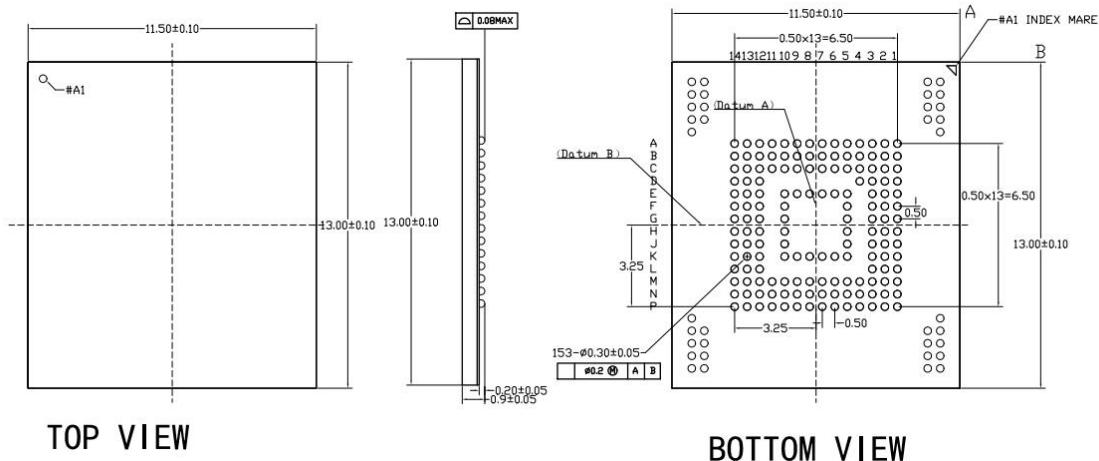



Figure 2-BGA 11.5x13x0.95mm Package Dimension

### 3.4 Product Block Diagram

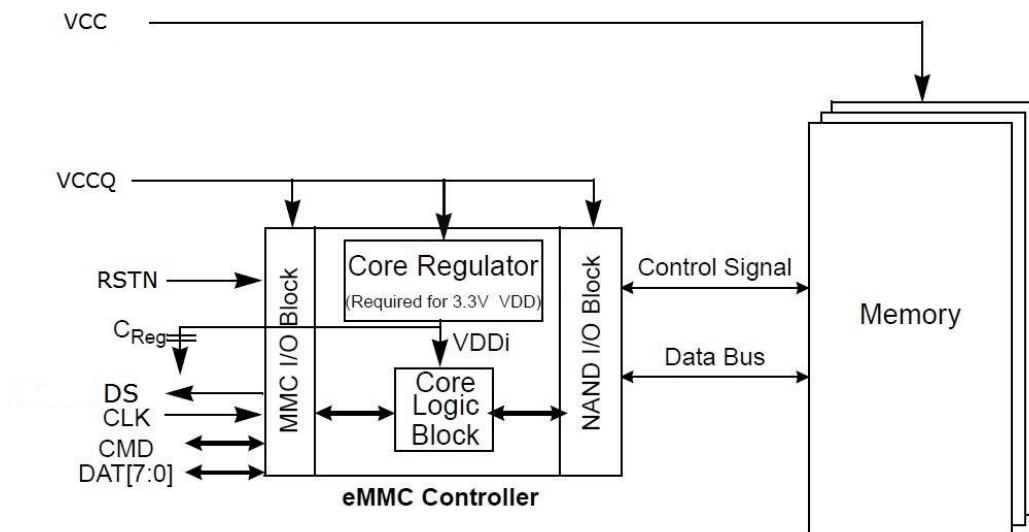



Figure 3-eMMC Block Diagram

## 4. S/W Algorithm

### 4.1 Partition Management

eMMC offers the possibility for the host to configure additional split local memory partitions with independent addressable space starting from logical address 0x00000000 for different usage models. Therefore memory block area can be classified as follows Factory configuration supplies two boot partitions implemented as enhanced storage media and one RPMB partitioning of 4MB in size.

Up to four General Purpose Area Partitions can be configured to store user data or sensitive data, or for other host usage models. The size of these partitions is a multiple of the write protect group.

### 4.2 Enhanced Partition (Area)

SCY eMMC adopts Enhanced User Data Area as SLC Mode. Therefore when master adopts some portion as enhanced user data area in User Data Area, that area occupies triple size of original set up size. ( ex> if master set 1MB for enhanced mode, total 3MB user data area is needed to generate 1MB enhanced area)

Max Enhanced User Data Area size is defined as (MAX\_ENH\_SIZE\_MULT x HC\_WP\_GRP\_SIZE x HC\_ERASE\_GRP\_SIZE x 512kBytes)

### 4.3 User Density

Total User Density depends on device type. Different eMMC part ID has different user density. Figure 4 shows the space allocations in a eMMC device.

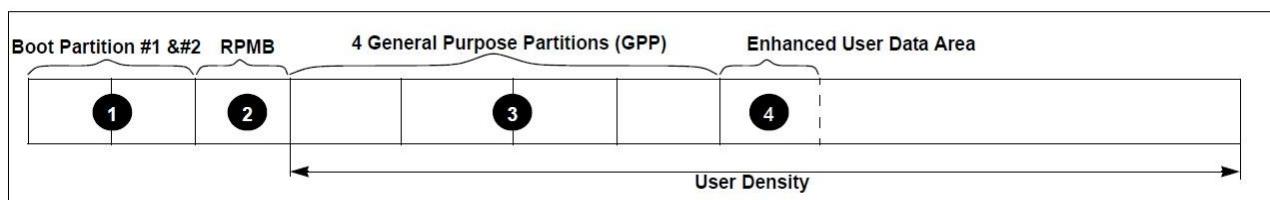



Figure 4-Space Allocation in eMMC

| Capacity | Boot Partition 1 | Boot Partition 2 | RPMB    |
|----------|------------------|------------------|---------|
| 256GB    | 4,096KB          | 4,096KB          | 4,096KB |

Table 3-Capacity According to Partition

| Capacity | User Density Size    | Max. Enhanced Partition Size |
|----------|----------------------|------------------------------|
| 256GB    | 250,114,736,128 Byte | 83,349,209,088 Bytes         |

Table 4-User Density & Max. Enhanced Partition Size

## 4.4 Typical Performance

The testing result is only for reference. Any change in testing environment may cause big difference in performance result.

| Capacity | Sequential Read (MB/s) | Sequential Write (MB/s) |
|----------|------------------------|-------------------------|
| 256GB    | Up to 306              | Up to 245               |

Table 5-Typical Performance

## 4.5 Power Consumption

### 4.5.1 Operating Current (RMS)

| Capacity | Domain | Read | Write | Unit |
|----------|--------|------|-------|------|
| 256GB    | ICC    | 76   | 82    | mA   |
|          | ICCQ   | 112  | 78    |      |

Table 6-Operating Current (RMS)

\* The measurement for current is the average RMS current consumption over a period of 100ms

\* Typical value is measured at TA=25° C.

### 4.5.2 Standby Power Consumption in auto power saving mode and standby state

| Capacity | State   | ICC | ICCQ | Unit |
|----------|---------|-----|------|------|
| 256GB    | Standby | 82  | 70   | uA   |

Table 7-Standby Power Consumption

\* Power Measurement conditions: Bus configuration = x8, No CLK

\* Typical value is measured at TA=25° C. Not 100% tested.

### 4.5.3 Sleep Power Consumption

| Capacity | State | ICC | ICCQ | Unit |
|----------|-------|-----|------|------|
| 256GB    | Sleep | 0   | 70   | uA   |

Table 8-Sleep Power Consumption

\* Power Measurement conditions: Bus configuration = x8, No CLK

\* Enter sleep state by CMD5, VCC power is switched off. Not 100% tested.

## 5. eMMC Features Overview

| eMMC | Device Features              | Function                              | Support       |
|------|------------------------------|---------------------------------------|---------------|
| N/A  | INTERFACE                    | Speed                                 | HS400         |
| N/A  | BUS SPEED                    | Max Speed                             | Up to 400MB/s |
| 4.41 | SECURE ERASE/TRIM            | “True Wipe”                           | Yes           |
| 4.41 | BOOT AND MASS STORAGE        | One storage device (reduced BOM)      | YES           |
| 4.41 | PARTITION & PROTECTION       | Flexibility                           | YES           |
| 4.41 | BACKGROUND OPERATIONS        | Better user experience (low latency)  | YES           |
| 4.41 | POWER OFF NOTIFICATION       | Faster Boot; Responsiveness           | YES           |
| 4.41 | HARDWARE RESET               | Robust system design                  | YES           |
| 4.41 | HPI                          | Control long Reads/Writes             | YES           |
| 4.41 | RPMB                         | Secure folders                        | YES           |
| 4.5  | EXTENDED PARTITION ATTRIBUTE | Flexibility                           | YES           |
| 4.5  | LARGE SECTOR SIZE            | Potential performance                 | NO            |
| 4.5  | PACKED COMMANDS              | Reduce host overhead                  | YES           |
| 4.5  | DISCARD                      | Improved performance on full media    | YES           |
| 4.5  | DATA TAG                     | Performance and/or Reliability        | YES           |
| 4.5  | CONTEXT MANAGEMENT           | Performance and/or Reliability        | YES           |
| 4.5  | CACHE                        | Better sequential & random writes     | YES           |
| 4.51 | SANITIZE                     | “True Wipe”                           | YES           |
| 5.0  | FIELD FIRMWARE UPGRADE (FFU) | Enables feature enhancements          | YES           |
| 5.0  | PRODUCTION STATE AWARENESS   | Different operation during production | YES           |
| 5.0  | DEVICE HEALTH                | Vital NAND info                       | YES           |
| 5.1  | ENHANCE STROBE               | Sync Device and Host in HS400         | YES           |
| 5.1  | COMMAND QUEUE                | Responsiveness                        | YES           |
| 5.1  | RPMB THROUGHPUT              | Faster RPMB write throughput          | YES           |
| 5.1  | CACHE FLUSH AND BARRIER      | Order cache flushing                  | YES           |
| 5.1  | BKOPS CONTROLLER             | Host control on BLOPs                 | YES           |
| 5.1  | SECURE WP                    | Secure write protect                  | YES           |
| 5.1  | EUDA                         | Enhance User Data Area                | YES           |

