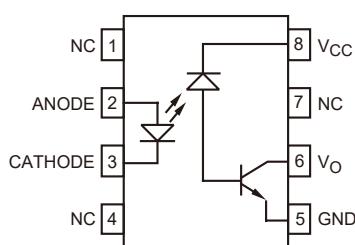


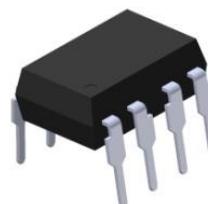
1. Description

HCPL4504 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate connection for the photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor. The devices are packaged in an 8-pin DIP package and available in wide-lead spacing and SMD option

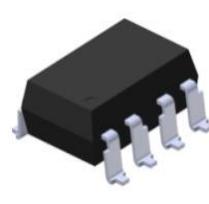

2. Applications

- Line receivers
- Telecommunication equipments
- Power transistor isolation in motor drives
- Replacement for low speed phototransistor photo couplers
- Feedback loop in switch-mode power supplies
- Home appliances
- High speed logic ground isolation

3. Features


- High speed 1Mbit/s
- High isolation voltage between input and output ($V_{iso}=5000$ Vrms)
- Guaranteed performance from 0°C to 70°C
- Wide operating temperature range of -55°C to 100°C
- Pb free and RoHS compliant

4. Pinning Information



Truth Table

LED	V _o
ON	LOW
OFF	HIGH

DIP-8

SOP- 8

5. Absolute Maximum Ratings $T_A = 25^\circ\text{C}$

Parameter		Symbol	Value	Units
Input	Forward current	I_F	25	mA
	Peak forward current (50% duty, 1ms P.W)	I_{FP}	50	mA
	Peak transient current ($\leq 1\mu\text{s}$ P.W,300pps)	I_{Ftrans}	1	A
	Reverse voltage	V_R	5	V
	Power dissipation	P_{IN}	45	mW
Output	Power dissipation ¹	P_o	100	mW
	Average Output current	$I_{O(AVG)}$	8	mA
	Peak Output current	$I_{O(PK)}$	16	mA
	Output voltage	V_o	-0.5 to 20	V
	Supply voltage	V_{CC}	-0.5 to 30	V
Total Power Dissipation		P_{TOT}	145	mW
Isolation Voltage ²		V_{ISO}	5000	V_{rms}
Operating Temperature		T_{OPR}	-55 to 100	$^\circ\text{C}$
Storage Temperature		T_{STG}	-55 to 125	$^\circ\text{C}$
Soldering Temperature ³		T_{SOL}	260	$^\circ\text{C}$

¹. Derate linearly above 70°C free-air temperature at a rate of $2.0 \text{ mW}/^\circ\text{C}$ (8-Pin DIP).

Derate linearly above 85°C free-air temperature at a rate of $2.3 \text{ mW}/^\circ\text{C}$ (SO-8).

². AC for 1 minute, R.H.=40 ~ 60% R.H. In this test, pins 1,2,3 & 4 are shorted together, and pins 5,6,7 & 8 are shorted together.

³. For 10 seconds.

