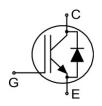
BKW65N050HS1 650V 50A Trench FS IGBT

Description

The BKW65N050HS1 is a Trench FS IGBT utilizing bestirpower's advanced technology, which achieves an exceptionally low gate charge.

Itachieves significantly higher efficiency through optimized gate charge management, while its user-friendly design offers designers advantages such as low EMI and reduced switching losses.

VCE	I _{C (TC = 100°C)}	V_{CEsat}	$Q_{g,typ}$	
650 V	50 A	1.4 V	135 nC	


Applications

- · Resonant converters
- · Uninterruptible power supplies
- · Welding converters

Features

- Maximum junction temperature T_{J max} = 175°C
- Low saturation voltage V_{CEsat} = 1.4 V at T_J = 25°C V_{CEsat} is a positive temperature coefficient, suitable for parallel applications

Absolute Maximum Ratings

Symbol	Parameter		Value max	Unit	Note
V_{CE}	Collector-emitter voltage (T _J ≥ 25 °C)		650	V	
V_{GE}	Gate-emitter voltage	Gate-emitter voltage		V	
	DC collector current limited by T	T _C = 25°C	80	Α	
IC	I _C DC collector current, limited by T _{J max}	T _C = 100°C	50	Α	
I _{C,pulse}	Pulsed collector current, t _p limited by T _{J m}	200	Α		
l _E	Diada famusand assumant limited by T	T _C = 25°C	80	Α	
IF	Diode forward current, limited by T _{J max}	T _C = 100°C	50	Α	
I _{F,pulse}	Diode pulsed current, t _p limited by T _{J max}	Diode pulsed current, t _p limited by T _{J max}		Α	
P _{tot}	Power Dissipation	T _C = 25°C	403	W	F: 0
rtot	Power Dissipation	T _C = 100°C	161	VV	Fig.8
TJ	Junction temperature range		-40 ~ 175	°C	
T _{STG}	Storage temperature range		-40 ~ 150	°C	