Table 9-eMMC Feature Overview

### 5.1 HS400 Interface

Industrial eMMC supports HS400 signaling to achieve a bus speed of 400 MB/s via a 200MHz dual data rate clock frequency. HS400 mode supports 8 bits bus width and the 1.7 – 1.95 VCCQ option. Due to the speed, the host may need to have an adjustable sampling point to reliably receive the incoming data.

## 5.2 Field Firmware Upgrade (FFU)

Field Firmware Updates (FFU) enables features enhancement in the field. Using this mechanism, the host downloads a new version of the firmware to the eMMC device and instructs the eMMC device to install the new downloaded firmware into the device. The entire FFU process occurs in the background without affecting the user/OS data. During the FFU process, the host can replace firmware files or single/all file systems.

## 5.3 Cache

The eMMC cache is dedicated volatile memory at the size of 512KB. Caching enables to improve eMMC performance for both sequential and random access.

## 5.4 Discard

eMMC supports discard command as defined in eMMC 5.1 spec. This command allows the host to identify data which is not needed, without requiring the device to remove the data from the Media. It is highly recommended for use to guarantee optimal performance of eMMC and reduce amount of housekeeping operation.

## 5.5 Power off Notification

eMMC supports power off notifications as defined in eMMC 5.1 spec. The usage of power off notifications allows the device to prepare itself to power off, and improve user experience during power-on. Note that the device may be set into sleep mode while power off notification is enabled.

Power off notification long allows the device to shutdown properly and save important data for fast boot time on the next power cycle.

## 5.6 Packed Commands

To enable optimal system performance, eMMC supports packed commands as defined in eMMC 5.1 spec. It allows the host to pack Read or Write commands into groups (of single type of operation) and transfer these to the device in a single transfer on the bus. Thus, it allows reducing overall bus overheads.

## 5.7 Sleep (CMD5)

eMMC may be switched between a Sleep and a Standby state using the SLEEP/AWAKE (CMD5). In the Sleep state the power consumption of the memory device is minimized and the memory device

reacts only to the commands RESET (CMD0) and SLEEP/AWAKE (CMD5). All the other commands are ignored by the memory device.

The VCC power supply may be switched off in Sleep state to enable even further system power consumption saving.

## 5.8 Enhanced Reliable Write

eMMC supports enhanced reliable write as defined in eMMC 5.1 spec. Enhanced reliable write is a special write mode in which the old data pointed to by a logical address must remain unchanged until the new data written to same logical address has been successfully programmed. This is to ensure that the target address updated by the reliable write transaction never contains undefined data. When writing in reliable write, data will remain valid even if a sudden power loss occurs during programming.

## 5.9 Sanitize

The Sanitize operation is used to remove data from the device. The use of the Sanitize operation requires the device to physically remove data from the unmapped user address space. The device will continue the sanitize operation, with busy asserted, until one of the following events occurs:

- Sanitize operation is complete
- HPI is used to abort the operation
- Power failure
- Hardware reset

After the sanitize operation is complete no data should exist in the unmapped host address space.

## 5.10 Secure Erase

For backward compatibility reasons, in addition to the standard erase command the eMMC supports the optional Secure Erase command.

This command allows the host to erase the provided range of LBAs and ensure no older copies of this data exist in the flash.

## 5.11 Secure Trim

For backward compatibility reasons, eMMC supports Secure Trim command. The Secure Trim command is similar to the Secure Erase command but performs a secure purge operation on write blocks instead of erase groups.

## 5.12 High Priority Interrupt (HPI)

The operating system usually uses demand-paging to launch a process requested by the user. If the host needs to fetch pages while in a middle of a write operation the request will be delayed until the completion of the write command.

The high priority interrupt (HPI) as defined in eMMC 5.1 spec enables low read latency operation by suspending a lower priority operation before it is actually completed.

## 5.13 H/W Reset

Hardware reset may be used by host to reset the device, moving the device to a Pre-idle state and disabling the power-on period write protect on blocks that were power-on write protected before the reset was asserted.

## 5.14 Command Queue

eMMC Command Queue enables device visibility of next commands and allows performance improvement. The protocol allows the host to queue up to 32 data-transfer commands in the device by implementing 5 new commands.

The benefits of command queuing are:

- Random Read performance improvement (higher IOPs)
- Reducing protocol overhead
- Command issuance allowed while data transfer is on-going
- Device order the tasks according to best access to/from flash

# 6. Register Value

## 6.1 OCR Register

| Parameter          | DSR Slice Bit | Description           | Value | Bit Width |
|--------------------|---------------|-----------------------|-------|-----------|
| <b>Access Mode</b> | [30:29]       | Access mode           | 2h    | 2         |
|                    | [23:15]       | VDD: 2.7 - 3.6 range  | 1FFh  | 9         |
|                    | [14:8]        | VDD: 2.0 - 2.6 range  | 00h   | 7         |
|                    | [7]           | VDD: 1.7 - 1.95 range | 1h    | 1         |

Table 10-OCR Register

## 6.2 CID Register

| Parameter      | DSR Slice Bit | Description           | Value                 | Bit Width |
|----------------|---------------|-----------------------|-----------------------|-----------|
| <b>MMC MID</b> | [127:120]     | Manufacturer ID       | DFh                   | 8         |
| <b>CBX</b>     | [113:112]     | Card BGA              | 01h                   | 2         |
| <b>OID</b>     | [111:104]     | OEM/Application ID    | 18h                   | 8         |
| <b>PNM</b>     | [103:56]      | Product name          | “SCA256”              | 48        |
| <b>PRV</b>     | [55:48]       | Product revision      | 10h                   | 8         |
| <b>PSN</b>     | [47:16]       | Product serial number | Defined by Production | 32        |
| <b>MDT</b>     | [15:8]        | Manufacturing date    | Month, year           | 8         |
| <b>CRC</b>     | [7:1]         | Calculated CRC        | CRC7 Generator        | 7         |

Table 11-CID Register

## 6.3 DSR Register

| Parameter    | DSR Slice Bit | Description | Value | Bit Width |
|--------------|---------------|-------------|-------|-----------|
| <b>RSRVD</b> | [15:8]        | Reserved    | 04h   | 8         |
| <b>RSRVD</b> | [7:0]         | Reserved    | 04h   | 8         |

