

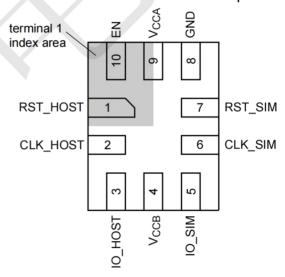
SIM Card Interface Level Translator

WWW.TECHPUBLIC.COM

Features

- Supports clock speed up to 10 MHz clock
- Support SIM card supply voltages with range of 1.62 V to 3.6 V
- Host micro-controller operating voltage range: 1.08 V to 1.98 V
- Automatic enable and disable through VCCB
- Integrated pull-up and pull-down resistors: no external resistors required
- Integrated EMI filters suppress higher harmonics of digital I/Os
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- Restriction of Hazardous Substances (RoHS) compliant and (Dark Green compliant)
- Packaging: QFN1418-10L

Applications


- SIM card terminals
- Mobile, Smart phones and Wireless modems

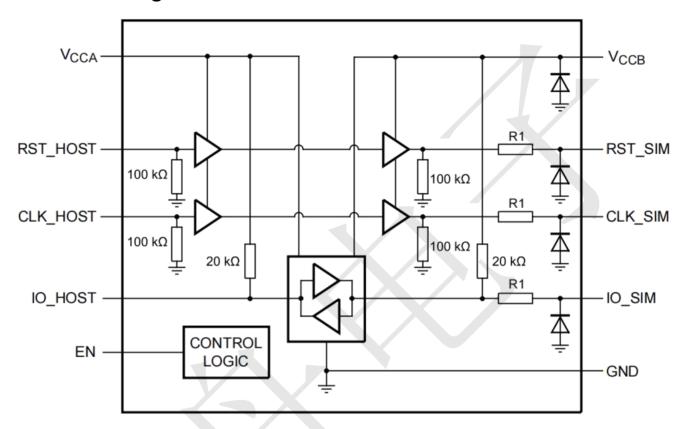
PIN CONFIGURATIONS (TOP VIEW)

General Description

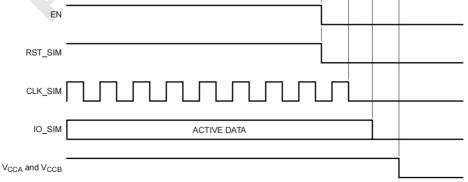
The device is built for interfacing a SIM card with a single low-voltage 1.0V to 1.8 V host side interface. The contains three 1.62 V to 3.6 V level translators to convert the data, RST and CLK signals between a SIM card and a host micro-controller. The is compliant with all ETSI, IMT-2000 and ISO-7816 SIM/Smart card interface requirements.Incorporates shutdown feature for the SIM card signals according. Automatic level translation of I/O, RST and CLK between SIM card and host side interface with capacitance isolation.

Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on VCCB or any of the card side pins. External ESD diodes are not required.

PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION		
1	RST_HOST	Reset input from host controller		
2	CLK_HOST	Clock input from host controller		
3	IO_HOST	Host controller bidirectional data input/output. The host output must be on an open-drain driver		
4	VCCB	SIM card supply voltage. When VCCB is below the VCCB disable, the device is disabled.		
5	IO_SIM	SIM card bidirectional data input/output. The SIM card output must be on an open-drain driver		
6	CLK_SIM	Clock output pin for the SIM card		
7	RST_SIM	Reset output pin for the SIM card		
8	GND	Ground for the SIM card and host controller.		
9	VCCA	Supply voltage for the host controller side input/output pins (CLK_HOST, RST_HOST, IO_HOST).		
10	EN	Host controller driven enable pin. This pin should be HIGH (VCCA) for normal operation, and		
10		LOW to help avoid race conditions specifically during the shutdown sequence.		

