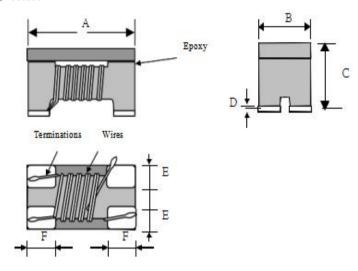


Power Inductors

Description

- Operating temperature:-25 $^{\circ}$ C ~+85 $^{\circ}$ C.
- RoHS compliant

Product Identification


<u>GCM</u>	<u>3225</u>	XXX	<u>2P</u>	I
(1)	2	3	4	(5)

- ① Series name
- 2 Shapes and Dimensions
- ③ Inductance Value
- 4 2-Line Common Mode Filter
- ⑤ Taping and Reel

Power Inductors

Dimensions-mm

Series	Α	В	С	D	E	F
GCM3225	3.2±0.2	2.5±0.2	2.2±0.2	0.2±0.1	0.8Тур	0.65Тур

Electrical Characteristics

Part Number	$Z(\Omega)$ Common Mode	DCR (mΩ)	Rated Current (A)	Rated Voltage	Insulation Resistance
	Impedance		(7	Vdc	IR
	at 100MHz,0.3V	Max	Max	(V)Typical	(MΩ)Min.
GCM3225-800-2P-T	80.0	150.0	2.0	50.0	10.0
GCM3225-601-2P-T	600. 0	250.0	1.0	50.0	10.0
GCM3225-102-2P-T	1000.0	350.0	1.2	50.0	10. 0
GCM3225-301-2P-T	300. 0	230. 0	2. 0	50.0	10.0

Notes:

- 1. All test data is referenced to 25 °C ambient
- 2. The part temperature (ambient + temp rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.