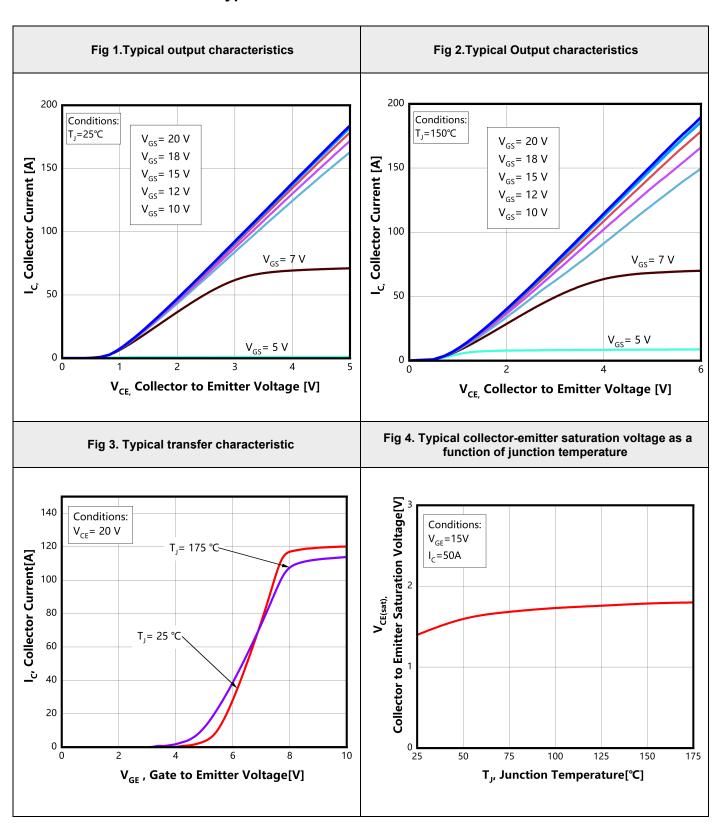
Thermal Resistance

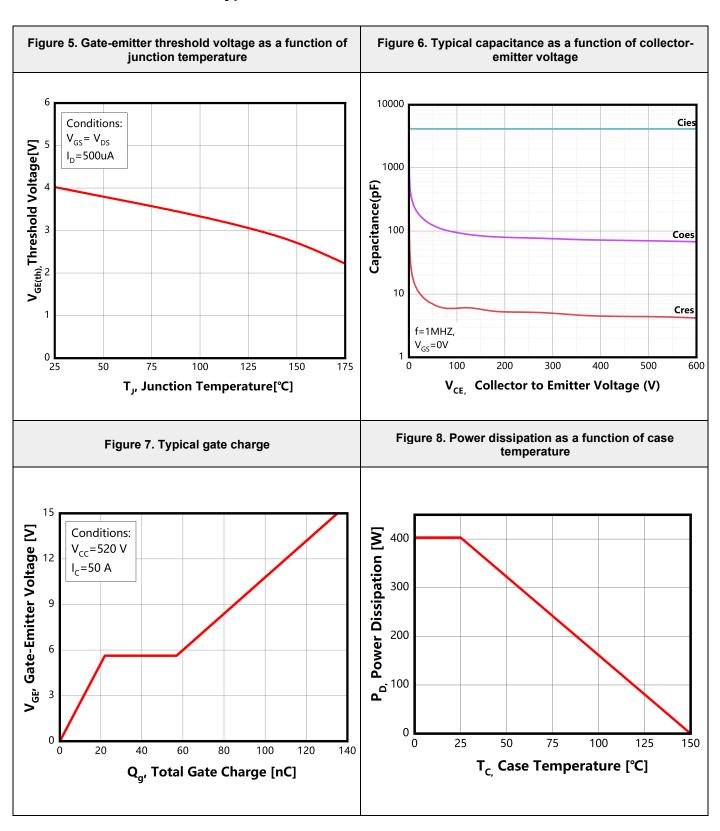
Symbol	Parameter	Value	Unit
R _{thJC}	IGBT thermal resistance, junction-case	0.35	°C/W
R _{thJC}	Diode thermal resistance, junction-case	1.57	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	31.42	°C/W
T _{sold}	Soldering temperature, wave soldering only allowed at leads	260	℃

BKW65N050HS1 650V 50A Trench FS IGBT

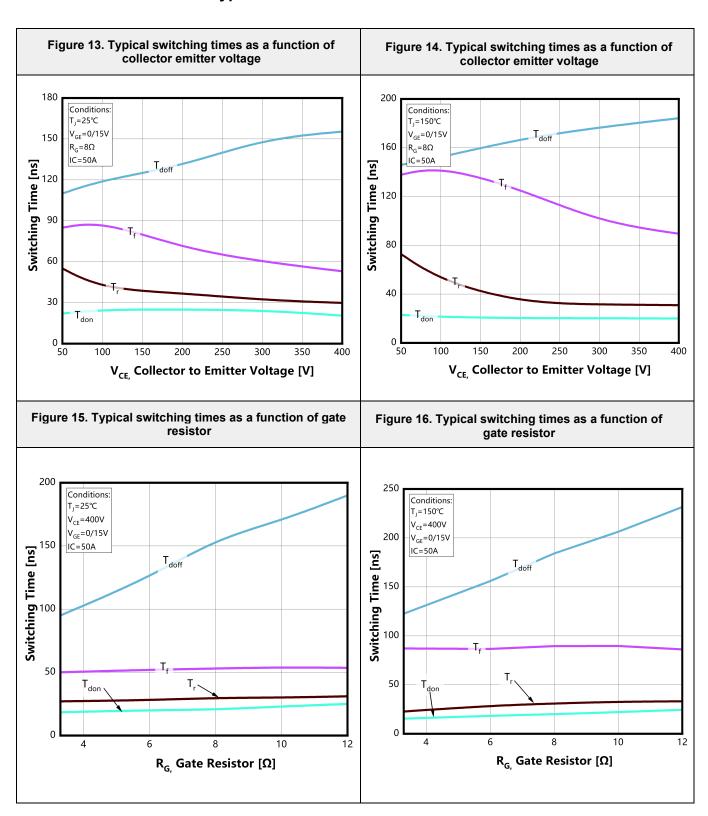
Electrical Characteristics (T_J= 25°C unless otherwise noted)

