

Tudi Semiconductor

Product Specification

TUDI-TLV9001/9002/9004

Low-power, RRIO, 1MHz operational amplifiers for

cost-sensitive systems TLV900x

网址 www.sztdbdt.com Q

用芯智造・卓越品质

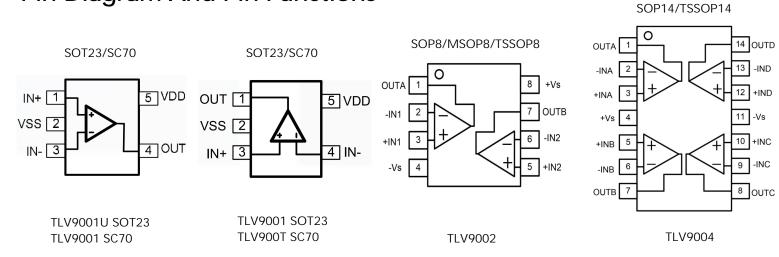
semiconductor device manufacturer

- Design
- research and development
- production
- and sales

Features

- Scalable CMOS amplifier for low-cost applications
- Rail-to-rail input and output
- Unit-gain bandwidth product: 1
- ●Low static current: 85µA/channel
- Unit-gain stable
- Can operate with supply voltages as low as 2.1V
- asier stability at higher capacitive loads due to the resistive open-loop output impedance
- ■Operating temperature range: –40°C to 125°

Description


The TLV900x series includes single-channel (TLV9001), dual-channel (TLV9002, and quad-channel (TLV9004) low-voltage (2.1V to 5.5V) operational amplifiers with rail-to-input and output swing capabilities. These operational amplifiers provide a cost-effective solution for applications with space constraints, requiring low-voltage operation, and driving high-capacitive loadssuch as smoke detectors, wearable electronics, and small appliances). The robust and durable design of the TLV900x series simplifies circuit design. These operational amplifiers unity-gain stable.

Applications

- Sensor signal conditioning
- Power modules
- Active filters
- Low side current sensing
- Smoke detectors
- Motion detectors
- Wear devices
- Large and small household appliances
- EPOS
- Barcode scanners
- Personal electronics
- HVAC: Heating, ventilation, air conditioning
- Motor: AC induction

Pin Diagram And Pin Functions

Name	Description	Note
+Vs	Positive power supply	A bypass capacitor of 0.1µF as close to the part as possible should be placed between power supply pins or between supply pins and ground.
-Vs	Negative power supply or ground	If it is not connected to ground, bypass it with a capacitor of 0.1µF as close to the part as possible
-IN	Negative input	Inverting input of the amplifier.Voltage range of this pin can go from-Vs-0.3V to +Vs-1V.
+IN	Positive input	Non-inverting input of the amplifier. This pin has the same voltage range as-IN.
OUT	Output	The output voltage range extends to within millivolts of each supply rail.
NC	No connection	

Product Specification

Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	2.1V ~ 5.5V	V
Input common-mode voltage range	-Vs ~ +Vs	V
Operating ambient temperature	- 40°C to 125°C	

Electrical Characteristics

(+Vs=+5V,-Vs=0,VeM=Vs/2,TA=+25°C,RL=10kQto Vs/2,unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Characteristics							
Input Offset Voltage	Vos			1.0	5.0	mV	
Input Offset Voltage Drift	△Vos/△T	-40 to 125℃		5		μV/°C	
Input Bias Current	IB			2.5		рА	
Input Offset Current	los			2.5		рА	
Common-Mode Voltage Range	VcM	Vs=5.5V	-0.1		4.5	٧	
Common-Mode Rejection Ratio	CMRR	VCM=0.1V to 4.5V		125		dB	
Open-Loop Voltage Gain	AOL	Vo=0.2V to 4.5V	. 1	120		dB	
	0	utput Characteristics				7/	
		RL=100kΩ		1		mV	
Output Voltage Swing from Rail	T	RL=10kΩ		10		mV	
	Tuc	RL=2kΩ	COL	40	ICU	mV	
Short-Circuit Current	IsR	Sourcing		45		mA	
Short-Circuit Current	lsk	Sinking		50		mA	
		Power Supply					
Operating Voltage Range			2.7		6	V	
Power Supply Rejection Ratio	PSRR	Vs=+1.8V to +5.5V	80	100		dB	
Quiescent Current /Amplifier	IQ			85		μΑ	
	Dynamic Performance						
Gain Bandwidth Product	GBWP	G=+1		1.5		MHz	
Slew Rate	SR	G=+1,2V Output Step		1		V/µs	
Noise Performance							
Voltage Noise Density	en	f=1kHz		28		nVI √Hz	