Table 12-DSR Register

## 6.4 CSD Register

| Parameter                 | DSR slice Bit | Description                                         | Value   | Width Bit |
|---------------------------|---------------|-----------------------------------------------------|---------|-----------|
| <b>CSD_STRUCTURE</b>      | [127:126]     | CSD structure                                       | 3h      | 2         |
| <b>SPEC_VERS</b>          | [125:122]     | System specification version                        | 4h      | 4         |
| <b>TAAC</b>               | [119:112]     | Data read access-time 1<br>27h = 15ms               | 27h     | 8         |
| <b>NSAC</b>               | [111:104]     | Data read access-time 2 in CLK cycles<br>(NSAC*100) | 01h     | 8         |
| <b>TRAN_SPEED</b>         | [103:96]      | Max. bus clock frequency                            | 32h     | 8         |
| <b>CCC</b>                | [95:84]       | Card command classes                                | 0F5h    | 12        |
| <b>READ_BL_LEN</b>        | [83:80]       | Max. read data block length                         | 9h      | 4         |
| <b>READ_BL_PARTIAL</b>    | [79]          | Partial blocks for read allowed                     | 0h      | 1         |
| <b>WRITE_BLK_MISALIGN</b> | [78]          | Write block misalignment                            | 0h      | 1         |
| <b>READ_BLK_MISALIGN</b>  | [77]          | Read block misalignment                             | 0h      | 1         |
| <b>DSR_IMP</b>            | [76]          | DSR implemented                                     | 0h      | 1         |
| <b>C_SIZE</b>             | [73:62]       | Device size                                         | 100800h | 12        |
| <b>VDD_R_CURR_MIN</b>     | [61:59]       | Max. read current @ VDD min                         | 7h      | 3         |
| <b>VDD_R_CURR_MAX</b>     | [58:56]       | Max. read current @ VDD max                         | 7h      | 3         |
| <b>VDD_W_CURR_MIN</b>     | [55:53]       | Max. write current @ VDD min                        | 7h      | 3         |
| <b>VDD_W_CURR_MAX</b>     | [52:50]       | Max. write current @ VDD max                        | 7h      | 3         |
| <b>C_SIZE_MULT</b>        | [49:47]       | Device size multiplier                              | 7h      | 3         |
| <b>ERASE_GRP_SIZE</b>     | [46:42]       | Erase group size                                    | 1Fh     | 5         |
| <b>ERASE_GRP_MULT</b>     | [41:37]       | Erase group size multiplier                         | 1Fh     | 5         |
| <b>WP_GRP_SIZE</b>        | [36:32]       | Write protect group size                            | 1Fh     | 5         |
| <b>WP_GRP_ENABLE</b>      | [31:31]       | Write protect group enable                          | 1h      | 1         |
| <b>DEFAULT_ECC</b>        | [30:29]       | Manufacturer default                                | 0h      | 2         |
| <b>R2W_FACTOR</b>         | [28:26]       | Write speed factor                                  | 2h      | 3         |
| <b>WRITE_BL_LEN</b>       | [25:22]       | Max. write data block length                        | 9h      | 4         |
| <b>WRITE_BL_PARTIAL</b>   | [21]          | Partial blocks for write allowed                    | 0h      | 1         |
| <b>CONTENT_PROT_APP</b>   | [16]          | Content protection application                      | 0h      | 1         |
| <b>FILE_FORMAT_GRP</b>    | [15]          | File format group                                   | 0h      | 1         |
| <b>COPY</b>               | [14]          | Copy flag (OTP)                                     | 1h      | 1         |
| <b>PERM_WRITE_PROTECT</b> | [13]          | Permanent write protection                          | 0h      | 1         |
| <b>TMP_WRITE_PROTECT</b>  | [12]          | Temporary write protection                          | 0h      | 1         |
| <b>FILE_FORMAT</b>        | [11:10]       | File format                                         | 0h      | 2         |

|            |       |                |                   |   |
|------------|-------|----------------|-------------------|---|
| <b>ECC</b> | [9:8] | ECC code       | 0h                | 2 |
| <b>CRC</b> | [7:1] | Calculated CRC | CRC7<br>Generator | 7 |

Table 13-CSD Register

## 6.5 EXT\_CSD Register

| Parameter                                    | DSR<br>slice Bit | Description                                  | Value     |
|----------------------------------------------|------------------|----------------------------------------------|-----------|
| <b>EXT_SECURITY_ERR</b>                      | [505]            | Extended Security Commands Error             | 0h        |
| <b>S_CMD_SET</b>                             | [504]            | Supported Command Sets                       | 1h        |
| <b>HPI_FEATURES</b>                          | [503]            | HPI Features                                 | 1h        |
| <b>BKOPS_SUPPORT</b>                         | [502]            | Background operations support                | 1h        |
| <b>MAX_PACKED_READS</b>                      | [501]            | Max packed read commands                     | 20h       |
| <b>MAX_PACKED_WRITES</b>                     | [500]            | Max packed write commands                    | 20h       |
| <b>DATA_TAG_SUPPORT</b>                      | [499]            | Data Tag Support                             | 1h        |
| <b>TAG_UNIT_SIZE</b>                         | [498]            | Tag Unit Size                                | 0h        |
| <b>TAG_RES_SIZE</b>                          | [497]            | Tag Resources Size                           | 0h        |
| <b>CONTEXT_CAPABILITIES</b>                  | [496]            | Context management capabilities              | 78h       |
| <b>LARGE_UNIT_SIZE_M1</b>                    | [495]            | Large Unit size                              | 1h        |
| <b>EXT_SUPPORT</b>                           | [494]            | Extended partitions attribute support        | 3h        |
| <b>SUPPORTED_MODES</b>                       | [493]            | FFU supported modes                          | 1h        |
| <b>FFU_FEATURES</b>                          | [492]            | FFU features                                 | 0h        |
| <b>OPERATION_CODES_TIMEOUT</b>               | [491]            | Operation codes timeout                      | 17h       |
| <b>UT</b>                                    |                  |                                              |           |
| <b>FFU_ARG</b>                               | [490:487]        | FFU Argument                                 | FFFAFFF0h |
| <b>BARRIER_SUPPORT</b>                       | [486]            | Cache barrier support                        | 1h        |
| <b>CMDQ_SUPPORT</b>                          | [308]            | Command queue support                        | 1h        |
| <b>CMDQ_DEPTH</b>                            | [307]            | Command queue depth                          | 1Fh       |
| <b>NUMBER_OF_FW_SECTOR</b>                   | [305:302]        | Number of FW sectors correctly<br>programmed | 0h        |
| <b>S_CORRECTLY_PROGRAM<br/>MED</b>           |                  |                                              |           |
| <b>VENDOR_PROPRIETARY_H<br/>EALTH_REPORT</b> | [301:270]        | Vendor proprietary health report             | 0h        |
| <b>DEVICE_LIFE_TIME_EST_TY<br/>P_B</b>       | [269]            | Device life time estimation type B (TLC)     | 01h       |
| <b>DEVICE_LIFE_TIME_EST_TY<br/>P_A</b>       | [268]            | Device life time estimation type A (SLC)     | 01h       |
| <b>PRE_EOL_INFO</b>                          | [267]            | Pre EOL information                          | 01h       |
| <b>OPTIMAL_READ_SIZE</b>                     | [266]            | Optimal read size                            | 40h       |
| <b>OPTIMAL_WRITE_SIZE</b>                    | [265]            | Optimal write size                           | 40h       |
| <b>OPTIMAL_TRIM_UNIT_SIZE</b>                | [264]            | Optimal trim unit size                       | 7h        |
| <b>DEVICE_VERSION</b>                        | [263:262]        | Device version                               | 4505h     |

|                                           |           |                                                         |                             |
|-------------------------------------------|-----------|---------------------------------------------------------|-----------------------------|
| <b>FIRMWARE_VERSION</b>                   | [261:254] | Firmware version                                        | 00 00 00 00 00 15<br>07 24h |
| <b>PWR_CL_DDR_200_360</b>                 | [253]     | Power class for 200MHz, DDR at VCC= 3.6V                | 00h                         |
| <b>CACHE_SIZE</b>                         | [252:249] | Cache size                                              | 0400h                       |
| <b>GENERIC_CMD6_TIME</b>                  | [248]     | Generic CMD6 timeout                                    | 10h                         |
| <b>POWER_OFF_LONG_TIME</b>                | [247]     | Power off notification (long) timeout                   | 64h                         |
| <b>BKOPS_STATUS</b>                       | [246]     | Background operations status                            | Default = 0h                |
| <b>CORRECTLY_PRG_SECTOR_S_NUM</b>         | [245:242] | Number of correctly programmed sectors                  | Default = 0h                |
| <b>INI_TIMEOUT_AP</b>                     | [241]     | 1st Initialization time after partitioning              | 0Ah                         |
| <b>CACHE_FLUSH_POLICY</b>                 | [240]     | Cache Flush Policy                                      | 1h                          |
| <b>PWR_CL_DDR_52_360</b>                  | [239]     | Power class for 52MHz, DDR at VCC = 3.6V                | 00h                         |
| <b>PWR_CL_DDR_52_195</b>                  | [238]     | Power class for 52MHz, DDR at VCC = 1.95V               | 00h                         |
| <b>PWR_CL_200_195</b>                     | [237]     | Power class for 200MHz at VCCQ = 1.95V, VCC = 3.6V      | 00h                         |
| <b>PWR_CL_200_130</b>                     | [236]     | Power class for 200MHz, at VCCQ =1.3V, VCC = 3.6V       | 00h                         |
| <b>MIN_PERF_DDR_W_8_52</b>                | [235]     | Minimum Write Performance for 8bit at 52MHz in DDR mode | 00h                         |
| <b>MIN_PERF_DDR_R_8_52</b>                | [234]     | Minimum Read Performance for 8bit at 52MHz in DDR mode  | 00h                         |
| <b>TRIM_MULT</b>                          | [232]     | TRIM Multiplier                                         | 2h                          |
| <b>SEC_FEATURE_SUPPORT</b>                | [231]     | Secure Feature support                                  | 55h                         |
| <b>SEC_ERASE_MULT</b>                     | [230]     | Secure Erase Multiplier                                 | 32h                         |
| <b>SEC_TRIM_MULT</b>                      | [229]     | Secure TRIM Multiplier                                  | 0Ah                         |
| <b>BOOT_INFO</b>                          | [228]     | Boot Information                                        | 7h                          |
| <b>BOOT_SIZE_MULT</b>                     | [226]     | Boot partition size                                     | 20h                         |
| <b>ACCESS_SIZE</b>                        | [225]     | Access size                                             | 6h                          |
| <b>HC_ERASE_GROUP_SIZE</b>                | [224]     | High Capacity Erase unit size                           | 1h                          |
| <b>ERASE_TIMEOUT_MULT</b>                 | [223]     | High capacity erase time out                            | 2h                          |
| <b>REL_WR_SEC_C</b>                       | [222]     | Reliable write sector count                             | 10h                         |
| <b>HC_WP_GRP_SIZE</b>                     | [221]     | High capacity write protect group size                  | 40h                         |
| <b>S_C_VCC</b>                            | [220]     | Sleep current [VCC]                                     | 7h                          |
| <b>S_C_VCCQ</b>                           | [219]     | Sleep current [VCCQ]                                    | 7h                          |
| <b>PRODUCTION_STATE_AWARENESS_TIMEOUT</b> | [218]     | Production state awareness timeout                      | 17h                         |
| <b>S_A_TIMEOUT</b>                        | [217]     | Sleep/Awake time out                                    | 12h                         |
| <b>SLEEP_NOTIFICATION_TIME</b>            | [216]     | Sleep notification timeout                              | 0Ch                         |

