

PAW3395DM-T6QU: Optical Gaming Navigation Chip

General Description

The PAW3395DM-T6QU is PixArt Imaging's new low-power high-end gaming navigation chip with an illumination source in a 16-pin molded lead-frame DIP package. It provides the best-in-class gaming experience with the enhanced features of high speed, high resolution, high accuracy, and selectable lift detection height to fulfill professional gamers' needs. It is designed to be used with LM19-LSI or LOAE-LSI1 to achieve optimum performance.

Key Features

- Low power consumption of typical 1.7 mA in run mode (HP Mode)
- 16-pin molded lead-frame DIP package with 850nm illumination source
- Enhanced programmability
 - Gaming Mode
 - High Performance Mode (HP Mode)
 - Low Power Mode (LP Mode)
 - Corded Gaming Mode
 - Lift detection options
 - 1mm and 2mm setting
 - Manual lift cut-off calibration
- Selectable resolutions up to 26000 cpi with 50 cpi step size
- Angle snapping
- Angle tunability
- Resolution error of 0.4% (typical) at 5000cpi on QCK up to 200ips
- High speed motion detection 650ips* and

acceleration 50g*

- Self-adjusting variable frame rate for optimum performance
- Internal oscillator no clock input needed
- 4-wire serial port interface (SPI)
- Motion interrupt output

Applications

- Corded and cordless optical gaming mice
- Integrated input devices

Key Parameters

Parameter	Value		
Dower cupply Pange	VDD: 1.8 to 2.1V		
Power supply Range	VDDIO: 1.8 to 3.3V		
Lens Magnification	1:1		
Interface	4-wire Serial Port Interface		
	Run: 1.7 mA (HP Mode)		
Typical Operating	Run: 1.3 mA (LP Mode)		
Current @ VDD = 1.9V	Rest1: 580 μA		
Note: includes LED	Rest2: 11 μA		
current	Rest3: 6 μA		
	Power Down: 4 μA		
Resolution	Up to 26000 cpi		
Tracking Speed	650* ips		
Acceleration	50* g		
Assembled Solution	LM19-LSI:		
	18.85 x 21.15 x 9.81mm ³		
Size (Package Assemble with lens)	LOAE-LSI1:		
Assemble with lens)	10.90 x 16.80 x 9.81mm ³		

Note: * - HP Mode

Ordering Information

Part Number	Description	Package Type	Packing Type	MOQ
PAW3395DM-T6QU	Optical Gaming Navigation Chip	16-pin DIP	Tube	1,000
LM19-LSI	Round Lens	Round Lens	Tray	1,000
LOAE-LSI1	Trim Lens	Trim Lens	Tray	1,000

For any additional inquiries, please contact us at http://www.pixart.com

Table of Content

PAW33	395DM-T6QU: Optical Gaming Navigation Chip	1
	eral Description	
Key	Features	1
Арр	lications	1
Key	Parameters	1
Orde	ering Information	1
Table o	of Content	2
List of I	Figures	3
List of	Tables	4
1.0	Introduction	5
1.1	Overview	5
1.2	Pin Configuration	6
2.0	Electrical Specification	7
2.1	Regulatory Requirement	7
2.2	Absolute Maximum Rating	7
2.3	Recommended Operating Condition	8
2.4	AC Electrical Specification	9
2.5	DC Electrical Specifications	
3.0	Mechanical Specification	12
3.1	Chip Package Dimension	12
3.2	Package Marking	
3.3	Chip Assembly Drawing	13
3.4	Lens Assembly Drawing	14
3.	.4.1 Assembly with LM19-LSI Lens	14
3.	.4.2 Assembly with LOAE-LSI1 Lens	14
3.5	PCB Assembly Recommendations	
3.6	Packing Information	16
3.	.6.1 Packing Tube	
3.7	Package Handling Information	17
3.	.7.1 Sample of Inner Box Label	
	.7.2 Sample of Shipping Box Label	
4.0	Reference Schematics	
Povicio	n History	10

PAW3395DM-T6QU General Product Datasheet

PixArt Imaging Inc.

Optical Gaming Navigation Chip

List of Figures

Figure 1. Block Diagram	5
Figure 2. Device Pinout	
Figure 3. Packages Outline Drawing	
Figure 4. Recommended Chip Orientation, Mechanical Cutouts and Spacing (Top View)	13
Figure 5. Exploded View of Assembly with LM19-LSI Lens	14
Figure 6. Exploded View of Assembly with LOAE-LSI1	14
Figure 7. Packing Tube	16
Figure 8. Reference Schematic Diagram	18

PAW3395DM-T6QU General Product Datasheet

PixArt Imaging Inc.