Absolute Maximum Ratings

Parameter	Rating	Units
Power Supply:+Vs to-Vs	6.0	V
Input Voltage	-Vs -0.5V to+Vs+0.5V	V
Input Current(2)	10	mA
Storage Temperature Range	-65 to 150	°C
Junction Temperature	150	°C
Operating Temperature Range	-40 to 125	°C
ESD Susceptibility,HBM	2000	V

- (1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.
- (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

Application Notes

Driving Capacitive Loads

Driving large capacitive loads can cause staility problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases, and the closed loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity gain buffer (G=+1) is the most sensitive to capacitive loads, but all gains show the same general behavior.

When driving large capacitive loads with these op amps(e.g., >100 pF when G=+1), a small series resistor at the output (Riso in Figure 1) improves the feedback loop's phase margin(stability) bymaking the output load resistive at higher frequencies. It does not, however, improve the bandwidth. To select Riso, check the frequency response peaking (or step response overshoot) on the bench. If the response is reasonable, you do not need Riso. Otherwise, start Riso at 1k and modify its value until the response is reasonable.

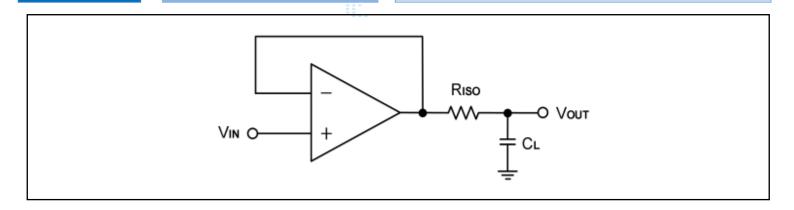


Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_F provides the DC accuracy by connecting the inverting signal with the output, C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier 's inverting input, thereby preserving phase margin in the overall feedback loop.

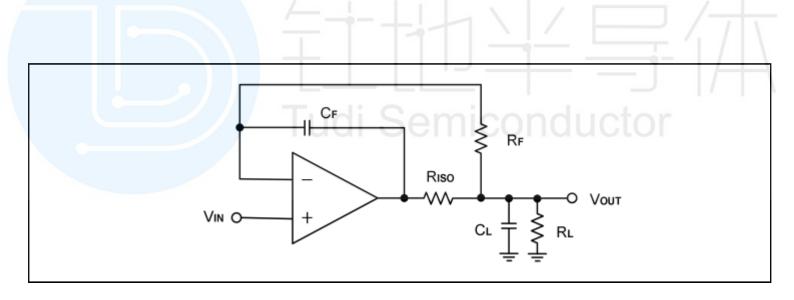


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-inverting configuration, there are two others ways to increase the phase margin:

- (a) by increasing the amplifier 's gain or
- (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node, as shown in Figure 3.

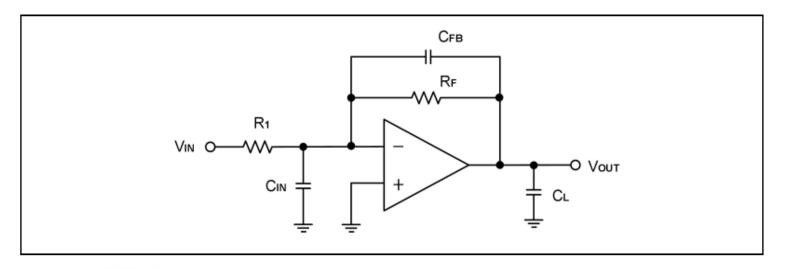


Figure 3. Adding a Feedback Capacitor in the Non-inverting Configuration

Power-Supply Bypassing and Layout

The TLV9001/9002/9004 operates from a single +2.1V to +5V supply or dual ± 1.05 V to ± 2.75 V supplies.

For single-supply operation, bypass the power supply +Vs with a 0.1 μ F ceramic capacitor which should beplaced close to the +Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate 0.1 μ F ceramic capacitors. 2.2 μ F tantalum capacitor can be added for better performance.

The length of the current path is directly proportional to the magnitude of parasitic inductances and thus the high frequency impedance of the path. High speed currents in an inductive ground return create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. Thus a ground plane layer is important for high speed circuit design.

Typical Application Circuits

Differential Amplifier

The circuit shown in Figure 4 performs the differential function. If the resistors ratios are equal (R4/R3 = R2/R1), then $VOUT = (VIP - VIN) \times R2/R1 + VREF$.