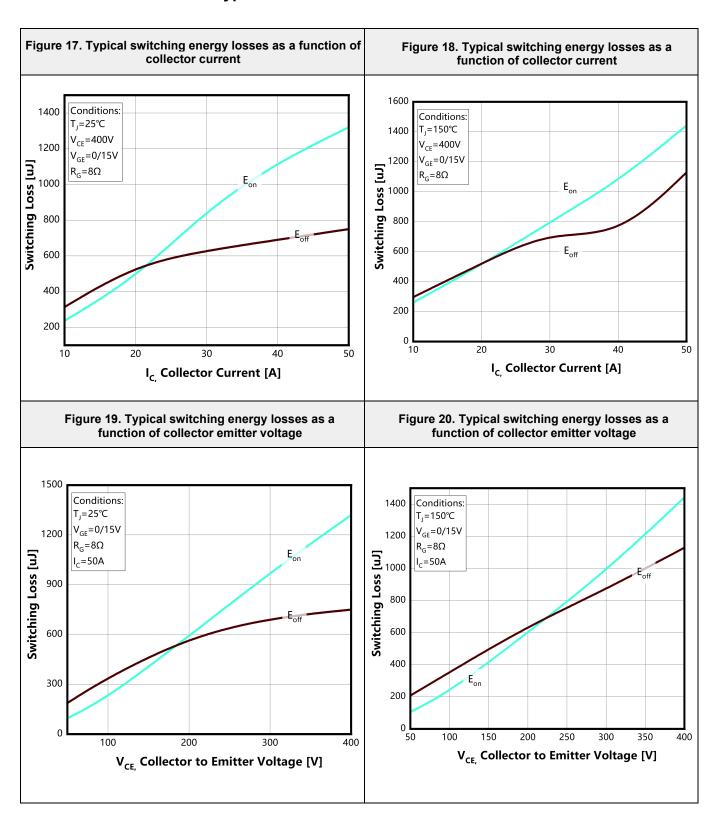
Symbol	Parameter	Test C	onditions	Min	Тур	Max	Unit	Note
Statistic (Characteristics							
V _(BR) CES	Collector-emitter Breakdown Voltage	V _{GE} =0V, I _C =200μA		650	-	-	٧	
Ices	Collector Cut-off Current	V _{CE} =650V, V _{GS} =0V		-	-	50	μA	
I _{GES}	Gate-emitter Leakage Current	V _{GE} =±20V, V	GE=0V	-	-	±100	nA	
V _{GE(TH)}	Gate Threshold Voltage	Vce=Vge, Ic=500µA		3.2	4.0	4.8	V	Fig.5
.,		V _{GE} =15V	T _J =25°C	-	1.4	1.75	V	
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage		T _J =150°C	-	1.8	-		Fig.4
Dynamic	Characteristics							
Cies	Input Capacitance		-	4146	-			
Coes	Output Capacitance	Vce=25V, Vc f=1MHz	GE=UV,	-	166	-	pF	Fig.6
Cres	Reverse Transfer Capacitance	1-11/11/12		-	9.7	-		
Switching	Parameters							
	Turn-on Delay Time		T _J =25°C	-	20.5	-	ns	Fig 20
$t_{d(on)}$			T _J =150°C	-	20	-	ns	Fig.23
			TJ=25°C	-	29.8	-	ns	
t _r	Rise Time		T _J =150°C	-	31	-	ns	Fig.23
			TJ=25°C	-	155.4	-	ns	
$t_{d(off)}$	Turn-off Delay Time	V _{CE} =400V, T _J =150°C	-	184.2	-	ns	Fig.23	
		I_{DC} =50A, R _G =8 Ω , V _{GE} =0/+15V	TJ=25°C	-	52	-	ns	
t _f	Fall Time	VGE-0/ · 10 V	T _J =150°C	-	90	-	ns	Fig.23
			TJ=25°C	-	1.3	-	mJ	
Eon	Turn-on Switching Energy		T _J =150°C	-	1.44	-	mJ	Fig.24
			TJ=25°C	-	0.75	-	mJ	
E _{off}	Turn-off Switching Energy		T _J =150°C	_	1.13	-	mJ	Fig.24
T _{rr}	Diode Reverse Recovery Time			_	73.8	-	ns	
	·	V_R =400V, R_G =3.3 Ω , I_F =50A, di/dt=400A/ μ s						
Q _{rr}	Diode Reverse Recovery Charge			-	0.95	-	uC	
I _{rrm}	Diode Peak Reverse Recovery Current			-	19	-	Α	
	•							