|                               |           |                                                     |                                            |
|-------------------------------|-----------|-----------------------------------------------------|--------------------------------------------|
| <b>SEC_COUNT</b>              | [215:212] | Sector count                                        | 1D1E0000h                                  |
| <b>SECURE_WP_INFO</b>         | [211]     | Secure Write Protect Info                           | 1h                                         |
| <b>MIN_PERF_W_8_52</b>        | [210]     | Minimum Write Performance for 8bit @52MHz           | 0h                                         |
| <b>MIN_PERF_R_8_52</b>        | [209]     | Minimum Read Performance for 8bit @52MHz            | 0h                                         |
| <b>MIN_PERF_W_8_26_4_52</b>   | [208]     | Minimum Write Performance for 4bit @52MHz or @26MHz | 0h                                         |
| <b>MIN_PERF_R_8_26_4_52</b>   | [207]     | Minimum Read Performance for 4bit @52MHz or @26MHz  | 0h                                         |
| <b>MIN_PERF_W_4_26</b>        | [206]     | Minimum Write Performance for 4bit @26MHz           | 0h                                         |
| <b>MIN_PERF_R_4_26</b>        | [205]     | Minimum Read Performance for 4bit @26MHz            | 0h                                         |
| <b>PWR_CL_26_360</b>          | [203]     | Power Class for 26MHz @ 3.6V                        | 0h                                         |
| <b>PWR_CL_52_360</b>          | [202]     | Power Class for 52MHz @ 3.6V                        | 0h                                         |
| <b>PWR_CL_26_195</b>          | [201]     | Power Class for 26MHz @ 1.95V                       | 00h                                        |
| <b>PWR_CL_52_195</b>          | [200]     | Power Class for 52MHz @ 1.95V                       | 0h                                         |
| <b>PARTITION_SWITCH_TIME</b>  | [199]     | Partition switching timing                          | 0Ah                                        |
| <b>OUT_OF_INTERRUPT_TIME</b>  | [198]     | Out-of-interrupt busy timing                        | 0Ah                                        |
| <b>DRIVER_STRENGTH</b>        | [197]     | I/O Driver Strength                                 | 1Fh                                        |
| <b>CARD_TYPE</b>              | [196:195] | Card Type                                           | 57h                                        |
| <b>CSD_STRUCTURE</b>          | [194]     | CSD Structure Version                               | 2h                                         |
| <b>EXT_CSD_REV</b>            | [192]     | Extended CSD Revision                               | 8h                                         |
| <b>CMD_SET</b>                | [191]     | Command Set                                         | Default = 0h<br>Updated in runtime         |
| <b>CMD_SET_REV</b>            | [189]     | Command Set Revision                                | 0h                                         |
| <b>POWER_CLASS</b>            | [187]     | Power Class                                         | 0h                                         |
| <b>HS_TIMING</b>              | [185]     | High Speed Interface Timing                         | Default = 0h<br>Updated in runtime by host |
| <b>DATA_STRB_MODE_SUPPORT</b> | [184]     | Data strobe mode support                            | 1h                                         |
| <b>BUS_WIDTH</b>              | [183]     | Bus Width Mode                                      | Default = 0h<br>Updated in runtime by host |
| <b>ERASE_MEM_CONT</b>         | [181]     | Content of explicit erased memory range             | 0h                                         |
| <b>PARTITION_CONFIG</b>       | [179]     | Partition Configuration                             | Default = 0h<br>Updated in runtime by host |
| <b>BOOT_CONFIG_PROT</b>       | [178]     | Boot config protection                              | Default = 0h<br>Updated in                 |

|                                    |           |                                        |                                               |
|------------------------------------|-----------|----------------------------------------|-----------------------------------------------|
|                                    |           |                                        | runtime by host                               |
| <b>BOOT_BUS_CONDITIONS</b>         | [177]     | Boot bus width1                        | Default = 0h<br>Updated in<br>runtime by host |
| <b>ERASE_GROUP_DEF</b>             | [175]     | High-density erase group definition    | Default = 0h<br>Updated in<br>runtime by host |
| <b>BOOT_WP_STATUS</b>              | [174]     | Boot write protection status registers | Default = 0h<br>Updated in<br>runtime by host |
| <b>BOOT_WP</b>                     | [173]     | Boot area write protect register       | 0h                                            |
| <b>USER_WP</b>                     | [171]     | User area write protect register       | 0h                                            |
| <b>FW_CONFIG</b>                   | [169]     | FW Configuration                       | 0h                                            |
| <b>RPMB_SIZE_MULT</b>              | [168]     | RPMB Size                              | 20h                                           |
| <b>WR_REL_SET</b>                  | [167]     | Write reliability setting register     | 1Fh                                           |
| <b>WR_REL_PARAM</b>                | [166]     | Write reliability parameter register   | 15h                                           |
| <b>SANITIZE_START</b>              | [165]     | Start Sanitize operation               | Default = 0h<br>Updated in<br>runtime by host |
| <b>BKOPS_START</b>                 | [164]     | Manually start background operations   | Default = 0h<br>Updated in<br>runtime by host |
| <b>BKOPS_EN</b>                    | [163]     | Enable background operations handshake | 0h                                            |
| <b>RST_n_FUNCTION</b>              | [162]     | H/W reset function                     | Default = 0h<br>Updated by host               |
| <b>HPI_MGMT</b>                    | [161]     | HPI management                         | Default = 0h<br>Updated by host               |
| <b>PARTITIONING_SUPPORT</b>        | [160]     | Partitioning support                   | 7h                                            |
| <b>MAX_ENH_SIZE_MULT</b>           | [159:157] | Max Enhanced Area Size                 | 00 09 B4h                                     |
| <b>PARTITIONS_ATTRIBUTE</b>        | [156]     | Partitions Attribute                   | Default = 0h<br>Updated by host               |
| <b>PARTITION_SETTING_COMPLETED</b> | [155]     | Partitioning Setting                   | Default = 0h<br>Updated by host               |
| <b>GP_SIZE_MULT</b>                | [154:153] | General Purpose Partition Size (GP4)   | 0h                                            |
| <b>GP_SIZE_MULT</b>                | [151:149] | General Purpose Partition Size (GP3)   | 0h                                            |
| <b>GP_SIZE_MULT</b>                | [148:146] | General Purpose Partition Size (GP2)   | 0h                                            |
| <b>GP_SIZE_MULT</b>                | [145:143] | General Purpose Partition Size (GP1)   | 0h                                            |
| <b>ENH_SIZE_MULT</b>               | [142:140] | Enhanced User Data Area Size           | 0h                                            |
| <b>ENH_START_ADDR</b>              | [139:136] | Enhanced User Data Start Address       | 0h                                            |
| <b>SEC_BAD_BLK_MGMT</b>            | [134]     | Bad Block Management mode              | 0h                                            |
| <b>PRODUCTION_STATE_AWARENESS</b>  | [133]     | Production state awareness             | 0h                                            |