Optical Gaming Navigation Chip

List of Tables

Table 1. Pin Definition	6
Table 2. Absolute Maximum Rating	7
Table 3. Recommended Operating Condition	
Table 4. AC Electrical Specification	9
Table 5. DC Electrical Specifications	11
Table 6. Package Marking Description	12
Table 7 Recommended Russ	18

1.0 Introduction

1.1 Overview

The PAW3395DM-T6QU is an optical navigation chip targeted for high-end cordless and corded gaming mouse. It contains a picture element array as Image Acquisition System (IAS), a Digital Signal Processing (DSP), a 4-wire serial port, a power control circuit, and a built-in LED driver integrated with IR LED in a package as shown in the block diagram. The chip measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The IAS acquires microscopic surface images via the lens and illumination system. The DSP processes these images to determine the direction and distance of motion and calculates the Δx and Δy relative displacement values. An external microcontroller reads the Δx and Δy information from the chip serial port. The microcontroller then translates the data into USB or RF signals before sending them to the host PC or game console.

Notes: Throughout this document, the PAW3395DM-T6QU is referred as the "chip".

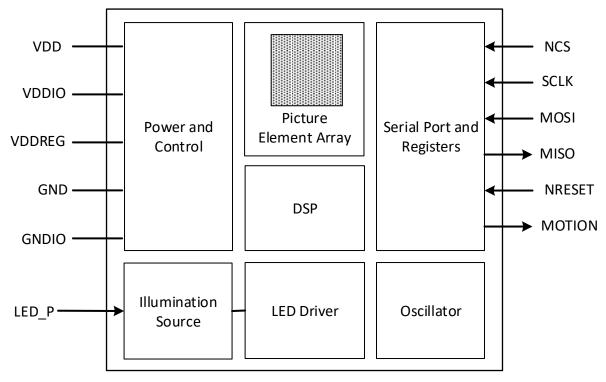


Figure 1. Block Diagram

1.2 Pin Configuration

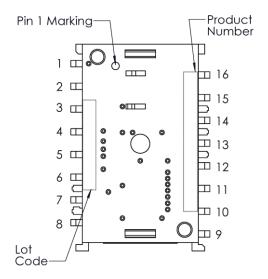


Figure 2. Device Pinout

Table 1. Pin Definition

Pin No.	Function	Symbol	Туре	Description	
1	Reserved	NC	NC	No connection	
2	Reserved	NC	NC	No connection	
3	Supply Ground	GND	Ground	Ground	
4	Supply Voltage	VDD	Power	Input power supply	
5	LDO Output	VDDREG	Power	LDO output for digital core (only for internal usage)	
6	Reserved	NC	NC	No connection	
7	I/O Voltage	VDDIO	Power	I/O power supply	
8	I/O Ground	GNDIO	Ground	I/O Ground	
9	Motion Output	MOTION	Output	Motion detection	
10		SCLK	Input	Serial data clock	
11	A wire CDI	MOSI	Input	Serial data input	
12	4-wire SPI	MISO	Output	Serial data output	
13		NCS	Input	Chip select (Active Low)	
14	Reset Control	NRESET	Input	Chip reset (Active Low)	
15	LED	LED_P	Input	LED Anode	
16	Reserved	NC	NC	No connection	

2.0 Electrical Specification

2.1 Regulatory Requirement

- Passes FCC "Part15, Subpart B, Class B", "ICES-003:2016 Issue 6, Class B" and "ANSI C63.4:2014" when assembled into a mouse with shielded USB cable using ferrite bead and following PixArt's recommendations.
- Passes IEC 62471: 2006 Photo biological safety of lamps and lamp systems.

2.2 Absolute Maximum Rating

Table 2. Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit	Note
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temperature	T _{SOLDER}		260	°C	For 7 second, 1.6mm below seating plane
C \ / - t	VDD	-0.5	2.1	V	
Supply Voltage	VDDIO	-0.5	3.3	V	
ESD	ESDHB		2	kV	Human Body Model on all pins
Input Voltage	V _{IN}	-0.5	3.3	V	All I/O pins

Notes:

- 1. At room temperature.
- 2. Maximum Ratings are those values beyond which damage to the device may occur.
- 3. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.