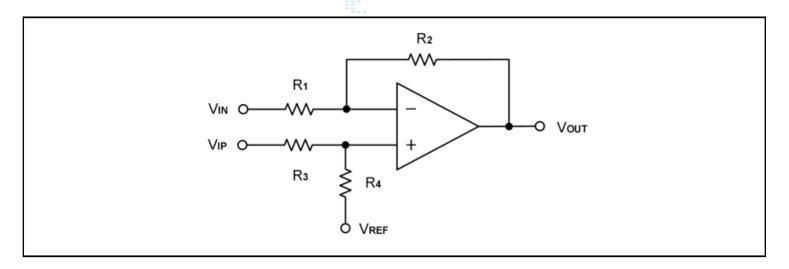
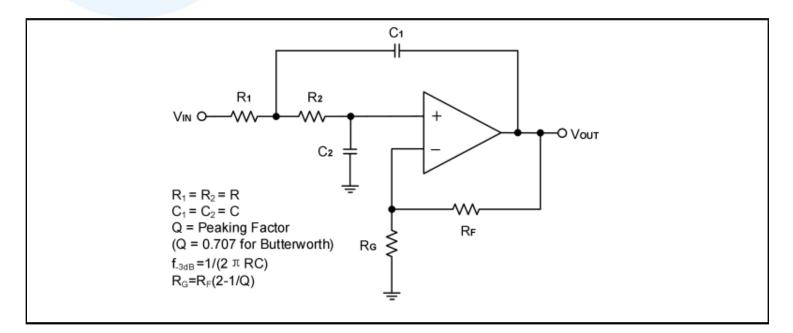
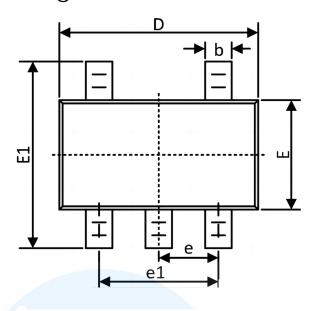
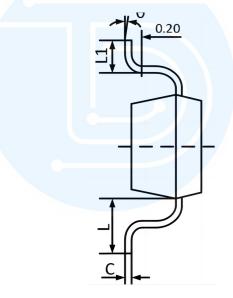


Figure 4. Differential Amplifier

Low Pass Active Fiter

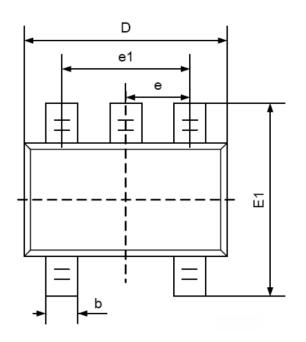
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the amplifier. If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task, as Figure 5. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to follow this guideline can result in reduction of phase margin. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

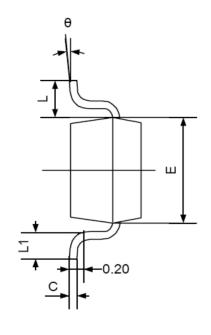



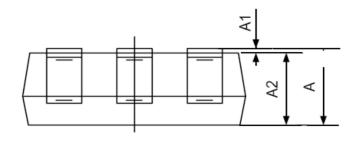

Figure 5. Two-Pole Low-Pass Sallen-Key Active Filter



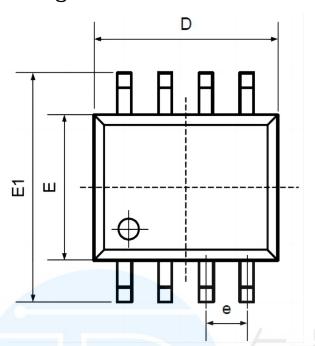
Package SOT23-5

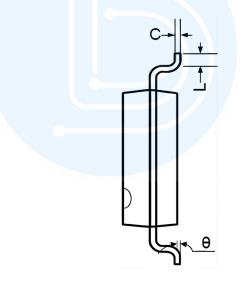


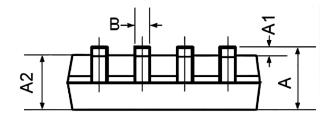

Symbol	0.000	nsions imeters	Dimer In In	
Symbol	MIN	MAX	MIN	MAX
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.400	0.012	0.016
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
) E _{E1}	2.650	2.950	0.104	0.116
е	0.95	0TYP	0.03	7TYP
e1	1.800	2.000	0.071	0.079
L	0.70	0.700REF		8REF
L1	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°