|                                           |          |                                                          |                                               |
|-------------------------------------------|----------|----------------------------------------------------------|-----------------------------------------------|
| <b>TCASE_SUPPORT</b>                      | [132]    | Package Case Temperature is controlled                   | 0h                                            |
| <b>PERIODIC_WAKEUP</b>                    | [131]    | Periodic Wake-up                                         | 0h                                            |
| <b>PROGRAM_CID_CSD_DDR_SUPPORT</b>        | [130]    | Program CID/CSD in DDR mode support                      | 1h                                            |
| <b>VENDOR_SPECIFIC_FIELD</b>              | [127:64] | Vendor Specific Fields                                   | Reserved                                      |
| <b>NATIVE_SECTOR_SIZE</b>                 | [63]     | Native sector size                                       | 01h                                           |
| <b>USE_NATIVE_SECTOR</b>                  | [62]     | Sector size emulation                                    | 0h                                            |
| <b>DATA_SECTOR_SIZE</b>                   | [61]     | Sector size                                              | 0h                                            |
| <b>INI_TIMEOUT_EMU</b>                    | [60]     | 1st initialization after disabling sector size emulation | Ah                                            |
| <b>CLASS_6_CTRL</b>                       | [59]     | Class 6 commands control                                 | 0h                                            |
| <b>DYNCAP_NEEDED</b>                      | [58]     | Number of addressed group to be Released                 | 0h                                            |
| <b>EXCEPTION_EVENTS_CTRL</b>              | [57:56]  | Exception events control                                 | 0h                                            |
| <b>EXCEPTION_EVENTS_STATUS</b>            | [55:54]  | Exception events status                                  | 0h                                            |
| <b>EXT_PARTITIONS_ATTRIBUTE</b>           | [53:52]  | Extended Partitions Attribute                            | 0h                                            |
| <b>CONTEXT_CONF</b>                       | [51:37]  | Context configuration                                    | Default = 0h                                  |
| <b>PACKED_COMMAND_STATUS</b>              | [36]     | Packed command status                                    | Default = 0h<br>Updated in runtime            |
| <b>PACKED_FAILURE_INDEX</b>               | [35]     | Packed command failure index                             | Default = 0h<br>Updated in runtime            |
| <b>POWER_OFF_NOTIFICATION</b>             | [34]     | Power Off Notification                                   | Default = 0h<br>Update in runtime by the host |
| <b>CACHE_CTRL</b>                         | [33]     | Control to turn the Cache ON/OFF                         | 0h                                            |
| <b>FLUSH_CACHE</b>                        | [32]     | Flushing of the cache                                    | 0h                                            |
| <b>BARRIER_CTRL</b>                       | [31]     | Cache barrier                                            | 0h                                            |
| <b>MODE_CONFIG</b>                        | [30]     | Mode config                                              | 0h                                            |
| <b>MODE_OPERATION_CODES</b>               | [29]     | Mode operation codes                                     | 0h                                            |
| <b>FFU_STATUS</b>                         | [26]     | FFU status                                               | 0h                                            |
| <b>PRE_LOADING_DATA_SIZE</b>              | [25:22]  | Pre loading data size                                    | 0h                                            |
| <b>MAX_PRE_LOADING_DATA_SIZE</b>          | [21:18]  | Max pre loading data size                                | 09 B5 55 55 h                                 |
| <b>PRODUCT_STATE_AWARENESS_ENABLEMENT</b> | [17]     | Product state awareness enablement                       | 01h<br>AUTO_PRE_SODERING                      |
| <b>SECURE_REMOVAL_TYPE</b>                | [16]     | Secure Removal Type                                      | 3Bh                                           |
| <b>CMDQ_MODE_EN</b>                       | [15]     | Command queue                                            | 0h                                            |

Table 14-EXT\_CSD Register

# 7. Electrical Characteristics

## 7.1 Supply Voltage

Permanent damage to eMMC may occur if the supply voltages are exceeded. These are only stress ratings, and the functional operations should be restricted with the conditions detailed in the following table. Exposure to the absolute maximum rating conditions may also affect the reliability of the devices. The input and output negative voltage ratings may be exceeded if the input and output currents are not exceeded.

| Parameter      | Symbol     | Min  | Max  | Unit |
|----------------|------------|------|------|------|
| Supply Voltage | VCCQ(Low)  | 1.7  | 1.95 | V    |
|                | VCCQ(High) | 2.7  | 3.6  | V    |
|                | VCC        | 2.7  | 3.6  | V    |
|                | VSS, VSSQ  | -0.3 | 0.3  | V    |

Table 15-Supply Voltage

## 7.2 Bus Signal Levels

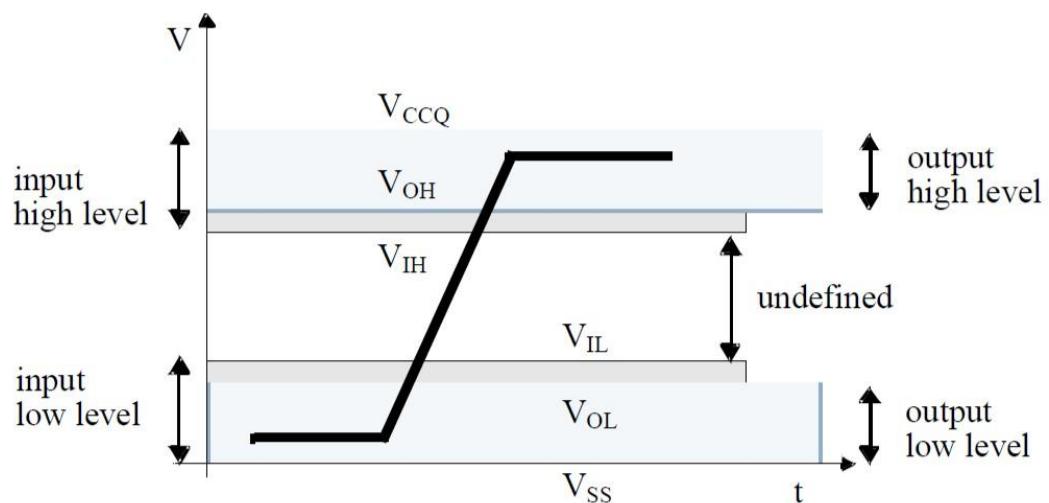



Figure 5-Bus Signal Levels

| Symbol                                               | Min         | Max        | Unit | Remark                |
|------------------------------------------------------|-------------|------------|------|-----------------------|
| <b>Open-drain bus signal level</b>                   |             |            |      |                       |
| <b>VOH</b>                                           | VCCQ – 0.2  |            | V    |                       |
| <b>VOL</b>                                           |             | 0.3        | V    | IOL = 2mA             |
| <b>Push-pull bus signal level (2.7V~3.6V VCCQ)</b>   |             |            |      |                       |
| <b>VOH</b>                                           | 0.75*VCCQ   |            | V    | IOH = -100mA @VCC min |
| <b>VOL</b>                                           |             | 0.125*VCCQ | V    | IOL = 100mA @VCC min  |
| <b>VIH</b>                                           | 0.625*VCCQ  | VCCQ + 0.3 | V    |                       |
| <b>VIL</b>                                           | VSSQ – 0.3  | 0.25*VCCQ  | V    |                       |
| <b>Push-pull bus signal level (1.70V~1.95V VCCQ)</b> |             |            |      |                       |
| <b>VOH</b>                                           | VCCQ – 0.45 |            | V    | IOH = -2mA            |
| <b>VOL</b>                                           |             | 0.45       | V    | IOL = 2mA             |
| <b>VIH</b>                                           | 0.65*VCCQ   | VCCQ + 0.3 | V    |                       |
| <b>VIL</b>                                           | VSSQ – 0.3  | 0.35*VCCQ  | V    |                       |

Table 16-Bus Signal Level

### 7.3 Bus Timing in Single Data Rate Mode

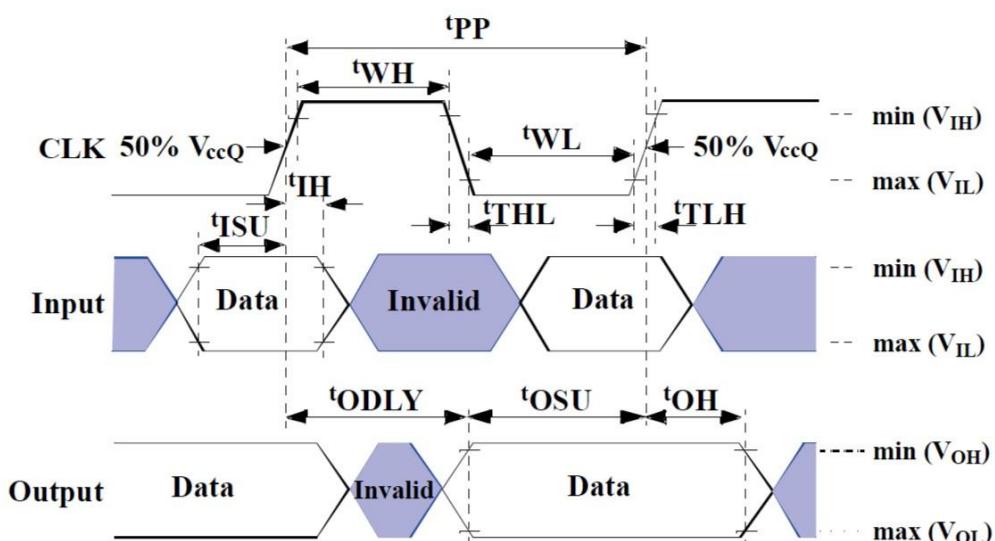



Figure 6-Bus Timing in Single Data Rate Mode

| Symbol                | Min | Max | Unit | Remark                                                               |
|-----------------------|-----|-----|------|----------------------------------------------------------------------|
| <b>f<sub>PP</sub></b> | 0   | 52  | Mhz  | Clock frequency data transfer mode, CL <= 30pF<br>Tolerance + 100kHz |

|                         |     |      |     |                                                         |
|-------------------------|-----|------|-----|---------------------------------------------------------|
| <b>fOD</b>              | 0   | 400  | kHz | Clock frequency identification mode<br>Tolerance +20kHz |
| <b>tWH</b>              | 6.5 |      | ns  | CL <= 30pF                                              |
| <b>tWL</b>              | 6.5 |      | ns  | CL <= 30pF                                              |
| <b>tTLH</b>             |     | 3    | ns  | CL <= 30pF                                              |
| <b>tTHL</b>             |     | 3    | ns  | CL <= 30pF                                              |
| <b>2.7V~3.6V VCCQ</b>   |     |      |     |                                                         |
| <b>tISU</b>             | 3   |      | ns  | CL <= 30pF                                              |
| <b>tIH</b>              | 3   |      | ns  | CL <= 30pF                                              |
| <b>tODLY</b>            |     | 13.7 | ns  | CL <= 30pF                                              |
| <b>tOH</b>              | 2.5 |      | ns  | CL <= 30pF                                              |
| <b>tRISE</b>            |     | 3    | ns  | CL <= 30pF                                              |
| <b>tFALL</b>            |     | 3    | ns  | CL <= 30pF                                              |
| <b>1.70V~1.95V VCCQ</b> |     |      |     |                                                         |
| <b>tISU</b>             | 3   |      | ns  | CL <= 30pF                                              |
| <b>tIH</b>              | 3   |      | ns  | CL <= 30pF                                              |
| <b>tODLY</b>            |     | 13.7 | ns  | CL <= 30pF                                              |
| <b>tOH</b>              | 2.5 |      | ns  | CL <= 30pF                                              |
| <b>tRISE</b>            |     | 3    | ns  | CL <= 30pF                                              |
| <b>tFALL</b>            |     | 3    | ns  | CL <= 30pF                                              |

