SPECIFICATIONS

Customer	
Product Name	Multi-layer Chip Ceramic Inductor
Sunlord Part Number	SDCL1005C51NJTDF
Customer Part Number	

[⊠New Released, □Revised] SPEC No.: SDCL0309230094

【This SPEC is total 8 pages including specifications and appendix.】
【ROHS, Compliant Parts】

Approved By	Checked By	Issued By
灣響	開門	走 美

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China 518110 Tel: 0086-755-29832333 Fax: 0086-755-82269029 E-Mail: sunlord@sunlordinc.com

TFOR Customer appro Qualification Status:		Date: estricted	eted
Approved By	Verified By	Re-checked By	Checked By
Commonte:			
Comments:			

Sunlord

Categories: general confidential

Specifications for Multi-layer Chip Ceramic Inductor

Page 2 of 8

[Version change history]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	Dec.22,2023	New release	/	Hai Guo

Caution

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships, etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

Scope

This specification applies to SDCL1005C51NJTDF of multi-layer ceramic chip inductor.

Product Description and Identification (Part Number)

Description

SDCL1005C51NJTDF of multi-layer ceramic chip inductor.

Categories: general confidential

2) Product Identification (Part Number)

SDCL	<u>1005</u>	<u>C</u>	<u>51N</u>	<u>J</u>	<u>T</u>	<u>D</u>	<u>F</u>
1	2	3	4	(5)	6	7	8

1	Туре
SDCL	Chip Ceramic Inductor

2	External D	imensions (L X W) (mm)
1005 [0402]		1.0 X 0.5

3	Material Code	
	С	

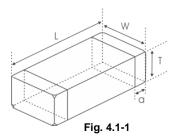
(5)	Inductance Tolerance	
	J	±5%

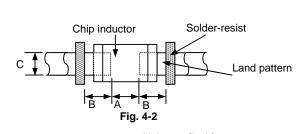
7	Internal Code	
	D	

	4	Nominal Inductance	
Example Nominal Value		Nominal Value	
		51N	51nH

⑥ P	Packing	
Т	Tape Carrier Package	

8	HSF Products			
Hazardous Substance Free Products				

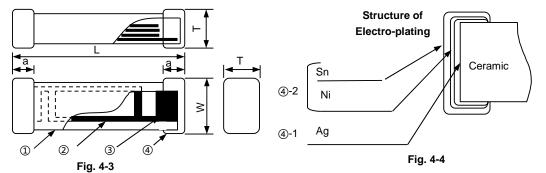

Electrical Characteristics


Part Number	L (nH)	Q Min.	L, Q Test. Freq (MHz)	Q (Typ.) Freq. (MHz)		S.R.F (MHz)	DCR	Ir (mA)	
				100	800	1000	Min	(Ω) Max.	Max.
SDCL1005C51NJTDF	51	8	100	10	21	15	850	1.2	200

- 1) Operating and storage temperature range (individual chip without packing): -55°C~ +125°C
- Storage temperature range (packaging conditions): -10°C~+40°C and RH 70% (Max.) 2)

Shape and Dimensions

- Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table 4-1. 1)
- 2) Structure: See Fig. 4-3 and Fig. 4-4.



[Table 4-1]

Unit: mm [inch]

Туре	L	W	Т	а	Α	В	С
1005 [0402]	1.0±0.15 [0.039±0.006]	0.5±0.15 [0.020±0.006]	0.5±0.15 [0.020±0.006]	0.25±0.1 [0.010±0.004]	0.45~0.55	0.40~0.50	0.45~0.55

- ① Ceramic for SDCL Series
- ② Internal electrode (Ag)
- ③ Pull out electrode(Ag)
- 4-1 Terminal electrode: Inside (Ag)
- 4-2 Outside (Electro-plating Ni-Sn)

3) Material Information: See Table 4-2

Categories: general confidential

[Table 4-2]

Code	Part Name	Material Name		
1	Ceramic Body	Ceramic Powder		
2	Inner Coils	Silver Paste		
3	Pull-out Electrode (Ag)	Silver Paste		
4 -1	Terminal Electrode: Inside Ag	Termination Silver Composition		
4 -2	Electro-Plating: Ni/Sn plating	Plating Chemicals		

4) The surface with the mark should be on the top side when soldering, but it is not necessary to identify the mark's direction towards left or right.