SIM Card Interface Level Translator


WWW.TECHPUBLIC.COM

Functional Diagram

Shutdown Sequence

The ISO 7816-3 specification specifies the shutdown sequence for the SIM card signals to ensure that the card is properly disabled for power savings. Also during hot swap, the orderly shutdown of these signals helps to avoid any improper write and corruption of data. When the enable, EN, is asserted LOW, the shutdown sequence is initiated by powering down the RST_SIM channel. Once the RST_SIM channel is powered down, CLK_SIM and IO_SIM are powered down sequentially one-by-one. An internal pull-down resistor on the SIM pins is used to pull these channels LOW. The shutdown sequence is completed in a few microseconds. It is important that EN is pulled LOW before VCCA and VCCB supplies go LOW to ensure that the shutdown sequence is properly initiated.

Shutdown sequence for RST_SIM, CLK_SIM, IO_SIM and $V_{\text{CCA}}/V_{\text{CCB}}$ SIM card translator

SIM Card Interface Level Translator

WWW.TECHPUBLIC.COM

Electrical Characteristics 1

(Ta=25oC, VVCCA =1.0V~1.8V,VVCCB =1.62V~3.6V, unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Power Sup	pplies					
VCCA	Host Side Supply		1.0		1.98	V
VCCB	SIM Side Supply		1.6		3.6	V
VVCCA_UVLO	VCCA Under Voltage Lockout	Rising, 100mV hysteresis	0.6	0.7	0.8	V
VVCCB_UVLO	VCCB Under Voltage Lockout	Rising. 100mV hysteresis	1.3	1.4	1.5	V
ISD_VCCA	Shutdown Current	VCCA=1.2V		0.5	1	uA
ISD_VCCB	EN=0V	VCCB=1.8V	- 1	0.5	1	uA
IQ_VCCA	Quiescent Current	VCCA=1.2V, CLK_HOST=0V		0.5	1	uA
IQ_VCCB	EN=VCCA	VCCB=1.8V, CLK_HOST=0V		0.5	1	uA
lact_vcca	Active Current	VCCA=1.2V, CLK_HOST=1MHz CL= 30pF		5	10	uA
Iаст_vссв	EN=VCCA	VCCB=1.8V, CLK_HOST=1MHz CL= 30pF		250	300	uA
Logic I/O p	oin (EN)					
VIH	High-Level Input Voltage	EN pin	0.7*VCC A			V
VIL	Low-Level Input Voltage	EN pin			0.3*VCC A	V
Level Tran	slator (Host Side)					
VIH	High Level input voltage	IO_HOST, RST_HOST, CLK_HOST	0.7*VCC A			V
VIL	Low Level input Voltage	IO_HOST, RST_HOST, CLK_HOST			0.3*VCC A	V
Vон	High Level output voltage	IO_HOST, IOH_IO=20uA	0.8*VCC A			V
Vol	Low Level output voltage	IO_HOST, IOL_IO=20uA			0.2*VCC A	V
RPUA	Pull up resistance	IO_HOST connected to VCCA	6	8	10	kΩ

