

Hex Buffer(Open Drain)

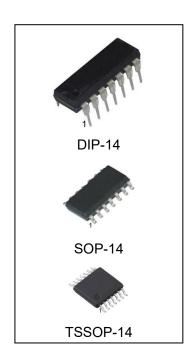
Features

HIGH SPEED:

 t_{PD} = 6ns (TYP.) at V_{CC} = 6V

• LOW POWER DISSIPATION:

 $I_{CC} = 1\mu A(MAX.)$ at $T_A=25$ °C


• HIGH NOISE IMMUNITY:

 $V_{NIH} = V_{NIL} = 28 \% V_{CC} (MIN.)$

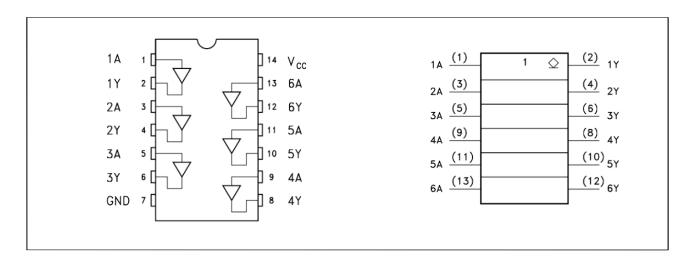
• WIDE OPERATING VOLTAGE RANGE:

 V_{CC} (OPR) = 2V to 6V

PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 07

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
HG74HC07N	DIP-14	HG74HC07	TUBE	1000pcs/box
HG74HC07M/TR	SOP-14	HG74HC07	REEL	2500pcs/reel
HG74HC07MT/TR	TSSOP-14	H74HC07	REEL	2500pcs/reel


DeScription

The HG74HC07 is an high speed CMOS HEX OPEN DRAIN BUFFER fabricated with silicon gate C²MOS technology.

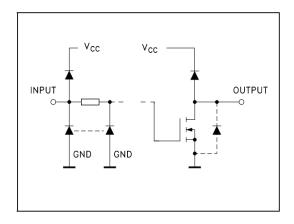
The internal circuit is composed of 2 stages including buffer output, which enables high noise immunity and stable output.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Pin Connection And lec Logic Symbols

Pin Description

PIN No	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9,11,13	1A to 6A	Data Inputs
2, 4, 6, 8,10,12	1Y to 6Y	Data Outputs
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage


Truth Table

A	Y
L	L
Н	Z

ZZ:High Impedance

Input And Output Equivalent Circuit

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to VCC + 0.5	V
Vo	DC Output Voltage	-0.5 to VCC + 0.5	V
ΙΚ	DC Input Diode Current	20	mA
lok	DC Output Diode Current	20	mA
IO	DC Output Current	25	mA
I _{CC} or I _{GND}	DC VCC or Ground Current	50	mA
PD	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10s)	260	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

(*) 500mW at 65°C; derate to 300mW by 10mW/°C from 65°Cto 85°C

Recommended Opera Ting Conditions

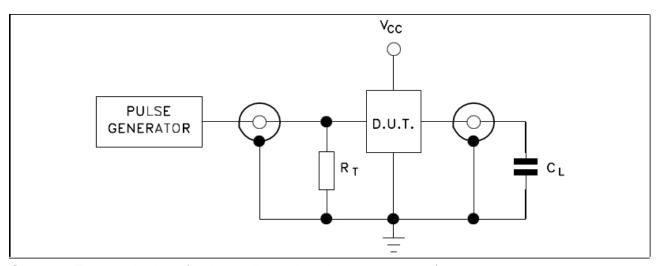
Symbol	Parameter		Value	Unit
Vcc	Supply Voltage		2 to 6	٧
VI	Input Voltage		0 to VCC	٧
Vo	Output Voltage	0 to VCC	V	
Top	Operating Temperature		-40 to 85	°C
		VCC = 2.0V	0 to 1000	ns
t _r , t _f	Input Rise and Fall Time	V _C C = 4.5V	0 to 500	ns
		0 to 400	ns	

Dc Specifications

		Те	st Condition			Value			
Symbol	Parameter	V _{CC(V)}			TA = 25°C		-40 to	85°C	Unit
		*CC(V)		Min	Тур	Max	Min	Max	
	VIH High Level Input Voltage	2.0		1.5			1.5		
VIH		4.5		3.15			3.15		V
Voltage	Voltage	6.0		4.2			4.2		
Low Lovel Input	2.0				0.5		0.5		
VIL	Low Level Input IL Voltage	4.5				1.35		1.35	V
Voltage	Voltage	6.0				1.8		1.8	
		2.0	IO=20μA		0.0	0.1		0.1	
		4.5	ΙΟ=20μΑ		0.0	0.1		0.1	
VOL	Low Level Output Voltage	6.0	IO=20μA		0.0	0.1		0.1	V
	Voltage	4.5	IO=4.0 mA		0.17	0.26		0.33	
		6.0	IO=5.2 mA		0.18	0.26		0.33	
lį	Input Leakage Current	6.0	VI=VCC or GND			0.1		1	μA
loz	Output Leakage Current	6.0	VI = VIH or VILVO=VCC or			0.5		5	μA
lcc	Quiescent Supply Current	6.0	V _I = V _C C or GND			1		10	μA

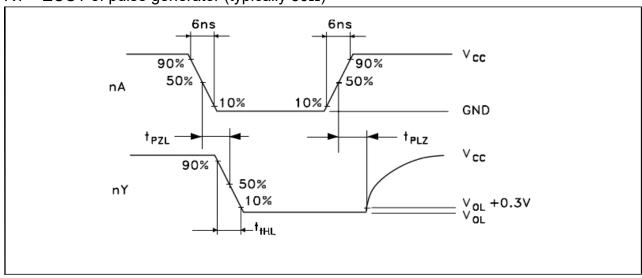
AC Electrical Characteristics(CL=5pF,Input tr=tf=6ns)