Package SC70-5

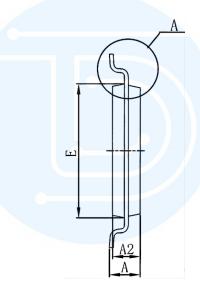

Symbol	Dimens Millin	sionsIn neters	DimensionsIn Inches	
	Min	Max	Min	Max
А	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650	OTYP	0.026	6TYP
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.02	1REF
L1	0.260	0.460	0.010	0.018
	0°	8°	O°	8°

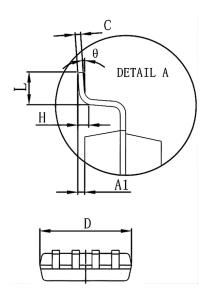




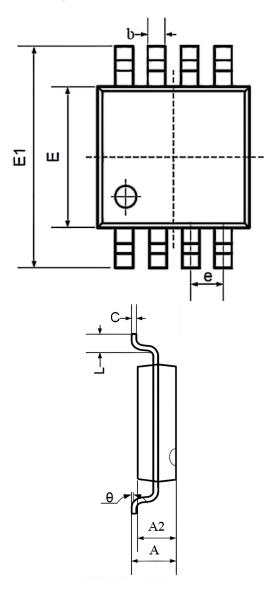
Package SOP8

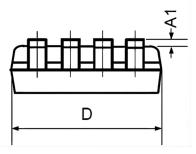



Symbol		nsions meters		nsions ches
Symbol	Min	Max	Min	Max
А	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
В	0.330	0.510	0.013	0.020
С	0.190	0.250	0.007	0.010
Semi	4.780	5.000	0.188	0.197
E	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.248
e	1.270TYP		0.05	0ТҮР
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

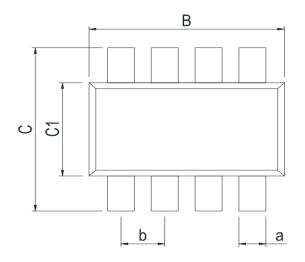


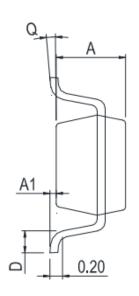
Package TSSOP8



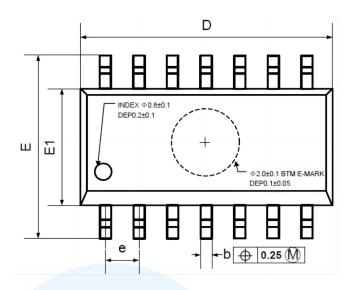

Company of the Land	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
D	2.900	3.100	0.114	0.122
E	4.300	4.500	0.169	0.177
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
А		1.200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
е	0.65(BSC)		0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)		0.01(TYP)	
θ	1°		1°	

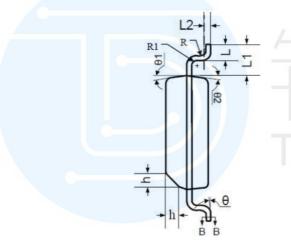
Package MSOP8

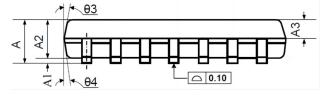


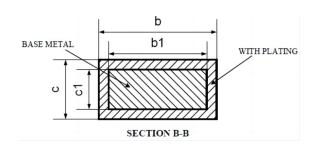

Symbol		Dimensions In Millimeters		nsions iches
Зуппрог	Min	Max	Min	Max
Α	0.800	1.200	0.031	0.047
A1	0.000	0.200	0.000	0.008
A2	0.760	0.970	0.030	0.038
b	0.30 TYP		0.012 TYP	
С	0.15	TYP	0.006 TYP	
D	2.900	3.100	0.114	0.122
е	0.65	TYP	0.026	6 ТҮР
E	2.900	3.100	0.114	0.122
E1	4.700 5.100		0.185	0.201
L	0.410	0.650	0.016	0.026
θ	0°	6°	0°	6°

Package SOT23-8

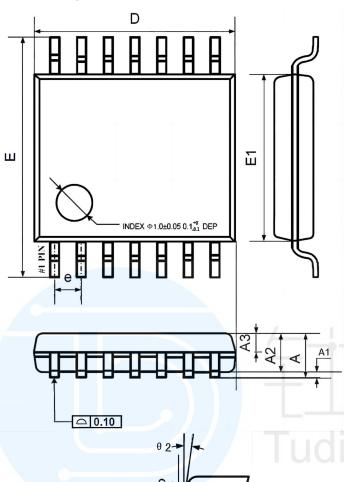


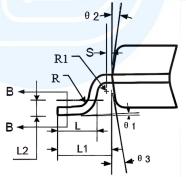


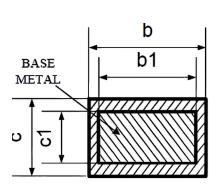

Symbol	Dimensions In Millimeters		
Symbol	Min	Max	
А	1.050	1.150	
A1	0.000	0.150	
В	2.820	3.020	
С	2.65	2.95	
C1	1.5	1.7	
D	0.300	0.600	
Q	0°	8°	
а	0.300	0.400	
b	0.65 BSC		