2.3 Recommended Operating Condition

Table 3. Recommended Operating Condition

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Temperature	T _A	0		40	°C	
	VDD	1.8	1.9	2.1	V	Excluding supply noise
Power Supply Voltage	VDDIO	1.8	1.9	3.3	V	Excluding supply noise. (VDDIO must be the same or greater than VDD)
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to VDD min
Supply Noise peak to peak	V_{NA}			100	mV	10 kHz to 75 MHz
Serial Port Clock Frequency	f_{SCLK}			10	MHz	50% duty cycle
Distance from Lens Reference Plane to Tracking Surface	Z	2.2	2.4	2.6	mm	
 Speed High Performance Mode Low Power Mode Corded Gaming Mode Office Mode 	S	650 480 650 200			ips	La man manda at 45 da anna
Acceleration High Performance Mode Low Power Mode Corded Gaming Mode Office Mode	А	50 40 50 10			g	In run mode at 45 degree
Resolution Error High Performance Mode Low Power Mode Corded Gaming Mode	Res _{Err}		0.4 0.4 0.4		%	Up to 200ips on QCK at 5000cpi
Lift Cut-off 1mm setting	Lift _{1mm}		1		mm	PixArt standard gaming surface
Lift Cut-off 2mm setting	Lift _{2mm}		2		mm	PixArt standard gaming surface

2.4 AC Electrical Specification

Table 4. AC Electrical Specification

Chip electrical characteristics over recommended operating conditions. Typical values are at 25° C, VDD = 1.9V and VDDIO=1.9V

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Motion Delay After	t _{MOT-RST}	50			ms	From reset to valid motion,
Reset	CMOT-RST				1113	assuming motion is present
Shutdown	t _{stdwn}			500	ms	From Shutdown mode active to low
- Indicate Will	CSTDWN			300	1113	current
						From Shutdown mode inactive to
						valid motion.
Wake from Shutdown	twakeup	50			ms	Note: A RESET must be asserted
						after a shutdown. Refer to section
						"Notes on Shutdown"
MISO Rise Time	t _{r-MISO}		6		ns	$C_L = 20pF$
MISO Fall Time	t _{f-MISO}		6		ns	$C_L = 20 pF$
				0.5		From SCLK falling edge to MISO data
MISO Delay After SCLK	t _{DLY-MISO}			35	ns	valid
						$C_L = 20pF$
MISO Hold Time	t _{hold-MISO}	25			ns	Data held until next falling SCLK
-						edge
MOSI Hold Time	t _{hold-MOSI}	25			ns	Amount of time data is valid after
MOCL Catura Time a	±	25				SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	25			ns	From data valid to SCLK rising edge
SPI Time Between	+	5				From rising SCLK for last bit of the
Write Commands	t _{sww}	5			μs	first data byte, to rising SCLK for last bit of the second data byte
SPI Time Between						From rising SCLK for last bit of the
Write and Read	t _{swr}	5			μs	first data byte, to rising SCLK for last
Commands	CSWR	5			μ3	bit of the second address byte
Communas						From rising SCLK for last bit of the
SPI Time Between	t _{srw}					first data byte, to falling SCLK for
Read and Subsequent	t _{SRR}	2			μs	the first bit of the address byte of
Commands	-5/(1/					the next command
						From rising SCLK for last bit of the
SPI Read Address-Data	t _{srad}	2			μs	address byte, to falling SCLK for first
Delay						bit of data being read
NCS Inactive After		500				Minimum NCS inactive time after
Motion Burst	t _{BEXIT}	500			ns	motion burst before next SPI usage
NCC T. CCLV A. I'		120				From last NCS falling edge to first
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	SCLK rising edge
SCLK To NCS Inactive						From last SCLK rising edge to NCS
(For Read Operation)	t _{SCLK-NCS}	120			ns	rising edge, for valid MISO data
(101 Nead Operation)						transfer

Version 1.2 | 15 Nov 2022 | 1A015EN

Optical Gaming Navigation Chip

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
SCLK To NCS Inactive (For Write Operation)	t _{sclk-NCs}	1			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high- Z state
MOTION Rise Time	t _{r-MOTION}		300		ns	$C_L = 20pF$
MOTION Fall Time	t _{f-MOTION}		300		ns	$C_L = 20pF$
Input Capacitance	C _{in}		10		рF	SCLK, MOSI, NCS
Load Capacitance	C_L			20	рF	MISO, MOTION
Transient Supply	I _{DDT}			70	mA	Maximum supply current during the supply ramp from 0V to VDD with minimum 150 μs and maximum 20ms rise time. (Does not include charging currents for bypass capacitors)
Transient Supply Current	I _{DDTIO}			60	mA	Maximum supply current during the supply ramp from 0V to VDDIO with minimum 150 μs and maximum 20ms rise time. (Does not include charging currents for bypass capacitors)

