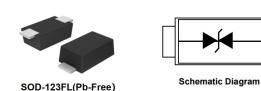
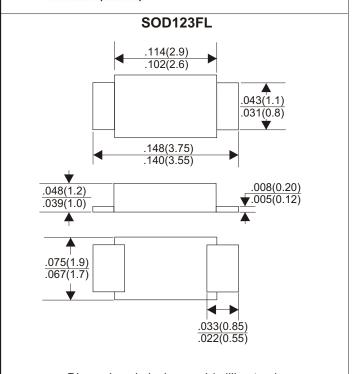


GS24VHS1DFBL

Bidirectional surge current protection with suitable capacitance

General Description


The GS24VHS1DFBL is designed to protect voltage sensitive components form damage or latch-up due to surge current . Excellent clamping capability, low leakage, and fast response time provide best in class protection on designs that are exposed to surge current protection for board level. Because of its small size and bi-directional design, it is ideal for use in cellular phones and portable applications that require audio line protection.


Specification Features

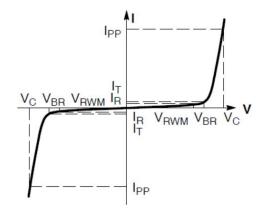
- Low incremental surge resistance
- Low Clamping Voltage:V_C=32V@I_{PP}=185A
- Reverse Working (Stand-off) Voltage: 24.0 V
- Low Leakage
- Response Time is Typically < 1 ns
- IEC61000-4-2 Level 4 ESD Protection

Application

- Mobile Internet Devices (MID) and portable devices
- Personal digital assistants (PDA's)
- Cellular handsets and accessories

Dimensions in inches and (millimeters)

Absolute Maximum Rating


Rating	Symbol	Value	Unit	
IEC 61000-4-2 (ESD) Contact		±30	kV	
Peak Power Per 8 x 20µs Waveform	P _{PK}	5900	W	
Junction Temperature Range	TJ	-55 to +125		
Storage Temperature Range	T _{stg}	-55 to +150	°C	
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C	

REV 1.0 2022 JAN PAGE:1/2

GS24VHS1DFBL

Characteristics(T」=25℃ unless otherwise specified)

Symbol	Parameter			
I _{PP}	Maximum Reverse Peak Pulse Current			
Vc	Clamping Voltage @ I _{PP}			
V _{RWM}	Working Peak Reverse Voltage			
I _R	Maximum Reverse Leakage Current @ V _{RWM}			
Ι _Τ	Test Current			
V_{BR}	Breakdown Voltage @ I _T			
P _{PK}	Peak Power Dissipation			
С	Max. Capacitance @ V _R = 0 and freq.=1 MHz			

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse Stand-off Voltage	V_{RWM}				24.0	V
Reverse Breakdown Voltage	V_{BR}	IT=1mA	25.5			V
Reverse Leakage Current	I _R	V _{RWM} =24.0V			1.0	uA
QL : V.II	.,,	I _{PP} =90A tp=8/20us			28	.,,
Clamping Voltage	Vc	I _{PP} =185A tp=8/20us			36	V
Junction Capacitance	CJ	V _R =0V, f = 1MHz		300	400	pF