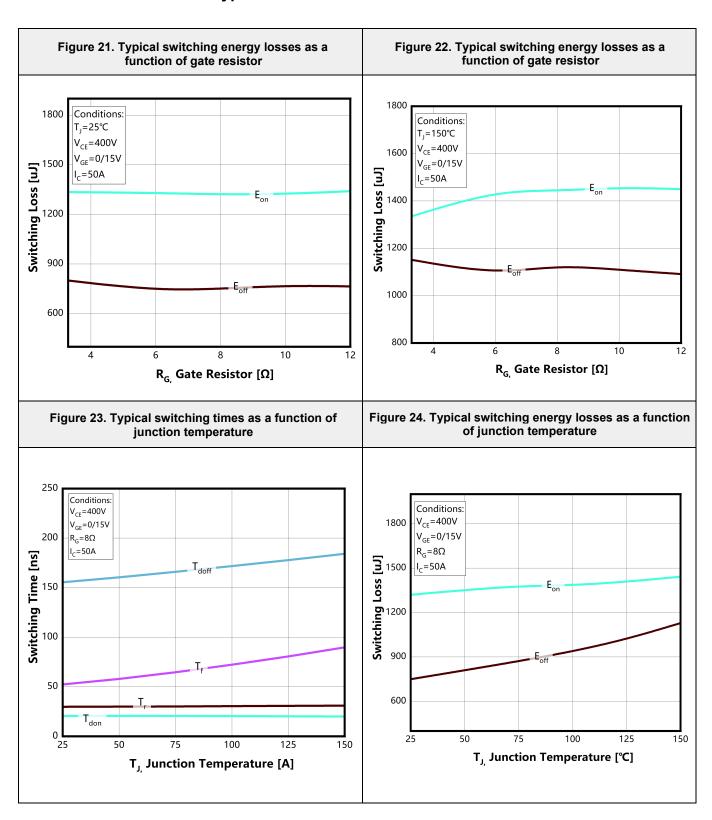

BKW65N050HS1 650V 50A Trench FS IGBT

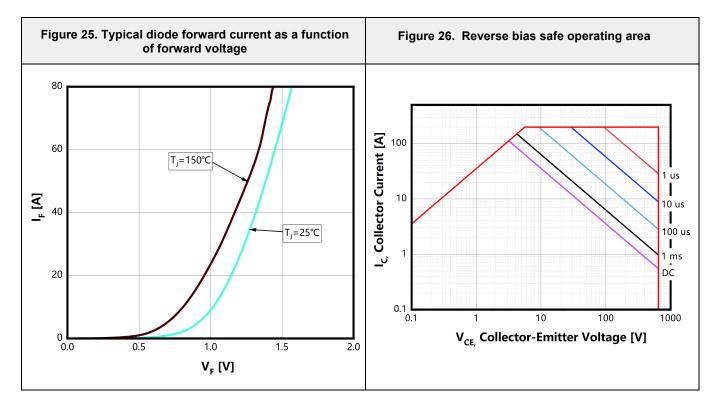

Gate Charge Characteristics

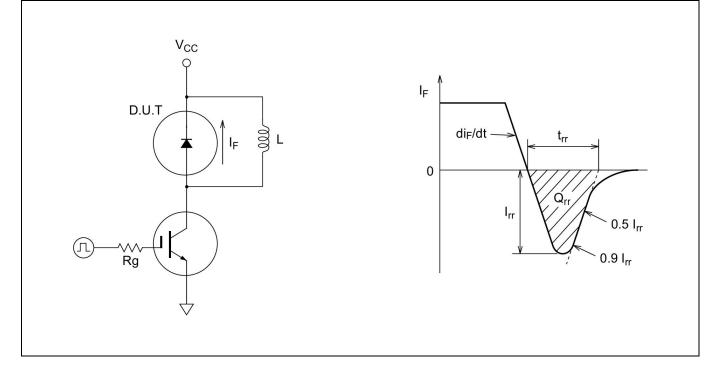
Qg	Gate Charge Total	V _{CC} =520V, I _C =50A V _{GE} =0 to 15V	-	135	-		
Q_{gc}	Gate-emitter charge		-	22	-	nC	Fig.7
Q _{ge}	Gate-collector charge		-	35	-		





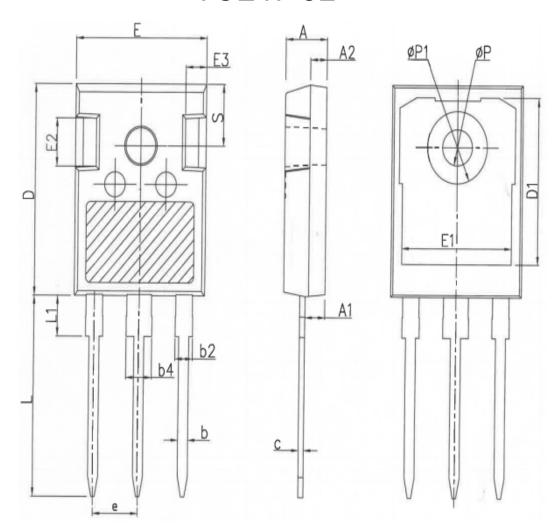






Diode clamp

Diode


Figure 28. Reverse recovery time test circuit and waveforms

Package Outlines

TO247-3L

	COMMON	DIMENSI	ONS		
SYMBOL	tun				
SINDOL	MIN	NOM	MAX		
A	4.80	5.00	5, 20		
A1	2.21	2.41	2.59		
A2	1.85	2.00	2. 15		
b	1.11	1.21	1.36		
b2	1.91	2.01	2. 21		
b4	2.91	3.01	3. 21		
С	0.51	0.61	0.75		
D	20.70	21.00	21.30		
DI	16. 25	16.55	16.85		
E	15. 50	15.80	16.10		
E1	13.00	13.30	13.60		
E2	4.80	5.00	5. 20		
E3	2.30	2.50	2.70		
e		5. 44BSC			
L	19.62	19.92	20. 22		
L1	-	-	4. 30		
ФР	3.40	3.60	3.80		
ФР1	-	-	7.30		
S	100	6. 15BSC			

^{*} Dimensions in millimeters

Package Marking and Ordering Information

Part Number	Top Marking	Top Marking Package Package		Quantity
BKW65N050HS1	BKW65N050HS1	TO247-3L	Tube	50 units

Disclaimer

Bestirpower reserve the right to make changes, corrections, enhancements, modifications, and improvements to Bestirpower products and/or to this document at any time without notice.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Bestirpower does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.

This document is the property of Bestirpower Co,. LTD., and not allowed to copy or transformed to other format if not under the authority approval.

© 2025 bestirpower - All rights Reserved