6. Electrical Characteristics ($T_A=0$ to 70°C unless specified otherwise)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input						
Forward Voltage	V_F	$I_F=16\text{mA}$		1.45	1.7	V
Reverse Voltage	B_{VR}	$I_R=10\mu\text{A}$	5	20		V
Temperature coefficient of forward voltage	$\Delta V_F/\Delta T_A$	$I_F=16\text{mA}$		-1.6		$\text{mV}/^\circ\text{C}$
Output						
Logic High Supply Current ⁽¹⁾	I_{CCH}	$V_{CC}=15\text{V}$, $I_F=0\text{mA}$, $V_O=\text{Open}$			1	μA
		$T_A=0\text{~to~}70^\circ\text{C}$			2	μA
Logic Low Supply Current ⁽¹⁾	I_{CCL}	$V_{CC}=15\text{V}$, $I_F=16\text{mA}$, $V_O=\text{Open}$	50	200		μA
Transfer						
Logic High Output Current	I_{OH}	$I_F=0\text{mA}$, $V_O=V_{CC}=5.5\text{V}$		0.001	0.5	μA
		$I_F=0\text{mA}$, $V_O=V_{CC}=15\text{V}$		0.005	1	μA
		$T_A=0\text{~to~}70^\circ\text{C}$, $V_O=V_{CC}=15\text{V}$			50	μA
Logic Low Output Voltage	V_{OL}	$I_F=16\text{mA}$, $V_{CC}=4.5\text{V}$, $I_O=2.4\text{mA}$		0.1	0.4	V
Current Transfer Ratio ⁽²⁾	CTR	$I_F=16\text{mA}$, $V_{CC}=4.5\text{V}$, $I_O=0.4\text{V}$	26	33	60	%
Isolation Voltage ⁽³⁾⁽⁴⁾⁽⁵⁾	V_{ISO}	$RH<50\%$, $T_A=25^\circ\text{C}$, $I_{I-O}\leq 50\mu\text{A}$	5000			V_{RMS}

7. Switching Characteristics

($T_A=0$ to 70°C unless specified otherwise, $I_F=16\text{mA}$, $V_{CC}=5\text{V}$)

Parameter	Symbol	Conditions		Min	Typ	Max	Units
Propagation Delay Time to Logic Low ⁽⁶⁾	T_{PLH}	$I_F=16\text{mA}$, $R_L=4.1\text{k}\Omega$			1300	1500	ns
		$I_F=16\text{mA}$, $R_L=1.9\text{k}\Omega$			600	800	ns
Propagation Delay Time to Logic ⁽⁷⁾	T_{PHL}	$I_F=16\text{mA}$, $R_L=4.1\text{k}\Omega$			200	1500	ns
		$I_F=16\text{mA}$, $R_L=1.9\text{k}\Omega$			200	800	ns
Common Mode Transient Immunity at Logic High ⁽⁶⁾⁽⁷⁾⁽⁸⁾⁽⁹⁾	$ CM_H $	$R_L=4.1\text{k}\Omega$	$T_A=25^\circ\text{C}$, $I_F=0\text{mA}$, $C_L=15\text{pF}$		10000		$\text{V}/\mu\text{s}$
Common Mode Transient Immunity at Logic Low ⁽⁶⁾⁽⁷⁾⁽⁸⁾⁽⁹⁾	$ CM_L $	$R_L=4.1\text{k}\Omega$	$T_A=25^\circ\text{C}$, $I_F=16\text{mA}$		10000		$\text{V}/\mu\text{s}$
		$R_L=1.9\text{k}\Omega$	$C_L=15\text{pF}$				

⁽¹⁾ Use of a 0.1 μF bypass capacitor connected between Pins 5 and 8 is recommended.

⁽²⁾ CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_O , to the forward LED input current, I_F , times 100.

⁽³⁾ Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.

⁽⁴⁾ In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500\text{ V rms}$ for 1 second (leakage detection current limit, $I_{lo} \leq 5\text{ }\mu\text{A}$).

⁽⁵⁾ This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable.

⁽⁶⁾ The 1.9 $\text{k}\Omega$ load represents 1 TTL unit load of 1.6 mA and the 5.6 $\text{k}\Omega$ pull-up resistor.

⁽⁷⁾ The $R_L = 20\text{ k}\Omega$, $C_L = 100\text{ pF}$ load represents an IPM (Intelligent Power Module) load.

⁽⁸⁾ Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e., $V_O > 2.0\text{ V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a Logic Low state (i.e., $V_O < 0.8\text{ V}$).

⁽⁹⁾ Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable dV_{CM}/dt on the leading edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e., $V_O > 3.0\text{ V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a Logic Low state (i.e., $V_O < 1.0\text{ V}$).