		Tes	st Condition			Value				
Symbol	Parameter	Vocan			TA = 25°0		-40 to	85°C	Unit	
		VCC(V)		Min.	Тур.	Max.	Min.	Max.		
	t _{THL} Output Transition Time	2.0			30	75		95		
tTHL			4.5			8	15		19	ns
		6.0			7	13		16		
		2.0			10	90		115		
tPLZ	Propagation Delay	4.5	$R_L = 1 K\Omega$		7	18		23	ns	
	Timo	6.0			6	15		20		
		2.0			17	90		115		
tPZL Propagation Delay Time	4.5	RL = 1 KΩ		7	18		23	ns		
	11110	6.0			5	15		20		



Capacitive Charactristics

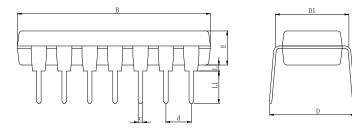
		Test Condition								
Symbol	Parameter	V _{CC} (V)			Т	T _A = 25°C			-40 to 85°C	
		*CC(V)		Min.	Тур.	Max.	Min.	Max.		
C _{IN}	Input Capacitance	5.0				5	10		10	pF
COUT	Output Capacitance	5.0				3				pF
CPD	Power Dissipation Capacitance (note1)	5.0				4				pF

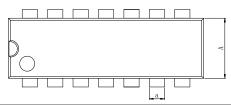

 C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/6$ (per gate)

Test Circuit

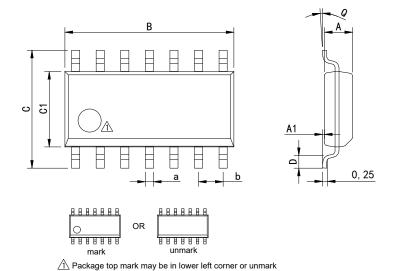
CL = 50pF or equivalent (includes jig and probe capacitance)

RT = ZOUT of pulse generator (typically 50Ω)

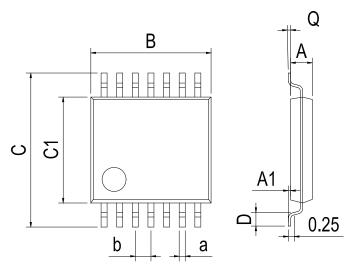



WAVEFORM:PROPAGA TION DELAY TIME(f=1MHz;50% duty cycle)

Physical Dimensions


DIP-14

Dimensions In Millimeters(DIP-14)											
Symbol:	Α	В	D	D1	Е	L	L1	а	С	d	
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.40	2.54.000	
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.50	2.54 BSC	


SOP-14

Dimensions In Millimeters(SOP-14)										
Symbol:	Α	A1	В	С	C1	D	Q	а	p	
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1 27 DCC	
Max:	1.55	0.20	8.95	6.20	4.00	0.80	8°	0.45	1.27 BSC	

TSSOP-14

Dimensions In Millimeters(TSSOP-14)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC	
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 600	

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2019-3	New	1-9
V1.1	2023-9	Modify features ang descriptions、Update encapsulation type、Updated DIP-14 Physical dimension、Update Title	1、4、6
V1.2	2024-10	Update Lead Temperature	3
V1.3	2025-9	Update important statements、Update sop-14 Dimension drawing	6、9

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change products and services offered without prior notice. Customers should obtain the latest relevant information before placing orders and verify that such information is current and complete. Huaguan Semiconductor assumes no responsibility or liability for altered documents.

Customers are responsible for complying with safety standards and implementing safety measures when using Huaguan Semiconductor products in system design and end-product manufacturing. You assume full responsibility for: selecting the appropriate Huaguan Semiconductor products for your application; designing, validating, and testing your application; and ensuring that your application complies with applicable standards and all other safety, security, or other requirements. This is to prevent potential risks that may lead to personal injury or property damage.

Huaguan Semiconductor products are not approved for use in life support, military, aerospace, or other high-risk applications. Huaguan products are neither intended nor warranted for use in such systems or equipment. Any failure or malfunction may lead to personal injury or severe property damage. Such applications are deemed "Unsafe Use." Unsafe Use includes, but is not limited to: surgical and medical equipment, nuclear energy control equipment, aircraft or spacecraft instruments, control or operation of vehicle power, braking, or safety systems, traffic signal instruments, all types of safety devices, and any other applications intended to support or sustain life. Huaguan Semiconductor shall not be liable for consequences resulting from Unsafe Use in these fields. Users must independently evaluate and assume all risks. Any issues, liabilities, or losses arising from the use of products beyond their approved applications shall be solely borne by the user. Users may not claim any compensation from Huaguan Semiconductor based on these terms. If any third party claims against Huaguan Semiconductor due to such Unsafe Use, the user shall compensate Huaguan Semiconductor for all resulting damages and liabilities.

Huaguan Semiconductor provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources for its semiconductor products. However, no guarantee is made that these resources are free from defects, and no express or implied warranties are provided. The use of testing and other quality control techniques is limited to Huaguan Semiconductor's quality assurance scope. Not all parameters of each device are tested.

Huaguan Semiconductor's documentation authorizes you to use these resources only for developing applications related to the products described herein. You are not granted rights to any other intellectual property of Huaguan Semiconductor or any third party. Any other reproduction or display of these resources is strictly prohibited. You shall fully indemnify Huaguan Semiconductor and its agents against any claims, damages, costs, losses, and liabilities arising from your use of these resources. Huaguan Semiconductor shall not be held responsible.