5. Test and Measurement Procedures

5.1 Test Conditions

Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

- a. Ambient Temperature: 20±15°C
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86kPa to 106kPa

If any doubt on the results, measurements/tests should be made within the following limits:

- a. Ambient Temperature: 20±2°C
- b. Relative Humidity: 65±5%
- c. Air Pressure: 86kPa to 106kPa

5.2 Visual Examination

a. Inspection Equipment: 20x magnifier

5.3 Electrical Test

- 5.3.1 DC Resistance (DCR)
 - a. Refer to Item 3.
 - b. Test equipment (Analyzer): High Accuracy Milliohmmeter-HP4338B or equivalent.

5.3.2 Inductance (L)

- a. Refer to Item 3.
- b. Test equipment: High Accuracy RF Impedance /Material Analyzer-E4991A+HP16192A,
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Item 3.

5.3.3 Q Factor (Q)

- a. Refer to Item 3.
- b. Test equipment: High Accuracy RF Impedance /Material Analyzer-E4991A+HP16192A
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Item 3.

5.3.4 Self-Resonant Frequency (SRF)

- a. Refer to Item 3.
- b. Test equipment: High Accuracy RF Impedance /Material Analyzer- E4991A+HP16192A or Agilent E5071C Network analyzer(when SRF>3GHz).
- c. Test signal: -20dBm or 50 mV

5.3.5 Rated Current

- a. Refer to Item 3.
- b. Test equipment (see Fig. 5.3.5-1): Electric Power, Electric current meter, Thermometer.
- c. Measurement method (see Fig. 5.3.5-1):
 - 1. Set test current to be 0mA.
 - 2. Measure initial temperature of chip surface.
 - 3. Gradually increase voltage and measure chip temperature for corresponding current.
- d. Definition of Rated Current(Ir): Ir is direct electric current as chip surface temperature rose just 20°C against chip initial surface temperature(Ta) (see **Fig. 5.3.5-2**).

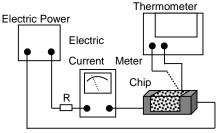


Fig. 5.3.5-1

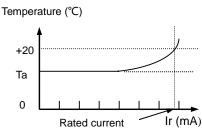
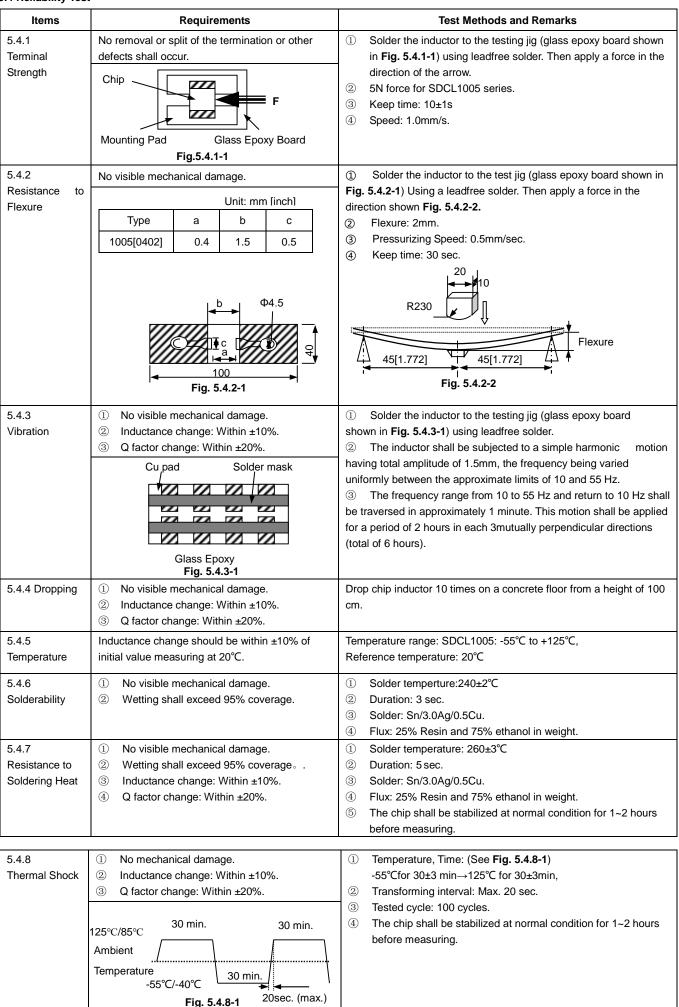