8.Typical Characteristic

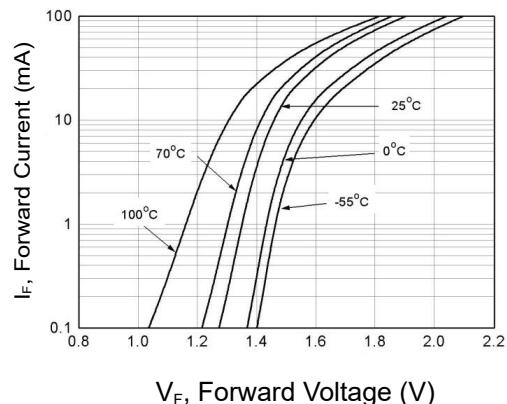


Figure 1: Forward Current vs. Forward Voltage

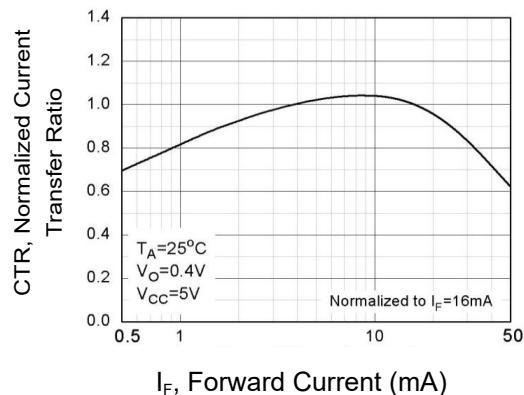


Figure 2: Normalized Current Transfer Ratio vs. Forward Current

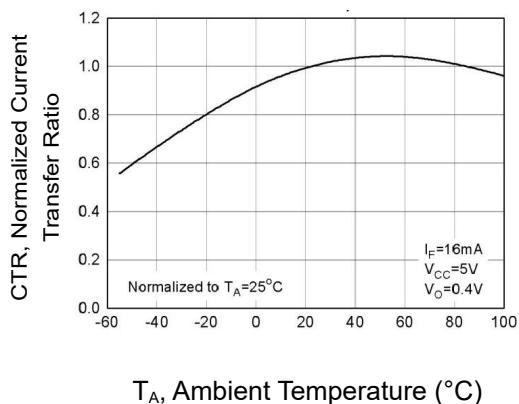
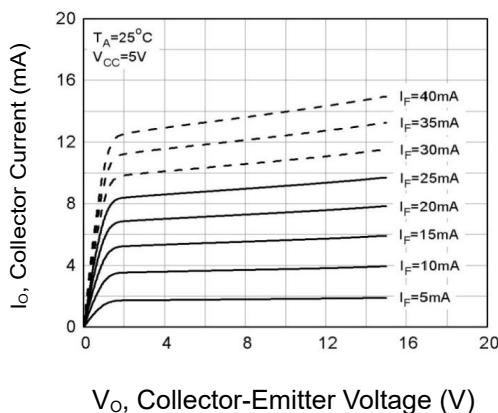


T_A, Ambient Temperature (°C)V_O, Collector-Emitter Voltage (V)

Figure 3: Normalized Current Transfer Ratio vs. Ambient Temperature

Figure 4: Output Current vs Output Voltage

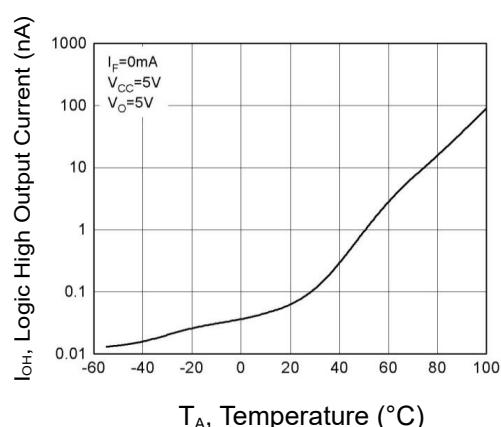

T_A, Temperature (°C)