SIM Card Interface Level Translator

WWW.TECHPUBLIC.COM

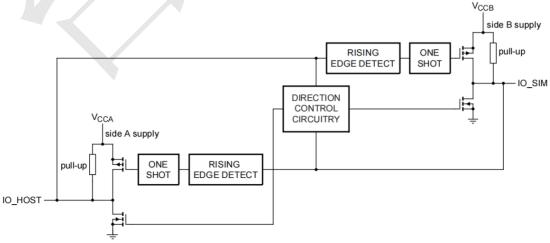
Electrical Characteristics 2

(Ta=25oC, VVCCA =1.0V~1.8V,VVCCB =1.62V~3.6V, unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Level Tran	slator (SIM Card Side	e)				I
VIH	High Level input voltage	IO_SIM	0.7*VCC B	4		V
VIL	Low Level input Voltage	IO_SIM			0.3*VCC B	V
Vон	High Level output	CLK_SIM, RST_SIM, IOH=20uA	0.8*VCC B			V
	voitage	IO_SIM, IOH=20uA	0.8*VCC B			V
VoL	Low Level output	CLK_SIM, RST_SIM, IOL =-1mA)	0.125* VCCB	V
	voltage	IO_SIM, IOL =-1mA			0.125* VCCB	V
Rрив	Pull up resistance	IO_SIM connected to VCCB	12	20	30	kΩ
Rs	Series resistance	IO_SIM, RST_SIM, CLK_SIM	40	55	100	Ω
RpD	Pull down resistance	IO_SIM, RST_SIM, CLK_SIM when EN is driven low		4		kΩ
Dynamic C	Characteristics (CL=3	OpE in Host side, CL=30Pf in S	SIM side, VC	CA=1.8V	, VCCB=3.	0V)
t PD	Propagation delay	From Host side to SIM side		10	20	ns
t PD	Propagation delay	From SIM side to HOST side		10	20	ns
	RST_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
tr_B	CLK_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
	IO_SIM Rising time	From 10% to 90% of VCCB=3.0V		8	15	ns
tr_B	RST SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns
	CLK_SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns
	IO_SIM falling time	From 90 %to 10% of VCCB=3.0V		8	15	ns

SIM Card Interface Level Translator

WWW.TECHPUBLIC.COM


Electrical Characteristics 3

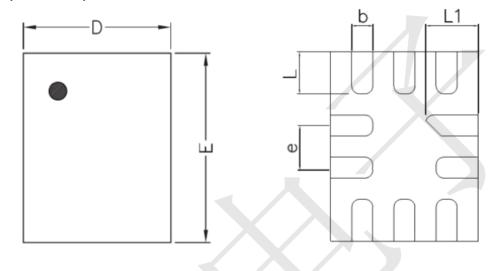
(Ta=25oC, VVCCA =1.0V~1.8V, VVCCB =1.62V~3.6V, unless otherwise specified)

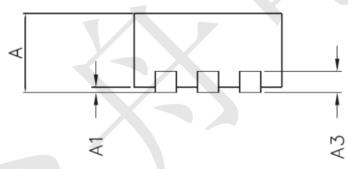
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tr_A	IO_HOST rising time	From 10% to 90% of VCCA=1.8V		8	15	ns
tr_A	IO_HOST falling time	From 90 %to 10% of VCCA=1.8V	4	8	15	ns
ten	Enable timing	From EN High to RST_High			100	ns
trst_dis	RST_SIM Disable time	From EN Low to RST_SIM low	/	200	_	ns
tclk_dis	CLK_SIM Disable time	From EN low to CLK_SIM low	-	15		us
tio_dis	IO_SIM Disable time	From EN low to IO_SIM low				us
fclk	CLK_HOST frequency				10	MHZ

Level Translator Stage

The architecture of the device I/O channel is shown below. The device does not require an extra input signal to control the direction of data flow from host to SIM or from SIM to host. As a change of driving direction is just possible when both sides are in HIGH state, the control logic is recognizing the first falling edge granting it control about the other signal side. During a rising edge signal, the non-driving output is driven by a one shot circuit to accelerate the rising edge. In case of a communication error or some other unforeseen incident that would drive both connected sides to be drivers at the same time, the internal logic automatically prevents stuck-at situation, so both I/Os will return to HIGH level once released from being driven LOW. The channels RST and CLK just contain single direction drivers without the holding mechanism of the I/O channel, as these are just driven from the host to the card side.

Automatic direction control level translator for HIGH-level direction change interfaces




SIM Card Interface Level Translator

WWW.TECHPUBLIC.COM

Package informantion

QFN1418-10L (Unit: mm)

Symbol	Dimension in Millimeters			
Symbol	Min.	Max.		
Α	0.450	0.550		
A1	0.000	0.050		
А3	0.1	0.152 Ref.		
D	1.350	1.450		
Е	1.750	1.850		
b	0.150	0.250		
е	0.400 Typ.			
L	0.350	0.450		
L1	0.450	0.550		