2.5 DC Electrical Specifications

Table 5. DC Electrical Specifications

Chip electrical characteristics over recommended operating conditions. Typical values are at 25° C, VDD = 1.9V, VDDIO = 1.9V, and with LED current at 50mA.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
DC Supply Current (High Performance Mode)	IDD _{RUN} IDD _{REST1} IDD _{REST2} IDD _{REST3}		1.7 580 11 6		mA μA μA μA	 Up to 200ips IDD_{RUN}: Average current consumption, including LED current with 1ms polling IDD_{REST}: Average current consumption, including LED current
DC Supply Current (Low Power Mode)	IDD _{RUN} IDD _{REST1} IDD _{REST2} IDD _{REST3}		1.3 580 11 6		mA μA μA μA	 Up to 200ips IDD_{RUN}: Average current consumption, including LED current with 1ms polling IDD_{REST}: Average current consumption, including LED current
DC Supply Current (Corded Gaming Mode)	IDD _{RUN}		10		mA	Up to 650ips IDD _{RUN} : Average current consumption, including LED current with 0.125ms polling
DC Supply Current (Office Mode)	IDD _{RUN} *1 IDD _{RUN} *2 IDD _{REST1} IDD _{REST2} IDD _{REST3}		0.6 0.4 70 11 6		mA mA μA μA	 IDD_{RUN}: Average current consumption, including LED current with 8ms polling IDD_{RUN}*1: Up to 200ips IDD_{RUN}*2: Up to 30ips IDD_{REST}: Average current consumption, including LED current
Shutdown Current	I _{PD}		4		μΑ	
Input Low Voltage	V _{IL}			0.3xVDDIO	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7xVDDIO			V	SCLK, MOSI, NCS
Input Hysteresis	V _{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current	l _{leak}		±1	±10	μΑ	V _{in} =VDDIO or 0V, SCLK, MOSI, NCS
Output Low Voltage	V _{OL}			0.45	V	I _{out} = 1mA for MISO I _{out} = 0.1mA for MOTION
Output High Voltage	V _{OH}	VDDIO-0.45			V	I_{out} = -1mA for MISO I_{out} = -0.1mA for MOTION

3.0 Mechanical Specification

This section covers chip's guidelines and recommendations in term of chip, lens & PCB assemblies.

3.1 Chip Package Dimension

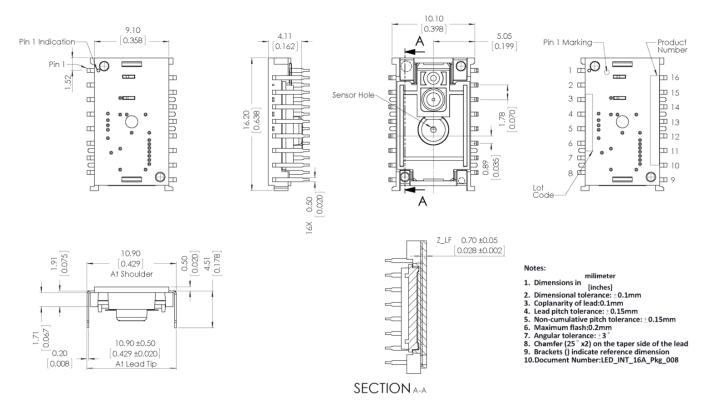


Figure 3. Packages Outline Drawing

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

3.2 Package Marking

Table 6. Package Marking Description

Items	Marking	Remark
Product Number	PAW3395DM-T6QU	
Lot Code	AYWWXXXX	A: Assembly house Y: Year WW: Week XXXXX: PixArt reference

3.3 Chip Assembly Drawing

It is highly recommended to follow the chip orientation in Figure 4 to achieve optimum tracking performance.



Figure 4. Recommended Chip Orientation, Mechanical Cutouts and Spacing (Top View)

3.4 Lens Assembly Drawing

3.4.1 Assembly with LM19-LSI Lens

Refer to the LM19-LSI lens datasheet for the detail.

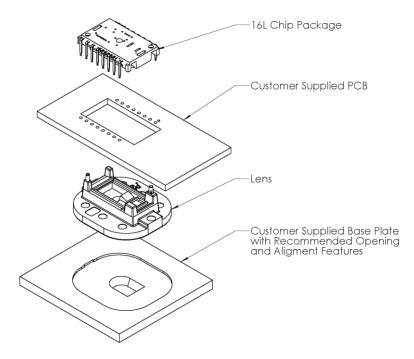


Figure 5. Exploded View of Assembly with LM19-LSI Lens

3.4.2 Assembly with LOAE-LSI1 Lens

Refer to the LOAE-LSI1 lens datasheet for the detail.