Figure 5: Logic High Output Current vs. Temperature

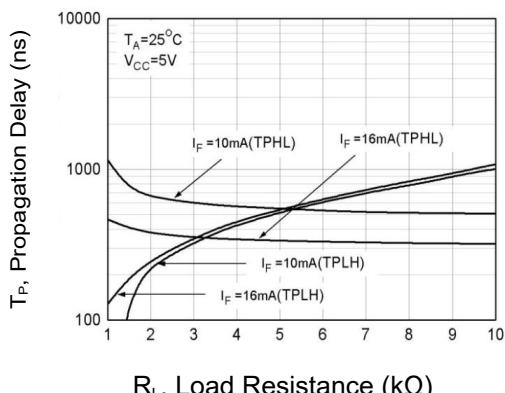

R_L, Load Resistance (kΩ)

Figure 6: Propagation Delay vs. Load Resistance

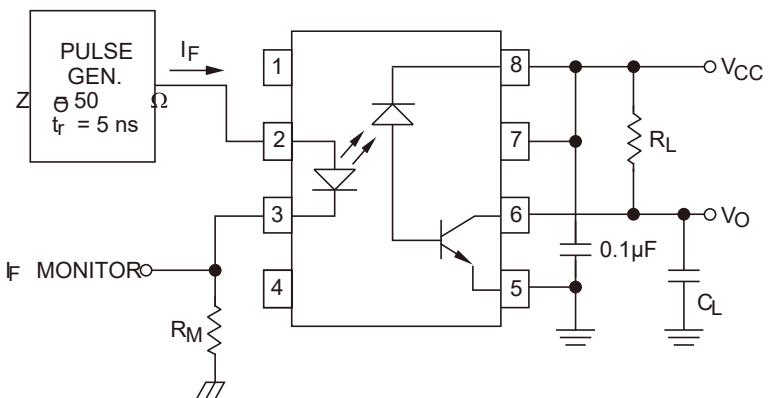
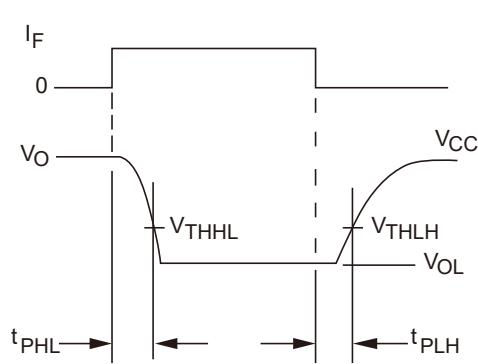