Table 17-High-Speed Device Interface Timing

| Symbol                | Min | Max | Unit | Remark                                           |
|-----------------------|-----|-----|------|--------------------------------------------------|
| <b>fPP</b>            | 0   | 26  | Mhz  | Clock frequency data transfer mode<br>CL <= 30pF |
| <b>fOD</b>            | 0   | 400 | kHz  | Clock frequency identification mode              |
| <b>tWH</b>            | 10  |     | ns   | CL <= 30pF                                       |
| <b>tWL</b>            | 10  |     | ns   | CL <= 30pF                                       |
| <b>tTLH</b>           |     | 10  | ns   | CL <= 30pF                                       |
| <b>tTHL</b>           |     | 10  | ns   | CL <= 30pF                                       |
| <b>2.7V~3.6V VCCQ</b> |     |     |      |                                                  |

|                         |      |  |    |            |
|-------------------------|------|--|----|------------|
| <b>tISU</b>             | 3    |  | ns | CL <= 30pF |
| <b>tIH</b>              | 3    |  | ns | CL <= 30pF |
| <b>tOSU</b>             | 11.7 |  | ns | CL <= 30pF |
| <b>tOH</b>              | 8.3  |  | ns | CL <= 30pF |
| <b>1.70V~1.95V VCCQ</b> |      |  |    |            |
| <b>tISU</b>             | 3    |  | ns | CL <= 30pF |
| <b>tIH</b>              | 3    |  | ns | CL <= 30pF |
| <b>tOSU</b>             | 11.7 |  | ns | CL <= 30pF |
| <b>tOH</b>              | 8.3  |  | ns | CL <= 30pF |

Table 18-Backward Compatible Device Interface Timing

## 7.4 Bus Timing in HS200 Mode

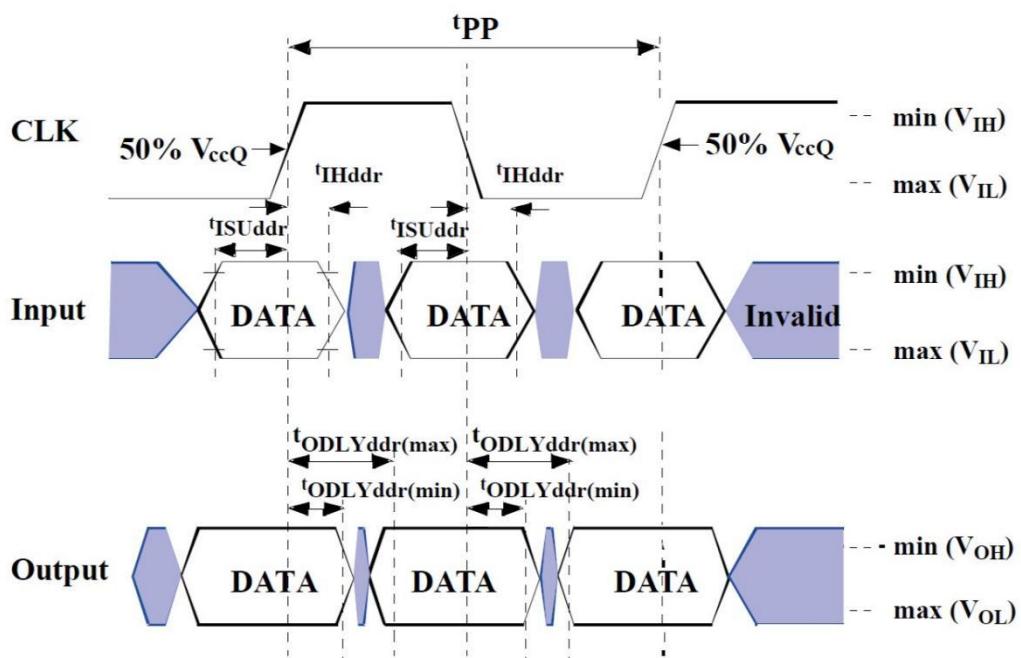



Figure 7 Bus Timing in Dual Data Rate Mode

| Symbol           | Min | Max | Unit | Remark                                          |
|------------------|-----|-----|------|-------------------------------------------------|
| <b>Input CLK</b> |     |     |      |                                                 |
| <b>DC</b>        | 45  | 55  | %    | Clock Duty Cycle<br>Include jitter, phase noise |
| <b>tTLH</b>      |     | 3   | ns   | CL <= 30pF                                      |
| <b>tTHL</b>      |     | 3   | ns   | CL <= 30pF                                      |

| Input CMD (referenced to CLK-SDR mode)  |     |      |    |            |
|-----------------------------------------|-----|------|----|------------|
| tISUddr                                 | 3   |      | ns | CL <= 20pF |
| tIHddr                                  | 3   |      | ns | CL <= 20pF |
| Output CMD (referenced to CLK-SDR mode) |     |      |    |            |
| tODLY                                   |     | 13.7 | ns | CL <= 20pF |
| tOH                                     | 2.5 |      | ns | CL <= 20pF |
| tRISE                                   |     | 3    | ns | CL <= 20pF |
| tFALL                                   |     | 3    | ns | CL <= 20pF |
| Input DAT (referenced t CLK-DDR mode)   |     |      |    |            |
| tISUddr                                 | 2.5 |      | ns | CL <= 20pF |
| tIHddr                                  | 2.5 |      | ns | CL <= 20pF |
| Output DAT (referenced t CLK-DDR mode)  |     |      |    |            |
| tODLYddr                                | 1.5 | 7    | ns | CL <= 20pF |
| tRISE                                   |     | 2    | ns | CL <= 20pF |
| tFALL                                   |     | 2    | ns | CL <= 20pF |

Table 19-High-Speed Dual Data Rate Interface Timing

## 7.5 Bus Timing in HS200 Mode

### ■ HS200 Clock Timing

Host CLK Timing in HS200 mode shall conform to the timing specified in Figure 8 and Table 20. CLK input should satisfy the clock timing over all possible operation and environment conditions. CLK input parameters should be measured while CMD and DAT lines are stable high or low, as close as possible to the Device.

The maximum frequency of HS200 is 200Mhz. Hosts can use any frequency up to the maximum that HS200 allows.

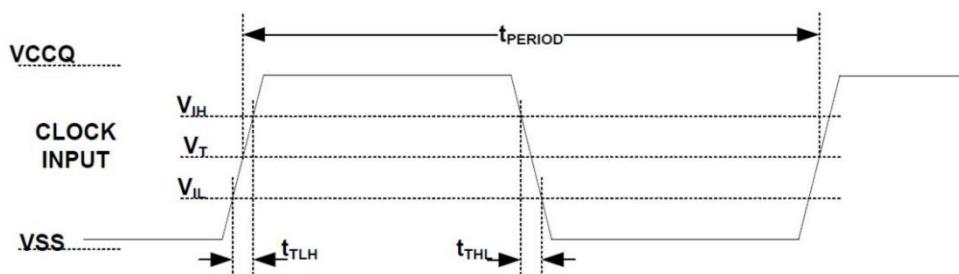



Figure 8-HS200 Clock Signal Timing

**Notes:**

1.  $V_{IH}$  denote  $V_{IH}(\min.)$  and  $V_{IL}$  denotes  $V_{IL}(\max.)$ .
2.  $V_T=0.975V$  – Clock Threshold ( $V_{CCQ} = 1.8V$ ), indicates clock reference point for timing measurements.

| Symbol            | Min | Max             | Unit | Remark                                                                                                                                                     |
|-------------------|-----|-----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>tPERIOD</b>    | 5   | -               | ns   | 200MHz(max), between rising edges                                                                                                                          |
| <b>tTLH, tTHL</b> | -   | 0.2-tPERIO<br>D | ns   | $t_{TLH}, t_{THL} < 1\text{ns}(\max)$ at 200MHz, CDEVICE = 6pF.<br>The absolute maximum value of $t_{TLH}, t_{THL}$ is 10ns regardless of clock frequency. |
| <b>Duty Cycle</b> | 30  | 70              | %    |                                                                                                                                                            |

**Table 20-HS200 Clock Signal Timing**

## ■ HS200 Device Input Timing

Figure 9 and Table 21 define Device input timing.