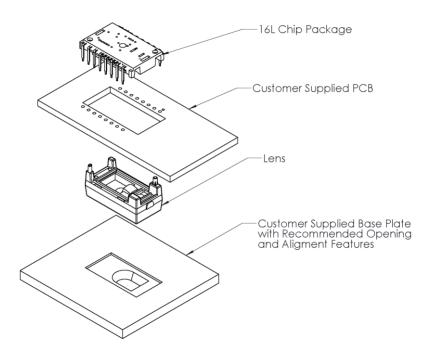
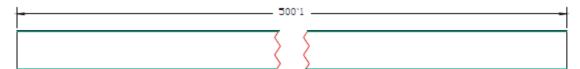


Figure 6. Exploded View of Assembly with LOAE-LSI1


3.5 PCB Assembly Recommendations

- 1. Insert the integrated chip and all other electrical components into PCB.
- 2. Wave-solder the entire assembly in a no-wash solder process utilizing solder-fixture. A solder-fixture is required to protect the chip from flux spray and wave solder paste.
- 3. Avoid getting any solder flux onto the chip body as there is potential for flux to seep into the chip package, the solder fixture must be designed to expose only the chip leads to flux spray & molten solder while shielding the chip body and optical apertures. The fixture must also set the chip at the correct position and height on the PCB.
- 4. Place the lens onto the base plate. Care must be taken to avoid contamination on the optical surfaces.
- 5. Remove the protective Kapton tapes from optical apertures of the chip. Care must be taken to prevent contaminants from entering the apertures. Do not place the PCB with the chip facing up during the entire mouse assembly process. Hold the PCB vertically when removing Kapton tape.
- 6. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The chip package will self-align to the lens via the guide posts. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 7. Recommendation: The lens can be permanently secured to the chip package by melting the lens' guide posts over the chip with heat staking process. Refer to Application Note titled "LM19-LSI Lens: PCB Assembly & Lens Heat Staking Recommendations" for details and recommendation on the lens heat staking process.
- 8. Install mouse top case. There must be a feature in the top case to press down onto the PCB assembly to ensure all components are stacked or interlocked to the correct vertical height.
- 9. It is recommended to place mouse feet around the base plate opening to stabilize mouse tracking on the surface.

3.6 Packing Information

Item	Description
Product number	PAW3395DM-T6QU
Package type	16L DIP
Quantity per tube	25 pcs
Inner box quantity	1,000 pcs
Shipping box quantity	12,000 pcs
Tube size	500 x 13.5 x 7.0 mm ³
Inner box size	89 x 540 x 58 mm ³
Shipping box size	310 x 560 x 270 mm ³

3.6.1 Packing Tube

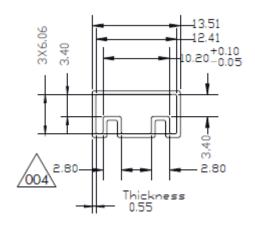


Figure 7. Packing Tube

3.7 Package Handling Information

3.7.1 Sample of Inner Box Label

3.7.2 Sample of Shipping Box Label

4.0 Reference Schematics

It is recommended not to leave the NRESET pin floating, it must be constantly driven by an output pin from the microcontroller to establish its state.

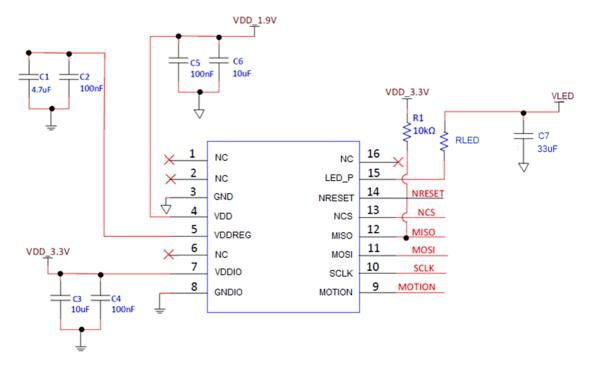


Figure 8. Reference Schematic Diagram

Table 7 shows the recommended value of R_{LED} and V_{LED} to obtain 50mA current for LED. Recommend to use R_{LED} with 1% tolerance.

Table 7. Recommended RLED

V _{LED} (V)	Recommended $R_{LED}(\Omega)$
1.9V	5.6
2.0V	6.8

Optical Gaming Navigation Chip

Revision History

Revision Number	Date	Description
1.2	15 Nov 2022	Initial Release