Figure 6: Switching Test Circuit

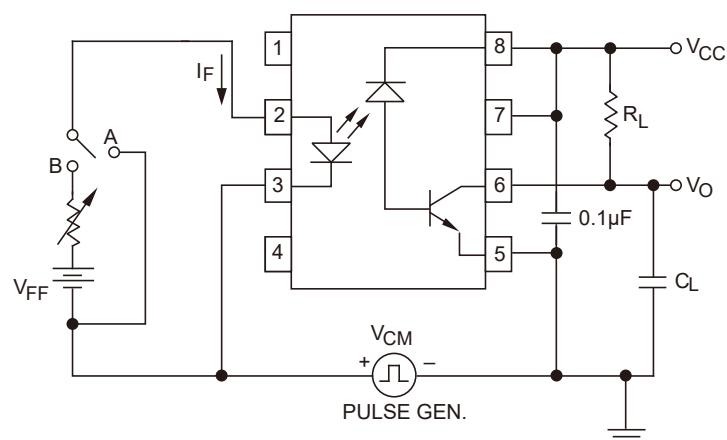
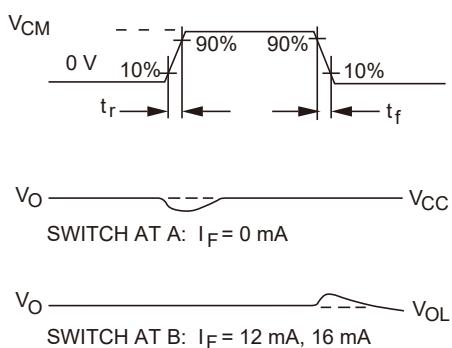
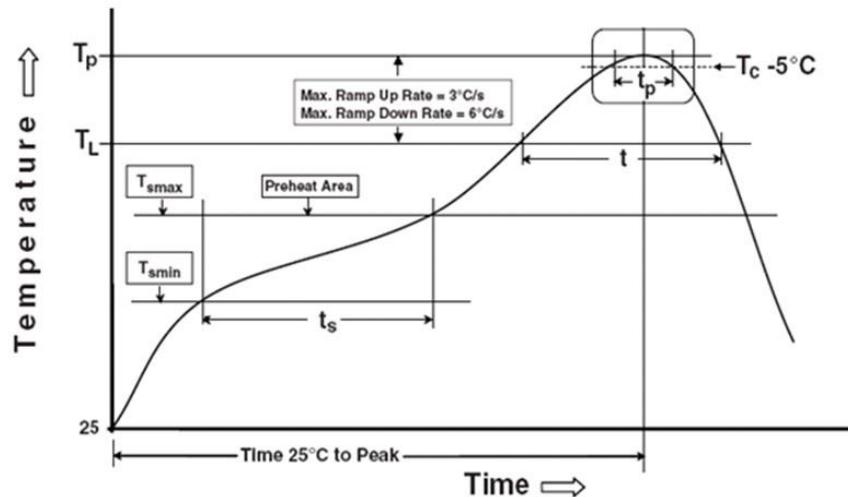
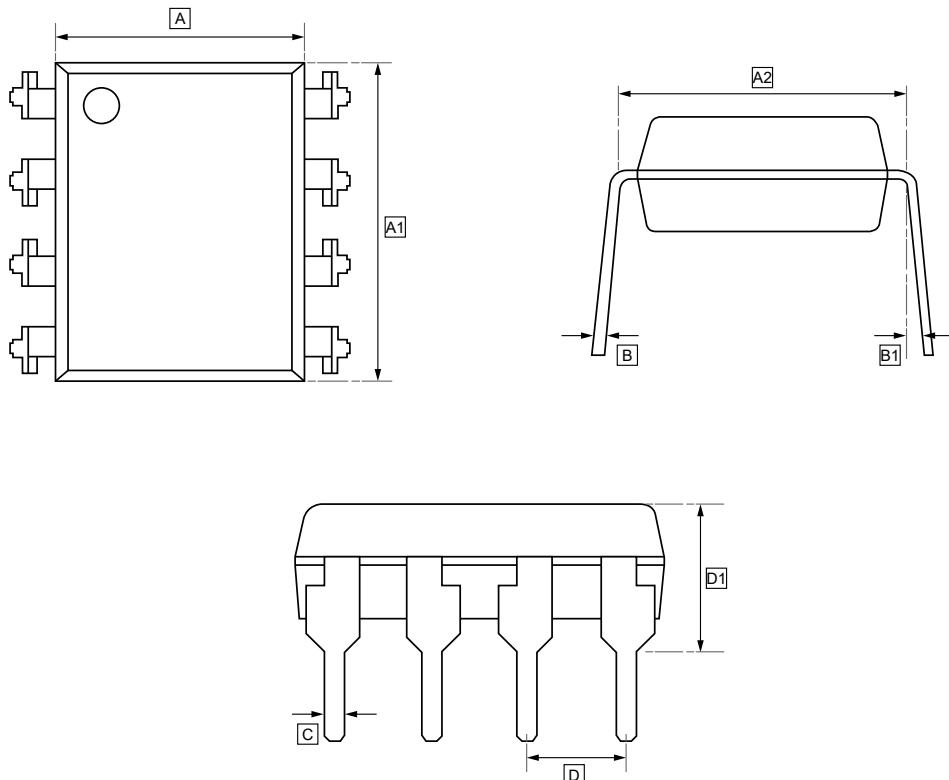




