

Description

PESD1IVN27-AX-JSM is a compact SOD-323 ESD diode,

designed for protecting circuits from voltage transients and ESD with low leakage and clamping voltage.

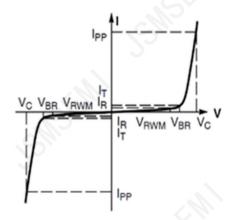
SOD-323

Features

- Ultra-low leakage (nA level)
- ◆ Low clamping voltage
- ◆ RoHS, REACH & SVHC, Halogen Compliant
- ◆ SOD-323 package; ±30kV ESD protection (IEC 61000-4-2)
- ◆ -40°C to +125°C operating temp range

Applications

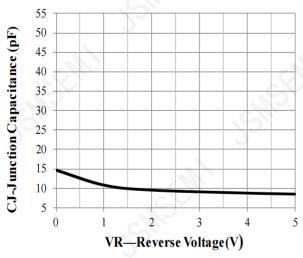
- Portable devices (smartphones, wearables)
- ◆ Consumer electronics (cameras, MP3)
- Communication modules (Bluetooth, Wi-Fi)


Maximum Ratings(TA=25°C)

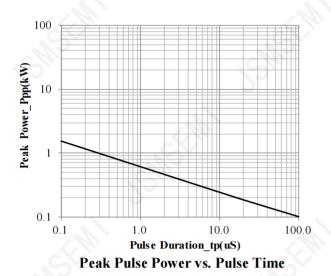
Parameter	Symbol	Value	Unit
Peak Pulse Power(8/20µs pulse)	Ppk	150	W
Peak Pulse Current(8/20µs pulse)	lpp	3	Α
ESD per IEC61000-4-2(Air) ESD per IEC61000-4-2(Contact)	VESD	±30 ±30	kV
Operating Temperature Range	Tj	-40 to+125	°C
Storage Temperature Range	Tstg	-55 to+150	°C

Partial Electronic Parameters

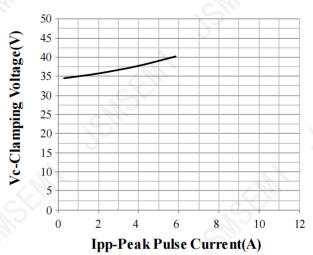
Symbol	Parameter			
VRWM	Peak Reverse Working Voltage			
IR	Reverse Leakage Current @VRWM			
VBR	Breakdown Voltage @ I⊤			
Іт	Test Current			
IPP	Maximum Reverse Peak Pulse Current			
Vc	Clamping Voltage @ IPP			



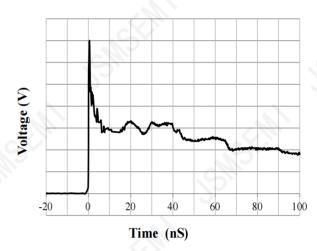
Electrical Characteristics(TA=25℃)


Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Reverse working voltage	V _{RWM}				27	٧
Breakdown voltage	V_{BR}	I _T =1mA	28	33.5	38	V
Reverse leakage curent	I _R	V _{RWM} =27V		<10	100	nA
Clamping voltage	Vc	lpp=1A(8/20μs)		35	38	V
Clamping voltage	Vc	Ipp=3A(8/20μs)		40	50	٧
Junction capacitance	Cj	V _R =0V,f=1MHz		15	20	pF

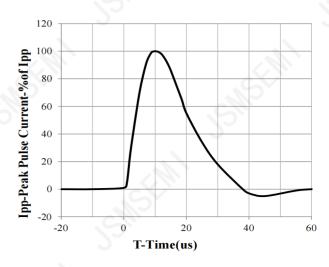
Typical Perfomance Characteristics(TA=25°Cunless otherwise Specified)



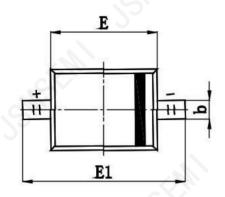
Junction Capacitance vs. Reverse Voltage

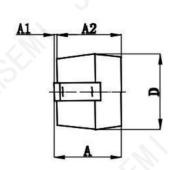


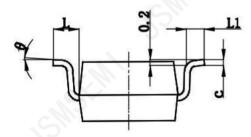
120 100 80 60 40 20 0 25 50 75 100 125 150 Ambient Temperature Ta(°C)


Power Derating Curve

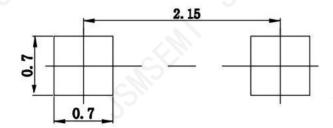
Clamping Voltage vs. Peak Pulse Current


IEC61000-4-2 Pulse Waveform




8 X 20us Pulse Waveform

SOD-323 Package Qutline Dimensions



Symbol -	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A		1.000)	0.039
A1	0.000	0.100	0.000	0.004
A2	0.800	0.900	0.031	0. 035
b	0. 250	0. 350	0.010	0.014
С	0.080	0.150	0.003	0.006
D	1. 200	1.400	0.047	0.055
E	1. 600	1.800	0.063	0.071
E1	2. 550	2.750	0.100	0.108
L	0.475 REF.		0.019 REF.	
L1	0. 250	0.400	0.010	0.016
θ	0°	8°	0°	8°

SOD-323 Suggested Pad Layout

Note:

- 1. Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

Revision History

Rev.	Change	Date
V1.0	Initial version	2/23/2024

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or s ervice. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please contact Kevin@ jsmsemi.com or visit www.jsmsemi.com