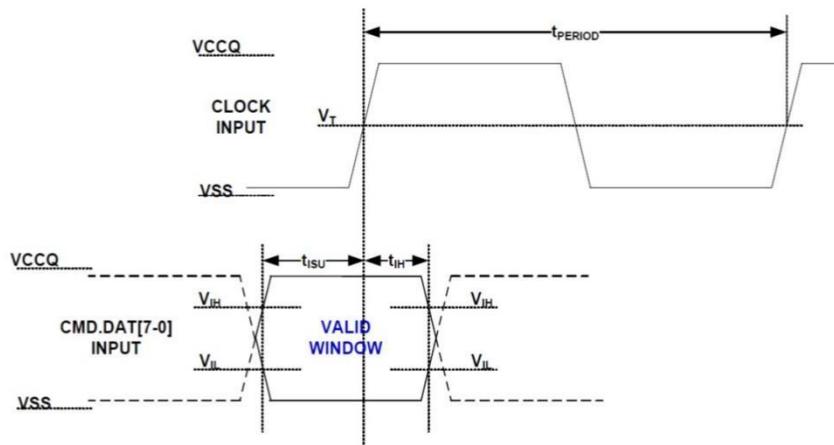



Figure 9-Input Timing

### Notes:

1.  $t_{ISU}$  and  $t_{IH}$  are measured at  $V_{IL}(\max)$  and  $V_{IH}(\min)$ .
2.  $V_{IH}$  denotes  $V_{IH}(\min)$  and  $V_{IL}$  denotes  $V_{IL}(\max)$ .

| Symbol    | Min  | Max | Unit | Remark             |
|-----------|------|-----|------|--------------------|
| $t_{ISU}$ | 1.40 | -   | ns   | CDEVICE $\leq$ 6pF |
| $t_{IH}$  | 0.8  | -   | ns   | CDEVICE $\leq$ 6pF |

Table 21-HS200 Device Input Timing

## ■ HS200 Device Output Timing

$t_{PH}$  parameter is defined to allow device output delay to be longer than  $t_{PERIOD}$ . After initialization the  $t_{PH}$  may have random phase relation to the clock. The Host is responsible to find the optimal sampling point for the Device outputs, while switching to the HS200 mode. Figure 10 and Table 22 define Device output timing.

While setting the sampling point of data, a long term drift, which mainly depends on temperature drift, should be considered. The temperature drift is expressed by  $\Delta_{TPH}$ . Output valid data window ( $tw$ ) is available regardless of the drift ( $\Delta_{TPH}$ ) but position of data window varies by the drift, as described in Figure 11.

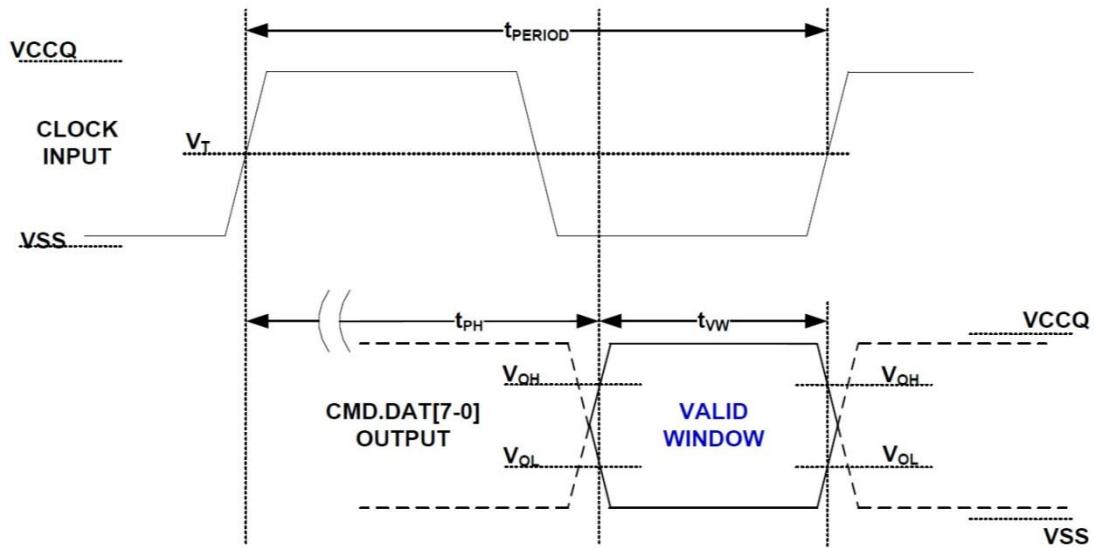



Figure 10-HS200 Device Output Timing

**Notes:**  $V_{OH}$  denotes  $V_{OH}(\min)$  and  $V_{OL}$  denotes  $V_{OL}(\max)$ .

| Symbol          | Min                                        | Max                                        | Unit | Remark                                                                                                                                                                                                                                                          |
|-----------------|--------------------------------------------|--------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t_{PH}$        | 0                                          | 2                                          | UI   | Device output momentary phase from CLK input to CMD or DAT lines output.<br>Does not include a long term temperature drift.                                                                                                                                     |
| $\Delta t_{PH}$ | -350<br>( $\Delta T = -20^\circ\text{C}$ ) | +1550<br>( $\Delta T = 90^\circ\text{C}$ ) | ps   | Delay variation due to temperature change after tuning. Total allowable shift of output valid window ( $t_{VW}$ ) from last system Tuning procedure. $\Delta t_{PH}$ is 2600ps for $\Delta T$ from $-25^\circ\text{C}$ to $125^\circ\text{C}$ during operation. |
| $t_{VW}$        | 0.575                                      | -                                          | UI   | $t_{VW} = 2.88\text{ns}$ at 200MHz.<br>Host path may add Signal Integrity included noise, skews, etc. Expected $t_{VW}$ at Host input is larger than 0.475UI.                                                                                                   |

Table 22-HS200 Device Output Timing

**Notes:** Unit Interval (UI) is one bit nominal time. For example, UI=5ns at 200MHz.

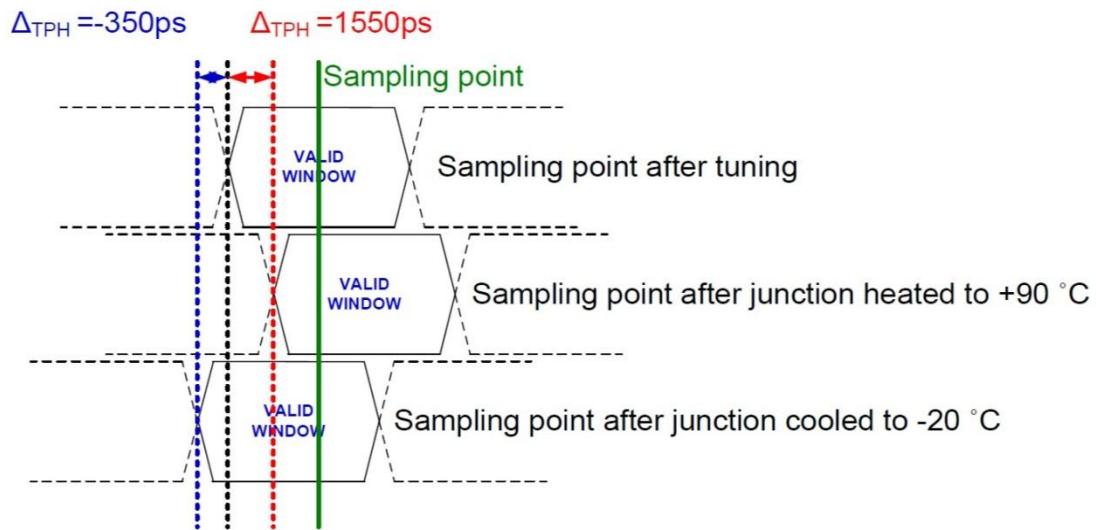



Figure 11- $t_{PH}$  Consideration

## 7.6 Bus Timing in HS400 Mode

### ■ HS400 Device Input Timing

The CMD input timing for HS400 mode is the same as CMD input timing for HS200 mode. Figure 12 and Table 23 define Device input timing.