Figure 7: Test Circuit for Transient Immunity and Typical Waveforms

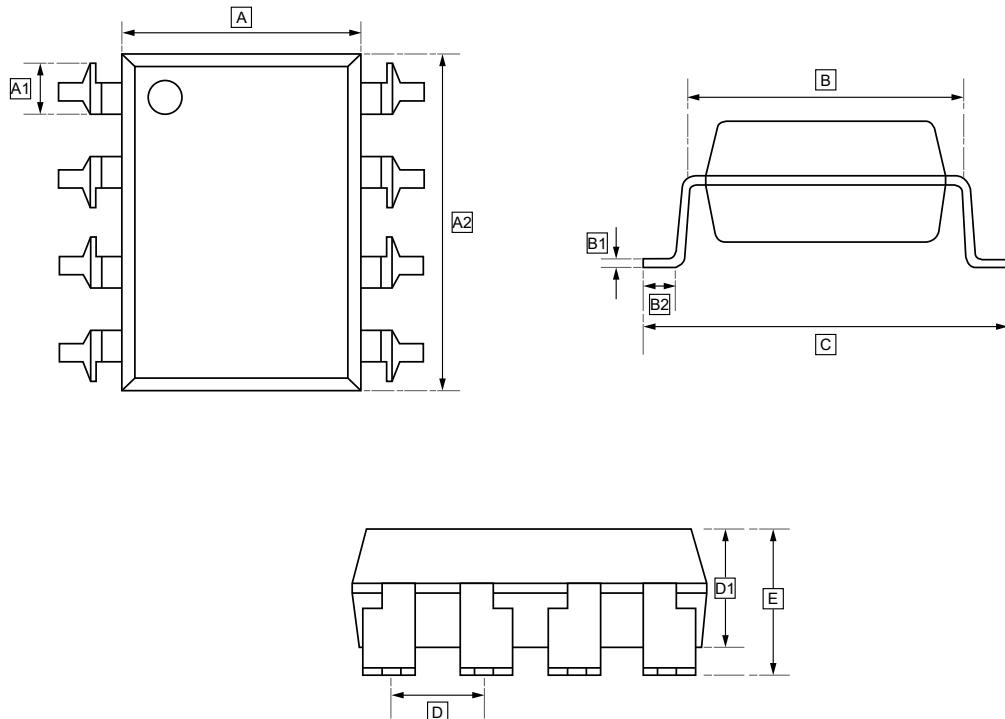
11. Precautions for Use


1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Preheat	
Temperature min (T_{smin})	150°C
Temperature max (T_{smax})	200°C
Time (T_{smin} to T_{smax}) (t_s)	60-120 seconds
Average ramp-up rate (T_{smax} to T_p)	3°C/second max
Other	
Liquidus Temperature (T_L)	216°C
Time above Liquidus Temperature (t_L)	60-100 sec
Peak Temperature (T_p)	260°C
Time within 5°C of Actual Peak Temperature: $T_p - 5°C$	30s
Ramp- Down Rate from Peak Temperature	6°C /second max
Time 25°C to peak temperature	8 minutes max
Reflow times	3 times

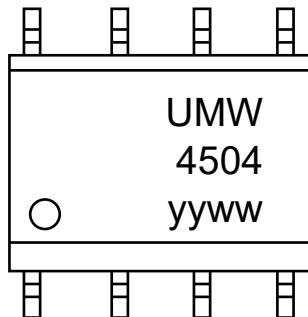
12.1 DIP-8 Package Outline Dimensions



DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	B	B1	C	D	D1
Min	6.30	9.46	7.62	0.25	5°	0.40	2.54	4.20
Max	6.90	10.06			15°	0.60	TYP.	4.80

12.2 SOP-8 Package Outline Dimensions



DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	B	B1	B2	C	D	D1	E
Min	6.30	1.45	9.46	7.62	0.25	0.6	-	2.54	3.20	4.00
Max	6.90		10.06	TYP		-	10.3	TYP	3.80	4.60

13.Ordering Information

yy: Year Code

ww: Week Code

Order Code	Marking	Package	Base QTY	Delivery Mode
UMW HCPL-4504-000E	4504	DIP-8	2250	Tube and box
UMW HCPL-4504-500E	4504	SOP-8	1000	Tape and reel

14.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.