Package SOP14






Symphol		Dimensio Millime	
Symbol	MIN	NOM	MAX
А	1.35	1.60	1.75
A1	0.10	0.15	0.25
A2	1.25	1.45	1.65
A3	0.55	0.65	0.75
b	0.36		0.49
b1	0.35	0.40	0.45
С	0.16		0.25
c1	0.15	0.20	0.25
D	8.53	8.63	8.73
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е	du	1.27 BS0	9r
L	0.45	0.60	0.80
L1		1.04 REI	=
L2		0.25 BS0	2
R	0.07		
R1	0.07		
h	0.30	0.40	0.50
θ	0°		8°
θ1	6°	8°	10°
θ2	6°	8°	10°
θ3	5°	7°	9°
θ4	5°	7°	9°

Package TSSOP14

Symbol		Dimensions In Millimeters			
Symbol	MIN	NOM	MAX		
Α	_	_	1.20		
A1	0.05		0.15		
A2	0.90	1.00	1.05		
A3	0.34	0.44	0.54		
b	0.20	_	0.28		
b1	0.20	0.22	0.24		
С	0.10	_	0.19		
c1	0.10	0.13	0.15		
D	4.86	4.96	5.06		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
e	uu	0.65 BSC			
L	0.45	0.60	0.75		
L1		1.00 REF			
L2		0.25 BSC			
R	0.09	_	_		
R1	0.09	_	_		
S	0.20 —		_		
θ1	0° —		8°		
θ2	10° 12°		14°		
θ3	10°	12°	14°		

Order information

Order Number	Package	Package Quantity	Marking On The park	Temperature
TLV9001IDBVR-TUDI	SOT23-5	Tape,Reel,3000	10GF	
TLV9001IDCKR-TUDI	SC70-5	Tape,Reel,3000	1BZ	
TLV9001QDBVRQ1-TUDI	SOT23-5	Tape,Reel,3000	2T5H	
TLV9001QDCKRQ1-TUDI	SC70-5	Tape,Reel,3000	1MZ	
TLV9001TIDCKR-TUDI	SC70-5	Tape,Reel,3000	1D6	
TLV9001UIDBVR-TUDI	SOT23-5	Tape,Reel,3000	10DF	
TLV9002IDDFR-TUDI	SOT23-8	Tape,Reel,3000	T902	
TLV9002IDGKR-TUDI	MSOP8	Tape,Reel,2500	1GNX	-40 to 125
TLV9002IDR-TUDI	SOP8	Tape,Reel,2500	TL9002	
TLV9002IPWR-TUDI	TSSOP8	Tape,Reel,2500	9002	-40 to 125
TLV9002QDGKRQ1-TUDI	MSOP8	Tape,Reel,2500	27DT	
TLV9002QDRQ1-TUDI	SOP8	Tape,Reel,2500	T9002Q	Lotor
TLV9002QPWRQ1-TUDI	TSSOP8	Tape,Reel,2500	9002Q	uctor
TLV9002RQDGKRQ1-TUDI	MSOP8	Tape,Reel,2500	3N8S	
TLV9004IDR-TUDI	SOP14	Tape,Reel,2500	TLV9004	
TLV9004IPWR-TUDI	TSSOP14	Tape,Reel,2500	TLV9004	
TLV9004QDRQ1-TUDI	SOP14	Tape,Reel,2500	LV9004Q	
TLV9004QPWRQ1-TUDI	TSSOP14	Tape,Reel,2500	T9004Q	

Important statement:

- ●TUDI Semiconductor reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using TUDI Semiconductor products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- ●TUDI Semiconductor products have not been licensed for life support, military, and aerospace applications, and therefore TUDI Semiconductor is not responsible for any consequences arising from the use of this product in these areas.
- If any or all TUDI Semiconductor products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- ●The specifications of any and all TUDI Semiconductor products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- ●TUDI Semiconductor documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. TUDI Semiconductor assumes no responsibility or liability for altered documents.
- ●TUDI Semiconductor is committed to becoming the preferred semiconductor brand for customers, and TUDI Semiconductor will strive to provide customers with better performance and better quallity products.