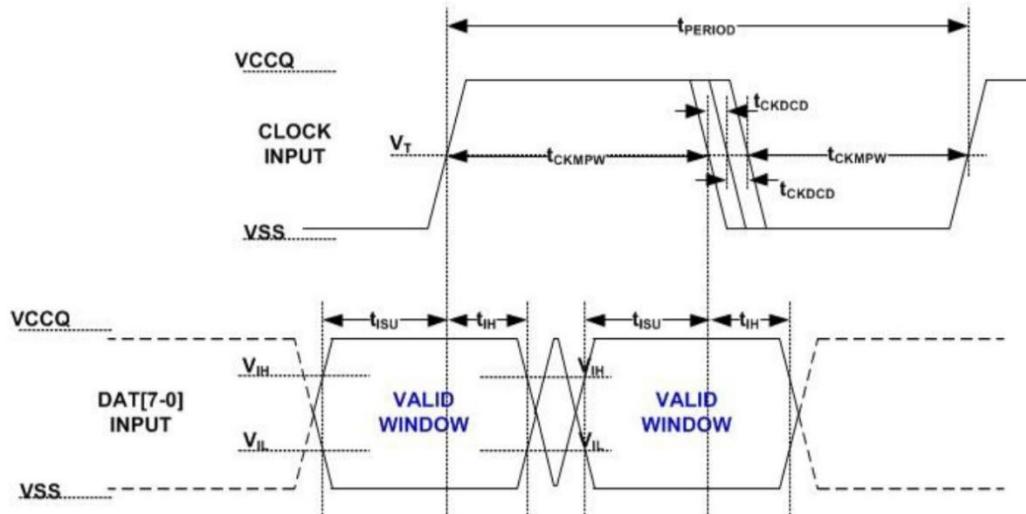



Figure 12-HS400 Device Data Input Timing

| Symbol         | Min   | Max | Unit | Remark                                                                                                                            |
|----------------|-------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------|
| <b>tPERIOD</b> | 5     | -   | ns   | 200MHz(max), between rising edges.<br>With respect to VT                                                                          |
| <b>SR</b>      | 1.125 |     | V/ns | Slew rate for input CLK/DAT.<br>With respect to VIH/VIL                                                                           |
| <b>tCKDCD</b>  | 0     | 0.3 | ns   | Duty cycle distortion.<br>Allowable deviation from an ideal 50% duty cycle.<br>With respect to VT<br>Includes jitter, phase noise |
| <b>tCKMPW</b>  | 2.2   |     | ns   | Minimum pulse width<br>With respect to VT                                                                                         |
| <b>tISUddr</b> | 0.4   |     | ns   | CDEVICE <= 6pF<br>With respect to VIH/VIL                                                                                         |
| <b>tIHddr</b>  | 0.4   | -   | ns   | CDEVICE <= 6pF<br>With respect to VIH/VIL                                                                                         |

Table 23-HS400 Device Input Timing

## ■ HS400 Device Output Timing

The Data Strobe is used to read data in HS400 mode. The Data Strobe is toggled only during data read or CRC status response.

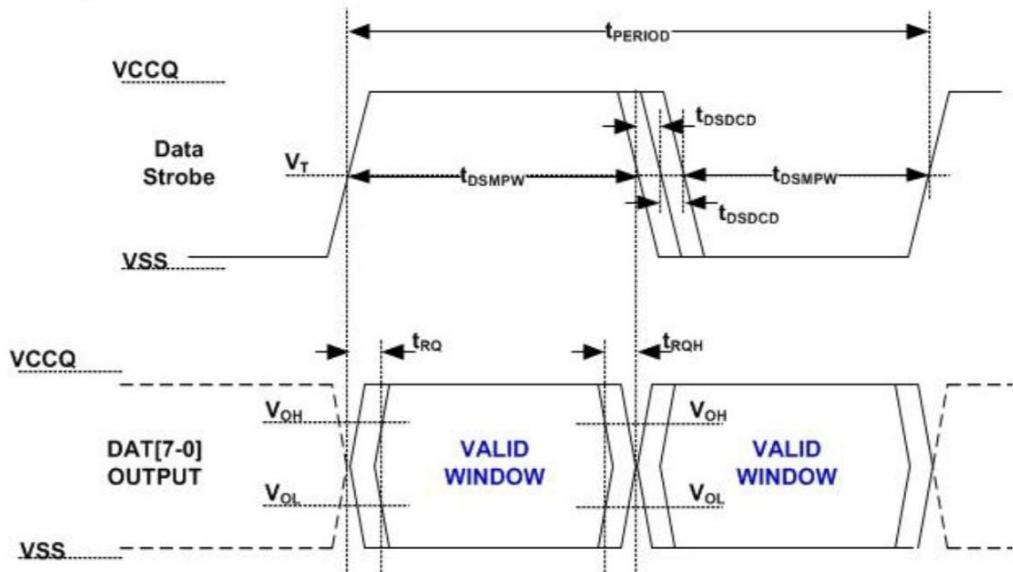



Figure 13-HS400 Device Output Timing

| Symbol         | Min   | Max | Unit    | Remark                                                                                                                                                            |
|----------------|-------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>tPERIOD</b> | 5     |     | ns      | 200MHz(max), between rising edges.<br>With respect to VT                                                                                                          |
| <b>SR</b>      | 1.125 |     | V/ns    | Slew rate for Data Strobe and Output Data.<br>With respect to VOH/VOL<br>HS400 reference load                                                                     |
| <b>tDSDCD</b>  | 0     | 0.2 | ns      | Data Strobe Duty cycle distortion.<br>Allowable deviation from the input CLK duty cycle distortion (tCKDCD)<br>With respect to VT<br>Includes jitter, phase noise |
| <b>tDSMPW</b>  | 2.0   |     | ns      | Data Strobe minimum pulse width<br>With respect to VT                                                                                                             |
| <b>tRPRE</b>   | 0.4   |     | tPERIOD | Data Strobe Read pre-amble<br>Max value up to infinite is valid                                                                                                   |
| <b>tRPST</b>   | 0.4   |     | tPERIOD | Data Strobe Read post-amble<br>Max value up to infinite is valid                                                                                                  |
| <b>tRQ</b>     |       | 0.4 | ns      | With respect to VOH/VOL<br>HS400 reference load                                                                                                                   |
| <b>tRQH</b>    |       | 0.4 | ns      | With respect to VOH/VOL<br>HS400 reference load                                                                                                                   |

Table 24-HS400 Device Output Timing

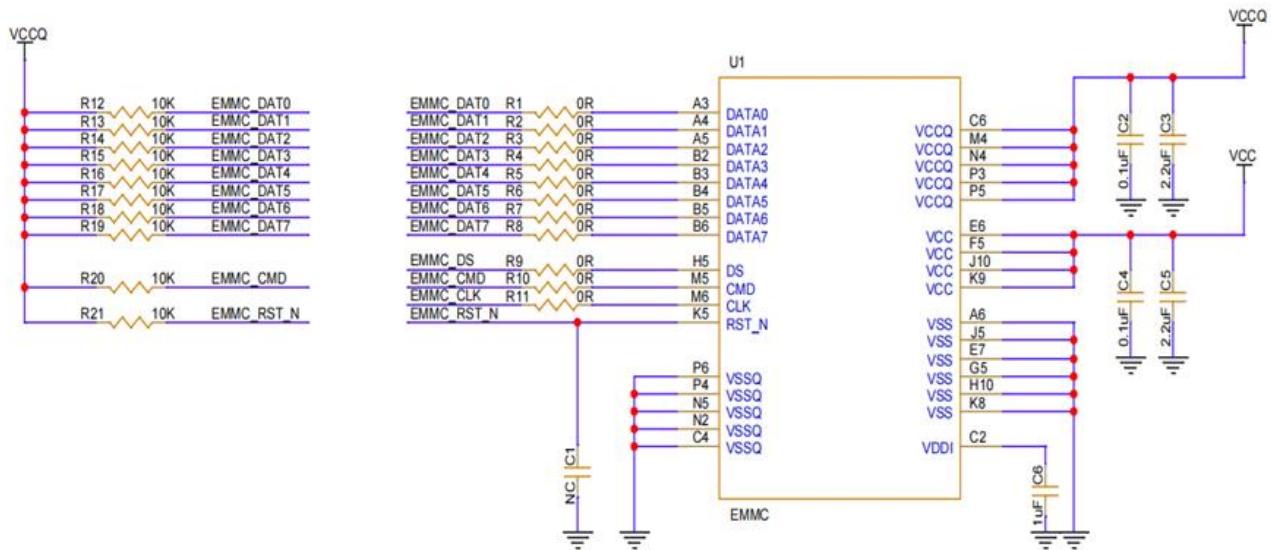

| Parameter                                        | Symbol  | Min | Max | Unit |
|--------------------------------------------------|---------|-----|-----|------|
| <b>Pull-up resistance for CMD</b>                | RCMD    | 4.7 | 100 | Kohm |
| <b>Pull-up resistance for DAT0-7</b>             | RDAT    | 10  | 100 | Kohm |
| <b>Pull-down resistance for DS</b>               | RDS     | 10  | 100 | Kohm |
| <b>Internal pull up resistance for DAT1-DAT7</b> | Rint    | 10  | 150 | Kohm |
| <b>Bus signal line capacitance</b>               | CL      |     | 13  | pF   |
| <b>Single Device capacitance</b>                 | CDevice |     | 6   | pF   |

Table 25-HS400 Capacitor

## 8. Connection Guide

## 8.1 Schematic Diagram

Coupling capacitor should be connected with VCC/VCCQ and VSS as closely as possible. The resistance on the CLK line is highly recommended (0Ω by default). 0Ω~100Ω is also available. SCY suggest separating VCC and VCCQ power, VDDi Capacitor is min 0.1uF and laying the VSS between the CLK and the Data lines.



**Figure 14-The resistance on the CLK line is highly recommended (0Ω by default)**