Fig. 5.3.5-2

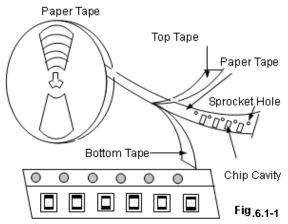
Categories: general confidential

5.4 Reliability Test

Sunlord	Categories: general confidential	Specifications for Multi-layer Chip Ceramic Inductor Page 7 of 8
5.4.9 Resistance to Low Temperature 5.4.10 Resistance to High Temperature	 No mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. No mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	 Temperature:-55±2°C, Duration: 1000+24 hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring. Temperature: 125±2°C, Duration: 1000+24 hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.11 Damp Heat (Steady States)	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	1 Temperature: 60±2°C 2 Humidity: 90% to 95% RH. 3 Duration: 1000+24 hours. 4 The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.12 Loading Under Damp Heat	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	 Temperature: 60±2°C Humidity: 90% to 95% RH. Duration: 1000+24 hours. Applied current: Rated current. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.13 Loading at High Temperature (Life Test)	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	 Temperature125±2°C, Duration: 1000+24 hours. Applied current: Rated current. The chip shall be stabilized at normal condition for 1~2 hours before measuring.

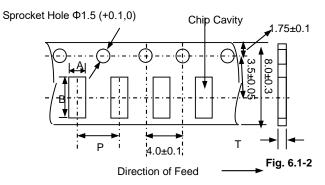
6. Packaging, Storage

6.1 Packaging


Tape Carrier Packaging:

Packaging code: T

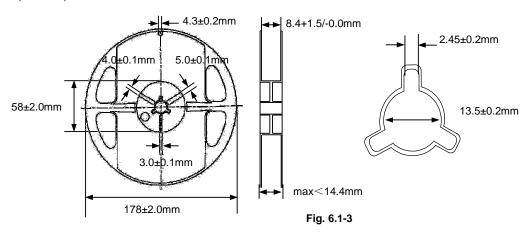
- a. Tape carrier packaging are specified in attached figure Fig.6.1-1~3
- b. Tape carrier packaging quantity please see the following table:


Type	1005[0402]
T(mm)	0.5±0.15
Tape	Paper Tape
Quantity	10K

(1) Taping Drawings (Unit: mm)

Remark: The sprocket holes are to the right as the tape is pulled toward the user.

(2) Taping Dimensions (Unit: mm)



Categories: general confidential

Paper Tape

Туре	Α	В	Р	T max
1005[0402]	0.65±0.1	1.15±0.1	2.0±0.05	0.8

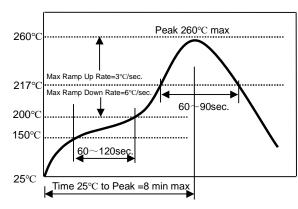
(3) Reel Dimensions (Unit: mm)

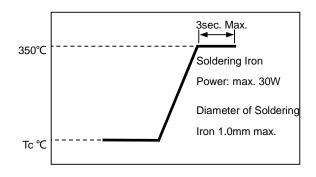
6.2 Storage

- a. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. Package must be stored at 40°C or less and 70% RH or less.
- b. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- c. Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight.
- d. Solderability specified in Clause 5.4.6 shall be guaranteed for 12 months from the date of delivery on condition that they are stored at the environment specified in Clause 3. For those parts, which passed more than 12 months shall be checked solder-ability before use.

Recommended Soldering Technologies

7.1 Re-flowing Profile:


- Preheat condition: 150 ~200°C/60~120sec.
- Δ Allowed time above 217°C: 60~90sec.
- \wedge Max temp: 260°C
- \triangle Max time at max temp: 10sec. Δ Solder paste: Sn/3.0Ag/0.5Cu
- Allowed Reflow time: 2x max Λ


[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

7.2 Iron Soldering Profile.

- Δ Iron soldering power: Max. 30W
- Λ Pre-heating: 150°C/60sec.
- \triangle Soldering Tip temperature: 350°C Max.
- Soldering time: 3sec. Max. \triangle Solder paste: Sn/3.0Ag/0.5Cu Max.1 times for iron soldering Δ

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

